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Further Improved Differential Fault Analysis 
on Camellia by Exploring Fault Width and 

Depth 
Xin-jie Zhao, Tao Wang 

Abstract—In this paper, we present two further improved differential fault analysis methods on Camellia by exploring fault width 
and depth. Our first method broadens the fault width of previous Camellia attacks, injects multiple byte faults into the rth round 
left register to recover multiple bytes of the rth round equivalent key, and obtains Camellia-128,192/256 key with at least 8 and 
12 faulty ciphertexts respectively; our second method extends fault depth of previous Camellia attacks, injects one byte fault 
into the r-2th round left register to recover full 8 bytes of the rth round equivalent key, 5-6 bytes of the r-1th round equivalent key, 1 
byte of the r-2th round equivalent key, and obtains Camellia-128,192/256 key with 4 and 6 faulty ciphertexts respectively. 
Simulation experiments demonstrate: due to its reversible permutation function, Camellia is vulnerable to multiple bytes fault 
attack, the attack efficiency is increased with fault width, this feature greatly improves fault attack’s practicalities; and due to its 
Feistel structure, Camellia is also vulnerable to deep single byte fault attack, 4 and 6 faulty ciphertexts are enough to reduce 
Camellia-128 and Camellia-192/256 key hypotheses to 222.2 and 231.8 respectively. 

Index Terms—Differential fault analysis, Feistel structure, SPN structure, Camellia, Block cipher, Fault width and depth 
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1 INTRODUCTION

The idea of fault attack was first suggested Boneh et al. in 
1997 [1]. Boneh et al. showed that this attack succeeded 
when it was applied to RSA based on the Chinese Re-
mainder Theorem using a faulty ciphertext. Shortly after, 
Biham and Shamir proposed that the idea of fault analysis 
could be applied to symmetric-key cryptography DES 
and showed that the attack succeeded in obtaining an 
entire DES key[2]. They called this attack differential fault 
analysis (DFA), which is executed with some pairs of cor-
rect and faulty ciphertexts. Since that, many research pa-
pers have been published using this cryptanalysis tech-
nique to successfully attack various cryptosystems, in-
cluding ECC[3], 3DES[4], AES[5][6][7][8][9][10][11], Ca-
mellia[12][13][14], ARIA[15], CLEFIA[16][17], RC4[18][19], 
Trivium[20][21]  and so on. 

Camellia is a 128-bit block cipher jointly developed by 
NTT and Mitsubishi Electric Corporation in 2000[22]. It 
was chosen as a recommended algorithm by the NESSIE 
project in 2003 and certified as the IETF standard cipher 
for XML security URIs, SSL/TLS cipher suites and IPsec 
in 2005. In March 2009, Camellia was integrated into the 
OPENSSL-1.0.0-beta1.  In Jan 2009, Zhou et. al. proposed 
the first DFA on Camellia using approximately 64 pairs of 
correct and faulty ciphertexts to recover a 128-bit key and 
96 pairs to recover 192/256-bit keys[12]. After one byte 
random fault injected into rth,r-1th,r-2th,r-3th etc round reg-
ister, they simply extended DFA attack against DES in [2], 
many faulty pairs were needed to obtain Camellia key. In 
Dec 2009, Zhao et. al. proposed an improved fault attack 
extending the fault depth of [12], and used 16 pairs of 
correct and faulty ciphertexts to recover a 128-bit key and 

24 pairs to recover 192/256-bit keys[13]. They injected one 
byte fault into the r-1th,r-2th,r-3th etc  rounds, utilized the 
revese feature of Camellia permutation function to re-
cover 5-6 key byte at one time, and improved the key re-
covery efficiency. At the same time, Li et. al. also pro-
posed the same method as [13] in [14], used 30 pairs to 
recover Camellia 128/192/256-bit keys. 

In this paper, we analyze the basic DFA attack princi-
ple and summarize the DFA on block ciphers with S-box 
into computing the S-box input and output differential 
problems, then present two further improved DFA meth-
ods on Camellia. Note that how to induce the specific 
fault is not covered in this paper, since this is not the main 
concern of our paper and many literatures on fault induc-
tions are available [23]. 

Our first attack is based on the multiple byte faults 
model, which is verified by hardware fault attack experi-
ments in [10] and [11] recently. In these two experiments, 
both SPN and Feistel structure block cipher can be in-
jected fault with any width from 8-bit to 64-bit, sometimes 
even 128-bit.  In this paper, we inject multiple byte faults 
into the rth,r-1th,r-2th,r-3th etc round register instead of one 
byte in [12] and provide the complexity analysis of the 
attack. The proposed attack requires 16 pairs and 24 pairs 
to obtain 128-bit, 192/256 key with feasible calculation 
time and improve the fault analysis efficiency, attack in 
[12] is a specialized case of our attack when the faulty 
byte number is one, most importantly, multiple byte 
faults attack is more practical than single byte fault attack. 

 Our second attack further extends  the fault depth of 
[13] and [14] from the r-1th round to the r-2th round. We 
inject multiple byte faults into the r-2th,r-4th etc round left 
register instead of the r-1th,r-2th,r-3th etc round left register ———————————————— 

 

 
xxxx-xxxx/0x/$xx.00 © 200x IEEE 



2  

in [13]. The proposed attack takes advantage of the gen-
eralized Feistel structure of Camellia, one byte fault in the 
r-2th round can recover 8 bytes of the rth round equivalent 
key, 5-6 bytes of the r-1th round equivalent key and 1 byte 
of the r-2th round equivalent key, so 4 and 6 faulty pairs 
are enough to recover Camellia-128,192/256 key hypothe-
ses to 222.2 and 231.8 respectively. Compared with 
[12],[13],[14], Our DFA method not only enhances the 
fault depth, but also improves the fault analysis efficiency 
by 16 times and 4 times respectively, and decreases the 
faulty ciphertexts number. Besides, our second attack can 
be easily extended to DFA on Camellia key schedule case, 
while [12] can not. 

As induction of faults requires high precision instru-
ments (more the precision, more the cost!) and is harder 
to guarantee, an attack which requires large number of 
faulty pairs is impractical. We can, therefore, state that the 
most efficient attacks are those that require the fewest 
assumptions on the effect of a fault and least faulty ci-
phertexts. Our first attack looses the assumptions on the 
fault width to improve the fault injection practicability, 
the second attack deduces the number of faulty cipher-
texts to improve the key retrieve efficiency, so we believe 
that both attacks are much more strongger than previous 
DFA attacks on Camellia. 

This work is organized as follows. In Section 2, we pre-
sent the basic DFA model and how it can be used into 
SPN and Feistel block ciphers. Section 3 presents the gen-
eral overview of DFA on Camellia. Section 4 and Section 5 
present several further improved DFA attacks on Camel-
lia by broadening fault width and enhancing fault depth 
respectively. Section 6 displays the complexity analysis 
and experimental results of the attacks. Section 7 is the 
conclusion. 

2 DFA ATTACK MODEL 
Most block ciphers are composed of Substitution function 
S and Permutation function P. In DFA attacks, the adver-
sary usually injects single byte fault before the final S 
function, after the S function, the S-box lookup index byte 
a becomes a*, the S-box input differential value ∆a (∆a=a⊕
a*) can be either known or unknown. But usually, the ad-
versary can obtain the S-box output differential ∆c by ob-
serving the correct and faulty ciphertext. So, it always 
holds the following formula

[ ] [ ]S a S a a c⊕ ⊕Δ = Δ                    (1) 
The output of the S function usually has extra post-

whitenings by Xored the last round key to generate the 
ciphertexts C. As C is known, if a is obtained, the last 
round key can be recovered. According to ∆a is known or 
unknown, we present two DFA models for Feistel and 
SPN structure block ciphers. 

1 ∆a is known 
This case is usually related with Feistel structure block 

cipher. If one byte fault ∆a is injected into the rth round 
left register, due to the feature of Feistel structure, both ∆a 
and ∆c can be obtained after analyzing the cipher differ-
ential ∆C. If we input every possible candidate of a to 
formula (1), we can get limited candidates of a satisfying 

formula (1).  
Fig. 1 is the Camellia S-box and differential S-box (∆=1) 

elements sorted ascending, the gray block denotes candi-
dates of S-box, and the white block denotes the impossi-
ble candidates of S-box. It’s clear to see that the Camellia 
S-box S has covered with every distinct value from 0x00 
to 0xff (total number is 256), and every candidate is used 
only once. However, when it comes to the differential S-
box S’(S’[a]=S[a]⊕S[i⊕∆a], ∆a=0x01), S’ can’t cover every 
distinct candidate value from 0x00 to 0xff(total number is 
127), usually every possible candidate of S’ is used twice 
or more. If we input every candidate of a into formula (1), 
2-4 candidates of a can be obtained, which means that we 
can get 2-4 candidates for the last round key. 

 
Fig. 1. Camellia S box and differential S box (∆=1) elements sorted 
ascending.  

2 ∆a is unknown 
This case is usually related with SPN structure block 

cipher. As to Feistel structure block cipher, when one byte 
fault is injected before the last permutation layer of the r-
1th round, and both the rth round S-box input and output 
differential are known. However, as to SPN structure 
block cipher, when one byte fault is injected before the 
last permutation layer of the r-1th round, after the permu-
tation layer, m faulty state with the same differential fault 
value as ∆a can be generated, but after the rth S function, 
the faults are propagated into m differential faults, ususlly, 
the S-box output differential ∆c is known, but the input 
differential ∆a is unknown. In order to recover a, ∆a has to 
be guessed firstly. Suppose ∆a is an 8-bit non-zero value, 
which has 255 candidates. Usually, the m different output 
differential values should be related with the same input 
differential S-box, if these 7 output values are not in the 
same differential S-box when ∆a =n, we can eliminate ∆a 
=n, using this technique, we can get limited candidates of 
∆a, then case 2 (∆a is unknown) can be transferred into 
Case 1 (∆a is known), finally, after analyzing enough 
samples, a and the secret key can be obtained. 

3 GENERAL OVERVIEW OF DFA ON CAMELLIA 
3.1 Description of Camellia 
A full description of the Camellia cipher is provided in 
[22], but below is a brief description of the cipher’s prop-
erties that are utilized in this study. 

Encryption Procedure: Camellia is an iterated cipher, 
its block length is 128-bit, and support 128,192,256-bit 
three key length types, it adopts the Feistel structure. In 
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order to improve the security of the cipher, in the first 
and last round, the 128-bit data block is XORed with 128-
bit pre-whitening and post-whitening keys, and the FL 
and FL-1 functions inserted every 6 rounds are used to 
provide non-regularity between the rounds. The Feistel 
structure for Camellia encryption can be written as fol-
lows: 
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kr denotes the rth round key, F=P·S is the round func-
tion, the definition of the S and P function is 
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Key Schedule: Firstly, 4 12-bit variable KL, KR, KA, and 
KB are generated from the initial key and 6 64-bit constant 
∑

B

i (i = 1, 2, …, 6) by several F functions, then the 64-bit 
sub-keys kwt, ku, and klv are generated from KL, KR, KA, and 
KBB, specific procedure is provided in [22]. 
3.2 Basic assumption and Notation 

1 Assumption: 
(1) One byte or more bytes random fault is induced 

into the memory registers storing the intermediate results 
in one fault induction. Notice that the attacker knows nei-
ther the location nor the concrete value of the fault. 

(2) For any one plaintext adaptively selected, two dif-
ferent ciphertexts under the control of the same secret key 
are available, the right ciphertext and the faulty one.  

(3) The faulty ciphertexts of the required type are pre-
sumably available. How to induce the specific fault is not 
covered in this paper, since this is not the main concern of 
our paper and many literatures on fault inductions are 
available [23]. The attacker should be able to identify the 
required faulty ciphertexts from a mass of faulty cipher-
texts and discard faults occurring at a wrong timing.  

(4) Only one master key is used during one attack. 
2 Notation: 
(1) Kr: the equivalent subkey of the rth round, also is the 

exclusive OR half of the post-whitening subkey and the 
rth subkey. In case of Camellia-128, the equivalent subkey 
for the 18th, 17th, 16th, 15th, 14th, 13th round is K18=k18⊕kw3, 
K17=k17⊕kw4,K16=k16⊕kw3,K15=k15⊕kw4,K14=k14⊕kw3,K13=k13

⊕kw4  respectively. 
(2) Lr-1, Rr-1: the 64-bit left and right half of the rth round 

inputs. 
(3) kr: the 64-bit rth round subkey.  
(4) ∆ILri, ∆IRri: the ith byte of the rth round left and right 

half input differential value.(i∈[0,7]) 
(5) ∆OLri, ∆ORri: the ith byte of the rth round left and 

right half output differential value.(i∈[0,7]) 
(6) ∆Sri, ∆Pri: the ith byte of the rth round S function and 

P function output differential value.(i∈[0,7]) 
(7) ∆CLi, ∆CRi: the ith byte of the left and right half ci-

phertext differential value.(i∈[0,7]) 
(8) Fault: If not specially stated, fault denotes the non-

zero differential value except for the faulty ciphertext. 
3.3 Main idea of DFA on Camellia 
The main idea of DFA on Camellia is as follows: 

(1) Choose any plaintext P, and obtain the correspond-
ing correct ciphertext C. 

(2) Inject specific fault into the encryption procedure or 
key schedule, and obtain the faulty ciphertext C*. 

(3) Deduce one byte or several bytes of Kr using DFA 
technique. 

(4) Repeat the above steps, until full Kr is recovered. 
(5) Proceed in the same way and attack the previous 

round, and deduce Kr-1, Kr-2, Kr-3…., accordingly. 
(6) Recover Camellia-128 key by Kr-3, Kr-2, Kr-1,Kr and 

Camellia-192/256 key by Kr-5, Kr-4,Kr-3,Kr-2,Kr-1, Kr with key 
reversion techniques. 

(7) Verify the correctness of the recovered Camellia key. 
In the next Sections, two improved differential fault 

analysis methods on Camellia by broadening fault width 
and enhancing fault depth are described, and the experi-
mental results and comparisons are given to prove the 
correctness of the analysis theory. 

4 IMPROVED DFA ON CAMELLIA BY BROADENING 
FAULT WIDTH  

4.1 Previous Study 
Zhou’s attack [12] is a generic attack based on model of 
Section 2. Its main idea is to inject single byte fault on the 
rth round left register Lr-1 and use equitation (1) to re-
trieve Kr. Let’s take recovering K18 as an example, the fault 
propagation is depicted in Fig. 2.  

 

 
Fig. 2. Fault propagation of one byte fault in L17.  

The adversary first induces one byte fault ∆IL180 to L170, 
after the S function, ∆IL18 is transferred to single byte fault 
∆S180, after the P function, 5 or 6 bytes of ∆P18 have the 
same fault as ∆S180, after the final swap and exclusive OR 
of kw3 and kw4, ∆CL is equal to ∆IL18 and also is the S func-
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tion input differential, ∆CR is equal to ∆P18 and its non-
zero value is also the S function output differential. By 
applying DFA methods of Section 2, the adversary can 
recover K180. Note that one byte fault can only recover one 
K18 byte from 256 to 2-4 candidates, and two times of the 
same location single byte fault can recover one K18 byte, 
so at least 16 faults are needed to recover K18. By applying 
this method to the 17th, 16th, 15th round, K17, K16, K15 can be 
recovered, combing the key reverse techniques, the initial 
key K can be obtained. 
4.2 Improved DFA on Camellia by Broadening Fault 

Width 

In this section, we suppose the adversary has the ability 
of injecting multiple byte faults into Lr-1, this is much 
more practical than single byte fault attack in [12], also 
has been verified by hardware fault attack experiments in 
[11] recently. Let’s take injecting m (1≤m≤8) faults into the 
18th round left register L17 to recover m bytes of K18 as an 
example, the fault propagation is depicted in Fig. 3.  

 

 
Fig. 3. Fault propagation of multiple byte faults in L17.  

Specific attacking procedure is as follows: 
(1) Choose random plaintext P and obtain the correct 

ciphertext C under the secret key K. 
(2) Induce m bytes random faults ∆IL18 into L17, and ob-

tain the faulty ciphertext C*. 
(3) Deduce the fault location. 
Different fault locations injected into L17 can propagate 

the same location faults into CL, according to the nonzero 
byte of ∆CL, the attacker can easily identify the fault loca-
tion injected into L17. 

(4)Compute the 18th round S-box input and output dif-
ferential ∆IL18 and ∆S18

According to Fig.3, the 18th round S-box input differen-
tial ∆IL18 is equal to the left half ciphertext differential ∆CL, 
the 18th round S-box output differential ∆S18 can be com-
puted by the Camellia reverse P function 
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 (5) Recover K18. 
  From step (1)-(4), we can recover the m bytes input 

and output differential of the 18th round S function ∆IL18, 
∆S18, using DFA model of Section 2, it’s easy to recover m 
bytes S function input value, which can be expressed as 
L17⊕k18, as L17⊕kw3 =CL, CL is known, so m bytes of K18 can 
be recovered. Repeat above steps to recover full 64-bit K18.  

(6) Recover K17, K16, K15 …etc equivalent subkeys. 
Proceed in the same way and attack, in turn, deduce the 
equivalent subkeys Kr-2, Kr-3…, accordingly, and retrieve 
the initial Camellia-128/192/256 key with methods in [13]. 

5 IMPROVED DFA ON CAMELLIA BY EXTENDING 
FAULT DEPTH 

5.1 Previous Study 
In Dec 2009, Zhao et. al. proposed an improved fault at-
tack extending the fault depth of [12] in [13], the same 
method was also proposed in [14] . They supposed the 
adversary has the ability of injecting single byte fault into 
the r-1th round left Camellia register Lr-2. Let’s take inject-
ing one byte fault into the 17th round left register L160 as 
an example, the fault propagation is depicted in Fig. 4. 

 
Fig. 4. Fault propagation of one byte fault in L16.  

Specific attacking procedure is as follows: 
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 (1) Choose random plaintext P and obtain the correct 
ciphertext C under the secret key K. 

(2) Induce one byte fault ∆IL17 into L16, and obtain the 
faulty ciphertext C* under the secret key K. 

(3) Deduce the fault location. 
Different fault locations injected into L16 can generate 

different indices sets of the fault CL, we can identify the 
fault location by methods in [13]. 

(4)Compute the 18th round S-box input and output dif-
ferential ∆IL18 and ∆S18

∆IL18 is equal to the left half ciphertext differential ∆CL. 
∆OL18 is equal to the left half ciphertext differential ∆CR, 
and is generated by ∆S180, ∆S181, ∆S182, ∆S184, ∆S187 and 
∆IL170 using 8 equations. It’s simple to recover these 6 un-
known differentials (∆S180, ∆S181, ∆S182, ∆S184, ∆S187 and 
∆IL170) by equation (3). 
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 (5) Recover 5 or 6 bytes of K18. 
   By applying the general DFA model of Section 2, it’s 

easy to recover 5 bytes S function input value of the 18th 
round, which can be expressed as L17i⊕k18i (i=0,1,2,4,7), as 
L17i⊕kw3i =CLi, CL is known, k18i⊕kw3i (i=0,1,2,4,7) can be 
recovered.  

(6) Recover full 8 bytes of K18 and several bytes of K17. 
   Repeat step (1)-(5) to recover full 8 bytes of K18. Note 

that after K18 is recovered, as ∆IL17 is deduced, the output 
17th round S-box differential ∆S17 can be obtained through 
∆CL, the adversary can recover several bytes of K17. 

(7)Proceed in the same way as step (1)-(6) and attack 
the previous round, and deduce the equivalent subkeys 
K17, K16, K15, …, accordingly, and retrieve the initial Ca-
mellia-128/192/256 key with methods in [13]. 
5.2 Improved DFA on Camellia by Extending Fault 

Depth 
In this section, we describe idea of proposed DFA method 
to retrieve Camellia round keys by analyzing S-box input 
and output differentials.  

Suppose the adversary has the ability of injecting sin-
gle byte fault into the r-2th round left Camellia register Lr-3, 
let’s take injecting one byte fault into the 16th round left 
register L15 as an example, the fault propagation is de-
picted in Fig. 5. 

Specific attacking procedure is as follows: 

(1) Choose random plaintext P and obtain the correct 
ciphertext C under the secret key K. 

(2) Induce random single byte fault ∆IL16 into L15, ob-
tain the faulty ciphertext C*.  

(3) Compute the 18th round S-box lookup input differ-
ential ∆IL18. 

∆IL18 can be computed from the left half ciphertext dif-
ferential ∆CL. 

(4) Deduce the 17th round S-box lookup output differ-
ential ∆S17. 

18 17 17 17 16( ) ( )CL IL P S IR P S ILΔ = Δ = Δ ⊕Δ = Δ ⊕Δ     (4) 
∆CL has 8 nonzero bytes, ∆S17 has 5-6 nonzero bytes, 

∆IL16 has only 1 nonzero byte, using similar equation as 
equation (3) above (if L15 fault byte index is 0), ∆S17 can be 
obtained, if the adversary didn’t known the accurate fault 
index, there are 8 possibilities, specific method of solving 
the equations can be get from [13], finally, 8 candidates of 
∆S17 can be obtained.  

(5) Deduce the 17th round S-box lookup input differen-
tial ∆IL17. 

Next, we should recover ∆IL17 from ∆S17. First we com-
pute the 255 Camellia differential S-boxes, for each input 
differential S-box value ε ( ε =∆IL170) from 1 to 255, we can 
get 4 type of differential Camellia S-boxes, if 5 nonzero 
bytes of ∆S17 are among these 4 differential S-boxes (satis-
fying equation (5)), we can get one ∆IL170 candidate, else 
ε  will be eliminated, after 255 iterations, the adversary 
can get limited ∆IL170 candidates. 

1 0 0 1 0 0 0
17 17 17 17 17

1 1 1 1 1 1 1
17 17 17 17 17

1 2 2 1 2 2 2
17 17 17 17 17

1 4 4 1 4 4 4
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( ) (
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S IL k S IL k S

ε

ε

ε

ε

ε

− −

− −

− −

− −

− −

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

= ⊕ ⊕ ⊕ ⊕Δ

)

)

)

)

)

       (5) 

(6) Deduce the 18th round S-box lookup output differ-
ential ∆S18. 

   In order to recover K18, the adversary should recover 
the 18th round S-box lookup output differential ∆S18. 

18 18 18 18 17( ) ( )CR OL P S IR P S ILΔ = Δ = Δ ⊕Δ = Δ ⊕Δ          (6) 
The equation (6) can be transferred into equation (7): 

1
18 17(S P CR IL−Δ = Δ ⊕ Δ )                          (7) 

∆CR is known, if ∆IL17 is obtained, ∆S18 can be deduced. 
(7) Recover full 8 bytes of K18. 
∆S18 candidates can be computed from ∆IL17 candidates, 

∆IL18 is known, by applying the general DFA model of 
Section 2, it’s easy to recover limited K18 candidates. Re-
peat step (1)-(7) to recover K18. 

 (8) Recover 5-6 bytes of K17. 
  From step (7) the adversary can recover the 18th 

round S function input value L17⊕k18 =CL⊕K18, and com-
pute the 18th round P function output value, so the correct 
and faulty P18 can be computed, ∆P18 and unique 17th 
round S-box input differential ∆IL17 can be deduced, as 
the 17th round S-box output differential ∆S17 is recovered 
in step (4), by applying the general DFA model of Section 
2, it’s easy to recover L16i⊕k17i (i=0,1,2,4,7), as L16⊕P18⊕
kw4 = CR, S18=S[CL⊕K18], P18 denotes the 18th round P 
function output, it can be computed by S18, so k17i ⊕kw4i 

(K17i,i=0,1,2,4,7) can be recovered. Repeat step (1)-(8) to 
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recover full 8 bytes of K17. 
(9) Recover 1 byte of K16. 
Note that after K17 is recovered, as the 16th round S-box 

input and output differential ∆IL16 and ∆S16 (equals ∆IL17) 
is recovered, using basic DFA on Camellia, the adversary 
can even recover one byte of K16. 

(10) Proceed in the same way as step (1)-(9) and attack 
the previous round, and deduce the equivalent subkeys 
K16, K15 … accordingly, and retrieve the initial Camellia-
128/192/256 key with methods in [13]. 

The DFA method on Camellia encrypt procedure 
above can be extended into Camellia key schedule fault 
attack. Note that there is one thing different, injecting one 
byte fault into kr-2 can recover 8 bytes of Kr, 5-6 bytes of Kr-

1, but can not recover any byte of Kr-2, as the input differ-
ential of the r-2th round S function is unknown. 

 
Fig. 5. Fault propagation of one byte fault in L15.  

6 COMPLEXITY ANALYSIS AND EXPERIMENTAL 
RESULTS 

6.1 Complexity Analysis 
Due to the limit abilities of the attacker, it’s very difficult 
to induce accurate and effective faults for DFA, so how 
many faulty ciphertexts are needed to crack the cipher is 
also very crucial. Next, we make a sketch of this complex-
ity analysis. 

1. Complexity Analysis of one byte fault analysis 
We describe the characteristics of the equation for the 

S-box in the determinate methods. Let’s just consider the 
simple one byte S-box model shown in Fig. 2. When we 
know the input S-box differential ∆IL180 and the out dif-
ferential ∆S180, we can obtain a set of L170 satisfying equa-
tion (8).  

0 0 0 0 0 0
17 18 17 18 18 18

0 0 0
17 3

0 0 0
18 3 18

0 0 0 0 0
18 18 18 18

[ ] [ ]

[ ] [ ]

w

w

S L k S L k IL S

L k C

k k K

S C K S C K IL S

⎫⊕ ⊕ ⊕ ⊕ Δ = Δ
⎪⎪⊕ = ⎬
⎪⊕ = ⎪⎭

⇒ ⊕ ⊕ ⊕ ⊕ Δ = Δ 0

                       (8) 

The number of K180 depends on C0, ∆IL180, ∆S18
0 and the 

S-box. In Camellia, four S-boxes S0, S1, S2, S3 are used in the F 
function. By solving equation (8), we examine the size of the 
key candidates |K180| for all combinations of C0, ∆IL180, ∆S18

0 
related with S0. The total number of combinations is 
16711680(∆IL180 is a non-zero value). The results are shown 
in Table 1, it’s clear to see that by injecting single byte fault into 
L17

0, about 2.0312 K18
0 candidates can be obtained at one time, 

and the statistics of other three S-boxes are the same as S0. 
TABLE 1 

CAMELLIA S-BOX STATISTICS 
| K18

0| Number P E(|K18
0|) 

2 16450560 0.9844 1.9688 
4 261120 0.0156 0.0624 
Total 16711680 1 2.0312=21.02

2. Complexity analysis of attack in Section 4.2. 
Suppose the adversary injects m byte faults into Lr-1, 

according to Section 4.2, m bytes of Kr can be obtained. If 
m=8, one time 8-bytes faults in Lr-1 can reduce Kr space 
from 264 to 289.75 (2.03128). As almost two times of the 
same index fault byte can recover one key byte, so theo-
retically speaking, the relationship between faulty num-
ber N and m obtaining unique Kr is 

16 /N = m                             (9) 
It’s clear to see that the key recovery efficiency is in-

creased with the faulty bytes width, and two times full 8 
faulty bytes of Lr-1 can recover Kr. 

3.  Complexity analysis of attack in Section 5.2. 
Injecting one byte fault in the r-2th round can propa-

gate 5-6 faulty bytes in the r-1th round and 8 faulty bytes 
in the rth round, combined the analysis of Camellia S-box 
statistics and fault propagation feature, 2 faults are 
enough to recover Kr and reduce the search space of Kr-1 
from 264 to about 210.6(1555.56) on average with 87.5% 
probabilities (if the two fault indices in the r-2th round are 
not identical), 3 faults are enough to recover Kr and re-
duce the search space of Kr-1 from 264 to about 23.8 on aver-
age with 98.4% probabilities (if all of the three fault indi-
ces in the r-2th round are not identical). As to Camellia-128 
with and without FL/FL-1 layer, 2 faults in each of the 16th, 
14th round, 4 faults are enough to reduce Camellia-128 
key searching space to 222.2=221.2+1.  As to Camellia-
192/256 without FL/FL-1 layer, 2 faults in each of the 16th, 
14th, 12th round, 6 faults are enough to reduce Camellia-
192/256 key searching space to 231.8.   

Note that if the attacker does not need to know the 
specific fault byte location, as for 2 times random fault 
injected into L15, there are 64 fault location combinations. 
Only the correct combination can recover unique K18, and 
the wrong combinations usually get empty candidates of 
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K18. So, we can use this feature to deduce the fault loca-
tion of these 2 faults, recover unique K18, and choose cor-
responding method to recover 5-6 bytes of K17. 
6.2 Experimental Results and Comparisons 
We have implemented simulations of the attacks in this 
paper written by Visual C++6.0 on Windows XP．Our 
simulations run on a personal computer (Athlon 64-bit 
3000+ 1.81 GHz CPU and 1GB RAM) and successfully 
extract the Camellia-128/192/256 key.  

In order to verify the complexity analysis of attack in 
Section 4.2 and 6.1, we implemented the 8 bytes width 
fault attack on Camellia 18th round, the statistics of 22 sets 
for 2000 sample’s average 8 byte faults in L17 and K18 can-
didate number is depicted in Fig. 6.  It’s clear to see that 
one time 8 bytes fault on L17, on average 289.74 candidates 
of K18 are obtained, which is almost the same as the 289.75 
of the theory value in Section 6.1.  
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Fig. 6. 22 sets of Statistics on K18 candidate number.  

In order to verify the complexity analysis of attack in 
Section 5.2 and 6.1, we injected two times single byte fault 
to L15(two fault indices are not identical), used the analy-
sis method of Section 5.2, unique K18 can be obtained, and 
the statistics of 10 sets for 5000 sample’s K17 candidate 
number is depicted in Fig. 7.  It’s clear to see that two 
times single byte fault on L15, on average 1557.01 candi-
dates of K17 are obtained, which is almost the same as 
1555.56 of the theory value in Section 6.1.  
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Fig. 7. 10 sets of Statistics onK17 candidate number. 

Also, the experimental results in Table 2 strongly sup-
port the complexity analysis presented in Section 6.1.  

It’s clear to see that our methods are more effective 
than previous attacks and have the following properties: 

1.  Firstly, we broaden the fault depth of [10]. 
 This is much more practical in the real attack scenarios, 

and verified by hardware fault attack experiments in [11] 
recently. We find out the key recovery efficiency is in-
creased with the width of the faulty bytes width, two 
times full 8 faulty bytes in the Lr-1 can recover Kr, which is 
about 8-16 times efficient than [10]. Note that if the at-
tacker can not inject single byte fault into Camellia en-
cryption procedure accurately, the attack of Section 4.2 
can be seen as the most powerful attack. 

2.  Secondly, we extend the fault depth of [10],[13],[14].  
In Section 5.2, instead of injecting 1 byte fault into Lr-1 

to recover 1 byte of Kr in [10], injecting 1 byte fault into Lr-

2 to recover 5-6 bytes of Kr and 1 byte of Kr-1 in [13] and 
[14], we further enhance the fault depth by injecting 1 
byte fault into Lr-3 to recover full 8 bytes of Kr, 5-6 bytes of 
Kr-1 and 1 byte of Kr-2. Under this assumption, the faulty 
ciphertexts number of our methods is further far less than 
[10],[13],[14], 4 faults are enough to reduce Camellia-128 
key searching space to 222, 6 faults are enough to reduce 
Camellia-192/256 key searching space to 231.5, which is 
almost 16 times and 4 times more efficient than [10] and  
[13],[14] respectively. 

3. Thirdly, our DFA methods on Camellia encryption 
procedure in Section 5.2 can be easily adapted into DFA 
on Camellia key schedule, while [10] can not. It’s impos-
sible for [10] to inject fault into kr to recover Kr (the adver-
sary can not get the rth round S-box input differential), 
however, according to the analysis of Section 5.2, it’s easy 
to inject fault into kr-1 and kr-2 to recover Kr. 

TABLE 2 
IMPROVEMENT OF OUR DFA ATTACKS OVER PREVIOUS 

Camellia Attack Fault Type Fault  
Location 

FL/ 
FL-1

Fault 
Number 

128 [10] Single byte  L14 - L17 ×/√ 64 
128 Section 4.2 Multiple bytes  L14 - L17 ×/√ 8 
128 [13] Single byte L13 - L16 ×/√ 16 
128 Section 5.2 Single byte L13, L15 ×/√ 4 
128 [13] Single byte k14 - k17 ×/√ 16 
128 [14] Single byte k12 - k17 × 30 
128 Section 5.2 Single byte k14, k16 ×/√ 4 
192/256 [10] Single byte L12 - L17 ×/√ 96 
192/256 Section 4.2 Multiple bytes L12 - L17 ×/√ 12 
192/256 [13] Single byte L11 - L16 × 24 
192/256 Section 5.2 Single byte L11, L13, L15 × 6 
192/256 [13] Single byte k12 - k17 × 24 
192/256 [14] Single byte k12 - k17 × 30 
192/256 Section 5.2 Single byte k12, k14, k16 × 6 
192/256 [13] Single byte L11 - L16 √ 32 
192/256 Section 5.2 Single byte L12, L13, L15 √ 16 
192/256 Section 5.2 Single byte k13, k14, k16 √ 16 

7 CONCLUSION 
Current studies of fault analysis on block ciphers are de-
voted to mathematical analysis on cryptographic algo-
rithms, fault injection and detection of cryptographic al-
gorithms in software and hardware implementation.  In 
this paper, we examine the mathematical analysis of Ca-
mellia with its fault injection simulation in software im-
plementation.  For the hardware situation, we will leave it 
for the future research.  

In this paper we present two improved DFA methods 
on Camellia. Our methods not only broaden the fault 
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width, expand the fault depth, but also improve the effi-
ciency of fault injection and decrease the number of faulty 
ciphertexts. Our best results demonstrate that 4 faults are 
enough to reduce Camellia-128 key searching space to 
222.2, 6 faults are enough to reduce Camellia-192/256 key 
searching space to 231.8. Besides, our attack model can be 
adapted into most block ciphers with S-box, such as AES, 
ARIA, CLEFIA, SMS4, HYRAL, and MIBS.  

Future analysis should be able to supply fault injection 
and detection of Camellia in hardware implementation. 
Moreover, we are working on the generic DFA sample 
size analysis model for block ciphers using S-box. 

ACKNOWLEDGMENT 
The authors wish to thank the anonymous reviewers for 
many helpful comments and suggestions. This work was 
supported in part by National Natural Science Founda-
tion of China (Grant No. 60772082) and the Natural Sci-
ence Foundation of Hebei Province. China (Grant No. 
08M010). 

REFERENCES 
[1] Boneh, D., DeMillo, R.A., Lipton, R.J. On the importance of 

checking cryptographic protocols for faults. In: Proc. of Ad-
vances in Cryptology–EUROCRYPT 2007, Fumy, W. (ed.), 
LNCS, vol. 1233, Berlin: Springer-Verlag, pp. 37–51, 1997. 

[2] Biham, E., Shamir, A. Differential fault analysis of secret key 
cryptosystem. In: Proc. of Advances in Cryptology–CRYPTO 
1997, Kaliski Jr., B.S. (ed.), LNCS, vol. 1294, Berlin: Springer-
Verlag,  pp. 513–525, 1997. 

[3] Biehl, I., Meyer, B., Muller, V. Differential fault analysis on 
elliptic curve cryptosystems. In: Proc. of Advances in Cryptol-
ogy–CRYPTO 2000, Bellare, M. (ed.), LNCS, vol. 1880, Berlin: 
Springer-Verlag, pp. 131–146, 2000. 

[4] Hemme, L.: A differential fault attack against early rounds of 
(Triple-) DES. In: Proc. of Cryptographic Hardware and Em-
bedded Systems–CHES2004, Joye, M., Quisquater, J.-J. (eds.) , 
LNCS, vol. 3156, Berlin: Springer-Verlag, pp. 254–267, 2004. 

[5] Blomer, J., Seifert, J.P.: Fault based cryptanalysis of the Ad-
vanced Encryption Standard (AES). In: Proc. of Finiancial Cryp-
tology–FC 2003, Wright, R.N. (ed.), LNCS, vol. 2742, Berlin: 
Springer-Verlag, pp. 162–181, 2003. 

[6] Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis 
on AES. In: Proc. of International Conference on Applied Cryp-
tography and Network Security–ACNS 2003, Zhou, J., Yung, M., 
Han, Y. (eds.), LNCS, vol. 2846, Berlin: Springer-Verlag,  pp. 293–
306, 2003. 

[7] Piret, G., Quisquater, J.J. A Differential Fault Attack Technique 
against SPN Structures, with Application to the AES and 
Khazad. In: Proc. of Cryptographic Hardware and Embedded 
Systems–CHES 2003, Walter, C.D., Koç, Ç.K., Paar, C. (eds.), 
LNCS, vol. 2779, Berlin: Springer-Verlag, pp. 77–88, 2003 

[8] Debdeep Mukhopadhyay. An Improved Fault Based Attack of 
the Advanced Encryption Standard. In: Proc. of Advances in 
Cryptology–AFRICACRYPT 2009, B. Preneel (eds.), LNCS, vol. 
5580, Berlin: Springer-Verlag, pp. 421–434, 2009. 

[9] Michael Tunstall, Debdeep Mukhopadhyay. Differential Fault 
Analysis of the Advanced Encryption Standard using a single 
Fault. Cryptology ePrint Archive 2009/575, available at 

http://eprint.iacr.org/2009/575.pdf. 
[10] Dhiman Saha, Debdeep Mukhopadhyay, Dipanwita Roy-

Chowdhury. A Diagonal Fault Attack on the Advanced Encryp-
tion Standard. Cryptology ePrint Archive 2009/581, available at 
http://eprint.iacr.org/2009/581.pdf 

[11] Toshinori Fukunaga and Junko Takahashi. Practical Fault At-
tack on a Cryptographic LSI with ISO/IEC 18033-3 Block Ci-
phers. In: Proc. of 2009 Workshop on Fault Diagnosis and Tol-
erance in Cryptography–FDTC2009, IEEE Computer Society, 
pp.84-92, 2009. 

[12] Yong-bin Zhou, Weng-ling WU, Nan-nan XU, Deng-guo FENG. 
Differential Fault Attack on Camellia. Chinese Journal of Elec-
tronics, Vol.18, No.1, pp. 13–19, 2009. 

[13] Xin-jie Zhao, Tao Wang. An Improved Differential Fault Attack 
on Camellia, Cryptology ePrint Archive 2009/585, available at 
http://eprint.iacr.org/2009/585.pdf. 

[14] Wei Li, Da-wu Gu, Juan-ru Li et. al. Differential fault analysis 
on Camellia. The Journal of Systems and Software, Vol.83, Issue 
5, pp. 844–851, 2010. 

[15] Wei Li, Da-wu Gu, Juan-ru Li. Differential fault analysis on the 
ARIA algorithm. Information Sciences, Vol.178, Issue 19, 
pp.3727–3737, 2008. 

[16] Hua Chen, Wen-ling Wu, and Deng-guo Feng. Differential 
Fault Analysis on CLEFIA. In: Proc. of Eighth International 
Conference on Information and Communications Security– 
ICICS 2007, S. Qing, H. Imai, and G. Wang (Eds.), LNCS, vol. 
4861, Berlin: Springer-Verlag, pp. 284–295, 2007. 

[17] Junko Takahashi and ToshinoriFukunaga. Improved Differen-
tial Fault Analysis on CLEFIA. In: Proc. of the 5th Workshop on 
Fault Diagnosis and Tolerance in Cryptography– FDTC 2008, 
IEEE Computer Society, pp.25-34, 2008. 

[18] Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Proc. 
of Cryptographic Hardware and Embedded Systems–CHES 
2004, Joye, M., Quisquater, J.-J. (eds.), LNCS, vol. 3156, Berlin: 
Springer-Verlag, pp. 240–253, 2004. 

[19] Biham, E., Granboulan, L., Nguyn, P.Q. Impossible fault analy-
sis of RC4 and differential fault analysis of RC4. In: Proc. of Fast 
Software Encryption–FSE 2005, Gilbert, H., Handschuh, H. 
(eds.), LNCS, vol. 3557, Berlin: Springer-Verlag, pp. 359–367, 2005. 

[20] M. Hojsik and B. Rudolf. “Floating fault analysis of Trivium,” 
In: D.R. Chowdhury, V. Rijmen, and A. Das (eds.) In: Proc. of 
INDOCRYPT 2008, LNCS, vol. 5365, Berlin: Springer-Verlag, pp. 
239–250, 2008. 

[21] Yupu Hu, Juntao Gao and Qing Liu. Hard Fault Analysis of 
Trivium. Cryptology ePrint Archive 2009/333, available at 
http://eprint.iacr.org/2009/333.pdf. 

[22] K. Aoki, T. Ichikawa, M. Kansa, M. Matsui, S. Moriai, Nakajima, 
and T. Tokita, Specification of Camellia - a 128-bit Block Ci-
pher,2000, available at 
http://www.cosic.esat.kuleuven.be/nessie/workshop/submis
sions. 

[23] C.Giraud, H.Thiebeauld, A survey on fault attacks. In: Proc. of 
6th International Conference on Smart Card Research and Ad-
vanced Applications–CARDIS O4, Toulouse, France, pp. 22—27, 
2004. 

Xin-jie Zhao, Tao Wang: Department of Computer Engineering, 
Ordnance Engineering College, Shijiazhuang 050003, China, zhaox-
injieem@163.com. 

 

http://www.springerlink.com/content/m4bftrf2h0hg/?p=6d0eea72ea4940da99ee947caea3823d&pi=0
http://www.springerlink.com/content/m4bftrf2h0hg/?p=6d0eea72ea4940da99ee947caea3823d&pi=0
http://www.springerlink.com/content/m4bftrf2h0hg/?p=6d0eea72ea4940da99ee947caea3823d&pi=0
http://www.springerlink.com/content/m4bftrf2h0hg/?p=6d0eea72ea4940da99ee947caea3823d&pi=0
http://eprint.iacr.org/2009/575.pdf.
http://eprint.iacr.org/2009/581.pdf
http://eprint.iacr.org/2009/585.pdf
http://www.springerlink.com/content/m4bftrf2h0hg/?p=6d0eea72ea4940da99ee947caea3823d&pi=0
http://www.springerlink.com/content/m4bftrf2h0hg/?p=6d0eea72ea4940da99ee947caea3823d&pi=0
http://eprint.iacr.org/2009/333.pdf
http://www.cosic.esat.kuleuven.be/nessie/workshop/submissions
http://www.cosic.esat.kuleuven.be/nessie/workshop/submissions

	1 Introduction 
	2 DFA Attack Model 
	3 General Overview of DFA on Camellia 
	3.1 Description of Camellia 
	3.2 Basic assumption and Notation 
	3.3 Main idea of DFA on Camellia 
	4 Improved DFA on Camellia By Broadening Fault Width  
	4.1 Previous Study 
	4.2 Improved DFA on Camellia by Broadening Fault Width 

	5 Improved DFA on Camellia By Extending Fault Depth 
	5.1 Previous Study 
	5.2 Improved DFA on Camellia by Extending Fault Depth 

	6 Complexity Analysis and Experimental Results 
	6.1 Complexity Analysis 
	6.2 Experimental Results and Comparisons 

	7 Conclusion 


