
Related Key Cryptanalysis of the LEX Stream

Cipher

Mainack Mondal and Debdeep Mukhopadhyay

Dept. of Computer Science and Engineering
Indian Institute of Technology Kharagpur,India

{mainack,debdeep}@cse.iitkgp.ernet.in

Abstract. LEX is a stream cipher proposed by Alex Biryukov. It was se-
lected to phase 3 of the eSTREAM competition. LEX is based on the Ad-
vanced Encryption Standard (AES) block cipher and uses a methodology
called ”Leak Extraction”, proposed by Biryukov himself. In this paper, we
cryptanalyze LEX using two related keys. We have mounted a key recovery
attack on LEX, which using 254.3 key streams yields a complete round key
with 2102 operations. This improves the existing best cryptanalysis of LEX
which needs 2112 operations to ascertain the key.

1 Introduction

LEX is a stream cipher designed by Alex Biryukov [1] using the round transforma-
tions of the Advanced Encryption Standard (AES). The proposal was built on the
concept of leak extraction and was based on the analysis of the diffusion of the
transformations of AES to decide the extent of the leak and its frequency. It is a
128 bit key stream cipher, which is developed by extracting 32 bits from the state
matrix of AES after each round of the cipher. The property of LEX, which makes
it different from AES is that the attacker never sees the entire 128 bit ciphertext,
but sees a portion of it. The design objective of LEX was to design a fast stream
cipher, and indeed was faster than AES in both hardware and software by at least
2.5 times.

LEX was selected as a candidate for eSTREAM competition and was seriously
considered till the third phase for its elegance in construction, faster operation
speed and high security margin. Its simplicity in construction attracted several
cryptanalytic efforts from several researchers. The first reported attack on LEX

was a slide attack by Wu and Preneel, which required 261 different IVs (Initializa-
tion Vector), each producing 20, 000 key-stream bytes [2]. A generic attack followed
by Englund et. al. , which needed 265.7 resynchronizations [3]. However Biryukov
submitted a tweaked version of LEX to the second phase of the eSTREAM com-
petition in 2007, which could counter both the above attacks. However in 2008,
Dunkelman and Keller [4] proposed a key recovery attack on tweaked LEX which
required 236.3 bytes of key-stream produced by the same key and had time com-
plexity of 2112. This attack removed LEX from the final portfolio of eSTREAM.
But in spite of the above attacks, it may be appreciated that LEX is a stream cipher
with high security margin although having an extremely simple design. The other
selling point of LEX is that, the principle of leak extraction may be generalized to
any block cipher, thus motivating deeper investigations of its strength. In this pa-
per, we have performed a Related Key Cryptanalysis [5] of the LEX stream cipher.

The analysis is based upon a 5 round differential trail in the key-schedule of AES
and is composed of the following steps:

– Finding a special Difference Pattern: This step focuses on a pair of AES
encryptions, using two related keys K and K∗. Let the AES encryptions under
the key K be sequenced as E1, E2 . . . En, and with the key K∗ be denoted as
E′

1, E
′

2 . . . E′

n. The property being exploited is the collision of 12-bytes of the
AES state matrices, before the rth round of the AES encryption Ei with the
corresponding state matrix obtained from E′

j . Here r can be either 3 or 5.
– Key Recovery Step: This step uses the above special Difference Pattern,

along with the differential trail in the key schedule to obtain the 16 bytes of
the key.

The attack requires 254.3 key-streams and has a time complexity of 2102, hence
reducing the time complexity of the attack proposed by Dunkelman at an increased
cost of required key streams.

We note that under the restriction that a secret key can be used to produce
only 246.3 key streams as given in the tweaked version of LEX our attack fails. This
is due to the fact that it needs too much data. But one should still consider this
attack important due to mainly two reasons

1. This attack shows a basic weakness of LEX against the differential attacks and
does show that the key streams generated by LEX give a differential pattern
that can be exploited by an attacker. Hence if one wants to improve the design
of LEX, he should be concerned about this kind of related key based attacks.

2. Cryptographic attacks are always improving and their complexity is never
increasing. Hence this attack provides a platform for the effort of possible
future related key based attacks on the stream cipher LEX which most probably
require lesser data and time complexity.

The rest of this paper is organized as follows. In the next section we state
some key concepts and notations that are necessary to understand this work. In
section 3 we demonstrate two differential properties of LEX. In section 4 using these
differential properties we mount a key recovery attack on LEX. Then we discuss the
time and data complexity of the attack in section 5. We give a comparative study
of all the reported attacks on LEX in section 6. Lastly in section 7 we conclude this
paper.

2 Preliminaries

2.1 Description of AES

The Advanced Encryption Standard (AES) is an 128 bit block cipher that supports
key sizes of 128, 192 and 256. Since the construction of LEX is based on the structure
of AES in this section we briefly state the AES algorithm and AES key schedule.

AES considers a 128 bit plaintext as a byte matrix of size 4× 4. Here each byte
represents an element of GF (28). An AES round consists of 4 operations applied
to the state matrix in the following order :

– SubByte − We apply a 8 bit to 8 bit invertible transformation to each of the
bytes of the state matrix in parallel.

– ShiftRow (SR) − Each byte of ith row is given a cyclic left shift of i bytes,
i = 0, 1, 2, 3.

– MixColumn (MC) − Each column of the state matrix is multiplied by a con-
stant 4 × 4 matrix. The multiplication is carried out in GF (28)

– AddRoundKey (ARK) − The state matrix is xor-ed with a 128 bit round
subkey derived from the original 128 bit key following a key schedule algorithm.

In an AES - 128 encryption consecutive 10 rounds are applied on the 128 bit
plaintext. There is an extra xoring with a 128 bit subkey before the first round.
This is called ‘key whitening’. In the last round the MC operation is omitted.

AES - 128, i. e. , AES with 128 bit keys uses 10 rounds as stated. For this a
total of 11 round subkeys are required. By a key scheduling algorithm these round
keys are constructed. Let us denote the subkey array as W [0...43], where each of
W [i] consists of 32 bits. The first four words of W are filled with the supplied key.
Rest of W is deduced according to the following rule :

for(i = 4; i ≤ 43; i + +)
if (i ≡ 0 mod 4)

W [i] = W [i − 4] ⊕ SubByte (W [i − 1] <<< 8) ⊕ RCON [i/4]
else

W [i] = W [i − 1] ⊕ W [i − 4]
Where RCON is an array of predetermined constants and <<< denotes cyclic

rotation of the word by 8 bit to the left.

2.2 Description of LEX

We describe the tweaked version of LEX as explained in [1]. In the initialization
step the publicly known IV value is encrypted by AES using a secret key K to get
S , hence S = AESK(IV). In this phase no keystream bytes are generated. Then
S is repeatedly encrypted by using a modified version of AES algorithm in OFB
mode of operation. In this modified version of AES the ‘key whitening’ step before
the first round is omitted and the MC step in the last round is retained. For sake
of clarity throughout this paper by the term AES we refer to this modified AES.

odd rounds even rounds

b b b b

b

bbb

b

b b

b

b

b

b

b

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Fig. 1. Output bytes in odd and even rounds of LEX

While doing these AES encryptions, 32 bits of the state matrix after each round
are leaked. These leaked bits compose the key stream of LEX. The bytes leaked
in different rounds are shown in figure 1. Therefore each encryption produces 40
bytes of key stream.

After 500 encryptions, another IV is chosen, and the process is repeated. After
232 different IVs the key is replaced. Hence under this restriction by a single secret
key we can get at most 500×232×40 bytes of key stream = 246.3 bytes of keystream.

2.3 Notations

In this paper the bytes of any intermediate state matrix B, of an AES encryption
are denoted by {Bi,j}

3
i,j=0. Let E and E′ are two AES encryptions. The secret key

for E is K and that for E′ is K∗. Let an intermediate state matrix of E(E′) is B.
Then the difference between B and the state matrix of E′(E) corresponding to B

is denoted by ∆B. The bytes of ∆B are denoted by {∆Bi,j}
3
i,j=0. The rth round

key derived from a key K is named as Kr and its bytes are
{

Kr
i,j

}3

i,j=0
. In our

attack we have used two related keys K and K∗. The difference between bytes of

rth round key derived from K and K∗ is
{

∆Kr
i,j

}3

i,j=0
. In this work SB(x) denotes

the output difference for an input difference of x to the SubByte operation and
SubByte(x) denotes the output byte for an input byte value of x to the SubByte
operation. Throughout this work we have used addition in GF (28). So the symbol
’+’ in this work refers to the operation xor.

2.4 Observations on AES SubByte operation

LEX uses the same SubByte operation as AES. We have extensively used two ob-
servations on SubByte operation of AES in our attack. We state these observations
below. They are well explained in [4].

Observation 1 : Given any non zero input(output) difference to the SubByte
operation, there are a total of 127 output(input) differences possible.

As a result, given a non zero input difference β to the SubByte operation
and a random non zero difference γ, probability of the event that the difference
propagation β → γ holds for SubByte operation = Pr [SB (β)) = γ] = 127

255 ≈ 1
2 .

We have used this property as a filter in our attack.

Observation 2 : Given the input and output differences to the SubByte operation
we can retrieve the corresponding actual input and output values using a single
table look up on average.

In the following section, we outline two important properties of the LEX stream
cipher, which we have used to perform the related key cryptanalysis. First we shall
state a special differential in the key schedule of LEX. Next we outline a special
type of collision of the state matrices of LEX, which is used to carry on the attack.
We apply Birthday Paradox to compute the number of key-streams which shall
make the probability for such a collision high.

3 Special Differential Properties of LEX

In this section, we outline two differential properties: one for the key-schedule,
the other for the state matrices of LEX. Here it may be pointed out that we are

assuming that the key-schedule of LEX is the same as that of AES. However as
mentioned in [1] if the key-schedule of AES is modified so that the round keys are
randomly generated then the following analysis does not hold. In that case, the
properties of the specific key scheduling technique needs to be investigated.

3.1 The Related Key differentials in LEX key schedule

LEX essentially uses the same key schedule as AES. We have used a five round dif-
ferential in our attack. We explain the difference propagation pictorially (figure 2).

a a

b b

c c

d

+ SB(b)+ SB(b)

+ SB(c) + SB(c)

+ SB(d) + SB(d)

SB(b) SB(b)SB(b)

SB(c) SB(c)

SB(d) SB(d)

SB(a) SB(a)

∆K(r + 4)

+ SB(a)+ SB(a)
d

a a a a a a a a a

b b b b b bb b

c c c c c c c cc

b

d d d d d d d

0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

000 d0

0

d 0

0

0

∆ ∆ ∆ ∆K K K Kr (r + 1)
(r + 2) (r + 3)

Fig. 2. Propagation of Differences in the LEX key Schedule

The figure shows the propagation of the differentials through the key-scheduling
algorithm of LEX. The attacker considers the related keys, K and K∗, which main-
tains a known difference in rth round keys. This known difference is (α, 0, α, 0),
where α is a 32 bit value equal to a, b, c, d, where a, b, c, d are four non-zero byte
values. In out attack r has to be odd. Moreover we have used in our attack the key
streams taken after the rounds r − 1, r, r + 1, r + 2, r + 3 and r + 4 of the same
AES encryptions. All these constraints set the value of r as 3 or 5. In the actual
attack scenario the attacker can assign any of these values to r keeping the attack
procedure unchanged.

3.2 Special Differential Properties in the LEX state matrices

In this attack we have used two related keys K and K∗. The rth round keys
generated from K and K∗ follows the difference pattern shown in section 3.1.
Our attack is successful when a special difference pattern appears just before the
AddRoundKey step of the rth round. We first describe how to find the difference
pattern using the key streams.

Consider two AES encryptions generated by keys K and K∗. Here K and K∗

are related keys. Let us consider the event when the state matrices just before the
rth AddRoundKey operation in both the encryptions will have zero differences in
12 specific byte positions. Hence mathematically, if the corresponding differential
state matrix be denoted by ∆b, then {∆b0,0, ∆b0,1, ∆b0,2, ∆b0,3, ∆b1,0, ∆b1,2, ∆b2,0,
∆b2,1, ∆b2,2, ∆b2,3, ∆b3,0, ∆b3,2} = 0, and {∆b1,1, ∆b1,3, ∆b3,1, ∆b3,3} are non zero
values. This pattern is shown in figure 3 along with the value of the differences after
the rth AddRoundkey operation. The colored bytes have unknown differences.

0

0

0

0

0

0

0

0

a a

b b

c c

d d

0

0

0

0

0

0

0 0 0

0 0

0

0

0

0

a a

b b

c c

d d

0 ARK

K
r

∆

Fig. 3. The Special Difference Pattern

Next we compute the minimum number of key streams required to obtain such
a difference pattern. Let the AES encryptions under the key K be sequenced as
E1, E2 . . . En, and with the key K∗ be denoted as E′

1, E
′

2 . . . E′

n. The two colliding
AES encryption pairs are obtained from the two sequences and may be denoted as
Ei and E′

j .

Let us assume that with a minimum number of n AES encryptions for each
of the keys K and K∗ the attacker has at least one pair of encryptions with high
probability where the required pattern holds. Consequently for that pair before
the AddRoundKey operation of rth round, at 12 byte positions the actual values
of the two state matrices generated by K and K∗ will be same. We call this event
a collision for a pair. The probability of a collision between two random pairs
is 1

296 Let us define the following event:

Xij : A collision occurs between the pair Ei and E′

j ⇒ Pr[Xij] = 1
296

So, Xij : A collision will not occur between the pair Ei and E′

j ⇒ Pr[Xij] = 1− 1
296

Now, Pr[A collision occurs for at least one pair] = 1 − Pr[no pairs will be collided]

= 1 − Pr

n
⋂

i=1

n
⋂

j=1

Xij

= 1 −

Pr

n
⋂

j=1

X ij

n

= 1 −

1 − Pr

n
⋃

j=1

Xij

n

= 1 −

1 −

n
∑

j=1

Pr [Xij]

n

= 1 −

1 −

n
∑

j=1

1

296

n

Thus, Pr[A collision will occur for at least one pair] ≥ 1
2 ⇒ 1 −

(

1 − n
296

)n
≥ 1

2

using the inequality ex ≥ 1 + x, ∀x ∈ R we deduce the optimal value of n to be
248 using a birthday paradox kind of computation. Hence to get a colliding pair
with high probability we need 248 encryptions by the key K and for each of them
we have to consider 248 encryptions by the key K∗. Hence there are a total of 296

pairs.

Now using a 32 bit condition on the key stream we shall reduce the number of
pairs to be considered. Let Ei and E′

j have collided. If the state matrix after rth

round of Ei is denoted by B, then ∆B0,0, ∆B2,0, ∆B0,2, ∆B2,2 should be a, c, a, c
respectively. a, b, c, d refers to the known differences in the key scheduling as shown
in figure 2. This property follows directly from the special difference pattern prop-
agation combined with subkey differences. ∆B0,0, ∆B2,0, ∆B0,2, ∆B2,2 can be got
directly from the key stream and can be checked. It is expected that out of 296

pairs only 264 pairs will satisfy this condition.

In the next step we shall further reduce the number of pairs using another
condition on the key stream. Let Ei and E′

j have collided. If the state matrix

after (r + 1)th round of Ei is denoted by C, we can observe the differences
∆C0,1, ∆C0,3, ∆C2,1, ∆C2,3 for the remaining 264 pairs from the key stream. It
can be shown that for Ei and E′

j each of these four differences give a distinct
linear equation in four variables b′1, b

′

2, d
′

1, d
′

2. Thus we can form 4 linear equations
in 4 variables. Detailed equations can be found in section 4. Thus after observing
∆C0,1, ∆C0,3, ∆C2,1, ∆C2,3 from the key stream we can solve those linear equa-
tions to evaluate b′1, b

′

2, d
′

1, d
′

2.

The special difference pattern propagation combined with subkey differences
state that the following conditions needs to be satisfied for Ei and E′

j :

b′1 = SB(b)

b′2 = SB(b)

d′1 = SB(d)

d′2 = SB(d)

From observation 1 of section 2.4 the probability of satisfying all of these 4
conditions is 2−4. So after checking this condition, out of 264 pairs only 260 pairs
need to be considered.

Hence we have to repeat the attack procedure explained in the next section for
each of the 260 pairs.

4 Mounting A Key Recovery Attack Using Special

Differential Properties of LEX

So far we have stated all the necessary properties required for our attack. In
this section using those properties we describe our key recovery attack on LEX.
The attack is described in 3 steps. After the third step of the attack the attacker
obtains several probable candidates for the secret key K. Then a brute force search
within those candidates will reveal the correct key.

1. This step retrieves 8 bytes of the state matrix after round r. Let Ei and E′

j

form a colliding encryption pair. Then the special difference shown in figure 3
holds for this pair. Now we shall concentrate on the propagation of this special
difference pattern through round (r+1). This propagation is shown in figure 4.
We shall explain the rest of this step using this figure.

ARK

ARK

Kr

r + 1
K

SB

SR

MC

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

a a

a

a aa

b b

b

b b

a

c c

c c

c c

d d

d d

d d

a’ a’

b’ b’

c’ c’

d’ d’

γ γ

γ γ

1

1b

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

4

3

2∆

Matrix ∆B Matrix ∆C

∆

Fig. 4. Propagation of difference pattern in round (r + 1)(Bytes with known actual values
are colored)

We know the actual values of the colored bytes of figure 4 from the key
stream. The symbols written in the byte positions are corresponding differ-
ences obtained for the pair Ei and E′

j . Let us first express the differences

a1, a2, b1, b2, c1, c2, d1, d2 in figure 4 in terms of known differences a, b, c, d .
The difference of the rth subkeys for Ei and E′

j is known from the related
key differential of section 3.1 and shown in figure 4. Observing the differences
before and after xoring with round key Kr and using the linearity of ARK
operation we immediately get a1 = a2 = a, b1 = b2 = b, c1 = c2 = c,
d1 = d2 = d. In figure 4 x′ denotes output difference after SubByte operation
applied to input difference x. Mathematically if x is a difference, x′ = SB(x)
where x = a1, a2, b1, b2, c1, c2, d1, d2.
Now we observe the differences between the key stream generated by Ei and
E′

j after (r + 1)th round. From the related key differentials in LEX (section

3.1) we know the subkey difference ∆Kr+1 as shown in figure 4. Hence us-
ing the linearity of ARK operation we can get the values of the differences
γ1, γ2, γ3, γ4 in figure 4. Let us denote the state matrix after SR operation of
(r +1)th round as B. C is the state matrix after applying MC operation to B.
Then using the linearity of MC operation we can express each of ∆C0,1, ∆C2,1

as linear combination of b′2, d
′

1. Also ∆C0,3, ∆C2,3 can be expressed as linear
combination of b′1, d

′

2. Since ∆C0,1, ∆C2,1, ∆C0,3, ∆C2,3 are nothing but known
values γ1, γ2, γ3, γ4 respectively hence we get four equations in four variables
b′1, b

′

2, d
′

1, d
′

2 as follows,

3b′2 + d′1 = γ1

b′2 + 3d′1 = γ2

3b′1 + d′2 = γ3

b′1 + 3d′2 = γ4

The attacker deduces b′1, b
′

2, d
′

1, d
′

2 from these equations. By virtue of knowing
the differences b, d we know b1, b2, d1, d2. Hence using observation 2 of section
2.4 actual values of bytes corresponding to these four differences b1, b2, d1, d2

can be retrieved by four table look ups. Hence in this way we recover four
bytes of the state matrix after the rth round. Combined with the bytes we get
from the key stream a total of eight bytes of the state matrix after the rth

round is recovered. The bytes of round (r + 1) whose actual values are known
after this step are shown in figure 5 by coloring them.

ARK

K

SB

SRr

Fig. 5. Known bytes after the first step of attack

2. We recover some more bytes of another state matrix in this step. We continue
with the colliding encryption pair Ei and E′

j from step 1. Here we concentrate

on the propagation of differences in the rth round. figure 6 shows the differences
of different bytes in the rth round. The bytes whose actual values are known

to us from the key stream are colored. In this diagram, all of c1, c2, c3, c4 are
differences we can get directly from the key stream. We want to determine xi

s, i = 1, 2, .., 8. They are unknown differences.

0

0

0

0

0

0 0

0

0

0

0

0

x

x

x

x

5 6

7 8

0

0 0

0

x

x

x

x

5 6

7 8

a a

b b

c c

d d

ARK

K
r −1

SB

SR

MC

c c

c c

x x

x x

1

1

2

2

3

3

4

4

0

0 0

0

a a

b b

c c

d d

0 0

00

ARK

K
r

Matrix Matrix

Matrix

∆ ∆

∆

G H

A

∆

∆

Fig. 6. Propagation of differences in round r

Here G is the state matrix after SR operation of round r in the encryption
Ei. H is got after MC operation is applied to G. Since MC operation is linear
we apply MC operation on 2nd and 4th column of ∆G and equate them with
corresponding columns of ∆H . In this way we can form 8 linear equations
involving xi as follows :

3x1 + x3 = 2c1 + c3

2x1 + x3 + x5 = c1 + 3c3

x1 + 3x3 = c1 + 2c3

x1 + 2x3 + x7 = 3c1 + c3

3x2 + x4 = 2c2 + c4

2x2 + x4 + x6 = c2 + 3c4

x2 + 3x4 = c2 + 2c4

x2 + 2x4 + x8 = 3c2 + c4

We solve this system and in particular focus on the values of x1, x2, x3, x4 i. e
the values of ∆G1,1, ∆G1,3, ∆G3,1, ∆G3,3. Thus we get the total 2nd and 4th

column of ∆G. Next we guess the actual values of the 2nd and 4th column of
the matrix G. This takes a complexity of 232. Hence using the MC operation
we get the actual values of 2nd and 4th column of H too. Let the state matrix
at the end of rth round of Ei is denoted by A. Using the values of x5, x6, x7, x8

combined with the known value of ∆Kr we know the 2nd and 4th column
of ∆A. The bytes whose actual values are known after step 2 are shown in

figure 7 by coloring them. We have also shown known differences in some byte
positions.

ARK

K
r

MC

0

0

0

0

0

0

0

0

0 0

0 0

0

00

0a a

b b

c c

d d

x x

x x

x

x

x

x

5
6

7 8

5 6

7 8

Matrix AMatrix HMatrix G

c c

c c

x x

x

1 2

3 4

1 2

3
x

4

Fig. 7. Known bytes after the second step of attack

3. In this final step we derive candidates for the subkey Kr+1. Since we know
∆Kr+1 (figure 2) once we retrieve Kr+1 we shall automatically get candidates

for K∗(r+1). As in the previous two steps we consider Ei and E′

j as a colliding
encryption pair. Ei uses secret key K and E′

j uses secret key K∗. Let us denote
the state matrix of Ei at the end of round r by A. From step 2 we have the
2nd and 4th columns of ∆A. Now we guess the actual values of 2nd and 4th

column of A. If we make all possible guesses for these 2 columns, then this
step should have taken a complexity of 264. But we shall use several filters on
these guesses, so that the average number of possible candidates for these 2
columns becomes 28. figure 8 shows the known bytes at the beginning of this
step by coloring them.

ARK

ARK

Kr

r + 1
K

SB

SR

MC

Matrix H Matrix A

Matrix M

Matrix C

Fig. 8. Known bytes after the guessing phase at the third step of attack

After this guessing phase mentioned the actual values of 2nd and 4th column of
A are known. Let us denote the state matrix after MC operation of round r in
the encryption Ei by H . From step 2 of the attack we have got the actual values
of the 2nd and 4th column of H . Hence by simple xor we got the 2nd and 4th

column of Kr. The 1st and 3rd column of A is known from step 1 of the attack.
Hence after guessing the 2nd and 4th column of A we got the actual values of
all the 16 bytes of A. Let the state matrix of Ei after the MC operation of

round (r + 1) is denoted by C. Also let M be the state matrix after adding
the round key Kr+1 with C. We know the values M0,1, M0,3, M2,1, M2,3 from
the key stream. Again by applying SubByte, SR and MC operation on A we
get 16 bytes of C. Hence by simple xor we get Kr+1

0,1 , Kr+1
0,3 , Kr+1

2,1 , Kr+1
2,3 . Using

these 4 bytes of Kr+1 and 2nd and 4th column of Kr we can retrieve 4 more
bytes of the (r + 1)th round subkey (the detailed equations are in appendix
A).
Now we want to recover some more bytes of Kr+1 using the information avail-
able at this stage. The current known information is shown in figure 9. Here the
colored bytes are known bytes. In figure 9 we denote Kr+1

1,1 , Kr+1
1,3 , Kr+1

3,1 , Kr+1
3,3

by unknown variables z1, z2, z3, z4. Then by the value of ∆Kr+1(figure 2)
K∗r+1

1,1 , K∗r+1
1,3 , K∗r+1

3,1 , K∗r+1
3,3 are (z1 + b), z2, (z3 + d), z4 respectively, where

a, b, c, d are known subkey differences as shown in figure 2. In figure 9 we have
shown some rounds of both Ei and E′

j . Ei uses the subkey Kr and E′

j uses
the subley K∗r. The symbols in the byte positions denote the actual value of
the byte. In the same figure ki, i = 1, 2, ..., 12 are known constants. We note
that we use the ARK operation by the subkey K∗r+1 on C∗, the counterpart
of matrix C in E′

j and get M∗, the counterpart of matrix M in E′

j . Thus we
directly get the equations

M∗

i,j = C∗

i,j + K∗

i,j
r+1, i, j ∈ {1, 3}

Putting the values of the corresponding bytes as shown in figure 9 we get the
following relations : k5 = k9 + b, k6 = k10, k7 = k11 + d, k8 = k12. These will
help the attacker to evaluate the constants. In figure 9 the symbol [.] denotes
the SubByte operation. We color the bytes whose actual values are known.

Kr

z
2 k

2
+

k 3
z

3
+ k 4z4 +

z
1 1

k+ z
1 1

k+ z
2 k

2
+

z
1

z
3

z4

z
2

k 4z4 + k 3
z

3
+

z4

z
2z

1

z
3

r + 1
KK

z
2

z
3

z4

k 5
k 6

7k k
8

z
2

z
3z4

k 5
k 6

1
k k

2

k 3 k 4

1
k k

2

k 3 k 4

k
8 7k

k
9

k10

k11 k12

ARK

[

SB

SR
MC

ARK

[

[[

]

]

]

]

SB

SR

MC

SB

SR

ARK

[

[[

]

]

]

]

SB

SR

MC

r
K* K

+ b

+d

ARK

r + 2K∆

z
1
+ +

+ +

z
1
+ +

++

Matrix A Matrix C

Matrix M

Matrix P

[

ARK

Matrix ∆Matrix ∆P Q

*
r + 1

Matrix N

MC

Matrix C*

Matrix M*

Fig. 9. Retrieving four more bytes of (r + 1)th round key

Let us denote the state matrix of Ei after MC operation of (r + 2)th round
by P . Also let Q is the state matrix after adding the round key Kr+2 with
P . From the key stream we get ∆Q0,0, ∆Q0,2, ∆Q2,0, ∆Q2,2. Since we know
∆Kr+2 (from figure 2) by the linearity of ARK operation we get ∆P0,0, ∆P0,2,

∆P2,0, ∆P2,2. The state matrix of Ei after SR operation of (r+2)th round is N
as shown in figure 9. Now after applying MC operation on 1st column of N the
bytes of the resultant column can be expressed as a function of two unknown
values SubByte(z1 +k1) and SubByte(z4 +k4). The corresponding column for
E′

j can be expressed as a function of two unknown values SubByte(z1+k5) and
SubByte(z4+k8). Hence each of ∆P0,0, ∆P2,0 can be expressed as a function of
four unknown variables SubByte(z1+k1), SubByte(z4+k4), SubByte(z1+k5)
and SubByte(z4 + k8). Since the actual values for ∆P0,0, ∆P2,0 are known,
Hence we get two equations involving four variables. Similarly ∆P0,2, and
P2,2 also give two more equations involving four variables. We present the 4
equations below.

3SubByte(z1 + k1) + SubByte(z4 + k4) + 3SubByte(z1 + k5)

+SubByte(z4 + k8) = α0

SubByte(z1 + k1) + 3SubByte(z4 + k4) + SubByte(z1 + k5)

+3SubByte(z4 + k8) = α1

3SubByte(z2 + k2) + SubByte(z3 + k3) + 3SubByte(z2 + k6)

+SubByte(z3 + k7) = α2

SubByte(z2 + k2) + 3SubByte(z3 + k3) + 3SubByte(z2 + k6)

+SubByte(z3 + k7) = α3

Here α0, α1, α2, α3 are known constants. We can manipulate these equations
to get equations like :

SubByte(z1 + k1) + SubByte(z1 + k5) = 3−1(4−1(α0 + α1) + α0)

SubByte(z4 + k4) + SubByte(z4 + k8) = 3−1(4−1(α0 + α1) + α1)

SubByte(z2 + k2) + SubByte(z2 + k6) = 3−1(4−1(α2 + α3) + α2)

SubByte(z3 + k3) + SubByte(z3 + k7) = 3−1(4−1(α2 + α3) + α3)

Here 3−1 and 4−1 are finite field inverses computed as in AES. Since ki, i =
1, 2, .., 8 and αj , j = 0, 1, 2, 3 are known, these equations can be interpreted as,
given the input and output differences to subbyte operation we have to find
the actual input output pairs. First we have to examine whether each of these
equations give a valid input output difference pair for the SubByte operation.
Given αi , i = 0, .., 3 this has a probability of 1

24 . Hence out of 264 possible
guesses only 260 guesses pass through this condition. For the valid guesses we
can determine the value of zi, i = 1, .., 4 by simple table look ups.
After getting the values of z1, z2, z3, z4 at this stage we have 8 bytes of the rth

round subkey and 12 bytes of (r + 1)th round subkey. We can deduce the full
16 bytes of (r + 1)th round subkey from this information. Detailed equations
are in appendix A. Now we can derive (r + 2)th and (r + 3)th round subkey
from LEX key scheduling.
At this point we do another filtering. We know all 16 bytes of A for a particular
guess about the 2nd and 4th column of A. Thus if the state matrix of Ei after

round r + 3 is R we can derive all 16 bytes of R. Now we shall have actual
values of R0,1, R0,3, R2,1, R2,3 from the keystream. If these 4 guessed values
of R match with the corresponding actual values got from the key stream we
shall keep the original guess about the 2nd and 4th column of A, otherwise
discard it. The probability of matching for all these four values is 1

232 . Hence
the expected number of guesses that pass this condition is 228.
Let us denote the state matrix of Ei just after the MC operation of the (r+4)th

round by S and after the ARK operation of the (r + 4)th round by T . Then
for a guess about the 2nd and 4th column of A we can deduce values for S
and hence ∆S can also be computed. From the key stream we shall get actual
values for ∆T0,0, ∆T0,2, ∆T2,0, ∆T2,2. If our guess is correct we shall get the
values for ∆Kr+4

0,0 , ∆Kr+4
0,2 , ∆Kr+4

2,0 , ∆Kr+4
2,2 using the simple equations

∆Kr+4
i,j = ∆Si,j + ∆Ti,j, i, j ∈ {0, 2}

As we can see from the values of ∆Kr+4 (figure 2) if the computed values for
∆Kr+4

0,0 , ∆Kr+4
0,2 , ∆Kr+4

2,0 , ∆Kr+4
2,2 are correct the following properties should

hold.

∆Kr+4
0,0 = ∆Kr+4

0,2 = a + SB(b)

∆Kr+4
2,0 = ∆Kr+4

2,2 = SB(b)

The probability that the ∆Kr+4 given by a guess will satisfy the conditions

∆Kr+4
0,0 = ∆Kr+4

0,2 and ∆Kr+4
2,0 = ∆Kr+4

2,2 is
(

1
28

)2
. Also when ∆Kr+4

0,0 and

∆Kr+4
0,2 are equal then the event that they have the exact form of a+SB(b) has

a probability of 1
2 . Similar reasoning goes for the pair ∆Kr+4

2,0 and ∆Kr+4
2,2 also.

Thus the event that all of the differences ∆Kr+4
0,0 , ∆Kr+4

0,2 , ∆Kr+4
2,0 , ∆Kr+4

2,2 has

the correct form has a total probability of 1
22 . So out of 228 remaining guesses

only
(

1
28

)2
× 1

22 × 228 = 210 guesses will remain.
So applying all stages of filtering we have to consider a total of only 210 cases
for guessing the actual values of 2nd and 4th column of the state matrix A and
for each of them we shall deduce 16 bytes of the key.

Hence after executing 3 steps of the attack we have retrieved all 16 bytes of
the subkey Kr+1. Consequently by key scheduling of LEX we shall retrieve all 16
bytes of the key K.

5 Complexity analysis of the attack

5.1 Time complexity

The step 1 of the attack methodology is deterministic and does not effect the total
complexity of the attack. The second step has a complexity of 232 since we have to
make 232 guesses and we have corresponding key suggestions. Step 3 has a average
number of 210 guesses for each of the 232 guesses made at step 2. Thus the 3 steps
of the attack procedure has a total complexity of 242.

We have to repeat this attack for 260 pairs as explained in section 3.2. Hence
the total complexity of the attack is 2102.

5.2 Data complexity

Our attack depends on finding the special difference pattern mentioned in section
3.2. The detailed analysis of the same section shows that we need a minimum of
248 encryptions under each of the key K and K∗. Now one AES encryption gives
away 40 bytes of key stream. Hence the total number of key stream bytes required
is

(

248 + 248
)

× 40 ≈ 254.3. Equivalently we need 253.3 bytes of key streams under
each of the keys K and K∗.

Thus the data complexity of our attack is 254.3.

6 Results

In this section we shall compare our attack with the existing attacks on LEX. We
present this comparative study in the form of a table. Including this work there
are only 4 reported attacks on LEX as mentioned in the introduction of this work.

Attack Complexity
Sliding attack [2] 261 different IVs , each producing 20, 000 key-

stream bytes

Generic distinguishing attack [3] 265.7 resynchronizations

Key recovery attack based on differen-
tial propagation in LEX [4]

236.3 bytes of key-stream produced by the
same key and time complexity of 2112

Related key based key recovery attack 253.3 key stream bytes produced by each of 2
related keys and 2102 time complexity.

7 Conclusion

In this paper we have taken a related key approach to cryptanalyze LEX. We have
observed a five round differential in the key scheduling of AES. Combining this
differential with a special difference pattern we have observed predictable differen-
tial pattern propagation in the key streams generated by LEX and consequently
mounted a key recovery attack on LEX. In the proposed attack we have used two
related keys, 254.3 bytes of keystreams and 2102 operations to retrieve 16 bytes of
the secret key. The observation of this paper can serve as a guideline for developing
stream ciphers using the interesting technique of “leak extraction“.

References

1. Alex Biryukov, “A New 128-bit Key Stream Cipher LEX,” Ecrypt Stream Cipher
Project Report, 2005/013, 2005, http://ecrypt.eu.org/stream.

2. H. Wu and B. Preneel, “Attacking the IV setup of the stream cipher LEX,” Ecrypt
Stream Cipher Project Report, 2005/059, 2005, http://ecrypt.eu.org/stream.

3. H̊akan Englund, Martin Hell and Thomas Johansson, “A Note on Distinguishing
attacks,” in Preproceedings of State of the Art of Stream Ciphers workshop (SASC
2007), 2007, pp. 73–78.

4. Orr Dunkelman and Nathan Keller, “A new attack on the lex stream cipher,” in
ASIACRYPT, 2008, pp. 539–556.

5. Eli Biham, “New types of cryptanalytic attacks using related keys,” in J. Cryptology,
1994, pp. 229–246.

A Retrieval of subkey bytes using key schedule

We have mentioned in step 3 of the attack procedure described in section 4 that we
need to recover some unknown subkey bytes using known subkey bytes evaluated
till that stage. For example in one case the attacker retrieves 8 key bytes of the
subkey Kr and 4 key bytes of the subkey Kr+1. Since the subkey Kr+1 is derived
from the subkey Kr itself using key schedule, hence we can combine the partial
knowledge about bytes of Kr+1, Kr and the key scheduling algorithm to deduce
more bytes of Kr+1. We have used this kind of analysis twice in our work. Here
we present those cases with detailed equations

1. At the step 3 of the attack procedure described in section 4 we have shown the
known bytes of the subkey Kr and Kr+1 after the guessing phase in figure 8.
At that point we have retrieved 8 key bytes of Kr and 4 key bytes of Kr+1.
We show the situation in figure 10. The colored bytes are known subkey bytes.

K
r

K
r + 1

Fig. 10. Known subkey bytes before retrieval

Now we use the following equations to determine 4 more bytes of the round
key Kr+1. These equations are based on LEX key schedule.

Kr+1
0,0 = Kr+1

0,1 + Kr
0,1

Kr+1
0,2 = Kr+1

0,3 + Kr
0,3

Kr+1
2,0 = Kr+1

2,1 + Kr
2,1

Kr+1
2,2 = Kr+1

2,3 + Kr
2,3

After using these equations we retrieve four subkey bytes Kr+1
0,0 , Kr+1

0,2 , Kr+1
2,0 , Kr+1

2,2 .

K
r

K
r + 1

Fig. 11. Known subkey bytes after retrieval

In figure 11 we have represented these revealed bytes of Kr+1 by coloring them.
These known bytes are used in the calculation of step 3 of section 4, illustrated
in figure 9.

2. After retrieving the value of z1, z2, z3, z4 in figure 9 we shall get 8 key bytes of
Kr and 12 key bytes of Kr+1. We show the situation in figure 12. The colored
bytes are known subkey bytes.

K
r

K
r + 1

Fig. 12. Known subkey bytes before retrieval

Using the following equations based on LEX key schedule we can determine 4
more bytes of the round key Kr+1 :

Kr+1
1,0 = Kr+1

1,1 + Kr
1,1

Kr+1
1,2 = Kr+1

1,3 + Kr
1,3

Kr+1
3,0 = Kr+1

3,1 + Kr
3,1

Kr+1
3,2 = Kr+1

3,3 + Kr
3,3

Hence using these equations the full 16 bytes of the subkey Kr+1 is retrieved.
These bytes are used in step 3 of section 4.

