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Abstract. We revisit narrow-pipe designs that are in practical use, and their security
against preimage attacks. Our results are the best known preimage attacks on Tiger, MD4,
and reduced SHA-2, with the result on Tiger being the first cryptanalytic shortcut attack
on the full hash function. Previous attacks on Tiger were only on up to 17 out of 24 rounds,
and had a higher complexity (2185 for 17 rounds). Our attacks runs in time 2184.3 and only
need memory of order 216.7, whereas all previous preimage attacks on reduced Tiger needed
much more memory (e.g. 2160 for 17-step Tiger). The new preimage attack on MD4 is about
30 times faster than the previously best known, but requires more memory. However, us-
ing pre-computation techniques, the time complexity for finding a new preimage or second
preimage for MD4 can now be as low as 270.4 and 264 MD4 computations, respectively. The
second preimage attack works for all messages longer than 2 blocks.

To obtain those results, we extend the meet-in-the-middle framework recently developed by
Aoki and Sasaki in a series of papers. In addition to various algorithm-specific techniques, we
use a number of conceptually new ideas that are applicable to a larger class of constructions.
Among them are (1) incorporating multi-target scenarios into the MITM framework, leading
to faster preimages from pseudo-preimages, (2) a simple precomputation technique that
allows for finding new preimages at the cost of a single pseudo-preimage, and (3) multi-
word compensation instead of single-word compensation that allows to speed-up preimage
search, or allows attacks on variants with more rounds. All those techniques developed await
application to other hash functions. To illustrate this, we give as another example improved
preimage attacks on SHA-2 members.

Keywords: Preimage, MD4, Tiger, SHA-2, Hash function, Cryptanalysis, Meet-in-
the-Middle

1 Introduction

After the spectacular collision attacks on MD5 and SHA-1 by Wang et al. and follow-up
work [13, 36, 40, 41], implementors reconsider their choices. While starting a very produc-
tive phase of research on design and analysis of cryptographic hash functions, the impact
of these results in terms of practical and worrying attacks turned out to be less than antic-
ipated (exceptions are e.g. [22, 35, 37]). Instead of collision resistance, another property of
hash functions is more crucial for practical security: preimage resistance. Hence, research
on preimage attacks and the security margin of hash functions against those attacks seems
well motivated, especially if those hash functions are in practical use.



An important ongoing challenge is to find an efficient and trustworthy new hash func-
tion for long term use (e.g. in the SHA-3 competition). For new hash functions, an impor-
tant first step to get confidence in them is to apply known cryptanalysis methods in order
to break it. So the cryptanalysts’ toolbox needs to be well equipped for this.

The new techniques we present in this paper contribute to both issues at the same
time. They give new, generically applicable tools to cryptanalysts for analyzing compres-
sion functions and hash functions, and at the same time applications of them improve
(sometimes by far) upon known preimage attacks on hash functions in practical use, like
MD4, Tiger, and SHA-256/512. In the following we outline the new tools and new results
that will be described later in the paper. We describe them to fit into the meeet-in-
the-middle (MITM) framework of Aoki and Sasaki as recently developed in a series of
papers [6–8, 33, 34], although we note that the basic approach was pioneered by Lai and
Massey [21]. Other interesting approaches to preimage attacks appeared in [11, 14, 19, 20,
24, 25, 30, 38, 42].

New methods. New methods described in this paper that are independent of a particular
attack or hash functions are the following:

– Multi-word compensation instead of single-word compensation, leading to either
faster preimage attacks, or preimage attacks on variants with a higher number of
rounds. For MD4, this idea leads to speed-ups of the preimage search (see Section 3),
For Tiger, this idea is used differently, namely to allow attacks on variants with many
more rounds than done before, see Section 4.

– Incorporating multi-target scenarios into the MITM framework, leading to
faster preimage attacks. The MITM framework is the basis for several theoretically in-
teresting results on the preimage resistance of various hash functions. However, results
are limited to attack complexities of 2n−e for rather small e. One reason for this is
that in order to exploit all the options of this framework, matching points of the meet-
in-the-middle phase can be anywhere in the computation of the compression function,
and not necessarily at their beginning or end. Even though this gives an attacker more
freedom in the design of a compression function attack, this always led to big efficiency
losss when the attack on the compression function is converted to an attack on the
hash function. Hence, an attacker basically had to choose between a more restricted
(and potentially much slower) strategy in the compression function attack that allows
more control over the chaining values and in turn allows efficient tree- or graph based
conversion methods, or to fully exploit the freedom given by the latest versions of the
MITM framework in the compression function attack at the cost of inefficient conver-
sion method. In Section 2.2 we describe a way to combine the best of both worlds.
Later in the paper, this results in the best known preimage attacks for Tiger and the
SHA-2 members.

– A simple precomputation technique that allows for finding new preimages at the
cost of a single pseudo-preimage. See Section 3 for an application to MD4, where this
approach is shown to outperform any point on the time/memory trade-off curve by
Hellman [17] (which was proven optimal in [10] in the generic case).

New results in perspective. In addition to the conceptual ideas that contribute to the
cryptanalysts’ toolbox in general, we also apply those ideas and present concrete results.
In fact, we manage to improve the best known preimage attacks on a number of hash
functions in practical use.



– Tiger: One of the few unbroken, but time-tested hash functions, designed by Anderson
and Biham [5] in 1996. Tiger is sometimes recommended as an alternative to MD4-like
designs like SHA-1, especially because it is faster than SHA-1 on common platforms.
Tiger is in practical use e.g. in decentralized file system, or in many file sharing proto-
cols and applications, often in a Merkle-tree construction (also known as TigerTree [3]).
The best collision attack on Tiger is on 19 rounds [26].1 So far the best preimage at-
tack on the Tiger hash function was on 17 out of 24 rounds, with time complexity
2185 and needs memory of order 2160. Our new attack improves on all three of those
aspects and seems to be the first cryptanalytic shortcut attack on the full Tiger hash
function. Our attack on the full 24 rounds hash functions has time complexity 2184.3

(compression function attack is 2179.5) and memory requirements are only in the order
of 216.7. These results are obtained using the multi-word compensation technique and
the multi-target technique mentioned above, and a dedicated technique to construct
an initial structure in a precomputation.

– MD4: Even though very efficient collision search methods exist for MD4 [39, 31], this
hash function is still in practical use. Examples include password handling in Windows
NT, the S/KEY one-time-password system [16], integrity checks in popular protocols
e.g. rsync [2] or file-sharing protocols [1] and applications like Overnet, eDonkey, etc.
The time complexity for the best known compression function attack is reduced from
296 (by Leurent [23]) to 264. And for the first time, we find a preimage attack on MD4
with time complexity less than 2100. the new attack on the hash function has time
complexity 297. Assuming precomputation, the effort for finding any new preimage
(be it for the same or a different target hash value as a challenge) can now be as
low as 270.4. Both, the multi-word compensation technique, and the precomputation
technique mentioned above are used to obtain those results.

– SHA-2: The members of the SHA-2 family of hash functions are probably one of the
most interesting cryptanalytic targets. Not only because of the uptake of its adoption
in all places where a hash function is needed (and they are countless), but also because
they are used to compare them to candidates of the ongoing SHA-3 competition. We
use SHA-2 members as an example to illustrate the effect of using the multi-target
scenario. This way we also improve the best known preimage attacks on reduced SHA-
256 and reduced SHA-512. They are described in Appendix A.

Outline. This paper is organized as follows. Section 2 describes the MITM preimage
attack, describes four different methods converting pseudo preimage to preimage (including
two new ones), and also recapitulates techniques to extend MITM based preimage attacks.
We apply these new techniques to MD4 and Tiger in Section 3 and Section 4, respectively.
Section 5 concludes the paper. Results on SHA-2 appear in Appendix A.

2 The Meet-in-the-Middle Preimage Attack

The general idea of the preimage attack, illustrated in Fig 1, can be explained as follows:

1. Split the compression function into two chunks, where the values in one chunk do not
depend on some message word Wp and the values in the other chunk do not depend

1 If an attacker can choose both the difference and the actual values not only of the message, but also
of the chaining input, then the full compression function can be attacked, see Mendel and Rijmen [27].
However, this attack can not be extended on the hash function, whereas all the attacks in this paper
can.
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Fig. 1. Meet-in-the-Middle Pseudo-Preimage Attack against Davies-Meyer Hash Functions

on another message word Wq (p 6= q). We follow the convention and call such words
neutral with respect to the first and second chunk, respectively.

2. Fix all other values except for Wp,Wq to random values and assign random values to
the chaining registers at the splitting point.

3. Start the computation both backward and forward from the splitting point to form
two lists Lp, Lq indexed by all possible values of Wp and Wq, containing the computed
values of the chaining registers at the matching point.

4. Compare two lists to find partial matches (match for one or a few registers instead of
the full chaining) at the matching point.

5. Repeat the above three steps with different initial configurations (values for splitting
point and other message words) until a full match is found.

6. Note that the match gives a pseudo-preimage as the initial value is determined dur-
ing the attack. However, it is possible to convert pseudo-preimages to a preimage
using a generic technique described in [29, Fact 9.99]. One can compute many pseudo-
preimages, and then find a message which links the IV to one of the input chaining of
the pseudo-preimages, as demonstrated in Fig 2(a).

With the work effort of 2l compression evaluations (let the space for both Wp and Wq to
be 2l), we obtain two lists, each one containing 2l values of the register to match. When
we consider all of the 22l possible pairs, we expect to get around 2l matches (assume we
match l bits at the matching point). This means that after 2l computations we get 2l

matches on one register, effectively reducing the search space by 2l. Leaving all the other
registers to chance allows us to find a complete match and thus a pseudo-preimage in
2n−l computations if the chaining is of n bits. We repeat the pseudo-preimage finding 2l/2

times, which costs 2n−l/2, and then find a message which links to one of the 2l/2 pseudo-
preimages, this costs 2n−l/2. So the overall complexity for finding one preimage is 2n−l/2+1,
with memory requirement of order 2l.

Remark on bits for partial matching. Assume we have m bits for partial matching,
we expect 22l−m good candidates with the m-bit matched. However we still need to check
if one of the remaining candidates gives a full match (pseudo preimage), the checking costs
about 22l−m (A bit less indeed, since we can store the computed candidates up to point
before partial matching, and re-check the partial matching portion only). To minimize the
time complexity, we require m ≥ l, so that 22l−m ≤ 2l.

2.1 Multi-Target Pseudo Preimage (MTPP)

In [23], Leurent provides an unbalanced-tree multi-target pseudo preimage method (refer
Fig 2(b)) to convert the pseudo preimages to preimage with complexity (l ln(2)+1) · 2n−l,
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Fig. 2. Converting Pseudo Preimages to Preimage: circle denotes state, arrow denotes message block

compared with 2n−l/2+1 in [29, Fact 9.99]. Consider the matching point is at the end of
compression function. The matching process is to find Lp + Lq = t (t is target). When
we are given k targets, the chance to find a match increases by a factor k, i.e. it takes
2n−l/k to find a pseudo-preimage which links one of the k targets. To find 2k many pseudo-
preimages, it takes 2n−l/1 + 2n−l/2 + 2n−l/3 + · · · + 2n−l/2k ≃ k ln(2) · 2n−l. To find a
preimage, it is expected to repeat 2n−k many blocks finding a message, which links to one
of the 2k targets. Taking the optimal k = l, the overall complexity is

2n−k + k ln(2) · 2n−l = (l ln(2) + 1) · 2n−l . (1)

Note this conversion does not necessarily increase the memory requirement, i.e. it can
be the same as for finding a pseudo preimage, since we compute the 2l pseudo preimage
in sequence.

Enhanced 3-Sum Problem. The above conversion comes with an assumption that the
matching can be done within 2l. Note from each chunk, we have 2l candidates (denote
as Cp and Cq), and given 2k targets (denote as T ), we are to find all possible (cp, cq, t),
where cp ∈ Cp, cq ∈ Cq and t ∈ T , such that cp + cq = t. We call this problem Enhance
3-Sum Problem, where the standard 3-sum problem decides whether there is a solution [4].
Current research progress [9] shows that the problem can be solved in O(22l) or slightly
faster. So this approach expects the matching to be done in 22l (for k = l) instead of the
assumed 2l. However this only applies to the final feed-forward operation (“+′′ in most of
the MD hash families), which is a small portion of the compression. Hence this approach
expects 22l “+′′ operations to be somewhat equivalent to 2l compression computations by
counting number of “+′′ in the compression, when l is relatively small (e.g. ≤ 7 for MD4
and Tiger).

2.2 Generic Multi-Target Pseudo Preimage (GMTPP)

The framework of Aoki and Sasaki could not take advantage of a multi-target scenario
to speed-up conversion from pseudo-preimage to preimages. The reason is a rather strong
requirement on the compression function attack by the MTPP approach outlined above.
By generalizing the setting, we weaken the assumption on the compression function attack,
and hence allow the MITM framework to take advantage of new speed-up possibilities.

When the matching point is not at the end of the compression function, we can still
make use of the multi-targets. Consider the sum of the size of Wp and Wq to be 2l, and
assume we can re-distribute the 2l bits to Wp and Wq freely2. Given 2k targets, we can
distribute the 2l bits to l+k/2 and l−k/2, so that we can have 2l+k/2 many candidates for

2 This being a very natural assumption is illustrated by the fact that for both MD4 and SHA-2 we can
give a useful application that uses this.



each direction (combining the 2l−k/2 and 2k targets to get 2l+k/2 candidates). In this way,

we can find a pseudo preimage in 2n−l−k/2 and finding 2k targets costs Σ2k

i=12
n−li−1/2 ≃

2n−l+1+k/2. So we can find preimage in

2n−k + 2n−l+1+k/2 = 3 · 2n−2l/3 (2)

taking the optimal k = 2l/3. For this method to work, we will need more matching
bits: 4l/3 bits instead of l (we have 24l/3 candidates for both directions). The mem-
ory requirement hence increases to 24l/3. Here we trade memory for speed from 2n−l/2l

(time/memory) to 2n−l−k/2/2l+k/2 for k = 0, . . . , 2l/3. And we have full control on any
other speed/memory balance in-between by making use of the proper number of given
targets, i.e. less than 2k.

2.3 Finding Preimages using Large Precomputation (FPLP)

Here, we describe a simple technique to turn a large class of pseudo preimage attacks into
preimage attacks without a speed loss. The method requires an initial large precomputation
of order 2n and hence needs to be compared with the time/memory trade-off proposed
by Hellman [17]. This means that the time and memory requirements of a dedicated
attack need to be below the TM2 = N2 tradeoff curve in order to be considered to be an
improvement over the generic attack.

The approach may be described as follows: in the precomputation phase, one tries to
find messages for all possible chaining outputs (i.e. find mi such that hash(mi) = hT for
(almost) all possible target hash values hT , but only store those messages mi in a table
together with the output, which can actually “happen” in the pseudo-preimage attack. In
the online phase, after the pseudo-preimage attack is carried out, a simple lookup into this
memory is enough to find the right linking message. The memory requirement depends on
the subset of all possible chaining inputs the pseudo-preimage attack can possibly result in.
If this subset can be restricted enough, and the pseudo-preimage attack is fast enough, the
approach may outperform the generic method. In Section 3.3, we give an actual example
where this is the case for MD4, which seems to be the first result of this kind.

Four different conversion techniques are summarized in Table 1. Our point here is
to illustrate and compare various approaches and the assumptions they make on the
compression function attack. For simplicity, other conversion methods somewhat similar
to MTPP (tree construction in [28], alternative tree and graph construction in [14]) are
not listed. As an example, the new attack on the MD4 compression function satisfies
only assumptions of the traditional and the FPLP approach, the new attack on the Tiger
compression function and the SHA-2 compression function satisfy the assumption made
by the GMTPP approach.

Name Reference Time Memory Bits for PM Assumption

Traditional Section 2,[29] 2n−l/2+1 2l l -

GMTPP new, Section 2.2 3 · 2n−2l/3 24l/3 4l/3 Redistribution of neutral bits

MTPP Section 2.1, [23] (l ln(2) + 1) · 2n−l 2l 2l Enhanced 3-SUM, PM at feedforward

FPLP new, Section 2.3 2n−l max(2z,2l) l
2n precomputation

subset of input chaining values of size 2z

Table 1. Comparison of methods converting pseudo preimage to preimage



2.4 Intro to some MITM techniques for compression function attacks

There were several techniques developed recently to extend the preimage attack for more
steps or to reduce the time complexity. To help understanding the techniques developed
later in the paper, we will introduce the concepts initial structure and partial matching
here.

Initial Structure. An Initial Structure can swap the order of some message words near
the splitting point, so that the length of two chunks can be extended. As shown in Fig 3,
originally both chunks p and q contains both neutral words Wp and Wq. After the initial
structure, we essentially swap the Wp and Wq near the splitting point, so that chunk p is
independent from Wq and chunk q is independent from Wp now.

split
chunk p chunk q

Wp

Wq

match

Wq
Wp

Fig. 3. Initial Structure

Partial Matching. Partial matching (PM) can extend the attack for a few additional
steps. As shown in Fig 4, there are Wp and Wq near the matching point, which appear
in other chunks and destroy the independence. However we can still compute few bits at
the matching point, independently for both chunks, assuming no knowledge of Wp and Wq

near the matching point. Partial fixing will fix part of the Wp and Wq so that we can still
make use of those fixed bits, and extend the attack for a few more steps. Sometimes, Wp

and Wq near the matching point behaves in such a way that we can express the matching
point as f(Wq) + σ(Wp) from chunk q, and g(Wp) + µ(Wq) from chunk p. So we can
compute f(Wq) − µ(Wq) from chunk q and g(Wp) − σ(Wp) from chunk p independently,
and then find matches. This is called indirect partial matching, and was first used in [6].

split
chunk p chunk q

Wp Wq

match

WqWp

Fig. 4. Partial Matching

The success of the MITM preimage attack relies mainly on the choice of neutral words
and number of steps the initial structure and partial matching can do. So we will mainly
discuss those three points when the attack is applied on MD4, Tiger, and SHA-2.

3 Improved Preimage Attack against MD4

3.1 Description of MD4

MD4 follows the traditional MD-strengthening, the original message was padded by 1,
followed by many 0s and 64-bit length information so that the length of padded message



becomes multiple of 512. Then divide the padded message into blocks of 512 bits and feed
into the compression function iteratively. Output of the final compression is the output of
the hash. The compression function follows Davies-Meyer construction, and come with two
major parts: message scheduling and step function. Message scheduling divides the 512-bit
message block into 16 words (32 bit each) and expand them into 48 using permutations,
i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10,
14, 3, 7, 11, 15, 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15. Starting from input
chaining, the expanded words are fed into the step function iteratively. The output of the
last step is added with the input chaining to give the output of compression function. The
step function is shown in Fig 5, where Ci and ri are predefined constants and Wi is the
message word used at i-th step. Since only one register is modified at each step, one can
use the notation Qi = (Qi−4 ⊞ Fi(Qi−1, Qi−2, Qi−3) ⊞ Mπ(i) ⊞ Ci) ≪ ri for i = 0, . . . , 47,
where the constants and functions are defined as follows.

First pass 0 ≤ i ≤ 16 Fi = IF Ci = K0 = 0

Second pass 16 ≤ i ≤ 32 Fi = MAJ Ci = K1 = 0x5A827999

Third pass 32 ≤ i ≤ 48 Fi = XOR Ci = K2 = 0x6ED9EBA1

Wi

Ci

Ai−1 Bi−1 Ci−1 Di−1

Ai Bi Ci Di

≪ ri

F

Fig. 5. MD4 Step Function

3.2 Faster Pseudo Preimage Attack

In this section, we present a pseudo preimage attack in 264. Separation of chunks is shown
in Fig 6. We choose (M9, Q6) as Wp and (M14, Q26) as Wq. The initial structure covers 17
steps from Step 10 to Step 26, as shown in Fig 7. Note, once every register and message
words shown in Fig 7 except Q6,M10,M14,M9, Q26 are fixed. The relation between Q6

and Q26 satisfies

Q26 −Q6 = ϕ(M9,M10,M14) (3)

for some ϕ. Note ϕ is fixed when all other reigsters/message words are fixed.

0 . . . 9 11 5 9 131 6 14213 14 1512 0 4 8 12 10 14. . .

initial structure PM

. . .6 1 91010

chunk p chunk q

Fig. 6. Pseudo Preimage for MD4 in 264
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M15 C15

≪ 3

M0 C16

≪ 5

M4 C17

1

1

1

IF

IF

≪ 11

M14 C14

Q6

Q26

IF

≪ 9

M8 C14

≪ 11

M10 C10

≪ 19

M11 C11

≪ 3

M12 C12

≪ 7

M13 C13

0

1

IF

IF

IF

IF

Q9 Q8 Q7

Q25 Q24Q23

Fig. 7. 17-Step Initial Structure for MD4

We fix all other registers in the Fig 7 in such a way that the influence of the registers
falling in the bold line is absorbed when passing through the F function. Note F is IF for
first pass and MAJ for second pass. To deal with IF,

IF(x, y, z) =











y set y=z when variable falls in x

z set x=0 when variable falls in y

y set x=1 when variable falls in z

(1 denotes 0xFFFFFFFF) and we force the other two inputs equal for MAJ. All required
values are shown in Fig 7. All details in each step are shown below

– step 11, C10 = D10 ⇔ Q8 = Q9

– step 12, B11 = 0⇔ Q11 = 0, use M11 and Q7

– step 13, B12 = 1⇔ Q12 = 1, use M12 and Q8

– step 15, C14 = D14 = 1, use M13 and Q9

– step 16, B15 = D15 = 1, use M15

– step 17, B16 = C16 = 1, use M0

– step 19, C18 = D18 = 1, use M4

– step 20, B19 = D19 = 1, use M12

– step 21, B20 = C20 = 1, use M1

– step 23, C22 = D22 = 1, use M5

– step 24, B23 = D23 = 1, use M13

– step 25, B24 = C24 = 1, use M2

Solving all above leaves M0 = M1 = M2 = M4 = M5 = M12 = M13 = 1 −K1, M15 = 0,
M12 = 3− 2K1 and Q8 = Q9 = K1 − 2.

The pseudo preimage algorithm.



1. Fix all mentioned message words/reigsters as above.

2. Randomly assign all other message words, except M9,M10 and M14

3. Compute (Q7, Q8, Q9) and (Q23, Q24, Q25)

4. For all (Q24,M14) compute forward from step 27 up to step 36, and obtain the list
(Lq, Q24,M14) (expected size 264)

5. For all (Q6,M9) compute backward from step 9 up to step 0, and obtain the list
(Li

p, Q6,M9) (expected size 264)

6. Do feedforward and add the target, continue computing backwards up to step 40, and
obtain the list (Lp, Q6,M9) (expected size 264)

7. Do partial matching with Q36 and Q39 as shown in Fig 8 (264+64−64 = 264 pairs left),
then match with Q38 (264−32 = 232 pairs left).

8. For each pair left, compute the right M10, such that Q37 is also matched (we have 232

pairs (M14, Q24,M9, Q6,M10) fully matched)

9. Check if any pair left satisfies Eqn (3), if yes, output the pseudo preimage (Expect
232−32 = 1 match).

Clearly, the complexity is 264 with memory requirement 264. There are some other ad-
ditional properties. Note given a new target, we can reuse the two lists Li

p and Lq. So
that the computation starts from Step 6 in the algorithm, which results in slightly faster
pseudo preimage in 261.4. Further more, such an attack gives pseudo preimage with chain-
ing limited to the set Li

p only.

3-step Partial Matching. As shown in Fig 8, the partial matching works for 3 steps.
Q36 and Q39 can be matched directly or using indirect partial matching. So we have 64
bits for partial matching (without using M10).

3.3 Preimage attack on the MD4 hash function

To find preimage using the pseudo preimage attack above, we need to correct the padding.
Note M13 is precomputed, hence the length of last block is fixed, we need to use least
significant 9 bits of M14 so that the padding is consistent with last block. Note adding more
blocks will only affects length by a multiple of 512 (29). We leave the number of additional
blocks for chance as done in the Algorithm. A small modification on the algorithm (fixing
the lower 9 bits of M14) will result in pseudo preimage in 264+9 = 273, or 261.4+9 = 270.4

with 273 precomputation, with padding correctly done. This can be further converted to
preimage in 297 using the traditional conversion (link to input chaining of the correctly
padded pseudo preimage), as the number of block can be resolved by expandable message.

Precomputation. Similarly we can restrict the input chaining to a subset of size 273,
by re-using the list whenever looking for a new pseudo preimage. So the pseudo preimage
can also be converted to preimage in 270.4, when large precomputation is allowed. To
achieve this, we precompute 2128 different message block (prefixed by the expandable
message) and store those with output falling in the restricted subset. This requires storage
of order 273 and precomputation effort 2128. Given a target, we compute a pseudo preimage
(with padding done), and it can be converted to a preimage by looking up the stored
chaining values. Hence this requires online computation 270.4 only. Using a similar 2128

precomputation, the generic Hellman tradeoff would either require almost 220 times more
memory (292.8) to achive the same runtime, or would lead to online computation that is
almost 240 times slower (2110) if the same memory would be available.
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Fig. 8. 3-Step Partial Matching for MD4

3.4 Second preimage attack on the MD4 hash function

Constrast to finding preimages, we can avoid the padding issues when finding second
preimages. Let M0||M1|| · · · , ||Mk be the padded message, we do the following:

1. Compute the chaining value H1 just after processing M1.

2. Compute a pseudo preimage (H ′,M ′) of H1.

3. Lookup the table for H ′, output Mlink, which links IV to H ′.

4. Output Mlink||M
′||M2|| · · · ||Mk as the second preimage.

It is easy to see that the complexity of this second preimage attack is in 264 when k ≥ 2,
i.e. it works for all messages with original length larger than equals to 2 blocks (1024 bits).
Although faster second preimage attack exists [42], it only works for very long messages,
i.e. 256 blocks.

4 Preimage Attack against Tiger

Before presenting the result, we give some notations used in this Section. Let Xo and Xe

denote the odd bytes and even bytes from register X, respectively. More generally, let
us denote Xs so that those bits from X indexed by the set s are consistent with X and
the rest are set to 0. So we can define e = {0, . . . , 7, 16, . . . , 23, 32, . . . , 39, 48, . . . , 55} and
o = {8, . . . , 15, 24, . . . , 31, 40, . . . , 47, 56, . . . , 63}.

4.1 Description of Tiger

Tiger is an iterative hash function based on the MD structure. The message is padded
followed by the 64-bit length of original message so that the length of the padded message
becomes multiple of 512. Then it is split into blocks of 512 bits and fed into compression
function iteratively. The compression of Tiger takes 3 chaining words and 8 message words
(each word is of 64 bits) as input and produces the updated 3 chaining words as output.
It consists of two parts: message expansion and step function. For the details, please refer
to [5]. The input chaining is fed forward, xor-ed together with output of last step function,
to produce the output of the compression function, which is a variant of the Davies-Meyer
construction.



Step Function. We name the three input chaining words of compression function as
A,B and C. These three registers are updated as follows.

C ← C + X

A← A− even(C)

B ← (B + odd(C))×mul

The result is then shifted around so that A, B, C become C, A, B, as shown in Fig 9.
Here +, −, × are addition, subtraction and multiplication, in Z264 , respectively. The two
non-linear function even and odd are defined as follows.

even(C) = T1[c0]⊕ T2[c2]⊕ T3[c4]⊕ T4[c6] ,

odd(C) = T4[c1]⊕ T3[c3]⊕ T2[c5]⊕ T1[c7] ,

where T1, . . . , T4 are four S-boxes defined on {0, 1}8 → {0, 1}64, the details can be found
in [5]. mul = 5, 7, 9 for the three passes, respectively.

Ai Bi Ci

Ai+1 Bi+ Ci+1

mul

Xi

even

odd

Fig. 9. Step Function of Tiger

Message Expansion. The 512-bit message block is split into 8 message words X0, . . . ,X7,
each of 64 bits. The key scheduling function takes X0, . . . ,X7 as input and produces mes-
sage words {X8, . . . ,X15} and {X9, . . . ,X23} recursively as follows.

(X8, . . . ,X15) = KSF(X0, . . . ,X7)

(X9, . . . ,X23) = KSF(X8, . . . ,X15)



where the key scheduling function KSF is defined as follows. We use (X8, . . . ,X15) =
KSF(X0, . . . ,X7) as an example here.

First Step: Second Step:

Y0 =X0 − (X7 ⊕ C0) X8 =Y0 + Y7

Y1 =X1 ⊕ Y0 X9 =Y1 − (X8 ⊕ (Y 7 ≪ 19))

Y2 =X2 + Y1 X10 =Y2 ⊕X9

Y3 =X3 − (Y2 ⊕ (Y 1 ≪ 19) X11 =Y3 ⊕X10

Y4 =X4 ⊕ Y3 X12 =Y4 − (X11 ⊕ (X10 ≫ 23))

Y5 =X5 + Y4 X13 =Y5 ⊕X12

Y6 =X6 − (Y5 ⊕ (Y 4 ≫ 23)) X14 =Y6 + X13

Y7 =X7 ⊕ Y6 X15 =Y7 − (X14 ⊕ C1)

Cs are predefined constants with C0 = 0xA5A5A5A5A5A5A5A5 and C1 = 0x0123456789ABCDEF.

Attack Preview. The MITM preimage attack has been applied to Tiger, however for
a variant reduced to 16 steps only [18]. The difficulty lies on finding good neutral words,
longer initial structure and partial matching. In our attack, we find 4-step initial structure,
extend the partial matching to 5 steps and provide choice of neutral words achieving
this. However each of them comes with constraints posed on message words/registers.
Throughout the description of the attack, we will explicitly give all those constraints, and
explain how they can be fulfilled using the multi-word technique, i.e. utilizing the degree
of freedoms of most message words and registers to fulfill these constraints, which are
usually left as random in the original MITM preimage attacks.

4.2 Precomputed Initial Structure

The original initial structure does not apply to Tiger, since the message words are xor-ed
into the chaining, followed by addition/subtraction operations. One can not swap the or-
der of xor and addition/subtraction, unless the chaining values are within certain range
so that we can either approximate xor by addition/subtraction, or approximate addi-
tion/subtraction by xor. In our precomputed initial structure, we force one of the inputs
to be 0 so that we can replace xor by addition. Under this assumption, we are able to
have 4-step initial structure as shown in Fig 10(a).

The constraints it should satisfy

Constraint 1 Variables in Xi fall on the odd bytes only, so that (Xe
i ) is fixed

Constraint 2 Assume we have control over Xi+4 on those bits so that (Xi+4

mul )o is fixed,
and there is no carry from even bytes to odd bytes so that we can eventually move the
X ′

i+4 further up above the odd operation in step i + 1. The idea is to keep the input to the

odd function unchanged when we move the (Xi+4

mul )o as shown in Fig 10(b).

Constraint 3 Ci+3 should be ‘0’ for those bits, where variables of Xi+4 falls. This can
be done by precomputing all possible candidates in forward direction and filtering for the
good ones as done in [6] for SHA-2.

After the precomputed initial structure (PIS) is formed, we essentially swap the order

of Xe
i and (

Xi+4

mul )o, which are 4-step far away from each other originally. We call this 4-step
PIS.



e

o

Xi+3

e

o

Xi+2

e

o

Xi+1

e

o
X′

i+4 =
Xi+4

mul

Xi

e

o

Ci−1

(a) Initial
Structure

e

o

Xi+3

e

o

Xi+2

e

o

o

e

Ci−1

o

split
Xo

i

Xe

i

X′

i+4 = (
Xi+4

mul
)e

e
Xi+1

(b) Initial Structure
2

Match A2

X5

X6
e

o

e

o

X2

e

o

X4
e

o

X3

e

o

(c) Partial Match-
ing

Fig. 10. 4-Step Initial Structure and 5-step Partial Matching for Tiger

4.3 Message Compensation

Message compensation method has been used in many places, however it was first explicitly
named in [6]. The length of each chunk is at most 7 without splice (Splice seems to be
difficult for full Tiger). Message compensation is used to achieve the maximum length (or
close maximum) for each chunk. Since we are able to have 4-step PIS, we would have 7
+ 4 + 1 + 7 = 19 steps for two chunks. Details are shown in Fig 11. Where X5, . . . ,X11

is the first chunk (7 steps), X12, . . . ,X16 could be dealt with using precomputed initial
structure as shown above, and X17, . . . ,X23 are the second chunk (7 steps). In this way,
we have 19 steps extended chunks.

For the first chunk, we use a few bits of X18 as the neutral word, we will discuss
which bits are to be used later. We force X18 to be the only one affected in the third
pass (i.e. X16, . . . ,X23). We come up with such a configuration following the rule that
there are as little words affected in the current pass as possible. In summary, we have
{X2, . . . ,X6,X10,X11,X12,X18} are affected as shown in Fig 11(a). Note this comes with

Constraint 4 we uses at most the least significant 23 bits of X18 so that these bits dis-
appear when (X18 ≫ 23) is done (as shown in Fig. 11(a)), hence it does not affect X20

etc.

For the second chunk, we use few bits of X14 as the neutral word and avoid difference
in X7 in the first pass. In the meanwhile, we avoid differences in X8, . . . ,X13 and X15

for second pass. In the end, we have {X0, . . . ,X3,X14,X16, . . . ,X23} affected as shown in
Fig 11(b). Note this comes with a constraint



Constraint 5 X15 remains constant.

The configuration in Fig 11 is consistent with what we have discussed, i.e. X7, . . . ,X13

are only related to X18 (red), X19, . . . ,X23,X0,X1 are only related to X14 (blue) and the
5 steps in the middle X14, . . . ,X18 can be dealt with PIS as discussed in Section 4.2. The
rest 5 steps X2, . . . X6 will be dealt with in Section 4.4 later.

The two neutral words affect some common message words, i.e. X2,X3, X6 and X16.
We will need to choose the bits from two neutral words X14 and X18 properly so that

Constraint 6 X14 and X18 will not affect any common bits of any word simultaneously,
i.e. for X2,X3,X6 and X16.

We leave the choice to minimize the attack complexity, which will be discussed in Sec-
tion 4.5.

X18X16 X19 X20 X21 X22 X23X17

C1

≪19

≪19

C0

C1

≪19

≪19

C0 X2X0 X3 X4 X5 X6 X7X1

X15X10X8 X11 X12 X13 X14X9

≫23

≫23

≫23

≫23

(a) First Neutral Word in Red
X18X16 X19 X20 X21 X22 X23X17

C1

≪19

≪19

C0

C1

≪19

≪19

C0 X2X0 X3 X4 X5 X6 X7X1

X15X10X8 X11 X12 X13 X14X9

≫23

≫23

≫23

≫23

(b) Second Neutral Word in Blue

Fig. 11. The neutral words with key scheduling function for Tiger

4.4 Partial Matching and Partial Fixing

The direct partial matching works for 3 steps by computing backwards. Furthermore,
by fixing the even bytes of the first message word (partial fixing technique) in forward
direction, Isobe and Shibutani [18] are able to achieve 4-step partial matching. In our
attack, we further fix some other message words and achieve 5-step partial matching, as
shown in Fig 10(c). As described in Section 4.3, we leave {X2, . . . ,X6} for partial matching.



Constraint 7 The partial information below X3 as in Fig 10(c) computed from X6 should
cover all even bytes so that we can compute the even function in step 3

and

Constraint 8 Xo
2 should be related to X14 only so that we can compute the odd function

at step 2.

4.5 Attack Description and Complexity Analysis

We define sb = {0, . . . , 7, 16, . . . , 22}, sf = o and we force neutral bits for backward
direction to Xsb

18 and neutral bits for forward direction to X
sf

14 . Additionally we let X
sf

13 = 0
and X

sf

7 = C
sf

1 .

Setting up the message words.

1. set X
{0}
6 = 1 so that the padding is done at the last bit of X6, hence the length of

original message before padding is b · 29 + 447 (so there are b + 1 message blocks).

2. set X
{0,...8}
7 = 477, Xo

7 = Co
1 (this also defines 8th bit of X7 to 1) and the rest bits of

X7 to 0. (This actually set b to
Co

1
29 )

3. set X13 = 0.

4. set (Y4 ≫ 23) ⊕ Y5 = 0 so that Y6 = X6.

5. randomly choose X0, . . . ,X3 and the rest 63 bits of X6, then compute all other message
words.

Finding good candidates - Backward. We use few bits from X18 and compute the
good candidates for backward direction. Constraint 4 restricts the neutral bits to the least

significant 23 bits and Constraint 2 restricts the odd bytes of
X

{0,...,22}
18

9 (mul = 9 for the

third pass) to be constant, which reduces the space of good candidates to 215

7 ≃ 212.19.

Note the search of good candidates can be done byte-wise, i.e. search all 28 many X
{0,...,7}
18

and 27 many X
{16,...,22}
18 independently and filter those good ones. This gives complexity

about 29. Further more, we have to restrict the influence of the candidate on X2 and X6

(refer to 11(a)) to odd bytes (Constraint 7 and 8), which further reduces the number of
good candidates to 29.36 because of the carry effect when addition is carried out. Note
we can reduce the carry effect by restricting one of the inputs of addition operation to
0 for the corresponding bits so that there is no carry between even and odd bytes (for
example, we can restrict Y17 to 0 so that there is no carry when computing X10 = Y18−Y17.
Y17 = 0 can be achieved during precomputation phase). Here we assume there are still
212.19 good candidates. This computation can be done byte-wise independently too, so it
gives complexity 29.

Finding good candidates - Forward. We use few bits from X14 and compute the
good candidates for backward direction. Constraint 1 restricts the neutral bits to odd
bytes. We will restrict the influence of the neutral bits on X2 and X18 to o∩ {24, . . . , 63},
influence on X6 to odd bytes. We precompute all possible 232 candidates, filter those good

with above properties and also C
{0,...,7,16,...,23}
17 = 0 (Constraint 3), we obtain around 213

good candidates left. Note again, the computation can be done byte-wise and this gives
complexity 210.



Correctness. Note all constraints listed before are fulfilled except Constraint 5 and
independence about X3. For Constraint 5, we set X13 = 0 and Xo

7 = Co
1 and Xo

15 =
((X14−X13)

o⊕Xo
7)− (Xo

14⊕Co
1) = 0. For the independence of X3, neutral bits from X14

can only influence bits in {38, . . . , 63} due to two ≪ 19 operations, and the neutral bits
from X18 have very high probability (≃ 1) to influence the lower 38 bits of X3. So we have
shown all constraints fulfilled.

Complexity of Finding a Preimage. Following the preimage attack list in Section 2,
we have a pseudo-preimage attack with complexity 2179.5, which can be converted to
preimage in time 2186.75 using the traditional conversion. Note we have 64 bits for partial
matching, which is more than enough to fit into the GMTPP framework. And we have
the bit re-distribution control by choosing more/less bits for X18 during precomputation.
Hence we can find preimage in 2184.3 (substitute n = 192, l = 12.5 to (2)), with memory
requirement of order 216.7 (24l/3 = 216.7).

5 Concluding discussion

We conclude with a discussion of results, and some open problems that are independant
of particular hash functions. In this paper we extend the framework around meet-in-the-
middle attacks that is currently being developed by the community with a number of
general approaches. We illustrated those extensions with improved preimage attacks on
various time-tested hash functions, with the first cryptanalytic attack on the full Tiger
hash function probably being the most interesting example. Other examples include various
improved preimage attacks on MD4 and step-reduced SHA-2.

One of the generic ideas presented was the following. Under the meet-in-the-middle
preimage attack framework, we presented new techniques to convert pseudo preimage into
preimage faster than the traditional method, i.e the Generic Multi-Target Pseudo Preimage
and a simple precomputation technique. It will be interesting to see if an algorithm solving
the Enhance 3-Sum problem faster than 22n for a set size of 2n exists, so that the MTPP
can be valid for any l. On the other hand, we found pseudo preimage for MD4 in 264, it will
be interesting to see if any of the new conversion techniques/or other unknown technique
works when converting pseudo preimage to preimage for MD4.

We expect the techniques outlined in this paper to also improve existing preimage
attacks on well studied hash functions like MD5, SHA-1, Haval, and others. Also, several
SHA-3 candidates seem to be a natural target.
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A Improved Preimage Attack against SHA-2

In [6], Aoki et al. give preimage on 42-step reduced SHA-2. We note that matching point
(together with the choice of neutral words) can be moved to the end of the compression
function, as done for attacking SHA-224/384 in [6]. The number of neutral bits in two
direction is around 32/3 (64/3 for SHA-512) and the number of bits for partial matching
is 32 (64 for SHA-512), which is more than enough. Applying the MTPP framework, we
find preimages in 2248.4 (substitute n = 256 and l = 32/3 to (1)), compared with 2251.7

for 42-step SHA-256 and 2494.6 (substitute n = 512 and l = 64/3 to (1)), compared with
2502.3 for 42-step SHA-512. The memory requirements remain unchanged.

Note partial matching works in such a way that, more bits are fixed, less bits for
neutral words and more steps/more bits can be used for partial matching. So there is a
balance between bits for neutral words and bits for partial matching. When multi-targets
are available, we are to use less bits for neutral bits, and more for partial matching, in
order to reduce the complexity for finding pseudo preimages. This trick can be applied to
the attack on 43-step SHA-256 and 46-step SHA-512 in [6], hence the complexity can be
reduced. As mentioned in our conclusions, we expect this method to be directly applicable
to more existing results.


