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Abstract. This paper presents several further improved attacks on Camellia. In 
Jan 2009, Yong-bin ZHOU proposes the first DFA attack on Camellia by 
injecting 1 byte fault into the rth round left register to recover 1 Kr equivalent 
subkey byte and obtains Camellia-128,192/256 key with 64 and 96 faulty 
ciphertexts. In Dec 2009, Xin-jie ZHAO proposes an improved attack extending 
the fault depth by injecting single byte fault into the r-1th round left register to 
recover 5-6 bytes of Kr, 1 byte of Kr-1 and obtains Camellia-128,192/256 key 
with 16 and 24 faulty ciphertexts. In this work, we present two further 
improved DFA attacks on Camellia. Our first attack broadens Yong-bin 
ZHOU’s fault width, injects multiple byte faults into the rth round left register to 
recover multiple bytes of Kr, and obtains Camellia-128,192/256 key with at 
least 8 and 12 faulty ciphertexts; our second attack further extends Xin-jie 
ZHAO’s fault depth, injects single byte fault into the r-2th round left register or 
r-2th round key to recover full 8 bytes of Kr, 5-6 bytes of Kr-1, 1 byte of Kr-2, and 
obtains Camellia-128,192/256 key with 4 and 6 faulty ciphertexts. Simulation 
experiments demonstrate that: due to the reversible permutation function of 
Camellia, Camellia is quite weak for multiple byte faults attack, and the attack 
efficiency is even increased with fault width, this feature great improves fault 
attack’s practicalities; due to the Feistel structure of Camellia, Camellia is also 
quite weak for deeper single byte fault attack, 4 faulty ciphertexts are enough to 
recover Camellia-128 with 222 brute force search, 6 faulty ciphertexts are 
enough to recover Camellia-192/256 with 231.5 brute force search. 

Keywords: Differential fault analysis; Feistel structure; SPN structure; Block 
cipher; Camellia; Encryption procedure; Key schedule; S-box lookup; Fault 
width; Fault depth. 

1 Introduction 

The idea of fault attack was first suggested in 1997 by Boneh, DeMillo and Lipton[ ]1 , 
which makes use of the faults during the execution of a cryptographic algorithm. 
Under the idea, the attack was successfully exploited to break an RSA-CRT with both 
a correct and a faulty signature of the same message. Shortly after, Biham and Shamir 
proposed an attack on secret key cryptosystems called Differential Fault Analysis 
(DFA)[ ]2 , which combined the ideas of fault attack and differential attack. Since that, 
many research papers have been published using this cryptanalysis technique to 
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successfully attack various cryptosystems, including ECC[ ]3 ,3DES[ ]4 ,AES[ -

]

5

10 ,Camellia[ - ]11 12 ,ARIA[ ]13 ,CLEFIA[ - ]14 15 ,RC4[ - ]16 17 ,Trivium[ - ]18 19  and so on. 
Camellia is a 128-bit block cipher jointly developed by NTT and Mitsubishi 

Electric Corporation in 2000[ ]20 . It is chosen as a recommended algorithm by the 
NESSIE project in 2003 and certified as the IETF standard cipher for XML security 
URIs, SSL/TLS cipher suites and IPsec in 2005. In March 2009, Camellia is 
integrated into the OPENSSL-1.0.0-beta1.  

In Jan 2009, the first DFA attack on Camellia is proposed by Yong-bin ZHOU et. 
al.[ ]11 , they inject a single byte fault into the rth round left register to recover 1 Kr 
equivalent subkey byte, and after injecting single byte fault to the 18th,17th,16th,15th 
round of Camellia left registers, obtain Camellia-128,192/256 key with 64 and 96 
faulty ciphertexts under ideal conditions. In practical, it’s not easy to inject 8 bytes 
left registers twice within 16 times, so more than 100 and 150 faulty ciphertexts are 
needed to recover Camellia-128,192/256 key. In Dec 2009, Xin-jie ZHAO proposes 
an improved fault attack[ ]12  extending Yong-bin ZHOU’s fault depth, injects a single 
byte fault into the r-1th Camellia round left register to recover 5-6 bytes of Kr and 1 
byte of Kr-1 and obtains Camellia-128,192/256 key with 16 and 24 faulty ciphertexts, 
thus greatly improves [11]’s efficiency. 

In this paper, we analyze the basic DFA attack principle and summarize the DFA 
on block cipher with S-box into computing the S-box input and output differential 
problems, then present two further improved DFA attacks on Camellia. Our first type 
of attack broadens Yong-bin ZHOU’s fault width by injecting multiple m byte(1≤m≤8) 
faults into the rth round left register to recover m bytes of Kr, if N equals 8, 8 and 
12(16) faults are enough to recover Camellia-128, 192/256 key. The attack in [11] is a 
specialized case of our first attack when m=1, and compared with [11], our methods 
not only broaden the fault width, but also improve the fault analysis efficiency and 
attack practicalities by almost 8 times at the best case. Our second type of attack 
further extends Xin-jie ZHAO’s fault depth, injects single byte fault into the r-2th 
round left register or r-2th round key to recover 8 bytes of Kr, 5-6 bytes of Kr-1 and 1 
byte of Kr-2, so 4 and 6 faulty ciphertexts are enough to recover Camellia-128,192/256 
key with 222 and 231.5 brute force search. Compared with [11] and [12], our methods 
not only enhance the fault depth, but also improve the fault analysis efficiency by 16 
times and 4 times respectively, and decrease the faulty ciphertexts number. Besides, 
our second attack can be easily extended to DFA on Camellia key schedule case, 
while [11] can not. 

This work is organized as follows. In Section 2, we present the basic DFA model 
and how it can be used into SPN and Feistel block ciphers. Section 3 presents the 
general overview of DFA on Camellia. Section 4 and Section 5 present several further 
improved DFA attacks on Camellia by broadening fault width and enhancing fault 
depth respectively. Section 6 displays the complexity analysis and experimental 
results of the attacks. Section 7 discusses on the contradictions between traditional 
cipher design and implementation attacks, Section 8 is the conclusion. 
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2 DFA Attack Model 

Most block ciphers are composed of Substitution function S and Permutation 
function P. In DFA attacks, the adversary usually injects single byte fault before the 
final S function, after the S function, the state byte a becomes a*, the differential 
value ∆a (∆a=a⊕a*) can be either known or unknown, usually, the adversary can get 
the output differential value ∆c. So, it always holds the following formula: 

[ ] [ ]S a S a a c⊕ ⊕Δ = Δ  (1) 

The output of the S function usually has extra output whitenings by Xored the last 
round key Kl to generate the ciphertexts C. As C is known, if a is obtained, Kl can be 
recovered. According to ∆a is known or unknown, we present two DFA models for 
Feistel and SPN structure block ciphers. 
1. ∆a is known 

If ∆a is known, this case is usually related with Feistel structure block cipher. If 
one byte fault ∆a is injected into Lr-1, due to the feature of Feistel structure, both ∆a 
and ∆c can be obtained after analyzing the cipher differential ∆C. 

  

Fig. 1. Camellia S box and differential S box (∆=1) sorted ascending.  

If we input every possible value of a into formula (1), we can get limited 
candidates of a satisfying formula (1). Fig. 2 is the Camellia S-box and differential S-
box (∆=1) sorted ascending, the gray block denotes candidates of S-box, and the 
white block denotes the impossible candidates of S-box. It’s clear to see that the 
Camellia S-box S has covered with every distinct candidate value from 0x00 to 0xff 
(total number is 256), and every candidate is used only once. However, when it comes 
to the differential S-box S’(S’[i]=S[i]⊕S[i⊕∆], ∆=0x01), S’ can’t cover every distinct 
candidate value from 0x00 to 0xff(total number is 127), usually every possible 
candidate of S’ is used twice or more. If we input every possible candidate of a into 
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formula (1), 2-4 candidates of a can be obtained, which means that we can also get 2-
4 candidates for Camellia equivalent key. 
2. ∆a is unknown 

If ∆a is unknown, this case is usually related with SPN structure block cipher. 
Unlike Feistel structure block cipher, when one byte fault is injected before the last 
permutation layer of the r-1th round, after the permutation layer, m faulty state with 
the same differential fault value as ∆a can be generated, but after the rth S function, 
the faults are propagated into m differential faults. The S-box output differential is 
known, but the input differential is unknown. In order to recover a, ∆a has to be 
guessed. Suppose ∆a is an 8-bit non-zero value, which has 255 candidates. Usually, 
the m different output differential values should be related with the same input 
differential S-box, if these 7 output values are not in the same differential S-box when 
∆a =n, we can eliminate ∆a =n, using this technique, we can get limited candidates of 
∆a, then case 2 (∆a is unknown) can be transferred into Case 1 (∆a is known), finally, 
after analyzing more samples, a and the secret key can be obtained. 

3 General Overview of DFA on Camellia 

3.1   Basic assumptions and Notations 

1. Assumptions: 
(1) One byte or more bytes random fault is induced into the memory registers 

storing the intermediate results in one fault induction. Notice that the attacker knows 
neither the location nor the concrete value of the fault. 

(2) For any one plaintext adaptively selected, two different ciphertexts under the 
control of the same secret key are available, the right ciphertext and the faulty one.  

(3) The faulty ciphertexts of the required type are presumably available. How to 
induce the specific fault is not covered in this paper, since this is not the main concern 
of our paper and many literatures on fault inductions are available [ ]21 . The attacker 
should be able to identify the required faulty ciphertexts from a mass of faulty 
ciphertexts and discard faults occurring at a wrong timing.  

(4) Only one user key is used during one successfully attack. 
2. Notations: 
A full description of the Camellia cipher is provided in [20], but below is the brief 

notations of Camellia utilized in this study. 
 (1) Kr: The equivalent subkey for the rth round is the exclusive OR half of the post-

whitening subkey and the rth subkey. In case of Camellia-128, for example, the 
equivalent subkey for 18th round is K18=k18⊕kw3, K17=k17⊕kw4 for 17th round, 
K16=k16⊕kw3 for 16th round, K15=k15⊕kw4 for 15th round, K14=k14⊕kw3 for 14th round, 
and K13=k13⊕kw4 for 13th round. 

(2) Lr-1, Rr-1: the 64-bit left and right halves of the rth round inputs. 
(3) kr: the 64-bit rth round subkey.  
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(4) ∆ILr
i, ∆IRr

i: the ith byte of the rth round left and right half input differential 
value.(i∈[0,7]) 

(5) ∆OLri, ∆ORri: the ith byte of the rth round left and right half output differential 
value.(i∈[0,7]) 

(6) ∆Sr
i, ∆Pr

i: the ith byte of the rth round S function and P function output 
differential value.(i∈[0,7]) 

(7) ∆CLi, ∆CRi: the ith byte of the left and right half ciphertext differential value.(i
∈[0,7]) 

(8) Fault: If not specially stated, fault denotes the non-zero differential value 
besides the faulty ciphertext. 

3.2   Main idea of DFA on Camellia 

The main idea of DFA on Camellia is as follows: 
(1) Choose any plaintext P, and obtain the corresponding correct ciphertext C. 
(2) Inject specific fault into the encryption procedure or key schedule, and 

obtain the corresponding faulty ciphertext C*. 
(3) Deduce one byte or several bytes of Camellia equivalent subkey using 

differential fault analysis technique. 
(4) Repeat the above steps, until all 8 bytes of Kr are recovered. 
(5) Proceed in the same way and attack the previous round, and deduce the 

equivalent subkeys Kr-1, Kr-2, Kr-3…., accordingly. 
(6) Recover Camellia-128 key by analyzing Kr-3, Kr-2, Kr-1,Kr and Camellia-

192/256 key by analyze Kr-5, Kr-4,Kr-3,Kr-2,Kr-1, Kr with key reversion 
techniques. 

(7) Verify the correctness of the recovered Camellia key. 
In the next Sections, several improved differential fault attacks on Camellia by 

broadening fault width and enhancing fault depth are described, and the experimental 
results and comparisons are given to prove the correctness of the analysis theory. 

4 Improved DFA on Camellia By Broadening Fault Width  

4.1   Yong-bin ZHOU’s DFA attack: Inject Single byte Fault into the rth round to 
recover one byte of Kr

Yong-bin ZHOU’s attack [ ]11  is a generic attack based on model of Section 2. It’s 
main idea is to inject single byte fault on Lr-1 and use equitation (1) to recover Kr. 
Specifically speaking, let’s take recovering K18 as an example, the fault propagation 
process is depicted in Fig. 2 (a). The adversary first induces one byte fault ∆IL18

0 to 
L17

0, then after the S function, the input differential ∆IL18 is transferred into single byte 
fault ∆S18

0, after the P function, 5 or 6 bytes of the output ∆P18 have the same fault as 
∆S18

0, after the final swap and exclusive OR of kw3 and kw4, the ∆CL is equal to ∆IL18 
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and also is the input S function differential value, the ∆CR is equal to ∆P18 and also is 
the output S function differential value, by applying DFA methods in Section 2, the 
adversary can recover L17

0⊕k18
0, as L17

0⊕kw3
0=CL

0. Note that one byte fault can only 
recover one K18 byte from 256 to 2-4 candidates, and two times of the same single 
byte fault can recover one K18 byte, so at least 16 faults are needed to recover K18. By 
applying this method to the 17th, 16th, 15th round, K17, K16, K15 can be recovered, 
combing the key reverse techniques, the initial key K can be obtained. 

4.2   Inject Multi-byte Faults into the rth round to recover Multi-bytes of Kr

In this section, we suppose the adversary has the ability of injecting multiple byte 
faults into Lr-1, this is much more practical than ZHOU’s attack by inject one single 
byte fault into Lr-1. Let’s take injecting m (1≤m≤8)faults into L17 to recover m bytes of 
K18 as an example, the fault propagation process is depicted in Fig. 2 (b)(m=8). 

      

(a)    ZHOU’s attack                                    (b)   This paper  

Fig. 2. Fault propagation of attacking the Camellia 18th round to recover K18. 

Specific attacking procedures are as follows: 
(1) Choose randomly plaintext P and obtain the correct ciphertext C under the 

secret key K. 
(2) Induce m bytes random faults ∆IL18 into L17, and obtain the faulty ciphertext 

C*. 
   The faulty propagate procedure is as follows: When m bytes fault ∆IL18 is 

injected into L17, then after the 18th round S function, ∆S18 has m nonzero bytes, after 
the 18th round P function, full 8 bytes of fault ∆P18 were propagated, after the 
exclusive OR of R17, the left output differential ∆OL18 is equal to ∆P18, and the right 
output differential ∆OR18 is equal to ∆IL18. After the 18th round, the output differential 
of CL is equal to ∆IL18, and the output differential of CR is equal to ∆P18  and ∆OL18. 
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(3) Deduce the fault location. 
Different fault locations injected into L17 can propagate the same location faults 

into CL, according to the nonzero byte of ∆CL, the attacker can easily identify the fault 
location injected into L17. 

(4) Deduce ∆S18. 
∆P18 is equal to ∆CR and ∆OL18, and can be obtained directly from the differential 

of the correct and faulty ciphertext. As shown in equation (2), ∆S18 can be computed 
by the Camellia reverse P function. 
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(2) 

(5) Recover K18. 
  From step (1)-(4), we can recover the m bytes input/output differential of the 18th 

round S function ∆IL18/∆S18, using DFA model of Section 2, it’s easy to recover m 
bytes S function input value, which can be expressed as L17⊕k18, as L17⊕kw3 =CL, CL 

is known to the attacker, so m bytes of K18 (K18=k18⊕kw3=L17⊕k18⊕CL) can be 
recovered. Repeat above steps to recover full 8 bytes of K18.  

(6) Recover K17, K16, K15 …etc equivalent subkeys. 
Proceed in the same way and attack, in turn, deduce the equivalent subkeys Kr-2, 

Kr-3…., accordingly. 
(7) Recover initial Camellia-128/192/256 key with methods in [12]. 

5 Improved DFA on Camellia By Extending Fault Depth  

5.1   Xin-jie ZHAO’s attack: inject Faults into the r-1th to recover Kr, Kr-1

Suppose the adversary has the ability of injecting single byte fault into the r-1th round 
left Camellia register Lr-2. Let’s take injecting one byte fault into the 17th round left 
register L16 to recover 5-6 bytes of K18 and one byte of K17 as an example, the fault 
propagation process is depicted in Fig. 3 (a). Specific attacking procedures are as 
follows: 

 (1) Choose randomly plaintext P and obtain the correct ciphertext C under the 
secret key K. 

(2) Induce one byte fault ∆IL17 into L16, and obtain the faulty ciphertext C* under 
the secret key K. 

(3) Deduce the fault location. 
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Different fault locations injected into L16 can generate different indices sets of the 
fault CL, we can identify the fault location by methods in [12]. 

 (4) Deduce ∆S18 and ∆IL17
0. 

∆OL18 is known to the attacker by analyzing CR⊕CR*, and 8 ∆OL18
i value is 

generated by ∆S18
0, ∆S18

1, ∆S18
2, ∆S18

4, ∆S18
7 and ∆IL17

0. All of this can generate 8 
equations, it’s quite simple to recover these 6 unknown differential value (∆S18

0, 
∆S18

1, ∆S18
2, ∆S18

4, ∆S18
7 and ∆IL17

0) by equation (3). 
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(3) 

(5) Recover 5 or 6 bytes of K18. 
   From step (4) we can recover 5 output differential bytes of the 18th S function, as 

the input differential is 5 equal faulty byte value ∆S17
0. By applying the general DFA 

model of Section 2, it’s easy to recover 5 different S function input value, which can 
be expressed as L17

i⊕k18
i (i=0,1,2,4,7), as L17

i⊕kw3
i =CL

i, CL is known, k18
i⊕kw3

i
 

(i=0,1,2,4,7) can be recovered.  
(6) Recover full 8 bytes of K18 and several bytes of K17. 
   Repeat step (1)-(5) to recover full 8 bytes of K18. Note that after K18 is recovered, 

as ∆IL17 is recovered, and the output 17th round S-box differential value can be 
obtained through ∆CL, the adversary can recover several bytes of K17. 

(7)Proceed in the same way as step (1)-(6) and attack the previous round, and 
deduce the equivalent subkeys K17, K16, K15, …, accordingly. 

5.2   Inject Faults into the r-2th Encryption round to recover Kr, Kr-1, Kr-2

Suppose the adversary has the ability of injecting single byte fault into the r-2th round 
left Camellia register Lr-3, just take injecting one byte fault into the 16th round left 
register L15

 to recover full 8 bytes of K18, 5-6 bytes of K17 and one byte of K16 as an 
example, the fault propagation process is depicted in Fig. 3 (b). 
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(a)  Xin-jie ZHAO’s attack                                             (b) This paper 

Fig. 3. Fault propagation of attacking the Camellia 17th and 16th  round to recover K18.  

Specific attacking procedures are as follows: 
(1) Choose randomly plaintext P and obtain the correct ciphertext C under the 

secret key K. 
(2) Induce random single byte fault ∆IL16 into L15, obtain the faulty ciphertext C*.  
(3) Compute the 18th round S-box lookup input differential ∆IL18. 
∆IL18 can be computed from the left half ciphertext differential ∆CL. 
(4) Deduce the 17th round S-box lookup output differential ∆S17. 

18 17 17 17 16( ) ( )CL IL P S IR P S ILΔ = Δ = Δ ⊕Δ = Δ ⊕Δ  (4) 
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∆CL has 8 nonzero bytes, ∆S17 has 5-6 nonzero bytes, ∆IL16 has only 1 nonzero 
byte, using similar equation as equation (3) (if L15 fault index is 0) above, ∆S17 can be 
obtained, if the adversary didn’t known the accurate fault index, there are 8 
possibilities, specific solving methods of solving the equations can be get from [12], 
finally, 8 candidates for ∆S17 can be obtained.  

(5) Deduce the 17th round S-box lookup output differential ∆IL17. 
Next, we should recover ∆IL17 from ∆S17. First we compute the 255 Camellia 

differential S-boxes, for each input differential S-box value ε ( ε =∆IL17
0) from 1 to 

255, we can get 4 type of differential Camellia S-boxes, if 5 nonzero bytes of ∆S17 are 
among these 4 S-boxes (satisfy equation (5)), we can get one ∆IL17

0 candidate, else ε  
will be eliminated, after 255 iterations, the adversary can get limited ∆IL17

0 
candidates. 
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(5) 

(6) Deduce the 18th round S-box lookup output differential ∆S18. 
   In order to recover K18, the adversary should recover the 18th round S-box lookup 

output differential ∆S18.

18 18 18 18 17( ) ( )CR OL P S IR P S ILΔ = Δ = Δ ⊕Δ = Δ ⊕Δ  (6) 

The equation (6) can be transferred into equation (7): 
1

18 17( )S P CR IL−Δ = Δ ⊕Δ  (7) 

∆CR is known, if ∆IL17 is recovered, ∆S18 can be computed. 
(7) Recover full 8 bytes of K18. 
∆S18 candidates can be computed from ∆IL17 candidates, ∆IL18 is known, by 

applying the general DFA model of Section 2, it’s easy to recover the 18th round 8 S 
function input bytes L17⊕k18, as L17⊕kw3 =CL, CL is known, K18 candidates can be 
recovered. Repeat step (1)-(7) to recover K18. 

 (8) Recover 5-6 bytes of K17. 
  From step (7) the adversary can recover the 18th round S function input value 

L17⊕k18 =CL⊕K18, and compute the 18th round P function output value, so the correct 
and faulty PP

18 can be computed, ∆P18
P  can be recovered, and the unique value of ∆IL17 

can be obtained, as the 17th round S-box output differential ∆S17 is recovered in step 
(4), so by applying the general DFA model of Section 3.2, it’s easy to recover 
L16

i⊕k17
i (i=0,1,2,4,7), as L16⊕P18⊕kw4 = CR, S18=S[CL⊕K18], P18 denotes the 18th 

round P function output, it can be computed by S18, so k17
i ⊕kw4

i
 , which is also 

K17
i(i=0,1,2,4,7) can be recovered. Repeat step (1)-(8) to recover full 8 bytes of K17. 
(9) Recover 1 byte of K16. 
Note that after K17 is recovered, as every input 16th round S-box single byte fault 

∆IL16 is recovered, and the output 16th round S-box differential value ∆S16 (equals 
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∆IL17) can be recovered, using basic DFA on Camellia, the adversary can even 
recover one byte of K16. 

(10) Proceed in the same way as step (1)-(9) and attack the previous round, and 
deduce the equivalent subkeys K16, K15 … accordingly. 

5.3   Inject Faults into the Round Key kr-2 to recover Kr, Kr-1

The DFA method of Section 5.2 can be extended into Camellia key schedule fault 
attack. There is one thing different, injecting one byte fault into kr-2 can recover 8 
bytes of Kr, 5-6 bytes of Kr-1, but can not recover any byte of Kr-2, as the input 
differential of the r-2th round S function is unknown. 

6 Complexity Analysis and Experimental Results  

6.1   Complexity Analysis 

Due to the limit abilities of the attacker, it’s very difficult to induce accurate and 
effective faults for DFA, so how many faulty ciphertexts are needed to crack the 
cipher is also very crucial. Next, we make a sketch of this complexity analysis. 
1. Complexity Analysis of one byte fault analysis 

We describe the characteristics of the equation for the S-box in the determinate 
methods. Let’s just consider the simple one byte S-box model shown in Fig. 2 (a). 
When we know the input S-box differential ∆IL18

0 and the out differential ∆S18
0, we 

can obtain a set of L17
0 satisfying equation (8).  

0 0 0 0 0 0
17 18 17 18 18 18

0 0 0 0 0 0 0 0
17 3 18 18 18 18

0 0 0
18 3 18

[ ] [ ]

[ ] [ ]w

w

S L k S L k IL S

L k C S C K S C K IL S

k k K

⎫⊕ ⊕ ⊕ ⊕ Δ = Δ
⎪⎪⊕ = ⇒ ⊕ ⊕ ⊕ ⊕ Δ = Δ⎬
⎪⊕ = ⎪⎭

0  
(8) 

The number of K18
0 depends on C0, ∆IL18

0, ∆S18
0 and the structure of S-box. In 

Camellia, four kinds of S-boxes S0, S1, S2, S3 are used in the F functions. By solving 
equation (1), we examine the size of the key candidates, |K18

0|, of S0 for all 
combinations of C0, ∆IL18

0, ∆S18
0. The total number of combinations is 

16711680(∆IL18
0 is a non-zero value). The results are shown in Table 1, it’s clear to 

see that by injecting one single byte into L17
0, about 2.0312 K18

0 candidates can be 
obtained at one time.  In fact, the statistics of other three S-boxes are the same as S0. 

Table 1.  S-box statistics  

| K18
0| Number P E(|K18

0|) 
2 16450560 0.9844 1.9688 
4 261120 0.0156 0.0624 
Total 16711680=(224-256) 1 2.0312=21.02
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2. Complexity analysis of attack in Section 4.2. 
Suppose the adversary injects m byte faults into Lr-1, according to Section 4.2, m 

bytes of Kr can be obtained. If m=8, one time 8-bytes faults in Lr-1
 can reduce Kr space 

from 264 to 289.75 (2.03128). As almost two times of the same index fault byte can 
recover one key byte, so theoretically speaking, the relationship between faulty 
number N and m obtaining unique Kr is depicted in formula (9):  

16 /N m=  (9) 

It’s clear to see that the key recovery efficiency is increased with the faulty bytes 
width; two times full 8 faulty bytes of Lr-1 can recover Kr. 
3. Complexity analysis of attack in Section 5.2 and Section 5.3. 

Injecting one byte fault in the r-2th round can propagate 5-6 faulty bytes in the r-1th 
round and 8 faulty bytes in the rth round, 2 faults are enough to recover Kr and reduce 
the search space of Kr-1 from 264 to about 210.5 on average with 87.5% probabilities (if 
the two fault indices in the r-2th round are not identical), 3 faults are enough to 
recover Kr and reduce the search space of Kr-1 from 264 to about 23.8 on average with 
98.4% probabilities (if the three fault indices in the r-2th round are not identical). As 
to Camellia-128, 2 faults in each of the 16th, 14th round, totally 4 faults are enough to 
reduce Camellia-128 key searching space from 2128 to 222.  As to Camellia-192/256, 2 
faults in each of the 16th, 14th, 12th round, totally 6 faults are enough to reduce 
Camellia-192/256key searching space to 231.5.   

Note that if the attacker does not need to know the specific fault byte location, as 
for 2 times random fault injected into L15, there are 64 fault location combinations. 
Only the correct combination can recover unique K18, and the wrong combinations 
usually get empty candidates for K18. So, we can use this effect to obtain the fault 
location of these 2 faults, and recover unique K18, and choose corresponding methods 
to recover 5-6 bytes of K17.  

6.2   Experimental Results and Comparisons 

We have implemented simulations of the attacks given in this paper．The simulations 
are written in Visual C++6.0 on Windows XP．Our simulations run on a personal 
computer (Athlon 64-bit 3000+ 1.81 GHz CPU and 1GB RAM) and successfully 
extract the Camellia-128/192/256 key.  

In order to verified the complexity analysis of attack in Section 4.2 and 6.1, we 
implemented the 8 bytes width fault attack on Camellia 18th round, the statistics of 22 
sets for 2000 sample’s average 8 byte faults in L17 and K18 candidates number is 
depicted in Fig. 4.  It’s clear to see that one time 8 bytes fault on L17, on average 
289.74 candidates of K18 are obtained, which is almost the same as the 289.75 of the 
theory value in Section 6.1.  
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Fig. 4. Statistics of 22 sets for 2000 sample’s average 8 byte faults in L17 and K18 candidates 
number 

Also, the experimental results in Table 2 strongly support the complexity analysis 
presented in Section 6.1.  

Table 2.  Improvement of our attacks over previous Camellia DFA work.  

Attack Camellia Fault Type Fault 
Location FL/FL-1 Fault No 

[11] Camellia-128 Single byte in the 15th - 18th round  L14 - L17 ⅹ/√ 64 
[11] Camellia-192/256 Single byte in the 13th -18th round L12 - L17 ⅹ/√ 96 
Section 4.2 Camellia-128 Multi-bytes in the 15th - 18th round  L14 - L17 ⅹ/√ 8 
Section 4.2 Camellia-192/256 Multi-bytes in the 13th -18th round L12 - L17 ⅹ/√ 12 
[12] Camellia-128 Single byte in the 14th -17th round L13 - L16 ⅹ/√ 16 
[12] Camellia-192/256 Single byte in the 12th -17th round L11 - L16 ⅹ 24 
[12] Camellia-192/256 Single byte in the 12th -17th round L11 - L16 √ 32 
[12] Camellia-128 Single byte in the key schedule k14 - k17 ⅹ/√ 16 
[12] Camellia-192/256 Single byte in the key schedule k12 - k17 ⅹ 24 
Section 5.2 Camellia-128 Single byte in the 14th, 16th round L13, L15 ⅹ/√ 4 
Section 5.2 Camellia-192/256 Single byte in the 12th, 14th, 16th round L11, L13, L15 ⅹ 6 
Section 5.2 Camellia-192/256 Single byte in the 12th -17th round L12, L13, L15 √ 16 
Section 5.3 Camellia-128 Single byte in the key schedule k14, k16 ⅹ/√ 4 
Section 5.3 Camellia-192/256 Single byte in the key schedule k12, k14, k16 ⅹ 6 

It’s clear to see that our DFA methods are much more effective than former 
attacks; our attacks have the following properties: 

(1) Firstly, we broaden the fault depth of [11]. 
 This is much more practical in the real attack scenarios. We find out the key 

recovery efficiency is increased with the faulty bytes width, two times full 8 faulty 
bytes in the Lr-1 can recover Kr, which is about 8-16 times efficient than [11]. Note 
that if the attacker can not accurate inject single byte fault into Camellia encryption 
procedure, the attack of Section 4.2 can be seen as the most powerful attack. 

(2) Secondly, we enhance the fault depth of [11] and [12].  
Instead of injecting 1 byte fault into Lr-1 to recover 1 byte of Kr in [11], our former 

attack in [12] injects 1 byte fault into Lr-1 to recover 5-6 bytes of Kr and 1 byte of Kr-1, 
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and improved the efficiency of recovering Kr by 5-6 times. In Section 5.2, we further 
enhance the fault depth by injecting 1 byte fault into Lr-2 to recover full 8 bytes of Kr, 
5-6 bytes of Kr-1 and 1 byte of Kr-2, under this assumption, the faulty ciphertexts 
number of our methods is further far less than [11]. 4 faults are enough to reduce 
Camellia-128 key searching space from 2128 to 222, 6 faults are enough to reduce 
Camellia-192/256 key searching space to 231.5, which is almost 16 times more 
efficiency than [11]. 

(3) Thirdly, our DFA methods on Camellia encryption procedure in Section 5.2 can 
be easily adapted into DFA on Camellia key schedule case, while [11] can not. It’s 
impossible for [11] to inject fault into kr to recover Kr (the adversary can not get the 
input differential value of the rth round S-box lookup), however, according to the 
analysis of the Section 5.3, it’s quite easy to inject fault into kr-1 and kr-2 to recover Kr. 

7 Discussions  

In the cryptography design, cryptographists usually add more non-linear (S-box 
lookups) and complicated linear operations to prevent ciphers from linear and 
differential attack and it indeed works well on traditional mathematical analysis. 
However, when it comes to the cryptosystem implementation, it meets unprecedented 
challenges. As the non-linear part operations, S-box is leaking more information on 
secret key. Usually, the input of the S-box is related with one plaintext/ciphertext 
byte, one initial key or subkey byte, and the elements of the S-box is open to the 
public. Next, we take the S-box lookup as an example and discuss the relationships 
between it and implementation analysis. 

(1) Cache based attack (CBA) 
 Cache hit and miss feature can affect the whole encryption time and the accessed 

Cache sets information of the cryptosystems, this can be utilized as timing driven and 
trace access driven Cache attacks. In timing driven attack, the adversary can use the 
whole encryption time to predict whether two times S-box lookup is Cache hit or 
miss, thus get the possible or impossible key byte candidates. In access driven attack, 
the adversary can use a spy process loading a L1 Cache size array to clear the Cache 
before the encryption, then trigger the cipher encrypt operations, after that, the spy 
process can gather the accessed Cache sets of the encryption process by measuring the 
time to reload each Cache block size array element. Combing the plaintext and 
ciphertext, the adversary can get the possible or impossible candidates for the 
encryption key. In trace driven attack, the adversary can gathered every S-box lookup 
Cache hit or miss sequence, combing plaintext and ciphertext to predict encrypt key. 
Note that it was just the frequent S-box lookup operations leading to Cache timing 
attacks. 

(2) Differential side channel attack (DSCA) 
In differential side channel attack, the attacker gets several power consumption or 

electromagnetic emanation curves. As the S-box dictionary is known to the attacker, 
the adversary first divides the key search space to several bytes, then tries every 
possible value of each byte to predict one or bits of the S-box lookup results and get 
the possible hamming weight or distance, combing the real power or electromagnetic 
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curves which is affected by the hamming weight or distance. Then, the correct key 
byte can always have high coefficient than wrong key bytes, so the S-box lookups can 
also be used in DSCA to recover encryption key. In fact, beside S-box lookup 
operation, any operations in encryption with strong non-linear feature can be used in 
DSCA to recover encryption key. 

(3) Template attack (TA) 
In template attack, the attacker first construct a unique distinguisher for each key 

byte candidates from the measured signal curves by a controlled encrypt equipment, 
then, he tried to gather the leaked signal of the target encrypt equipment, using 
information-theoretic or signal theoretical methods to compute the coefficient of each 
key byte candidates, the most matched template candidate always relates with the 
correct key byte. It’s just the non-linear feature of S-box lookup constructing the 
nature unique distinguisher for all key byte candidates and accelerating the key 
recovery efficiency.  

 (4) Differential fault attack (DFA) 
  From Section 4 and 5, we can get that the root of the DFA attack on block cipher 

with S-box lies in S-box itself. As long as the input differential and output differentia 
of S-box is known to the attacker, it’s very easy to recover the input value of the S-
box, which can be used for further analyzing and recovering of the encryption key. 
Current design of S-box is not perfect, the differential S-box cann’t cover all the 
candidates from 0x00 to 0xff, which leaks information about the input differential 
once the adversary gets the output differential of SPN structure block ciphers, even if 
the differential S-box is prefect (cover all the candidates from 0x00 to 0xff), as the 
output differential and input differential value of the Feistel block ciphers is known to 
the adversary, it may become more easy to recover the S-box input value by just one 
fault, which makes DFA attack become more effective. Anyway, S-box makes DFA 
attacks on block cipher with S-box becomes possible. 

From analysis above, we can safely come to the conclusion that there indeed exist 
great contradictions between traditional cipher design and implementation attacks, but 
how to solve this problem is still unknown and confused every cryptographist. 

8 Conclusion  

In this paper we present several improved DFA attacks on Camellia. Our methods not 
only broaden the fault width, expand the fault depth, but also improve the efficiency 
of fault injection and decrease the number of faulty ciphertexts, our best results 
demonstrate that 4 faults are enough to recover Camellia-128 very efficiently. 
Besides, our attack model can be adapted into most block ciphers with S-boxes, such 
as AES, ARIA, CLEFIA, SMS4 etc. Further more, all of the attacks described in this 
paper have been successfully put into experimental simulations on a personal 
computer and the experimental results effectively support the analysis and the 
arguments. 
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