
Advanced Meet-in-the-Middle Preimage Attacks:

First Results on Full Tiger, and

Improved Results on MD4 and SHA-2

Jian Guo1, San Ling1, Christian Rechberger2, and Huaxiong Wang1

1 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

2 Dept. of Electrical Engineering ESAT/COSIC, K.U.Leuven,
and Interdisciplinary Institute for BroadBand Technology (IBBT),

Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium.

ntu.guo@gmail.com

Abstract. We revisit narrow-pipe designs that are in practical use, and their security against preimage
attacks. Our results are the best known preimage attacks on Tiger, MD4, and reduced SHA-2, with the
result on Tiger being the first cryptanalytic shortcut attack on the full hash function. Previous attacks
on Tiger were only on up to 23 out of 24 rounds. Our attacks runs in time 2188.8 for finding preimages,
and 2188.2 for second-preimages, both with memory requirement of order 28.Using pre-computation
techniques, the time complexity for finding a new preimage or second-preimage for MD4 can now be
as low as 278.4 and 269.4 MD4 computations, respectively. The second-preimage attack works for all
messages longer than 2 blocks.

To obtain those results, we extend the meet-in-the-middle framework recently developed by Aoki and
Sasaki in a series of papers. In addition to various algorithm-specific techniques, we use a number
of conceptually new ideas that are applicable to a larger class of constructions. Among them are
(1) incorporating multi-target scenarios into the MITM framework, leading to faster preimages from
pseudo-preimages, (2) a simple precomputation technique that allows for finding new preimages at the
cost of a single pseudo-preimage, and (3) multi-word compensation instead of single-word compensation
that allows to speed-up preimage search, or allows attacks on variants with more rounds. All those
techniques developed await application to other hash functions. To illustrate this, we give as another
example improved preimage attacks on SHA-2 members.

Keywords: Preimage, MD4, Tiger, SHA-2, Hash function, Cryptanalysis, Meet-in-the-Middle

1 Introduction

After the spectacular collision attacks on MD5 and SHA-1 by Wang et al. and follow-up work [13, 38, 44,
45], implementors reconsider their choices. While starting a very productive phase of research on design
and analysis of cryptographic hash functions, the impact of these results in terms of practical and worrying
attacks turned out to be less than anticipated (exceptions are e.g., [23, 36, 39]). Instead of collision resistance,
another property of hash functions is more crucial for practical security: preimage resistance. Hence, research
on preimage attacks and the security margin of hash functions against those attacks seems well motivated,
especially if those hash functions are in practical use.

An important ongoing challenge is to find an efficient and trustworthy new hash function for long term
use (e.g., in the SHA-3 competition). For new hash functions, an important first step to get confidence in
them is to apply known cryptanalysis methods in order to break it. So the cryptanalysts’ toolbox needs to
be well equipped for this.

The new techniques we present in this paper contribute to both issues at the same time. They give new,
generically applicable tools to cryptanalysts for analyzing compression functions and hash functions, and
at the same time applications of them improve (sometimes by far) upon known preimage attacks on hash
functions in practical use, like MD4, Tiger, and SHA-256/512. In the following we outline the new tools and
new results that will be described later in the paper. We describe them to fit into the meeet-in-the-middle
(MITM) framework of Aoki and Sasaki as recently developed in a series of papers [6–8, 34, 35], although
we note that the basic approach was pioneered by Lai and Massey [22]. Other interesting approaches to
preimage attacks appeared in [11, 14, 20, 21, 25, 26, 31, 40, 46].

New methods. New methods described in this paper that are independent of a particular attack or hash
functions are the following:

– Multi-word compensation instead of single-word compensation, leading to either faster preimage
attacks, or preimage attacks on variants with a higher number of rounds. For MD4, this idea leads to
speed-ups of the preimage search (see Section 3), For Tiger, this idea is used differently, namely to allow
attacks on variants with many more rounds than done before, see Section 4.

– Incorporating multi-target scenarios into the MITM framework, leading to faster preimage
attacks. The MITM framework is the basis for several theoretically interesting results on the preimage
resistance of various hash functions. However, results are limited to attack complexities of 2n−e for
rather small e. One reason for this is that in order to exploit all the options of this framework, matching
points of the meet-in-the-middle phase can be anywhere in the computation of the compression function,
and not necessarily at their beginning or end. Even though this gives an attacker more freedom in the
design of a compression function attack, this always led to big efficiency losss when the attack on the
compression function is converted to an attack on the hash function. Hence, an attacker basically had
to choose between a more restricted (and potentially much slower) strategy in the compression function
attack that allows more control over the chaining values and in turn allows efficient tree- or graph based
conversion methods, or to fully exploit the freedom given by the latest versions of the MITM framework
in the compression function attack at the cost of inefficient conversion method. In Section 2.2 we describe
a way to combine the best of both worlds. Later in the paper, this results in the best known preimage
attacks for Tiger and the SHA-2 members.

– A simple precomputation technique that allows for finding new preimages at the cost of a single
pseudo-preimage. See Section 3 for an application to MD4, where this approach is shown to outperform
any point on the time/memory trade-off curve by Hellman [18] (which was proven optimal in [10] in the
generic case).

New results in perspective. In addition to the conceptual ideas that contribute to the cryptanalysts’
toolbox in general, we also apply those ideas and present concrete results. In fact, we manage to improve
the best known preimage attacks on a number of hash functions in practical use.

– Tiger: One of the few unbroken, but time-tested hash functions, designed by Anderson and Biham [5]
in 1996. Tiger is sometimes recommended as an alternative to MD4-like designs like SHA-1, especially
because it is faster than SHA-1 on common platforms. Tiger is in practical use e.g., in decentralized
file system, or in many file sharing protocols and applications, often in a Merkle-tree construction (also
known as TigerTree [3]). The best collision attack on Tiger is on 19 rounds [27].1 So far the best preimage
attack2 on the Tiger hash function was on 17 out of 24 rounds, with time complexity 2185 and needs
memory of order 2160. Our new attack improves on all three of those aspects and seems to be the first

1 If an attacker can choose both the difference and the actual values not only of the message, but also of the chaining
input, then the full compression function can be attacked, see Mendel and Rijmen [28]. However, this attack can
not be extended on the hash function, whereas all the attacks in this paper can.

2 Note that, independently of our work, an improved MITM preimage attack by Wang and Sasaki [42] has been
applied to 23-step Tiger with time complexity 1.4 × 2189 and memory requirement 222.

2

cryptanalytic shortcut attack on the full Tiger hash function. Our attack on the full 24 rounds hash
functions has time complexity 2189.7 (compression function attack is 2179.5) and memory requirements
are only in the order of 28. These results are obtained using the multi-word compensation technique and
the multi-target technique mentioned above, and a dedicated technique to construct an initial structure
in a precomputation.

– MD4: Even though very efficient collision search methods exist for MD4 [43, 32], this hash function
is still in practical use. Examples include password handling in Windows NT, the S/KEY one-time-
password system [17], integrity checks in popular protocols e.g., rsync [2] or file-sharing protocols [1] and
applications like Overnet, eDonkey, etc. The time complexity for the best known compression function
attack is reduced from 296 (by Leurent [24]) to 272. Assuming precomputation, the effort for finding any
new preimage (be it for the same or a different target hash value as a challenge) can now be as low
as 278.4. Both, the multi-word compensation technique, and the precomputation technique mentioned
above are used to obtain those results.

– SHA-2: The members of the SHA-2 family of hash functions are probably one of the most interesting
cryptanalytic targets. Not only because of the uptake of its adoption in all places where a hash function
is needed (and they are countless), but also because they are used to compare them to candidates of the
ongoing SHA-3 competition. We use SHA-2 members as an example to illustrate the effect of using the
multi-target scenario. This way we also improve the best known preimage attacks on reduced SHA-256
and reduced SHA-512. They are described in Appendix A.

Outline. This paper is organized as follows. Section 2 describes the MITM preimage attack, describes four
different methods converting pseudo preimage to preimage (including two new ones), and also recapitulates
techniques to extend MITM based preimage attacks. We apply these new techniques to MD4 and Tiger in
Section 3 and Section 4, respectively. Section 5 concludes the paper. Results on SHA-2 appear in Appendix A.

2 The Meet-in-the-Middle Preimage Attack

matchsplit

Target

Fig. 1. Meet-in-the-Middle Pseudo-Preimage Attack against Davies-Meyer Hash Functions

The general idea of the preimage attack, illustrated in Fig 1, can be explained as follows:

1. Split the compression function into two chunks, where the values in one chunk do not depend on some
message word Wp and the values in the other chunk do not depend on another message word Wq

(p 6= q). We follow the convention and call such words neutral with respect to the first and second chunk,
respectively.

2. Fix all other values except for Wp, Wq to random values and assign random values to the chaining
registers at the splitting point.

3. Start the computation both backward and forward from the splitting point to form two lists Lp, Lq

indexed by all possible values of Wp and Wq, containing the computed values of the chaining registers
at the matching point.

3

4. Compare two lists to find partial matches (match for one or a few registers instead of the full chaining)
at the matching point.

5. Repeat the above three steps with different initial configurations (values for splitting point and other
message words) until a full match is found.

6. Note that the match gives a pseudo-preimage as the initial value is determined during the attack.
However, it is possible to convert pseudo-preimages to a preimage using a generic technique described
in [30, Fact 9.99]. One can compute many pseudo-preimages, and then find a message which links the
IV to one of the input chaining of the pseudo-preimages, as demonstrated in Fig 2(a).

With the work effort of 2l compression evaluations (let the space for both Wp and Wq to be 2l), we obtain
two lists, each one containing 2l values of the register to match. When we consider all of the 22l possible
pairs, we expect to get around 2l matches (assume we match l bits at the matching point). This means that
after 2l computations we get 2l matches on one register, effectively reducing the search space by 2l. Leaving
all the other registers to chance allows us to find a complete match and thus a pseudo-preimage in 2n−l

computations if the chaining is of n bits. We repeat the pseudo-preimage finding 2l/2 times, which costs
2n−l/2, and then find a message which links to one of the 2l/2 pseudo-preimages, this costs 2n−l/2. So the
overall complexity for finding one preimage is 2n−l/2+1, with memory requirement of order 2l.

Remark on bits for partial matching. Assume we have m bits for partial matching, we expect 22l−m

good candidates with the m-bit matched. However we still need to check if one of the remaining candidates
gives a full match (pseudo preimage), the checking costs about 22l−m (A bit less indeed, since we can store
the computed candidates up to point before partial matching, and re-check the partial matching portion
only). To minimize the time complexity, we require m ≥ l, so that 22l−m ≤ 2l.

2.1 Multi-Target Pseudo Preimage (MTPP)

IV

link

t
.
.
.

(a) Traditional Conversion

IV
linkExpandable Message t

.

.

.

(b) Multi-Target Pseudo Preimages

Fig. 2. Converting Pseudo Preimages to Preimage: circle denotes state, arrow denotes message block

In [24], Leurent provides an unbalanced-tree multi-target pseudo preimage method (refer Fig 2(b)) to
convert the pseudo preimages to preimage with complexity (l ln(2)+1) ·2n−l, compared with 2n−l/2+1 in [30,
Fact 9.99]. Consider the matching point is at the end of compression function. The matching process is to
find Lp + Lq = t (t is target). When we are given k targets, the chance to find a match increases by a
factor k, i.e., it takes 2n−l/k to find a pseudo-preimage which links one of the k targets. To find 2k many
pseudo-preimages, it takes 2n−l/1 + 2n−l/2 + 2n−l/3 + · · ·+ 2n−l/2k ≃ k ln(2) · 2n−l. To find a preimage, it
is expected to repeat 2n−k many blocks finding a message, which links to one of the 2k targets. Taking the
optimal k = l, the overall complexity is

2n−k + k ln(2) · 2n−l = (l ln(2) + 1) · 2n−l . (1)

Note this conversion does not necessarily increase the memory requirement, i.e., it can be the same as
for finding a pseudo preimage, since we compute the 2l pseudo preimage in sequence.

Enhanced 3-Sum Problem. The above conversion comes with an assumption that the matching can be
done within 2l. Note from each chunk, we have 2l candidates (denote as Cp and Cq), and given 2k targets

4

(denote as T), we are to find all possible (cp, cq, t), where cp ∈ Cp, cq ∈ Cq and t ∈ T , such that cp + cq = t.
We call this problem Enhanced 3-Sum Problem, where the standard 3-sum problem decides whether there is
a solution [4]. Current research progress [9] shows that the problem can be solved in O(22l) or slightly faster.
So this approach expects the matching to be done in 22l (for k = l) instead of the assumed 2l. However this
only applies to the final feed-forward operation (“+” in most of the MD hash families), which is a small
portion of the compression. Hence this approach expects 22l “+” operations to be somewhat equivalent to 2l

compression computations by counting number of “+” in the compression, when l is relatively small (e.g.,
≤ 7 for MD4 and Tiger, since there are about 27 “+” in MD4 compression; we simply count the number of
operations (“+”, “−”, “×” and sbox lookup) in case of Tiger).

2.2 Generic Multi-Target Pseudo Preimage (GMTPP)

The framework of Aoki and Sasaki could not take advantage of a multi-target scenario to speed-up conversion
from pseudo-preimage to preimages. The reason is a rather strong requirement on the compression function
attack by the MTPP approach outlined above. By generalizing the setting, we weaken the assumption on
the compression function attack, and hence allow the MITM framework to take advantage of new speed-up
possibilities.

When the matching point is not at the end of the compression function, we can still make use of the
multi-targets. Consider the sum of the size of Wp and Wq to be 2l, and assume we can re-distribute the
2l bits to Wp and Wq freely3. Given 2k targets, we can distribute the 2l bits to l + k/2 and l − k/2, so
that we can have 2l+k/2 many candidates for each direction (combining the 2l−k/2 and 2k targets to get
2l+k/2 candidates). In this way, we can find a pseudo preimage in 2n−l−k/2 and finding 2k targets costs

Σ2k

i=12
n−li−1/2 ≃ 2n−l+1+k/2. So we can find preimage in

2n−k + 2n−l+1+k/2 = 3 · 2n−2l/3 (2)

taking the optimal k = 2l/3. For this method to work, we will need more matching bits: 4l/3 bits instead of
l (we have 24l/3 candidates for both directions). The memory requirement hence increases to 24l/3. Here we
trade memory for speed from 2n−l/2l (time/memory) to 2n−l−k/2/2l+k/2 for k = 0, . . . , 2l/3. And we have
full control on any other speed/memory balance in-between by making use of the proper number of given
targets, i.e., less than 2k.

2.3 Finding Preimages using Large Precomputation (FPLP)

Here, we describe a simple technique to turn a large class of pseudo preimage attacks into preimage attacks
without a speed loss. The method requires an initial large precomputation of order 2n and hence needs to be
compared with the time/memory trade-off proposed by Hellman [18]. This means that the time and memory
requirements of a dedicated attack need to be below the TM2 = N2 tradeoff curve in order to be considered
to be an improvement over the generic attack.

The approach may be described as follows: in the precomputation phase, one tries to find messages for all
possible chaining outputs, i.e., find mi such that hash(mi) = hT for (almost) all possible target hash values
hT , but only store those messages mi in a table together with the output, which can actually “happen” in
the pseudo-preimage attack. In the online phase, after the pseudo-preimage attack is carried out, a simple
lookup into this memory is enough to find the right linking message. The memory requirement depends on
the subset of all possible chaining inputs the pseudo-preimage attack can possibly result in. If this subset
can be restricted enough, and the pseudo-preimage attack is fast enough, the approach may outperform the
generic method. In Section 3.3, we give an actual example where this is the case for MD4, which seems to
be the first result of this kind.

Four different conversion techniques are summarized in Table 1. Our point here is to illustrate and compare
various approaches and the assumptions they make on the compression function attack. For simplicity,

3 This being a very natural assumption is illustrated by the fact that for both MD4 and SHA-2 we can give a useful
application that uses this.

5

other conversion methods somewhat similar to MTPP (tree construction in [29], alternative tree and graph
construction in [14]) are not listed. As an example, the new attack on the MD4 compression function satisfies
only assumptions of the traditional and the FPLP approach, the new attack on the Tiger compression function
and the SHA-2 compression function satisfy the assumption made by the GMTPP approach.

Name Reference Time Memory Bits for PM Assumption

Traditional Section 2,[30] 2n−l/2+1 2l l -

GMTPP new, Section 2.2 3 · 2n−2l/3 24l/3 4l/3 Redistribution of neutral bits

MTPP Section 2.1, [24] (l ln(2) + 1) · 2n−l 2l 2l Enhanced 3-SUM, PM at feedforward

FPLP new, Section 2.3 2n−l max(2z,2l) l
2n precomputation

subset of input chaining values of size 2z

Table 1. Comparison of methods converting pseudo preimage to preimage

2.4 Intro to some MITM techniques for compression function attacks

There were several techniques developed recently to extend the preimage attack for more steps or to reduce
the time complexity. To help understanding the techniques developed later in the paper, we will introduce
the concepts of initial structure and partial matching here.

Initial Structure. An Initial Structure can swap the order of some message words near the splitting point,
so that the length of two chunks can be extended. As shown in Fig 3, originally both chunks p and q contains
both neutral words Wp and Wq. After the initial structure, we essentially swap the Wp and Wq near the
splitting point, so that chunk p is independent from Wq and chunk q is independent from Wp now.

split
chunk p chunk q

Wp

Wq

match

Wq
Wp

Fig. 3. Initial Structure

Partial Matching. Partial matching (PM) can extend the attack for a few additional steps. As shown
in Fig 4, there are Wp and Wq near the matching point, which appear in other chunks and destroy the
independence. However we can still compute few bits at the matching point, independently for both chunks,
assuming no knowledge of Wp and Wq near the matching point. Partial fixing will fix part of the Wp and
Wq so that we can still make use of those fixed bits, and extend the attack for a few more steps. Sometimes,
Wp and Wq near the matching point behaves in such a way that we can express the matching point as
f(Wq) + σ(Wp) from chunk q, and g(Wp) + µ(Wq) from chunk p, for some functions f, σ, g, µ depending on
the underlining hash function. So we can compute f(Wq) − µ(Wq) from chunk q and g(Wp) − σ(Wp) from
chunk p independently, and then find matches. This is called indirect partial matching, and was first used
in [6].

The success of the MITM preimage attack relies mainly on the choice of neutral words and number of
steps the initial structure and partial matching can do. So we will mainly discuss those three points when
the attack is applied on MD4, Tiger, and SHA-2.

6

split
chunk p chunk q

Wp Wq

match

WqWp

Fig. 4. Partial Matching

3 Improved Preimage Attack against MD4

3.1 Description of MD4

MD4 follows the traditional MD-strengthening, the original message was padded by 1, followed by many 0s
and 64-bit length information so that the length of padded message becomes multiple of 512. Then divide
the padded message into blocks of 512 bits and feed into the compression function iteratively. Output of the
final compression is the output of the hash. The compression function follows Davies-Meyer construction,
and come with two major parts: message scheduling and step function. Message scheduling divides the 512-
bit message block into 16 words (32 bit each) and expand them into 48 using permutations, as shown in
following table.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Starting from input chaining, the expanded words are fed into the step function iteratively. The output of
the last step is added with the input chaining to give the output of compression function. The step function
takes four registers as input, and update one as Qi = (Qi−4 ⊞ Fi(Qi−1, Qi−2, Qi−3) ⊞ Mπ(i) ⊞ Ci) ≪ ri

for i = 0, . . . , 47, where Ci and ri are predefined constants, π is a permutation defined in above table, and
function Fi are defined as in following table. We use typewriter font to denote the hex numbers, such as
5A827999, 1 for FFFFFFFF, and 0 for 00000000.

First pass 0 ≤ i ≤ 16 Fi = IF Ci = K0 = 0
Second pass 16 ≤ i ≤ 32 Fi = MAJ Ci = K1 = 5A827999

Third pass 32 ≤ i ≤ 48 Fi = XOR Ci = K2 = 6ED9EBA1

3.2 Faster Pseudo Preimage Attack

In this section, we present a pseudo preimage attack in 272. Separation of chunks is shown in Fig 5. We
choose (M9, Q6) as Wp and (M14, Q26) as Wq. The initial structure covers 17 steps from Step 10 to Step 26,
as shown in Fig 6. Note, once every register and message words shown in Fig 6 except Q6, M10, M14, M9, Q26

are fixed. A similar technique has been used in [41, 15, 24]. However, none of those paths help in our MITM
preimage attak setting, since we can not find more proper choices of neutral words. In our initial structure,
the relation between Q6 and Q26 satisfies

Q26 −Q6 = ϕ(M9, M10, M14) (3)

for some function ϕ. Note ϕ is fixed when all other registers/message words are fixed.
We fix all other registers in the Fig 6 in such a way that the influence of the registers falling in the bold

line is absorbed when passing through the F function. Note F is IF for the first pass and MAJ for the second
pass. To deal with IF,

IF(x, y, z) =

y set y = z when variable falls in x

z set x = 0 when variable falls in y

y set x = 1 when variable falls in z .

7

0 . . . 9 11 5 9 131 6 14213 14 1512 0 4 8 12 10 14. . .

initial structure PM

. . .6 1 91010

chunk p chunk q

Fig. 5. Pseudo Preimage for MD4 in 272

≪ 13

M12 C19

≪ 3

M1 C20

≪ 9

M10 C26

≪ 5

M5 C21

≪ 9

M9 C22

≪ 13

M13 C23

≪ 3

M2 C24

≪ 5

M6 C25

1 1

(b) (c) (d)(a)

1 1
IF

≪ 11

M14 C14

Q6

Q26

≪ 9

M8 C18

≪ 11

M10 C10

≪ 19

M11 C11

≪ 3

M12 C12

≪ 7

M13 C13

IF

IF

IF

IF

Q9 Q8 Q7

Q25 Q24Q23

1
≪ 19

M15 C15

≪ 3

M0 C16

≪ 5

M4 C17

1
1

IF

1 1 10
Fig. 6. 17-Step Initial Structure for MD4

8

Similarly, we force the other two inputs equal for MAJ. All required values are shown in Fig 6. However,
this setting results in no solution, since it is over-constraited on M12. To overcome this problem, we propose
probabilistic initial structure.

Probabilistic Initial Structure. Consider the probablity for a = IF(b, a, x), where a, b are fixed constants,
and x is a random value in F232 . The equation does not always hold for all x. However, if |b| (Hamming
weight) is very close to 32, then we can expect high probablity for the equation to hold. Instead of setting
inputs of IF to be strictly 1 or 0, we use some other values which are close to 1 or 0 (similarly, we force two
inputs of MAJ to be very close), which enables us to find some solutions for the intitial structure, as shown
in Fig 7, where a, b are variables which will be decided later. We list the equations of the constraints here:

≪ 13

M12 C19

≪ 3

M1 C20

≪ 9

M10 C26

≪ 5

M5 C21

≪ 9

M9 C22

≪ 13

M13 C23

≪ 3

M2 C24

≪ 5

M6 C25

a

b

(b) (c) (d)(a)

b

b

IF

≪ 11

M14 C14

Q6

Q26

≪ 9

M8 C18

≪ 11

M10 C10

≪ 19

M11 C11

≪ 3

M12 C12

≪ 7

M13 C13

0

IF

IF

IF

IF

Q9 Q8 Q7

Q25 Q24Q23

a

≪ 19

M15 C15

≪ 3

M0 C16

≪ 5

M4 C17

a

a

IF

a

a

b

b

Fig. 7. 17-Step Probabilistic Initial Structure for MD4

Step 11: Q9 = Q8

Step 12: Q11 = 0 ⇔ Q7 + Q8 + M11 = 0
Step 13: Q12 = a ⇔ (Q8 + Q9 + M12) ≪ 3 = a
Step 15: Q13 = Q12 = a ⇔ (Q9 + M13) ≪ 7 = a
Step 16: Q15 = Q13 = a ⇔ (a + M15) ≪ 19 = a
Step 17: Q16 = Q15 = a ⇔ (a + a + M0 + K1) ≪ 3 = a
Step 18: Q17 = Q16 = a ⇔ (a + a + M4 + K1) ≪ 5 = a
Step 19: Q19 = b ⇔ (a + a + M12 + K1) ≪ 13 = b
Step 20: Q20 = Q19 = b ⇔ (a + a + M1 + K1) ≪ 3 = b
Step 22: Q21 = Q20 = b ⇔ (a + b + M5 + K1) ≪ 5 = b
Step 24: Q23 = Q21 = b ⇔ (b + b + M13 + K1) ≪ 13 = b
Step 25: Q24 = Q23 = b ⇔ (b + b + M2 + K1) ≪ 3 = b

(4)

The above system of equations allows us to have choices for a and b. Note, we used two probabilistic
approximations in two places, i.e., IF(a, 0, Q10) = 0 at Step 13, and MAJ(b, Q18, a) = a at Step 20. Each

9

happens with probability 2|a|−32 and 2−|a⊕b|, respectively (assume Q10 and Q18 are uniformly distributed).
To have high probability, we search the a, b which maximizes prob = 2|a|−|a⊕b|−32. We found a = EFFFBFEF,
and b = EFCF1F6F, which gives prob = 2−8. Solving (4) leaves M0 = C37DFE86, M1 = C377EA76, M2 =
C3D92B76, M4 = 44FE0488, M5 = 452D2004, M12 = C0FD8501, M13 = C15EC601, M15 = 07FE3E10,
Q8 = Q9 = 1E81397E, and Q7 + M11 = E17EC682. To ensure this works as expected, we verified the
probability using a C program, and the experiment confirms the result.

3-step Partial Matching. As shown in Fig 8, the partial matching works for 3 steps. Q36 and Q39 can be
matched directly or using indirect partial matching. So we have 64 bits for partial matching (without using
M10).

The pseudo preimage algorithm.

1. Fix all mentioned message words/registers as above.
2. Randomly assign all other message words, except M9, M10 and M14.
3. Compute (Q7, Q8, Q9) and (Q23, Q24, Q25).
4. For all (Q24, M14) compute forward from step 27 up to step 36, and obtain the list (Lq, Q24, M14)

(expected size 264).
5. For all (Q6, M9), compute backward from step 9 up to step 0, and obtain the list (Li

p, Q6, M9) (expected
size 264).

6. Do feedforward and add the target, continue computing backwards up to step 40, and obtain the list
(Lp, Q6, M9) (expected size 264)

7. Do partial matching with Q36 and Q39 as shown in Fig 8 (264+64−64 = 264 pairs left), then match with
Q38 (264−32 = 232 pairs left).

8. For each pair left, compute the right M10, such that Q37 is also matched (we have 232 pairs (M14, Q24, M9, Q6, M10)
fully matched)

9. Check if any pair left satisfies Eqn (3), if yes, output the pseudo preimage; otherwise repeat the above
process until a pseudo preimage is found (232+8−32 = 28 repetitions expected).

Clearly, the complexity is 272 with memory requirement 264. There are some other additional properties.
Note given a new target, we can reuse the two lists Li

p and Lq. So that the computation starts from Step 6
in the algorithm, which results in slightly faster pseudo preimage in 269.4. Furthermore, such an attack gives
pseudo preimage with chaining limited to the set Li

p only.

3.3 Preimage attack on the MD4 hash function

To find preimage using the pseudo preimage attack above, we need to correct the padding. Note M13 is
precomputed, hence the length of last block is fixed, we need to fix least significant 9 bits of M14 accordingly,
i.e., 477 (1DD in hex). Note adding more blocks will only affect length by a multiple of 512 (29). We leave
the number of additional blocks for chance as done in the algorithm in Section 3.2. A small modification
on the algorithm (computing 255 candidates for each direction during each repeatition) will result in pseudo
preimage in 269.4+9 = 278.4 with memory requirement 255. This can be further converted to preimage in
2100.2 using the traditional conversion (link to input chaining of the last padded block), as the number of
blocks can be resolved by expandable message (we compute a pseudo preimage following the padding rule
in 278.4, then apply the tranditional conversion. Now, padding is no more a problem when inverting second
last block etc.).

Precomputation. Similarly we can restrict the input chaining to a subset of size 281, by re-using the lists
whenever looking for a new pseudo preimage. So the pseudo preimage can also be converted to preimage in
278.4, when large precomputation is allowed. To achieve this, we precompute about 2128 different message
blocks (prefixed by the expandable message) and store those with output falling in the restricted subset.
This requires storage of order 281 and precomputation effort 2128. Given a target, we compute a pseudo
preimage (with padding done), and it can be converted to a preimage by looking up the stored chaining
values. Hence this requires online computation 278.4 only. Using a similar 2128 precomputation, the generic

10

Hellman tradeoff would either require almost 27.8 times more memory (288.8) to achive the same runtime,
or would lead to online computation that is almost 215.6 times slower (294) if the same memory would be
available.

≪ 9

M10 C37

≪ 11

M6 C38

≪ 15

M14 C39

F

F

F

Match

Q36

Q39

Q37

Fig. 8. 3-Step Partial Matching for MD4

3.4 Second-preimage attack on the MD4 hash function

Constrast to finding preimages, we can avoid the padding issues when finding second-preimages. Let M0||M1|| · · · ||Mk

be the padded message blocks, we do the following:

1. Compute the chaining value H1 just after processing M1.
2. Compute a pseudo preimage (H ′, M ′) of H1.
3. Lookup the table for H ′, output Mlink, which links IV to H ′.
4. Output Mlink||M

′||M2|| · · · ||Mk as the second-preimage.

It is easy to see that the complexity of this second-preimage attack is in 269.4 when k ≥ 2, i.e., it works for
all messages with original length larger than equals to 2 blocks (1024 bits). Although faster second-preimage
attack exists [46], it only works for very long messages, i.e., at least 256 blocks, which is almost impossible
since MD4 can only hash up to 264/29 = 255 blocks.

4 Preimage Attack against Tiger

Before presenting the result, we give some notations used in this Section. Let Xo and Xe denote the odd
bytes and even bytes from register X , respectively. More generally, let us denote Xs so that those bits
from X indexed by the set s are same as in X and the rest are set to 0. To be consistent, we can define
e = {0, . . . , 7, 16, . . . , 23, 32, . . . , 39, 48, . . . , 55} and o = {8, . . . , 15, 24, . . . , 31, 40, . . . , 47, 56, . . . , 63}.

4.1 Description of Tiger

Tiger is an iterative hash function based on the MD structure. The message is padded followed by the 64-bit
length of original message so that the length of the padded message becomes multiple of 512. Then it is
split into blocks of 512 bits and fed into compression function iteratively. The compression of Tiger takes 3
chaining words and 8 message words (each word is of 64 bits) as input and produces the updated 3 chaining
words as output. It consists of two parts: message expansion and step function. The input chaining is fed
forward, together with output of last step function, to produce the output of the compression function,

11

which is a variant of the Davies-Meyer construction. We introduce the step function and message expansion
in details as follows.

Step Function. We name the three input chaining words of compression function as A, B and C. These
three registers are updated as follows.

C ← C + X

A← A− even(C)

B ← (B + odd(C)) ×mul

The result is then shifted around so that A, B, C become C, A, B, as shown in Fig 9. Here +, −, × are
addition, subtraction and multiplication, in Z264 , respectively. The two non-linear function even and odd are
defined as follows.

even(x) = T1[x
0
B]⊕ T2[x

2
B]⊕ T3[x

4
B]⊕ T4[x

6
B] ,

odd(x) = T4[x
1
B]⊕ T3[x

3
B]⊕ T2[x

5
B]⊕ T1[x

7
B] ,

where T1, . . . , T4 are four S-boxes defined on {0, 1}8 → {0, 1}64, and xi
B denotes the i-th least significant

Byte of x, the details can be found in [5]. mul is 5, 7, 9 for the three passes, respectively.

Ai Bi Ci

Ai+1 Bi+ Ci+1

mul

Xi

even

odd

Fig. 9. Step Function of Tiger

Message Expansion. The 512-bit message block is split into 8 message words X0, . . . , X7, each of 64
bits. The key scheduling function takes X0, . . . , X7 as input and produces message words {X8, . . . , X15} and
{X9, . . . , X23} recursively as follows.

(X8, . . . , X15) = KSF(X0, . . . , X7)

(X9, . . . , X23) = KSF(X8, . . . , X15) ,

12

where the key scheduling function KSF is defined as follows. We use (X8, . . . , X15) = KSF(X0, . . . , X7) as an
example here.

First Step: Second Step:

Y0 =X0 − (X7 ⊕K3) X8 =Y0 + Y7

Y1 =X1 ⊕ Y0 X9 =Y1 − (X8 ⊕ (Y 7 ≪ 19))

Y2 =X2 + Y1 X10 =Y2 ⊕X9

Y3 =X3 − (Y2 ⊕ (Y 1 ≪ 19) X11 =Y3 ⊕X10

Y4 =X4 ⊕ Y3 X12 =Y4 − (X11 ⊕ (X10 ≫ 23))

Y5 =X5 + Y4 X13 =Y5 ⊕X12

Y6 =X6 − (Y5 ⊕ (Y 4 ≫ 23)) X14 =Y6 + X13

Y7 =X7 ⊕ Y6 X15 =Y7 − (X14 ⊕K4)

with K3 = A5A5A5A5A5A5A5A5, K4 = 0123456789ABCDEF, and Y denotes bitwise complement of Y .

Attack Preview. The MITM preimage attack has been applied to Tiger, however for variants reduced
to 16 and 23 steps [19, 42], out of 24 in full Tiger. The difficulty lies on finding good neutral words, longer
initial structure and partial matching. In our attack, we find 4-step initial structure, extend the partial
matching to 5 steps and provide choice of neutral words achieving this. However each of them comes with
constraints posed on message words/registers, due to the very complicated message scheduling used in Tiger.
Throughout the description of the attack, we will explicitly give all those constraints, and explain how they
can be fulfilled using the multi-word technique, i.e., utilizing the degree of freedoms of most message words
and registers to fulfill these constraints, which are usually left as random in the original MITM preimage
attacks.

4.2 Precomputed Initial Structure

The original initial structure does not apply to Tiger, since the message words are xor-ed into the chaining,
followed by addition/subtraction operations. One can not swap the order of xor and addition/subtraction,
unless the chaining values are within certain range so that we can either approximate xor by addition, or
approximate addition by xor. We can either restrict one of the inputs to 0, or force the output to be 1, e.g.,
X ⊕ 0 = X + 0, and X ⊕ Y = 1 if and only if X + Y = 1. Under this restriction, we are able to have 4-step
initial structure as shown in Fig 10(a), which comes with following three constraints.

Constraint 1 Variables in Xi fall on the odd bytes only, so that (Xe
i) is fixed.

Constraint 2 Assume we have control over Xi+4 on those bits so that (Xi+4

mul)o is fixed, and there is no carry
from even bytes to odd bytes so that we can eventually move the X ′

i+4 further up above the odd function in

step i + 1. The idea is to keep the input to the odd function unchanged when we move the (Xi+4

mul)e as shown
in Fig 10(b).

Constraint 3 Ci+3 ⊕Xi+4 should be 1 for those bits, where variables of Xi+4 fall.

After the precomputed initial structure (PIS) is formed, we essentially swap the order of Xe
i and (Xi+4

mul)o,
which are 4 steps away from each other originally.

4.3 Message Compensation

Message compensation method has been used in many places, however it was first explicitly named in [6].
The length of each chunk is at most 7 without splice (Splice seems to be difficult for full Tiger). Message

13

e

o

Xi+3
e

o

Xi+2
e

o

Xi+1
e

o

X′
i+4 =

Xi+4
mul

Xi
e

o

Ci−1

(a) Initial
Structure

e

o

Xi+3
e

o

Xi+2
e

o

o

e

Ci−1

o

split
Xo

i

Xe
i

X′
i+4 = (

Xi+4
mul

)e
e

Xi+1

(b) Initial Structure
2

Match A2

X5

X6
e

o

e

o

X2
e

o

X4
e

o

X3
e

o

(c) Partial Match-
ing

Fig. 10. 4-Step Initial Structure and 5-step Partial Matching for Tiger

14

compensation is used to achieve the maximum length (or close maximum) for each chunk. Since we are able
to have 4-step PIS, we would have 7 + 4 + 1 + 7 = 19 steps for two chunks. Details are shown in Fig 11.
Where X5, . . . , X11 is the first chunk (7 steps), X12, . . . , X16 could be dealt with using precomputed initial
structure as shown above, and X17, . . . , X23 are the second chunk (7 steps). In this way, we have 19 steps
extended chunks.

For the first chunk, we use a few bits of X18 as the neutral word, we will discuss which bits are to be
used later. We force X18 to be the only one affected in the third pass (i.e., X16, . . . , X23). We come up with
such a configuration following the rule that there are as few words affected in the current pass as possible.
In summary, we have {X2, . . . , X6, X10, X11, X12, X18} are affected as shown in Fig 11(a). Note this comes
with

Constraint 4 We use at most the least significant 23 bits of X18 so that these bits disappear when (X18 ≫
23) is done (as shown in Fig. 11(a)), hence it does not affect X20 etc.

For the second chunk, we use a few bits of X14 as the neutral word and avoid difference in X7 in the first
pass. In the meanwhile, we avoid differences in X8, . . . , X13 and X15 for second pass. In the end, we have
{X0, . . . , X3, X14, X16, . . . , X23} affected as shown in Fig 11(b). Note this comes with a constraint

Constraint 5 X15 remains constant.

The two neutral words affect some common message words, i.e., X2, X3, X6 and X18. We will need to choose
the bits from two neutral words X14 and X18 properly, so that

Constraint 6 X14 and X18 will not affect any common bits of any word simultaneously, i.e., for X2, X3, X6

and X18.

We leave the choices of neutral bits for minimizing the attack complexity, which will be discussed later in
Section 4.5.

4.4 Partial Matching and Partial Fixing

The direct partial matching works for 3 steps by computing backwards. Furthermore, by fixing the even
bytes of the first message word (partial fixing technique) in forward direction, Isobe and Shibutani [19] are
able to achieve 4-step partial matching. In our attack, we further fix some other message words and achieve
5-step partial matching, as shown in Fig 10(c), it covers step 2 to step 6. However, it should satisfy the
following two constraints.

Constraint 7 The partial information below X3 as in Fig 10(c) computed from X6 should cover all even
bytes so that we can compute the even function in step 3;

Constraint 8 Xo
2 should be related to X14 only, so that we can compute the odd function at step 2 inde-

pendently of X18.

To summarize, we are to use {X7, . . . , X13} as one chunk, {X19, . . . , X23, X1, X2} as the other chunk;
precomputed initial strucutre covers steps using {X14, . . . , X18} (i = 14 for Section 4.2); and partial matching
works for {X2, . . . , X6}. Hence, the full Tiger of all 24 steps is coverd.

4.5 Attack Description and Complexity Analysis

In this section, we show how to set the message words and registers for the PIS in order to have all constraints
fulfilled. We also give algorithms with complexity evaluations, when necessary, to demonstrate how the attack
works.

Fulfilling all Constraints. To have constraints about X18 fulfilled (i.e., Constraints 2, 4, and 8), we choose
neutral bits from Xsb

18, where sb = {0, . . . , 7, 16, . . . , 22}. Similarly, to have Constraint 1 on X14 fulfilled, we

15

X18X16 X19 X20 X21 X22 X23X17

K4

≪19

≪19

K3

K4

≪19

≪19

≫23

≫23

≫23

≫23

K3 X2X0 X3 X4 X5 X6 X7X1

X15X10X8 X11 X12 X13 X14X9

(a) First Neutral Word in Red
X18X16 X19 X20 X21 X22 X23X17

K4

≪19

≪19

K3

K4

≪19

≪19

≫23

≫23

≫23

≫23

X15X10X8 X11 X12 X13 X14X9

K3 X2X0 X3 X4 X5 X6 X7X1

(b) Second Neutral Word in Blue

Fig. 11. The neutral words with key scheduling function for Tiger

16

restrict the neutral bits from byte 3, 5, 7 of X14, i.e., X
sf

14 with sf = {24, . . . , 31, 40, . . . , 47, 57, . . . , 63} (bit
56 is reserved for padding). Due the fact that addition/subtraction will only propogate differences towards
MSB, the least significant bit X

sf

14 that may affect on X2, X3, X6, X18 are 43 (due to ≪19), 62 (due to ≪19
twice), 24, and 24, respectively. However, X

sf

18 has very low chance (≃ 0) to affect up to bit 43 of X2, bit
62 of X3, bit 24 of X18, and we will filter candidates so that the influence on X6 is limited to up to bit
23. Hence, the Constraint 6 can be fulfilled. To fulfill Constraint 5, we force Y

sf

6 = X
sf

14 (through setting
X

sf

13 = 0), and X
sf

7 = K
sf

4 . We leave Constraint 3 for PIS setup, and Constraint 7 for partial matching, to
be addressed later.

Precomptued Initial Structure. For the precomputed intitial structure to work, we have preset serveral
message words. Besides X

sf

13 = 0 and X
sf

7 = K
sf

4 , we still need to take care of the padding. We set X56
6 = 1,

i.e., the length of original message in last block is 447 (7× 64 − 1). Hence, we need to set X
{0,...,8}
7 = 447.

Note, adding more blocks will affect the length by a multiple of 29, which has no effect on 9 LSBs of X7. To
reduce the influences of X

sf

14 to X6, we further set (Y 4 ≫ 23 ⊕ Y5)
sf = 0, so that only X

sf

6 out of X6 will
be affected. Note the PIS can be done in 215 evaluations of key scheduling (leaving restriction on X

sf

14 for
probability only). This is negligible since we can reuse the PIS for at least 216 times, to be discussed later.

Finding good candidates - Backward. We use bits from Xsb

18 to compute the good candidates for

backward direction. Constraint 2 further restricts us to choose values, such that X
{0,...,7}
18 and X

{16,...,23}
18

are multiple of 9 (mul = 9 for third pass). Hence, we can have ⌈28/9⌉ × ⌈27/9⌉ = 28.8 good candidates.
Finally, we filter out candidates which do not fulfill Constraint 6. Experiment shows that the remaining good
candidates are about 28. Note, all computations can be done byte-wise, hence the time complexity for this
part is less than 28 computations of message scheduling function.

Finding good candidates - Forward. We use bits from X
sf

14 to compute the good candidates for backward
direction. To have Constraint 3 fulfilled, we need to filter the candidates, such that it gives 1 for Csb

i+3 as in
Fig 10(b), this reduces the number of candidates to 223−15 = 28. Note, this part can be re-used for many
different (at least 216) Ci, by changing the even bytes, which we can freely set at the very begining of the
MITM preimage attack. Hence, the time complexy for this part is also negligible.

Probabilistic Partial Matching. Partial matching matches A2 from both sides, where we can compute
A2 in forward direction without any problem. However, in backward direction, we only know information of
byte 0, 1, 2, 4, 6 of X6 (red), as to compute Be

3 . Note, B3 = (B6 ⊕X6 + even(B6))/5 − odd(B5) (mul = 5
for first pass), where B5 and B6 are known. We rewrite it to B3 = (B6 ⊕ X6)/5 + K5, where K5 =
even(B6)/9 − odd(B5). We can compute byte 0, 1, 2 of B3, yet we still need byte 4, 6 from information of

byte 4, 6 of X6 only. Note, B
{32,...,39}
3 = (B

{32,...,39}
6 ⊕ X

{32,...,39}
6 − Bo × 232)/5 + K

{32,...,39}
5 + Ca × 232,

where Bo ∈ {0, . . . , 4} denotes borrow from bit 31 when ‘/5’ is carried out, and Ca ∈ {0, 1} denotes the carry
for the ‘+’ from bit 31. We deal with the Bo by computing all possible choices, and guess the Ca = K31

5

which results in a probability 3/4 for the Ca to be correct. This gives an example for byte 4, and we can deal
with byte 6 similarly. The process results in 25 times more computation for partial matching, together with
probability 9/16. However, we shall only need to repeat the even and the ‘−’ at Step 3, so that the essential
repeation is equivalent to less than 2−1 compression computations per candidate.

Complexity of Finding a (Second) Preimage. Following the MITM preimage attack framework, the
pseudo preimage attack works at follows.

1. Randomly choose A14, B14, C14.
2. Compute precomputed initial structure.
3. Compute candidates in backward, and forward directions.
4. Repeat for 216 values of C14 by looping all values in byte 4 and 6 (this step is to make time complexity

for first three steps negligible):
(a) For each candidate for backward and forward directions, compute A2 independently.
(b) Carry out probabilistic partial matching. If a full match on A2 is found, further re-check if the “guess”

is correct.

17

5. Repeat 1-4 until a pseudo preimage is found.

The pseudo-preimage attack works in time 2185.4 (2192−8 × 1.5 × (3/4)−2), which can be reduced to 2182.4

when more than 24 targets are available (by using targets as part of backward candidates as in GMTPP).
The pseudo preimage can be converted to preimage attack with time complexity 2189.7 using the traditional
conversion, with memory requirement of order 28. Following the GMTPP framework, the time complexity
can be further reduced to 2188.8 (by computing 24 pseudo preimges and 2192/24 linking messages), with same
memory requirement. Similarly, second-preimage attack works in 2188.2, when the given message is of more
than 24 blocks.

In the following, we argue that even if a custom machine would be built to do brute force preimage search
for Tiger, in certain settings our attack would have better implementation/cost characteristics. Due to the
high memory requirements, the most recent results on full MD5 [35] and reduced SHA-1 [7] can not claim
such a feature.

We use the notion of gate equivalents the express implementation cost on integrated circuits. An im-
plementation of Tiger needs an efficient ASIC implementation of the data path including the circuits for
constant-multiplication, modular addition and substraction as well as the Sboxes, with about 45 kGE [37].
This includes registers to store at least 192+512+192=896 bits of the internal state during computation
which are about 3 kGE, assuming efficient memory implementations requiring an area equivalent to about
3 2-input NAND cells.

Hence a parallel brute force machine aiming to find a preimage in only 2t executions is of size 2192−t · 45
kGE. A circuit implementing the shortcut attack we propose here needs more memory (28 · 192 · 2 bits need
about 295kGE) but has roughly the same datapath size (45 kGates). Hence a parallel brute force machine
aiming to find a preimage in only 2t executions is of size 2188.2−t · 340 kGE.

An memory-optimizated variant of a circuit implementing the shortcut attack we propose here needs
slightly less memory (53952 bits need about 162kGE) but has roughly the same datapath size (45 kGates).
Hence a parallel brute force machine aiming to find a preimage in only 2t executions is of size 2188.2−t · 207
kGE.

In conclusion, whereas we save a factor 9 in terms of time, we only need a factor 4.6 more size and hence
the cost reduces accordingly.

5 Concluding discussion

We conclude with a discussion of results, and some open problems that are independant of particular hash
functions. In this paper we extend the framework around meet-in-the-middle attacks that is currently being
developed by the community with a number of general approaches. We illustrated those extensions with
improved preimage attacks on various time-tested hash functions, with the first cryptanalytic attack on
the full Tiger hash function probably being the most interesting example. Other examples include various
improved preimage attacks on MD4 and step-reduced SHA-2.

One of the generic ideas presented was the following. Under the meet-in-the-middle preimage attack
framework, we presented new techniques to convert pseudo preimage into preimage faster than the traditional
method, i.e., the Generic Multi-Target Pseudo Preimage and a simple precomputation technique. It will be
interesting to see if an algorithm solving the Enhanced 3-Sum problem faster than 22n for a set size of 2n

exists, so that the MTPP can be valid for any l. On the other hand, we found pseudo preimage for MD4 in
272, it will be interesting to see if any of the new conversion techniques/or other unknown technique works
when converting pseudo preimage to preimage for MD4.

We expect the techniques outlined in this paper to also improve existing preimage attacks on well studied
hash functions like MD5, SHA-1, HAVAL, and others. Also, several SHA-3 candidates seem to be natural
targets.

References

1. Multisource File Transfer Protocol. http://en.wikipedia.org/wiki/Multisource_File_Transfer_Protocol.

18

2. Rsync. http://rsync.samba.org/.
3. TigerTree Hash Code. http://tigertree.sourceforge.net/.
4. 3-Sum Problem. http://en.wikipedia.org/wiki/3SUM.
5. R. J. Anderson and E. Biham. TIGER: A Fast New Hash Function. In D. Gollmann, editor, FSE 1996, volume

1039 of Lecture Notes in Computer Science, pages 89–97. Springer, 1996.
6. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang. Preimages for Step-Reduced SHA-2. In M. Matsui,

editor, ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 578–597. Springer, 2009.
7. K. Aoki and Y. Sasaki. Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In S. Halevi,

editor, Advances in Cryptology — CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
70–89, Berlin, Heidelberg, New York, 2009. Springer-Verlag.

8. K. Aoki and Y. Sasaki. Preimage attacks on one-block MD4, 63-step MD5 and more. In R. Avanzi, L. Keliher,
and F. Sica, editors, Selected Areas in Cryptography - SAC 2008, volume 5381 of Lecture Notes in Computer

Science, pages 103–119, Sackville, Canada, 2009. Springer-Verlag.
9. I. Baran, E. D. Demaine, and M. P trascu. Subquadratic algorithms for 3SUM. Algorithmica, 50(4):584–596,

2008.
10. E. Barkan, E. Biham, and A. Shamir. Rigorous Bounds on Cryptanalytic Time/Memory Tradeoffs. In C. Dwork,

editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 1–21. Springer, 2006.
11. E. Biham. New Techniques for Cryptanalysis of Hash Functions and Improved Attacks on Snefru. In Nyberg

[33], pages 444–461.
12. R. Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume
3494 of Lecture Notes in Computer Science. Springer, 2005.

13. C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results and Applications. In X. Lai
and K. Chen, editors, ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer, 2006.

14. C. De Cannière and C. Rechberger. Preimages for Reduced SHA-0 and SHA-1. In D. Wagner, editor, CRYPTO,
volume 5157 of Lecture Notes in Computer Science, pages 179–202. Springer, 2008.

15. H. Dobbertin. The First Two Rounds of MD4 are Not One-Way. In S. Vaudenay, editor, FSE, volume 1372 of
LNCS, pages 284–292. Springer, 1998.

16. O. Dunkelman, editor. Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,

February 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture Notes in Computer Science. Springer,
2009.

17. N. Haller. RFC1760 - The S/KEY One-Time Password System, 1995.
18. M. E. Hellman. A Cryptanalytic Time - Memory Trade-Off. IEEE Transactions on Information Theory,

26(4):401–406, 1980.
19. T. Isobe and K. Shibutani. Preimage Attacks on Reduced Tiger and SHA-2. In Dunkelman [16], pages 139–155.
20. D. Khovratovich, I. Nikolic, and R.-P. Weinmann. Meet-in-the-Middle Attacks on SHA-3 Candidates. In Dunkel-

man [16], pages 228–245.
21. L. R. Knudsen and J. E. Mathiassen. Preimage and Collision Attacks on MD2. In H. Gilbert and H. Handschuh,

editors, FSE, volume 3557 of LNCS, pages 255–267. Springer, 2005.
22. X. Lai and J. L. Massey. Hash Function Based on Block Ciphers. In EUROCRYPT, pages 55–70, 1992.
23. G. Leurent. Message Freedom in MD4 and MD5 Collisions: Application to APOP. In A. Biryukov, editor, FSE,

volume 4593 of LNCS, pages 309–328. Springer, 2007.
24. G. Leurent. MD4 is Not One-Way. In Nyberg [33], pages 412–428.
25. F. Mendel, N. Pramstaller, and C. Rechberger. A (Second) Preimage Attack on the GOST Hash Function. In

Nyberg [33], pages 224–234.
26. F. Mendel, N. Pramstaller, C. Rechberger, M. Kontak, and J. Szmidt. Cryptanalysis of the GOST Hash Function.

In D. Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 162–178. Springer, 2008.
27. F. Mendel, B. Preneel, V. Rijmen, H. Yoshida, and D. Watanabe. Update on Tiger. In R. Barua and T. Lange,

editors, INDOCRYPT, volume 4329 of LNCS, pages 63–79. Springer, 2006.
28. F. Mendel and V. Rijmen. Cryptanalysis of the Tiger Hash Function. In K. Kurosawa, editor, ASIACRYPT 2007,

volume 4833 of Lecture Notes in Computer Science, pages 536–550. Springer, 2007.
29. F. Mendel and V. Rijmen. Weaknesses in the HAS-V Compression Function. In K.-H. Nam and G. Rhee, editors,

ICISC, volume 4817 of LNCS, pages 335–345. Springer, 2007.
30. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.
31. F. Muller. The MD2 Hash Function Is Not One-Way. In P. J. Lee, editor, ASIACRYPT, volume 3329 of LNCS,

pages 214–229. Springer, 2004.

19

32. Y. Naito, Y. Sasaki, N. Kunihiro, and K. Ohta. Improved Collision Attack on MD4 with Probability Almost 1.
In D. Won and S. Kim, editors, ICISC, volume 3935 of LNCS, pages 129–145. Springer, 2005.

33. K. Nyberg, editor. Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland,

February 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in Computer Science. Springer,
2008.

34. Y. Sasaki and K. Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL. In J. P. Pieprzyk, editor, Advances

in Cryptology - ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages 253–271, Berlin,
Heidelberg, New York, 2008. Springer-Verlag.

35. Y. Sasaki and K. Aoki. Finding preimages in full MD5 faster than exhaustive search. In A. Joux, editor, Advances

in Cryptology — EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 134–152, Berlin,
Heidelberg, New York, 2009. Springer-Verlag.

36. Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro. Security of md5 challenge and response: Extension of apop
password recovery attack. In T. Malkin, editor, CT-RSA, volume 4964 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2008.

37. Sato. tiger tbd... CryptoBytes The technical newsletter of RSA Laboratories, a division of RSA Data Security,

Inc., 2(2):SUMMER, 1996.
38. M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates

for Different Identities. In M. Naor, editor, EUROCRYPT, volume 4515 of LNCS, pages 1–22. Springer, 2007.
39. M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and B. de Weger. Short chosen-prefix

collisions for MD5 and the creation of a rogue CA certificate. In S. Halevi, editor, 29th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 16-20, Proceedings, volume 5677 of LNCS, pages 55–69.
Springer, 2009.

40. S. S. Thomsen. An improved preimage attack on MD2. Cryptology ePrint Archive, Report 2008/089, 2008.
http://eprint.iacr.org/.

41. S. Vaudenay. On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER. In B. Preneel, editor,
FSE, volume 1008 of LNCS, pages 286–297. Springer, 1994.

42. L. Wang and Y. Sasaki. Finding Preimages of Tiger Up to 23 Steps. In S. Hong and T. Iwata, editors, Fast

Software Encryption, Lecture Notes in Computer Science, Seoul, South Korea, 2010. Springer. To appear.
43. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD. In

Cramer [12], pages 1–18.
44. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor, CRYPTO, volume

3621 of LNCS, pages 17–36. Springer, 2005.
45. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Cramer [12], pages 19–35.
46. H. Yu, G. Wang, G. Zhang, and X. Wang. The Second-Preimage Attack on MD4. In Y. Desmedt, H. Wang,

Y. Mu, and Y. Li, editors, CANS, volume 3810 of LNCS, pages 1–12. Springer, 2005.

A Improved Preimage Attack against SHA-2

In [6], Aoki et al. give preimage on 42-step reduced SHA-2. We note that matching point (together with
the choice of neutral words) can be moved to the end of the compression function, as done for attacking
SHA-224/384 in [6]. The number of neutral bits in two direction is around 32/3 (64/3 for SHA-512) and
the number of bits for partial matching is 32 (64 for SHA-512), which is more than enough. Applying the
MTPP framework, we find preimages in 2248.4 (substitute n = 256 and l = 32/3 to (1)), compared with
2251.7 for 42-step SHA-256 and 2494.6 (substitute n = 512 and l = 64/3 to (1)), compared with 2502.3 for
42-step SHA-512. The memory requirements remain unchanged.

Note partial matching works in such a way that, more bits are fixed, less bits for neutral words and
more steps/more bits can be used for partial matching. So there is a balance between bits for neutral words
and bits for partial matching. When multi-targets are available, we are to use less bits for neutral bits, and
more for partial matching, in order to reduce the complexity for finding pseudo preimages. This trick can be
applied to the attack on 43-step SHA-256 and 46-step SHA-512 in [6], hence the complexity can be reduced.
As mentioned in our conclusions, we expect this method to be directly applicable to more existing results.

20

