
Further Improved Differential Fault Attacks on
Camellia by Exploring Fault Width and Depth

Xin-jie ZHAO, Tao WANG

Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang
050003, China, zhaoxinjieem@163.com

Abstract. This paper presents several further improved attacks on Camellia. In
Jan 2009, Yong-bin ZHOU proposes the first DFA attack on Camellia by
injecting 1 byte fault into the rth round left register to recover 1 Kr equivalent
subkey byte and obtains Camellia-128,192/256 key with 64 and 96 faulty
ciphertexts. In Dec 2009, Xin-jie ZHAO proposes an improved attack extending
the fault depth by injecting single byte fault into the r-1th round left register to
recover 5-6 bytes of Kr, 1 byte of Kr-1 and obtains Camellia-128,192/256 key
with 16 and 24 faulty ciphertexts. In this work, we present two further
improved DFA attacks on Camellia. Our first attack broadens Yong-bin
ZHOU’s fault width, injects multiple byte faults into the rth round left register to
recover multiple bytes of Kr, and obtains Camellia-128,192/256 key with at
least 8 and 12 faulty ciphertexts; our second attack further extends Xin-jie
ZHAO’s fault depth, injects single byte fault into the r-2th round left register or
r-2th round key to recover full 8 bytes of Kr, 5-6 bytes of Kr-1, 1 byte of Kr-2, and
obtains Camellia-128,192/256 key with 4 and 6 faulty ciphertexts. Simulation
experiments demonstrate that: due to the reversible permutation function of
Camellia, Camellia is quite weak for multiple byte faults attack, and the attack
efficiency is even increased with fault width, this feature great improves fault
attack’s practicalities; due to the Feistel structure of Camellia, Camellia is also
quite weak for deeper single byte fault attack, 4 faulty ciphertexts are enough to
recover Camellia-128 with 222 brute force search, 6 faulty ciphertexts are
enough to recover Camellia-192/256 with 231.5 brute force search.

Keywords: Differential fault analysis; Feistel structure; SPN structure; Block
cipher; Camellia; Encryption procedure; Key schedule; S-box lookup; Fault
width; Fault depth.

1 Introduction

The idea of fault attack was first suggested in 1997 by Boneh, DeMillo and Lipton[]1 ,
which makes use of the faults during the execution of a cryptographic algorithm.
Under the idea, the attack was successfully exploited to break an RSA-CRT with both
a correct and a faulty signature of the same message. Shortly after, Biham and Shamir
proposed an attack on secret key cryptosystems called Differential Fault Analysis
(DFA)[]2 , which combined the ideas of fault attack and differential attack. Since that,
many research papers have been published using this cryptanalysis technique to

mailto:zhaoxinjieem@163.com

2

successfully attack various cryptosystems, including ECC[]3 ,3DES[]4 ,AES[-

]

5

10 ,Camellia[-]11 12 ,ARIA[]13 ,CLEFIA[-]14 15 ,RC4[-]16 17 ,Trivium[-]18 19 and so on.
Camellia is a 128-bit block cipher jointly developed by NTT and Mitsubishi

Electric Corporation in 2000[]20 . It is chosen as a recommended algorithm by the
NESSIE project in 2003 and certified as the IETF standard cipher for XML security
URIs, SSL/TLS cipher suites and IPsec in 2005. In March 2009, Camellia is
integrated into the OPENSSL-1.0.0-beta1.

In Jan 2009, the first DFA attack on Camellia is proposed by Yong-bin ZHOU et.
al.[]11 , they inject a single byte fault into the rth round left register to recover 1 Kr
equivalent subkey byte, and after injecting single byte fault to the 18th,17th,16th,15th
round of Camellia left registers, obtain Camellia-128,192/256 key with 64 and 96
faulty ciphertexts under ideal conditions. In practical, it’s not easy to inject 8 bytes
left registers twice within 16 times, so more than 100 and 150 faulty ciphertexts are
needed to recover Camellia-128,192/256 key. In Dec 2009, Xin-jie ZHAO proposes
an improved fault attack[]12 extending Yong-bin ZHOU’s fault depth, injects a single
byte fault into the r-1th Camellia round left register to recover 5-6 bytes of Kr and 1
byte of Kr-1 and obtains Camellia-128,192/256 key with 16 and 24 faulty ciphertexts,
thus greatly improves [11]’s efficiency.

In this paper, we analyze the basic DFA attack principle and summarize the DFA
on block cipher with S-box into computing the S-box input and output differential
problems, then present two further improved DFA attacks on Camellia. Our first type
of attack broadens Yong-bin ZHOU’s fault width by injecting multiple m byte(1≤m≤8)
faults into the rth round left register to recover m bytes of Kr, if N equals 8, 8 and
12(16) faults are enough to recover Camellia-128, 192/256 key. The attack in [11] is a
specialized case of our first attack when m=1, and compared with [11], our methods
not only broaden the fault width, but also improve the fault analysis efficiency and
attack practicalities by almost 8 times at the best case. Our second type of attack
further extends Xin-jie ZHAO’s fault depth, injects single byte fault into the r-2th
round left register or r-2th round key to recover 8 bytes of Kr, 5-6 bytes of Kr-1 and 1
byte of Kr-2, so 4 and 6 faulty ciphertexts are enough to recover Camellia-128,192/256
key with 222 and 231.5 brute force search. Compared with [11] and [12], our methods
not only enhance the fault depth, but also improve the fault analysis efficiency by 16
times and 4 times respectively, and decrease the faulty ciphertexts number. Besides,
our second attack can be easily extended to DFA on Camellia key schedule case,
while [11] can not.

This work is organized as follows. In Section 2, we present the basic DFA model
and how it can be used into SPN and Feistel block ciphers. Section 3 presents the
general overview of DFA on Camellia. Section 4 and Section 5 present several further
improved DFA attacks on Camellia by broadening fault width and enhancing fault
depth respectively. Section 6 displays the complexity analysis and experimental
results of the attacks. Section 7 discusses on the contradictions between traditional
cipher design and implementation attacks, Section 8 is the conclusion.

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 3

2 DFA Attack Model

Most block ciphers are composed of Substitution function S and Permutation
function P. In DFA attacks, the adversary usually injects single byte fault before the
final S function, after the S function, the state byte a becomes a*, the differential
value ∆a (∆a=a⊕a*) can be either known or unknown, usually, the adversary can get
the output differential value ∆c. So, it always holds the following formula:

[] []S a S a a c⊕ ⊕Δ = Δ (1)

The output of the S function usually has extra output whitenings by Xored the last
round key Kl to generate the ciphertexts C. As C is known, if a is obtained, Kl can be
recovered. According to ∆a is known or unknown, we present two DFA models for
Feistel and SPN structure block ciphers.
1. ∆a is known

If ∆a is known, this case is usually related with Feistel structure block cipher. If
one byte fault ∆a is injected into Lr-1, due to the feature of Feistel structure, both ∆a
and ∆c can be obtained after analyzing the cipher differential ∆C.

Fig. 1. Camellia S box and differential S box (∆=1) sorted ascending.

If we input every possible value of a into formula (1), we can get limited
candidates of a satisfying formula (1). Fig. 2 is the Camellia S-box and differential S-
box (∆=1) sorted ascending, the gray block denotes candidates of S-box, and the
white block denotes the impossible candidates of S-box. It’s clear to see that the
Camellia S-box S has covered with every distinct candidate value from 0x00 to 0xff
(total number is 256), and every candidate is used only once. However, when it comes
to the differential S-box S’(S’[i]=S[i]⊕S[i⊕∆], ∆=0x01), S’ can’t cover every distinct
candidate value from 0x00 to 0xff(total number is 127), usually every possible
candidate of S’ is used twice or more. If we input every possible candidate of a into

4

formula (1), 2-4 candidates of a can be obtained, which means that we can also get 2-
4 candidates for Camellia equivalent key.
2. ∆a is unknown

If ∆a is unknown, this case is usually related with SPN structure block cipher.
Unlike Feistel structure block cipher, when one byte fault is injected before the last
permutation layer of the r-1th round, after the permutation layer, m faulty state with
the same differential fault value as ∆a can be generated, but after the rth S function,
the faults are propagated into m differential faults. The S-box output differential is
known, but the input differential is unknown. In order to recover a, ∆a has to be
guessed. Suppose ∆a is an 8-bit non-zero value, which has 255 candidates. Usually,
the m different output differential values should be related with the same input
differential S-box, if these 7 output values are not in the same differential S-box when
∆a =n, we can eliminate ∆a =n, using this technique, we can get limited candidates of
∆a, then case 2 (∆a is unknown) can be transferred into Case 1 (∆a is known), finally,
after analyzing more samples, a and the secret key can be obtained.

3 General Overview of DFA on Camellia

3.1 Basic assumptions and Notations

1. Assumptions:
(1) One byte or more bytes random fault is induced into the memory registers

storing the intermediate results in one fault induction. Notice that the attacker knows
neither the location nor the concrete value of the fault.

(2) For any one plaintext adaptively selected, two different ciphertexts under the
control of the same secret key are available, the right ciphertext and the faulty one.

(3) The faulty ciphertexts of the required type are presumably available. How to
induce the specific fault is not covered in this paper, since this is not the main concern
of our paper and many literatures on fault inductions are available []21 . The attacker
should be able to identify the required faulty ciphertexts from a mass of faulty
ciphertexts and discard faults occurring at a wrong timing.

(4) Only one user key is used during one successfully attack.
2. Notations:
A full description of the Camellia cipher is provided in [20], but below is the brief

notations of Camellia utilized in this study.
 (1) Kr: The equivalent subkey for the rth round is the exclusive OR half of the post-

whitening subkey and the rth subkey. In case of Camellia-128, for example, the
equivalent subkey for 18th round is K18=k18⊕kw3, K17=k17⊕kw4 for 17th round,
K16=k16⊕kw3 for 16th round, K15=k15⊕kw4 for 15th round, K14=k14⊕kw3 for 14th round,
and K13=k13⊕kw4 for 13th round.

(2) Lr-1, Rr-1: the 64-bit left and right halves of the rth round inputs.
(3) kr: the 64-bit rth round subkey.

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 5

(4) ∆ILr
i, ∆IRr

i: the ith byte of the rth round left and right half input differential
value.(i∈[0,7])

(5) ∆OLri, ∆ORri: the ith byte of the rth round left and right half output differential
value.(i∈[0,7])

(6) ∆Sr
i, ∆Pr

i: the ith byte of the rth round S function and P function output
differential value.(i∈[0,7])

(7) ∆CLi, ∆CRi: the ith byte of the left and right half ciphertext differential value.(i
∈[0,7])

(8) Fault: If not specially stated, fault denotes the non-zero differential value
besides the faulty ciphertext.

3.2 Main idea of DFA on Camellia

The main idea of DFA on Camellia is as follows:
(1) Choose any plaintext P, and obtain the corresponding correct ciphertext C.
(2) Inject specific fault into the encryption procedure or key schedule, and

obtain the corresponding faulty ciphertext C*.
(3) Deduce one byte or several bytes of Camellia equivalent subkey using

differential fault analysis technique.
(4) Repeat the above steps, until all 8 bytes of Kr are recovered.
(5) Proceed in the same way and attack the previous round, and deduce the

equivalent subkeys Kr-1, Kr-2, Kr-3…., accordingly.
(6) Recover Camellia-128 key by analyzing Kr-3, Kr-2, Kr-1,Kr and Camellia-

192/256 key by analyze Kr-5, Kr-4,Kr-3,Kr-2,Kr-1, Kr with key reversion
techniques.

(7) Verify the correctness of the recovered Camellia key.
In the next Sections, several improved differential fault attacks on Camellia by

broadening fault width and enhancing fault depth are described, and the experimental
results and comparisons are given to prove the correctness of the analysis theory.

4 Improved DFA on Camellia By Broadening Fault Width

4.1 Yong-bin ZHOU’s DFA attack: Inject Single byte Fault into the rth round to
recover one byte of Kr

Yong-bin ZHOU’s attack []11 is a generic attack based on model of Section 2. It’s
main idea is to inject single byte fault on Lr-1 and use equitation (1) to recover Kr.
Specifically speaking, let’s take recovering K18 as an example, the fault propagation
process is depicted in Fig. 2 (a). The adversary first induces one byte fault ∆IL18

0 to
L17

0, then after the S function, the input differential ∆IL18 is transferred into single byte
fault ∆S18

0, after the P function, 5 or 6 bytes of the output ∆P18 have the same fault as
∆S18

0, after the final swap and exclusive OR of kw3 and kw4, the ∆CL is equal to ∆IL18

6

and also is the input S function differential value, the ∆CR is equal to ∆P18 and also is
the output S function differential value, by applying DFA methods in Section 2, the
adversary can recover L17

0⊕k18
0, as L17

0⊕kw3
0=CL

0. Note that one byte fault can only
recover one K18 byte from 256 to 2-4 candidates, and two times of the same single
byte fault can recover one K18 byte, so at least 16 faults are needed to recover K18. By
applying this method to the 17th, 16th, 15th round, K17, K16, K15 can be recovered,
combing the key reverse techniques, the initial key K can be obtained.

4.2 Inject Multi-byte Faults into the rth round to recover Multi-bytes of Kr

In this section, we suppose the adversary has the ability of injecting multiple byte
faults into Lr-1, this is much more practical than ZHOU’s attack by inject one single
byte fault into Lr-1. Let’s take injecting m (1≤m≤8)faults into L17 to recover m bytes of
K18 as an example, the fault propagation process is depicted in Fig. 2 (b)(m=8).

(a) ZHOU’s attack (b) This paper

Fig. 2. Fault propagation of attacking the Camellia 18th round to recover K18.

Specific attacking procedures are as follows:
(1) Choose randomly plaintext P and obtain the correct ciphertext C under the

secret key K.
(2) Induce m bytes random faults ∆IL18 into L17, and obtain the faulty ciphertext

C*.
 The faulty propagate procedure is as follows: When m bytes fault ∆IL18 is

injected into L17, then after the 18th round S function, ∆S18 has m nonzero bytes, after
the 18th round P function, full 8 bytes of fault ∆P18 were propagated, after the
exclusive OR of R17, the left output differential ∆OL18 is equal to ∆P18, and the right
output differential ∆OR18 is equal to ∆IL18. After the 18th round, the output differential
of CL is equal to ∆IL18, and the output differential of CR is equal to ∆P18 and ∆OL18.

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 7

(3) Deduce the fault location.
Different fault locations injected into L17 can propagate the same location faults

into CL, according to the nonzero byte of ∆CL, the attacker can easily identify the fault
location injected into L17.

(4) Deduce ∆S18.
∆P18 is equal to ∆CR and ∆OL18, and can be obtained directly from the differential

of the correct and faulty ciphertext. As shown in equation (2), ∆S18 can be computed
by the Camellia reverse P function.

0 0 3 5 6 72

0 3 6 71 1

0 5 72 1 2 4

3 5 61 2 4
3

0 5 64 1

18 18 18 18 18 18 18

4
18 18 18 18 18 18 18

18 18 18 18 18 18 18

18 18 18 18 18 18 18

18 18 18 18 18

,

,

,

,

P S S S S S S

P S S S S S S

P S S S S S S

P S S S S S S

P S S S S S

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

0 3 51 2

0 31 2

7

5 6 71 2

6 3 5 72

7 0 3 5 6

18 18 18 18 18 18 18

4
18 18 18 18 18

18
4

18 18 18 18 18 18
4

18 18 18 18 18 18
4

18 18 18 18 18 18

,

,

,

S P P P P P P

S P P P P

P S S S S S

P S S S S S

P S S S S S

⎧ Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ
⎪
⎪ Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ
⎪
⎪
⎪
⎪ ⇒⎨
⎪
⎪
Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ⎪
⎪Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ⎪
⎪Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ⎩

,

6 7

0 52 1 4

0 51 4

0 64 1

5 71 2

6 3 52

18 18
3

18 18 18 18 18 18 18

3 2
18 18 18 18 18 18 18

4
18 18 18 18 18 18

4 5
18 18 18 18 18 18

4
18 18 18 18 18 1

,

,

,

,

P P

S P P P P P P

S P P P P P P

S P P P P P

S P P P P P

S P P P P P

⊕Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ

,

7 0 3 6

6
8

5 7
18 18 18 18 18 18

,

S P P P P P

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ ⊕ Δ⎩

6 7

7

6

7

(2)

(5) Recover K18.
 From step (1)-(4), we can recover the m bytes input/output differential of the 18th

round S function ∆IL18/∆S18, using DFA model of Section 2, it’s easy to recover m
bytes S function input value, which can be expressed as L17⊕k18, as L17⊕kw3 =CL, CL

is known to the attacker, so m bytes of K18 (K18=k18⊕kw3=L17⊕k18⊕CL) can be
recovered. Repeat above steps to recover full 8 bytes of K18.

(6) Recover K17, K16, K15 …etc equivalent subkeys.
Proceed in the same way and attack, in turn, deduce the equivalent subkeys Kr-2,

Kr-3…., accordingly.
(7) Recover initial Camellia-128/192/256 key with methods in [12].

5 Improved DFA on Camellia By Extending Fault Depth

5.1 Xin-jie ZHAO’s attack: inject Faults into the r-1th to recover Kr, Kr-1

Suppose the adversary has the ability of injecting single byte fault into the r-1th round
left Camellia register Lr-2. Let’s take injecting one byte fault into the 17th round left
register L16 to recover 5-6 bytes of K18 and one byte of K17 as an example, the fault
propagation process is depicted in Fig. 3 (a). Specific attacking procedures are as
follows:

 (1) Choose randomly plaintext P and obtain the correct ciphertext C under the
secret key K.

(2) Induce one byte fault ∆IL17 into L16, and obtain the faulty ciphertext C* under
the secret key K.

(3) Deduce the fault location.

8

Different fault locations injected into L16 can generate different indices sets of the
fault CL, we can identify the fault location by methods in [12].

 (4) Deduce ∆S18 and ∆IL17
0.

∆OL18 is known to the attacker by analyzing CR⊕CR*, and 8 ∆OL18
i value is

generated by ∆S18
0, ∆S18

1, ∆S18
2, ∆S18

4, ∆S18
7 and ∆IL17

0. All of this can generate 8
equations, it’s quite simple to recover these 6 unknown differential value (∆S18

0,
∆S18

1, ∆S18
2, ∆S18

4, ∆S18
7 and ∆IL17

0) by equation (3).

0 0 0 72

0 71 1

0 72 1 2

1 2

0 74 1

5 71 2

6 72

18 17 18 18 18
4

18 18 18 18 18
4

18 18 18 18 18 18
3 4

18 18 18 18

18 18 18 18
4

18 18 18 18 18
4

18 18 18 18

OL IL S S S

OL S S S S

OL S S S S S

OL S S S

OL S S S

OL S S S S

OL S S S

Δ = Δ ⊕ Δ ⊕Δ ⊕Δ

Δ = Δ ⊕ Δ ⊕Δ ⊕Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕Δ ⊕Δ

Δ = Δ ⊕ Δ ⊕Δ

Δ = Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕ Δ ⊕ Δ

Δ = Δ ⊕ Δ ⊕Δ

Δ

0 52

5 61

2 1 2

1 4

7 5

0 0

7 0

18 18 18

18 18 18

18 18 18
4

18 18 18
3

18 18 18
1 3

17 18 18 18
4

18 18 18

S OL OL

S OL OL

S OL OL

S OL OL

S OL OL

IL OL OL OL

OL S S

⎫
⎪

⎫Δ = Δ ⊕ Δ⎪
⎪⎪

Δ = Δ ⊕ Δ ⎪⎪
⎪⎪ Δ = Δ ⊕ Δ⎪ ⎪⇒⎬ ⎬

Δ = Δ ⊕ Δ⎪ ⎪
⎪ ⎪Δ = Δ ⊕ Δ⎪ ⎪
⎪ ⎪Δ = Δ ⊕ Δ ⊕ Δ ⎭⎪
⎪= Δ ⊕ Δ ⎭

(3)

(5) Recover 5 or 6 bytes of K18.
 From step (4) we can recover 5 output differential bytes of the 18th S function, as

the input differential is 5 equal faulty byte value ∆S17
0. By applying the general DFA

model of Section 2, it’s easy to recover 5 different S function input value, which can
be expressed as L17

i⊕k18
i (i=0,1,2,4,7), as L17

i⊕kw3
i =CL

i, CL is known, k18
i⊕kw3

i

(i=0,1,2,4,7) can be recovered.
(6) Recover full 8 bytes of K18 and several bytes of K17.
 Repeat step (1)-(5) to recover full 8 bytes of K18. Note that after K18 is recovered,

as ∆IL17 is recovered, and the output 17th round S-box differential value can be
obtained through ∆CL, the adversary can recover several bytes of K17.

(7)Proceed in the same way as step (1)-(6) and attack the previous round, and
deduce the equivalent subkeys K17, K16, K15, …, accordingly.

5.2 Inject Faults into the r-2th Encryption round to recover Kr, Kr-1, Kr-2

Suppose the adversary has the ability of injecting single byte fault into the r-2th round
left Camellia register Lr-3, just take injecting one byte fault into the 16th round left
register L15

 to recover full 8 bytes of K18, 5-6 bytes of K17 and one byte of K16 as an
example, the fault propagation process is depicted in Fig. 3 (b).

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 9

(a) Xin-jie ZHAO’s attack (b) This paper

Fig. 3. Fault propagation of attacking the Camellia 17th and 16th round to recover K18.

Specific attacking procedures are as follows:
(1) Choose randomly plaintext P and obtain the correct ciphertext C under the

secret key K.
(2) Induce random single byte fault ∆IL16 into L15, obtain the faulty ciphertext C*.
(3) Compute the 18th round S-box lookup input differential ∆IL18.
∆IL18 can be computed from the left half ciphertext differential ∆CL.
(4) Deduce the 17th round S-box lookup output differential ∆S17.

18 17 17 17 16() ()CL IL P S IR P S ILΔ = Δ = Δ ⊕Δ = Δ ⊕Δ (4)

10

∆CL has 8 nonzero bytes, ∆S17 has 5-6 nonzero bytes, ∆IL16 has only 1 nonzero
byte, using similar equation as equation (3) (if L15 fault index is 0) above, ∆S17 can be
obtained, if the adversary didn’t known the accurate fault index, there are 8
possibilities, specific solving methods of solving the equations can be get from [12],
finally, 8 candidates for ∆S17 can be obtained.

(5) Deduce the 17th round S-box lookup output differential ∆IL17.
Next, we should recover ∆IL17 from ∆S17. First we compute the 255 Camellia

differential S-boxes, for each input differential S-box value ε (ε =∆IL17
0) from 1 to

255, we can get 4 type of differential Camellia S-boxes, if 5 nonzero bytes of ∆S17 are
among these 4 S-boxes (satisfy equation (5)), we can get one ∆IL17

0 candidate, else ε
will be eliminated, after 255 iterations, the adversary can get limited ∆IL17

0
candidates.

1 0 0 1 0 0 0
17 17 17 17 17

1 1 1 1 1 1 1
17 17 17 17 17

1 2 2 1 2 2 2
17 17 17 17 17

1 4 4 1 4 4 4
17 17 17 17 17

1 7 7 1 7 7 7
17 17 17 17 17

() (

() (

() (

() (

() (

S IL k S IL k S

S IL k S IL k S

S IL k S IL k S

S IL k S IL k S

S IL k S IL k S

ε

ε

ε

ε

ε

− −

− −

− −

− −

− −

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

)

)

)

)

)

(5)

(6) Deduce the 18th round S-box lookup output differential ∆S18.
 In order to recover K18, the adversary should recover the 18th round S-box lookup

output differential ∆S18.

18 18 18 18 17() ()CR OL P S IR P S ILΔ = Δ = Δ ⊕Δ = Δ ⊕Δ (6)

The equation (6) can be transferred into equation (7):
1

18 17()S P CR IL−Δ = Δ ⊕Δ (7)

∆CR is known, if ∆IL17 is recovered, ∆S18 can be computed.
(7) Recover full 8 bytes of K18.
∆S18 candidates can be computed from ∆IL17 candidates, ∆IL18 is known, by

applying the general DFA model of Section 2, it’s easy to recover the 18th round 8 S
function input bytes L17⊕k18, as L17⊕kw3 =CL, CL is known, K18 candidates can be
recovered. Repeat step (1)-(7) to recover K18.

 (8) Recover 5-6 bytes of K17.
 From step (7) the adversary can recover the 18th round S function input value

L17⊕k18 =CL⊕K18, and compute the 18th round P function output value, so the correct
and faulty PP

18 can be computed, ∆P18
P can be recovered, and the unique value of ∆IL17

can be obtained, as the 17th round S-box output differential ∆S17 is recovered in step
(4), so by applying the general DFA model of Section 3.2, it’s easy to recover
L16

i⊕k17
i (i=0,1,2,4,7), as L16⊕P18⊕kw4 = CR, S18=S[CL⊕K18], P18 denotes the 18th

round P function output, it can be computed by S18, so k17
i ⊕kw4

i
 , which is also

K17
i(i=0,1,2,4,7) can be recovered. Repeat step (1)-(8) to recover full 8 bytes of K17.
(9) Recover 1 byte of K16.
Note that after K17 is recovered, as every input 16th round S-box single byte fault

∆IL16 is recovered, and the output 16th round S-box differential value ∆S16 (equals

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 11

∆IL17) can be recovered, using basic DFA on Camellia, the adversary can even
recover one byte of K16.

(10) Proceed in the same way as step (1)-(9) and attack the previous round, and
deduce the equivalent subkeys K16, K15 … accordingly.

5.3 Inject Faults into the Round Key kr-2 to recover Kr, Kr-1

The DFA method of Section 5.2 can be extended into Camellia key schedule fault
attack. There is one thing different, injecting one byte fault into kr-2 can recover 8
bytes of Kr, 5-6 bytes of Kr-1, but can not recover any byte of Kr-2, as the input
differential of the r-2th round S function is unknown.

6 Complexity Analysis and Experimental Results

6.1 Complexity Analysis

Due to the limit abilities of the attacker, it’s very difficult to induce accurate and
effective faults for DFA, so how many faulty ciphertexts are needed to crack the
cipher is also very crucial. Next, we make a sketch of this complexity analysis.
1. Complexity Analysis of one byte fault analysis

We describe the characteristics of the equation for the S-box in the determinate
methods. Let’s just consider the simple one byte S-box model shown in Fig. 2 (a).
When we know the input S-box differential ∆IL18

0 and the out differential ∆S18
0, we

can obtain a set of L17
0 satisfying equation (8).

0 0 0 0 0 0
17 18 17 18 18 18

0 0 0 0 0 0 0 0
17 3 18 18 18 18

0 0 0
18 3 18

[] []

[] []w

w

S L k S L k IL S

L k C S C K S C K IL S

k k K

⎫⊕ ⊕ ⊕ ⊕ Δ = Δ
⎪⎪⊕ = ⇒ ⊕ ⊕ ⊕ ⊕ Δ = Δ⎬
⎪⊕ = ⎪⎭

0
(8)

The number of K18
0 depends on C0, ∆IL18

0, ∆S18
0 and the structure of S-box. In

Camellia, four kinds of S-boxes S0, S1, S2, S3 are used in the F functions. By solving
equation (1), we examine the size of the key candidates, |K18

0|, of S0 for all
combinations of C0, ∆IL18

0, ∆S18
0. The total number of combinations is

16711680(∆IL18
0 is a non-zero value). The results are shown in Table 1, it’s clear to

see that by injecting one single byte into L17
0, about 2.0312 K18

0 candidates can be
obtained at one time. In fact, the statistics of other three S-boxes are the same as S0.

Table 1. S-box statistics

| K18
0| Number P E(|K18

0|)
2 16450560 0.9844 1.9688
4 261120 0.0156 0.0624
Total 16711680=(224-256) 1 2.0312=21.02

12

2. Complexity analysis of attack in Section 4.2.
Suppose the adversary injects m byte faults into Lr-1, according to Section 4.2, m

bytes of Kr can be obtained. If m=8, one time 8-bytes faults in Lr-1
 can reduce Kr space

from 264 to 289.75 (2.03128). As almost two times of the same index fault byte can
recover one key byte, so theoretically speaking, the relationship between faulty
number N and m obtaining unique Kr is depicted in formula (9):

16 /N m= (9)

It’s clear to see that the key recovery efficiency is increased with the faulty bytes
width; two times full 8 faulty bytes of Lr-1 can recover Kr.
3. Complexity analysis of attack in Section 5.2 and Section 5.3.

Injecting one byte fault in the r-2th round can propagate 5-6 faulty bytes in the r-1th
round and 8 faulty bytes in the rth round, 2 faults are enough to recover Kr and reduce
the search space of Kr-1 from 264 to about 210.5 on average with 87.5% probabilities (if
the two fault indices in the r-2th round are not identical), 3 faults are enough to
recover Kr and reduce the search space of Kr-1 from 264 to about 23.8 on average with
98.4% probabilities (if the three fault indices in the r-2th round are not identical). As
to Camellia-128, 2 faults in each of the 16th, 14th round, totally 4 faults are enough to
reduce Camellia-128 key searching space from 2128 to 222. As to Camellia-192/256, 2
faults in each of the 16th, 14th, 12th round, totally 6 faults are enough to reduce
Camellia-192/256key searching space to 231.5.

Note that if the attacker does not need to know the specific fault byte location, as
for 2 times random fault injected into L15, there are 64 fault location combinations.
Only the correct combination can recover unique K18, and the wrong combinations
usually get empty candidates for K18. So, we can use this effect to obtain the fault
location of these 2 faults, and recover unique K18, and choose corresponding methods
to recover 5-6 bytes of K17.

6.2 Experimental Results and Comparisons

We have implemented simulations of the attacks given in this paper．The simulations
are written in Visual C++6.0 on Windows XP．Our simulations run on a personal
computer (Athlon 64-bit 3000+ 1.81 GHz CPU and 1GB RAM) and successfully
extract the Camellia-128/192/256 key.

In order to verified the complexity analysis of attack in Section 4.2 and 6.1, we
implemented the 8 bytes width fault attack on Camellia 18th round, the statistics of 22
sets for 2000 sample’s average 8 byte faults in L17 and K18 candidates number is
depicted in Fig. 4. It’s clear to see that one time 8 bytes fault on L17, on average
289.74 candidates of K18 are obtained, which is almost the same as the 289.75 of the
theory value in Section 6.1.

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 13

270
275
280
285
290
295
300

1 4 7 10 13 16 19 22
22 Times Measuring

K
18

 C
an

di
da

te
s N

um
be

r

Attacking Result Average Result

Fig. 4. Statistics of 22 sets for 2000 sample’s average 8 byte faults in L17 and K18 candidates
number

Also, the experimental results in Table 2 strongly support the complexity analysis
presented in Section 6.1.

Table 2. Improvement of our attacks over previous Camellia DFA work.

Attack Camellia Fault Type Fault
Location FL/FL-1 Fault No

[11] Camellia-128 Single byte in the 15th - 18th round L14 - L17 ⅹ/√ 64
[11] Camellia-192/256 Single byte in the 13th -18th round L12 - L17 ⅹ/√ 96
Section 4.2 Camellia-128 Multi-bytes in the 15th - 18th round L14 - L17 ⅹ/√ 8
Section 4.2 Camellia-192/256 Multi-bytes in the 13th -18th round L12 - L17 ⅹ/√ 12
[12] Camellia-128 Single byte in the 14th -17th round L13 - L16 ⅹ/√ 16
[12] Camellia-192/256 Single byte in the 12th -17th round L11 - L16 ⅹ 24
[12] Camellia-192/256 Single byte in the 12th -17th round L11 - L16 √ 32
[12] Camellia-128 Single byte in the key schedule k14 - k17 ⅹ/√ 16
[12] Camellia-192/256 Single byte in the key schedule k12 - k17 ⅹ 24
Section 5.2 Camellia-128 Single byte in the 14th, 16th round L13, L15 ⅹ/√ 4
Section 5.2 Camellia-192/256 Single byte in the 12th, 14th, 16th round L11, L13, L15 ⅹ 6
Section 5.2 Camellia-192/256 Single byte in the 12th -17th round L12, L13, L15 √ 16
Section 5.3 Camellia-128 Single byte in the key schedule k14, k16 ⅹ/√ 4
Section 5.3 Camellia-192/256 Single byte in the key schedule k12, k14, k16 ⅹ 6

It’s clear to see that our DFA methods are much more effective than former
attacks; our attacks have the following properties:

(1) Firstly, we broaden the fault depth of [11].
 This is much more practical in the real attack scenarios. We find out the key

recovery efficiency is increased with the faulty bytes width, two times full 8 faulty
bytes in the Lr-1 can recover Kr, which is about 8-16 times efficient than [11]. Note
that if the attacker can not accurate inject single byte fault into Camellia encryption
procedure, the attack of Section 4.2 can be seen as the most powerful attack.

(2) Secondly, we enhance the fault depth of [11] and [12].
Instead of injecting 1 byte fault into Lr-1 to recover 1 byte of Kr in [11], our former

attack in [12] injects 1 byte fault into Lr-1 to recover 5-6 bytes of Kr and 1 byte of Kr-1,

14

and improved the efficiency of recovering Kr by 5-6 times. In Section 5.2, we further
enhance the fault depth by injecting 1 byte fault into Lr-2 to recover full 8 bytes of Kr,
5-6 bytes of Kr-1 and 1 byte of Kr-2, under this assumption, the faulty ciphertexts
number of our methods is further far less than [11]. 4 faults are enough to reduce
Camellia-128 key searching space from 2128 to 222, 6 faults are enough to reduce
Camellia-192/256 key searching space to 231.5, which is almost 16 times more
efficiency than [11].

(3) Thirdly, our DFA methods on Camellia encryption procedure in Section 5.2 can
be easily adapted into DFA on Camellia key schedule case, while [11] can not. It’s
impossible for [11] to inject fault into kr to recover Kr (the adversary can not get the
input differential value of the rth round S-box lookup), however, according to the
analysis of the Section 5.3, it’s quite easy to inject fault into kr-1 and kr-2 to recover Kr.

7 Discussions

In the cryptography design, cryptographists usually add more non-linear (S-box
lookups) and complicated linear operations to prevent ciphers from linear and
differential attack and it indeed works well on traditional mathematical analysis.
However, when it comes to the cryptosystem implementation, it meets unprecedented
challenges. As the non-linear part operations, S-box is leaking more information on
secret key. Usually, the input of the S-box is related with one plaintext/ciphertext
byte, one initial key or subkey byte, and the elements of the S-box is open to the
public. Next, we take the S-box lookup as an example and discuss the relationships
between it and implementation analysis.

(1) Cache based attack (CBA)
 Cache hit and miss feature can affect the whole encryption time and the accessed

Cache sets information of the cryptosystems, this can be utilized as timing driven and
trace access driven Cache attacks. In timing driven attack, the adversary can use the
whole encryption time to predict whether two times S-box lookup is Cache hit or
miss, thus get the possible or impossible key byte candidates. In access driven attack,
the adversary can use a spy process loading a L1 Cache size array to clear the Cache
before the encryption, then trigger the cipher encrypt operations, after that, the spy
process can gather the accessed Cache sets of the encryption process by measuring the
time to reload each Cache block size array element. Combing the plaintext and
ciphertext, the adversary can get the possible or impossible candidates for the
encryption key. In trace driven attack, the adversary can gathered every S-box lookup
Cache hit or miss sequence, combing plaintext and ciphertext to predict encrypt key.
Note that it was just the frequent S-box lookup operations leading to Cache timing
attacks.

(2) Differential side channel attack (DSCA)
In differential side channel attack, the attacker gets several power consumption or

electromagnetic emanation curves. As the S-box dictionary is known to the attacker,
the adversary first divides the key search space to several bytes, then tries every
possible value of each byte to predict one or bits of the S-box lookup results and get
the possible hamming weight or distance, combing the real power or electromagnetic

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 15

curves which is affected by the hamming weight or distance. Then, the correct key
byte can always have high coefficient than wrong key bytes, so the S-box lookups can
also be used in DSCA to recover encryption key. In fact, beside S-box lookup
operation, any operations in encryption with strong non-linear feature can be used in
DSCA to recover encryption key.

(3) Template attack (TA)
In template attack, the attacker first construct a unique distinguisher for each key

byte candidates from the measured signal curves by a controlled encrypt equipment,
then, he tried to gather the leaked signal of the target encrypt equipment, using
information-theoretic or signal theoretical methods to compute the coefficient of each
key byte candidates, the most matched template candidate always relates with the
correct key byte. It’s just the non-linear feature of S-box lookup constructing the
nature unique distinguisher for all key byte candidates and accelerating the key
recovery efficiency.

 (4) Differential fault attack (DFA)
 From Section 4 and 5, we can get that the root of the DFA attack on block cipher

with S-box lies in S-box itself. As long as the input differential and output differentia
of S-box is known to the attacker, it’s very easy to recover the input value of the S-
box, which can be used for further analyzing and recovering of the encryption key.
Current design of S-box is not perfect, the differential S-box cann’t cover all the
candidates from 0x00 to 0xff, which leaks information about the input differential
once the adversary gets the output differential of SPN structure block ciphers, even if
the differential S-box is prefect (cover all the candidates from 0x00 to 0xff), as the
output differential and input differential value of the Feistel block ciphers is known to
the adversary, it may become more easy to recover the S-box input value by just one
fault, which makes DFA attack become more effective. Anyway, S-box makes DFA
attacks on block cipher with S-box becomes possible.

From analysis above, we can safely come to the conclusion that there indeed exist
great contradictions between traditional cipher design and implementation attacks, but
how to solve this problem is still unknown and confused every cryptographist.

8 Conclusion

In this paper we present several improved DFA attacks on Camellia. Our methods not
only broaden the fault width, expand the fault depth, but also improve the efficiency
of fault injection and decrease the number of faulty ciphertexts, our best results
demonstrate that 4 faults are enough to recover Camellia-128 very efficiently.
Besides, our attack model can be adapted into most block ciphers with S-boxes, such
as AES, ARIA, CLEFIA, SMS4 etc. Further more, all of the attacks described in this
paper have been successfully put into experimental simulations on a personal
computer and the experimental results effectively support the analysis and the
arguments.

16

Acknowledgements

The authors would like to thank the anonymous reviewers for many helpful comments
and suggestions. The research presented in this paper was supported by National
Natural Science Foundation of China (Grant No. 60772082) and the Natural Science
Foundation of Hebei Province. China (Grant No. 08M010).

References

1. Boneh, D., DeMillo, R.A., Lipton, R.J. On the importance of checking cryptographic
protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51.
Springer, Heidelberg. (1997)

2. Biham, E., Shamir, A. Differential fault analysis of secret key cryptosystem. In: Kaliski Jr.,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg. (1997)

3. Biehl, I., Meyer, B., Muller, V. Differential fault analysis on elliptic curve cryptosystems. In:
Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146. Springer, Heidelberg. (2000)

4. Hemme, L.: A differential fault attack against early rounds of (Triple-) DES. In: Joye, M.,
Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267. Springer, Heidelberg.
(2004)

5. Blomer, J., Seifert, J.P.: Fault based cryptanalysis of the Advanced Encryption Standard
(AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer, Heidelberg.
(2003)

6. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on AES. In: Zhou, J., Yung,
M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer, Heidelberg. (2003)

7. Piret, G., Quisquater, J.J. A Differential Fault Attack Technique against SPN Structures, with
Application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg. (2003)

8. Debdeep Mukhopadhyay. An Improved Fault Based Attack of the Advanced Encryption
Standard. In: B. Preneel (eds.) AFRICACRYPT 2009, LNCS 5580, pp. 421–434. (2009)

9. Michael Tunstall, Debdeep Mukhopadhyay. Differential Fault Analysis of the Advanced
Encryption Standard using a single Fault. Cryptology ePrint Archive,
http://eprint.iacr.org/2009/575.(2009)

10. Dhiman Saha, Debdeep Mukhopadhyay, Dipanwita RoyChowdhury. A Diagonal Fault Attack
on the Advanced Encryption Standard. Cryptology ePrint Archive,
http://eprint.iacr.org/2009/581.(2009)

11. Yong-bin ZHOU, Weng-ling WU, Nan-nan XU, Deng-guo FENG. Differential Fault Attack
on Camellia. Chinese Journal of Electronics, Vol.18, No.1, pp. 13–19. (2009)

12. Xin-jie ZHAO, Tao WANG. An Improved Differential Fault Attack on Camellia, Cryptology
ePrint Archive, http://eprint.iacr.org/2009/585. (2009)

13. Wei LI, Da-wu GU, Juan-ru LI. Differential fault analysis on the ARIA algorithm.
Information Sciences. Elsevier Inc. pp.3727–3737. (2008)

http://eprint.iacr.org/2009/575.(2009)
http://eprint.iacr.org/2009/581
http://eprint.iacr.org/2009/585

Further Improved Differential Fault Attacks on Camellia by Exploring Fault Width and
Depth 17

14. Hua CHEN, Wen-ling WU, and Deng-guo FENG. Differential Fault Analysis on CLEFIA. In
S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 284–295. Springer
Heidelberg. (2007)

15. Junko Takahashi and ToshinoriFukunaga. Improved Differential Fault Analysis on CLEFIA.
Proceedings of the 2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC, IEEE Computer Society, pp 25-34. (2008)

16. Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg. (2004)

17. Biham, E., Granboulan, L., Nguyn, P.Q.: Impossible fault analysis of RC4 and differential
fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp.
359–367. Springer, Heidelberg. (2005)

18. M. Hojsik and B. Rudolf. “Floating fault analysis of Trivium,” In: D.R. Chowdhury, V.
Rijmen, and A. Das (eds.) INDOCRYPT 2008. LNCS, Heidelberg,Springer,2008,vol. 5365,
pp. 239–250. (2008)

19. HU Yupu, GAO Juntao and Liu Qing. Hard Fault Analysis of Trivium. Cryptology ePrint
Archive, http://eprint.iacr.org/2009/333. (2009)

20. K. Aoki, T. Ichikawa, M. Kansa, M. Matsui, S. Moriai, Nakajima, and T. Tokita,
“Specification of Camellia - a 128-bit Block Cipher”,
http://www.cosic.esat.kuleuven.be/nessie/workshop/submissions. (2000)

21. C.Giraud, H.Thiebeauld, “A survey on fault attacks”. Proceeding of 6th International
Conference on Smart Card Research and Advanced Applications(CARDIS’O4),
Toulouse,France, pp. 22—27. (2004)

http://eprint.iacr.org/2009/333
http://www.cosic.esat.kuleuven.be/nessie/workshop/submis

