
ON THE ORDER OF THE POLYNOMIAL xp − x− a
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Abstract. In this note, we prove that the order of xp − x − 1 ∈ Fp[x] is pp−1
p−1

, where p is a

prime and Fp is the finite field of size p. As a consequence, it is shown that xp − x− a ∈ Fp[x]
is primitive if and only if a is a primitive element in Fp.

1. Introduction

Let Fq be the finite field of size q, where q = pe is a prime power. A monic polynomial
f(x) = xn +

∑n
i=1 aix

n−i ∈ Fq[x] is said to be primitive if it is irreducible over Fq and any root
of f(x) can be used to generate the multiplicative group F∗qn of Fqn . The order of f(x), denoted
by ord(f), is the smallest positive integer r such that f(x)|(xr − 1) in Fq[x]. When f(x) is
irreducible over Fq, the order of f(x) is equal to the order of its roots in the multiplicative group
F∗qn (see [5, p. 77], Theorem 3.3). Therefore f(x) is primitive if and only if the order of f(x) is
qn − 1. Primitive polynomials are important objects in their own, and they are also important
for various applications of finite fields. So it is of great interest to know whether for a given q and
n there exists a primitive polynomial of degree n over Fq satisfying certain additional conditions.
One such question is whether there exists a primitive polynomial f(x) = xn +

∑n
i=1 aix

n−i of
degree n in Fq[x] with a1, a2, · · · , ak prescribed, where 1 ≤ k ≤ n. When k = 1, this question
was settled by Cohen [1], Jungnickel and Vanstone [4] with a positive answer. When k = 2, we
have the following result due to Han [3].

Result 1. Let n ≥ 7 be an integer, and let a1, a2 ∈ Fq be given, where q is an odd prime
power. Then there always exists a primitive polynomial f(x) ∈ Fq[x] of the form f(x) = xn +∑n

i=1 aix
n−i.

In this note, we consider polynomials of the form g(x) = xp − x − a ∈ Fp[x]. When a = 1,
J. Y. Shi and Z. H. Wang [7] conjectured that ord(g) = pp−1

p−1 , and verified the validity of his
conjecture for ANY prime number p ≤ 41. We confirm this conjecture in this note by proving
the following results.

Theorem 1.1. The order of the polynomial xp − x− 1 ∈ Fp[x] is pp−1
p−1 .

Theorem 1.2. The polynomial xp − x − a ∈ Fp[x] is primitive if and only if a is primitive in
Fp.

Theorem 1.3. The polynomial h(x) = x
pp−1
p−1 − x− 1 is irreducible over Fp.

The main idea in our proofs of Theorem 1.1 and Theorem 1.2 is to use the following lemma,
see [5, p. 123], Theorem 3.84.

Lemma 1.4. Let p be a prime. Then the polynomial xp− x− a ∈ Fp[x] is primitive if and only
if a is a primitive element of Fp and ord(xp − x− 1) = pp−1

p−1 .
The statement in Theorem 1.2 is quite simple. But we could not find it in the exisiting

literature. Also by Lemma 1.4, it is easy to see that Theorem 1.2 is equivalent to Shi’s Conjecture.
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We note that when p = 2, the aforementioned results are trivial. Thus in what follows, we
always assume that p is an odd prime. In this case, we had to study the decomposition of the
p−associate polynomial of the polynomial xp − x− 1, and use a result on the q-modulus which
is defined as follows.

Definition 1.5. A finite-dimensional vector space M over Fq is called a q−modulus if aq ∈ M
for every a ∈ M .

A polynomial L(x) ∈ Fq[x] is called a q−polynomial if it has the form L(x) =
∑m−1

i=0 aix
qi ∈

Fq[x]. The following Lemmas are proved in [5].

Lemma 1.6. [5, p. 110, Theorem 3.63] Let f(x) = xn +
∑n−1

i=0 aix
i be irreducible in Fq[x] and

let F (x) = xqn
+

∑n−1
i=0 aix

qi
be its linearized q−associated. Then the degree of every irreducible

factor of F (x)/x in Fq[x] is equal to ord(f(x)).

Lemma 1.7. [5, p. 110 Theorem 3.65] The monic polynomial L(x) is a q−polynomial over Fq

if and only if each root of L(x) has the same multiplicity, which is 1 or a power of q, and the
roots forms a q−modulus.

2. Preliminaries

In order to prove the main results, we need to study some p−modulus and the related
p−polynomials. The following Lemma is proved in [5].

Lemma 2.1. [5, p. 103, Theorem 3.52] Let M be a linear subspace of Fqm, considered as a
vector space over Fq. Then for every nonnegative integer k the polynomial

L(x) =
∏

β∈M

(x− β)qk

is a q−polynomial over Fqm.
Let L1(x), L2(x) be two linearized polynomials over Fqm , we define symbolic multiplication of

L1(x) and L2(x) by
L1(x)⊗ L2(x) = L1(L2(x)).

If L(x), L1(x) and L2(x) are q−polynomials satisfying L(x) = L1(x) ⊗ L2(x), then we say
that L1(x) symbolically divides L(x).

Definition 2.2. The polynomials

l(x) =
n∑

i=0

aix
i and L(x) =

n∑

i=0

aix
qi

over Fqm are called q−associates of each other. More specifically, l(x) is the conventional
q−associate of L(x) and L(x) is the linearized q−associate of l(x).

By these definitions, we have the following Lemma.

Lemma 2.3. [5, p. 108, Corollary 3.60] Let L1(x) and L(x) be q−polynomials over Fq with
conventional q−associates l1(x) and l(x). Then L1(x) symbolically divides L(x) if and only if
l1(x) divides l(x).

Now, we have the following Lemma:

Lemma 2.4. Let M and U be linear space over Fq and U ⊆ M . Define

LM (x) =
∏

β∈M

(x− β), LU (x) =
∏

γ∈U

(x− γ).
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Then there is a q−polynomial L(x) such that

LM (x) = L(LU (x)).

In other words, LU (x) symbolically divides LM (x).

Proof. For every β ∈ M , there are elements γ ∈ U, β′ ∈ M/U such that β = β′ + γ. Thus

LM (x) =
∏

β′∈M/U

∏

γ∈U

(x− γ − β′)

=
∏

β′∈M/U

LU (x− β′)

=
∏

β′∈M/U

[
LU (x)− LU (β′)

]
.

Since LU is Fq−linear, {LU (β′)|β′ ∈ M/U} is a Fq−linear space, thus by Lemma 2.1, there is a
q−polynomial L(x) such that

LM (x) = L(LU (x)).
¤

3. The proofs

We note that Theorem 1.2 follows immediately from Theorem 1.1 and Lemma 1.4. Now we
give the proof of Theorem 1.1.

Let g(x) = xp − x − 1, G(x) = xpp − xp − x. Firstly, we know that g(x) is irreducible over
Fp ([5, p.120], Corollary 3.79). Suppose that ord(g(x)) = e and denote pp−1

p−1 by Q. Then by
Lemma 1.6, we have

G(x) = x

Q/e∏

j=1

p−1∏

k=1

e−1∏

i=0

(x− kαpi

j ) (3.1)

= x

Q/e∏

j=1

e−1∏

i=0

(xp−1 − α
pi(p−1)
j )

where αj ’s are the non-conjugate roots of G(x). We note that α can not be conjugate to kα for
any k(6= 1) ∈ Fp, the reason of this fact is as follows. If kα = αpt

holds for an integer t, then
α(pt−1)(p−1) = 1. Now

gcd(Q, p− 1) = gcd(1 + p + p2 + · · ·+ pp−1, p− 1)
= (1 + ((p− 1) + 1) + ((p− 1) + 1)2 + · · ·+ ((p− 1) + 1)p−1, p− 1)
= gcd(p, p− 1) = 1,

we have gcd(pe−1
p−1 , p− 1) = gcd(1 + p + p2 + · · ·+ pe−1, p− 1) = gcd(e, p− 1) = 1. Thus we have

1 = αgcd((pt−1)(p−1),pe−1)

= α
(p−1) gcd

�
(p−1) pt−1

p−1
, pe−1

p−1

�
= α

(p−1) gcd( pt−1
p−1

, pe−1
p−1

)

= αgcd(pt−1,pe−1).

Therefore, αpt−1 = 1 and k = 1.
Let V = {x ∈ Fpe |G(x) = 0}. Then V is a p−dimensional p−modulus over Fp. Moreover, we

have
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Claim 1: {α, αp, · · · , αpp−1} forms a basis of V , where α is a root of G(x) and α 6= 0.

Proof. If there are some k1, k2, · · · , kp ∈ Fp with at least one element is nonzero such that

k1α + k2α
p + · · ·+ kpα

pp−1
= 0,

then the p−module generated by {α, αp, · · · , αpp−1} forms a submodule of V , we denote this
p−module by W and W (x) =

∏
w∈W (x − w) =

∑p−1
i=0 bix

pi
. Since W is a p−module, we

know that W (x) ∈ Fp[x]. Moreover, by Lemma 2.4, W (x) symbolically divides G(x), thus the
polynomial

∑p−1
i=0 bix

i ∈ Fp[x] divides g(x) (Lemma 2.3). Since g(x) is irreducible over Fp, we
get a contradiction. ¤

Claim 2: For every integer s and integer t, 0 < s, t < p, we have

αpspt

=
s∑

i=0

ts−i

(
s

i

)
αpi

. (3.2)

Proof. Since αpp
= αp + α, we have

αp2p
= (αpp

)pp
= (α + αp)pp

= αpp
+ (αpp

)p = α + αp + αp + αp2

= α + 2αp + αp2
.

Suppose that αpsp
=

∑s
i=0

(
s
i

)
αpi

, then

αp(s+1)p
=

(
αpsp)pp

=

(
s∑

i=0

(
s

i

)
αpi

)pp

=
s∑

i=0

(
s

i

)
(αpp

)pi

=
s∑

i=0

(
s

i

)
(α + αp)pi

=
s∑

i=0

(
s

i

)
(αpi

+ αpi+1
)

=
s+1∑

i=0

(
s + 1

i

)
αpi

.

By induction, we know that

αpps
=

s∑

i=0

(
s

i

)
αpi

(3.3)

holds for any nonnegative integer s.
Taking s = pt−1, pt−2, · · · , 1 in (3.3) respectively, we have

αppt

= α + αpt−1
= α + (α + αppt−2

) = · · · = tα + αp. (3.4)

Therefore, by a similar procedure as the proof of (3.3), we obtain that

αpspt

=
s∑

i=0

ts−i

(
s

i

)
αpi

.

¤
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Denote

σ1 := σ1(x1, x2, · · · , xn) =
n∑

i=1

xi

σ2 := σ2(x1, x2, · · · , xn) =
∑

i<j

xixj

σ3 := σ3(x1, x2, · · · , xn) =
∑

i<j<k

xixjxk

· · · · · · ... · · · · · ·
σn := σn(x1, x2, · · · , xn) = x1x2 · · ·xn.

By Vieta’s Theorem, x1, x2, · · · , xn are the roots of the equation

Xn − σ1X
n−1 + σ2X

n−2 + · · ·+ (−1)nσn = 0. (3.5)

Claim 3: For integers x1, x2, · · · , xn, 0 ≤ xi < p, i = 1, 2, · · · , n, we have

αppx1+px2+···+pxn

= σnα + σn−1α
p + · · ·+ σjα

pn−j
+ · · ·+ σ1α

pn−1
+ αpn

. (3.6)

Proof. By (3.4), we have

αppx1+px2

=
(
αppx1

)ppx2

= (x1α + αp)ppx
2

= x1α
ppx2

+
(
αppx2

)p

= x1(x2α + αp) + (x2α + αp)p

= (x1x2)α + (x1 + x2)αp + αp2
.

Similarly, we have

αppx1+px2+px3

=
(
αppx1+px2

)ppx3

=
(
(x1x2)α + (x1 + x2)αp + αp2

)ppx3

= (x1x2)(x3α + αp) + (x1 + x2)(x3α + αp)p + (x3α + αp)p2

= (x1x2x3)α + (x1x2 + x1x3 + x2x3)αp + (x1 + x2 + x3)αp2
+ αp3

.

By this way, step by step, we obtain the identity (3.6).
¤

Define a set Cα = {β ∈ V |β is a conjugate of kα for some k ∈ F∗p}.
Claim 4: |Cα| ≥ pp−1(p− 1), where |Cα| denotes the cardinality of the set Cα.

Proof. Let n = p in the equations (3.5) and (3.6). Since there are pp choices of x1, x2, · · · , xp ∈
Fp, there are pp−1 choices of σ1, σ2, · · · , σp satisfying (3.6). If there are two multi-sets {x1, x2, · · · , xp} ⊆
Fp, {x′1, x′2, · · · , x′p} ⊆ Fp such that

αppx1+px2+···+pxn

= αpp
x′1+p

x′2+···+px′n
, (3.7)
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then by (3.6), we have that

αppx1+px2+···+pxp

= σpα + σp−1α
p + · · ·+ σjα

pp−j
+ · · ·+ σ1α

pp−1
+ αpp

= (σp + 1)α + (σp−1 + 1)αp + σp−2α
p2

+ · · ·+ σ1α
pp−1

and

αpp
x′1+p

x′2+···+p
x′p

= (σ′p + 1)α + (σ′p−1 + 1)αp + σ′p−2α
p2

+ · · ·+ σ′1α
pp−1

,

where

σ′1 =
p∑

i=1

x′i

σ′2 =
∑

i<j

x′ix
′
j

σ′3 =
∑

i<j<k

x′ix
′
jx
′
k

· · · ... · · · · · ·
σ′p = x′1x

′
2 · · ·x′p.

By Claim 1, we have σi = σ′i, i = 1, 2, · · · , p and thus {x1, x2, · · · , xp} = {x′1, x′2, · · · , x′p} as two
multi-sets.

If there are two multi-sets {x1, x2, · · · , xp} ⊆ Fp, {x′1, x′2, · · · , x′p} ⊆ Fp and k ∈ Fp such that

αppx1+px2+···+pxn

= kαpp
x′1+p

x′2+···+px′n
, (3.8)

then we have two integers s ≤ s′ such that

αps′−s
= kα. (3.9)

Thus kα is conjugate to α, so that k = 1. This completes the proof of Claim 4. ¤

Claim 5: Q = e.

Proof. By Claim 4, if α and γ are roots of G(x) and γ 6∈ Cα, then it is easily seen that
Cα ∩ Cγ = Φ, the empty set. Hence we know that

|V | = pp ≥ |Cα|+ |Cγ |+ 1 ≥ 2pp−1(p− 1) + 1

which implies that p < 2, a contradiction. Therefore, we have that V = Cα ∪ {0} and so that
Q = e (see (3.1)). ¤

This completes the proof of Theorem 1.1.
We can say something more about the order of the roots of G(x). For every integer s,

0 < s < Q, let s =
∑p−1

i=0 sip
i be its p− adic expansion. Denote wt(s) =

∑p−1
i=0 si. From (3.6), it

follows that αps 6= α if wt(s) ≤ p− 1 (the coefficient of αpwt(s)
in (3.6) is nonzero).

When wt(s) = p, let s = px1 + px2 + · · ·+ pxp . Then

αppx1+px2+···+pxp

= σpα + σp−1α
p + · · ·+ σjα

pp−j
+ · · ·+ σ1α

pp−1
+ αpp

= (σp + 1)α + (σp−1 + 1)αp + σp−2α
p2

+ · · ·+ σ1α
pp−1

.
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Thus, if αps
= α, then

σp = 0
σp−1 = −1
σp−2 = 0

...
...

...
σ1 = 0.

Therefore, by Vieta’s Theorem, x1, x2, · · · , xp are the roots of the equation Xp −X = 0. This
equation has no multiple roots, so that {x1, x2, · · · , xp} = {0, 1, 2, · · · , p− 1}, and s = Q. This
proves that when wt(s) = p, then αps

= α if and only if s = Q.
The proof of Theorem 1.3.

Proof. It is easily seen from the proof of Theorem 1.1 that

G(x) = xh(xp−1) = x

Q−1∏

i=0

(xp−1 − αpi(p−1))

and h(x) =
∏Q−1

i=0 (x− αpi(p−1)) is irreducible over Fp.
¤

Remark: (1) Let L/K be a cyclic extension of degree p = Char(K), where K is an arbitrary
field of character p. Then there exists an element γ ∈ L such that L = K(γ), and γp−γ = c ∈ K,
c 6= αp − α for all α ∈ K. Such an extension is called an Artin-Schreier extension of degree p
[8, p.239]. This extension is an interesting cyclic extension, the automorphism of L/K are given
by σ(γ) = γ +ν with ν ∈ Z/pZ ⊆ K. Any element γ1 ∈ L such that L = K(γ1) and γp

1−γ1 ∈ K
is called an Artin-Schreier generator for L/K. Any two Artin-Schreier generators γ and γ1 are
related as follows: γ1 = µγ + (bp − b) with 0 6= µ ∈ Z/pZ and b ∈ K. From Theorem 1.1, we
know that when K = Fp, a is a primitive element of Fp, ξ is a root of xp − x − 1, then aξ is a
primitive element of Fpp . Thus there exists a primitive element of Fpp such that it is an Artin-
Schreier generator.

(2) There is another way to prove that the order of the polynomial xp − x − 1 is pp−1
p−1 , the

procedure is as follows:
(i) Since xp− x− 1 is irreducible over Fp, {1, ξ, ξ2, · · · , ξp−1} forms a Fp− basis of Fpp , where

ξ ∈ Fpp is a root of xp − x− 1;
(ii) For integers x1, x2, · · · , xn, 0 ≤ xi < p, i = 1, 2, · · · , n, since ξp = ξ + 1, by an easy

induction, we know that ξpxi = xi + ξ, thus we have

ξpx1+px2+···+pxn = σn + σn−1ξ + · · ·+ σjξ
n−j + · · ·+ σ1ξ

n−1 + ξn. (3.10)

(iii) By (3.10), we know that if there are xi, x
′
i, i = 1, 2, · · · , p, k ∈ Fp such that

ξpx1+px2+···+pxp = kξpx′1+px′2+···+p
x′p

then k = 1 and {x1, x2, · · · , xp} = {x′1, x′2, · · · , x′p}.
Thus, if we define a set cξ = {ζ ∈ Fpp |ζ = kξt, t is an integer and k ∈ F∗p}, then |cξ| ≥

(p− 1)pp−1;
(iv) Since cξ forms a multiplicative subgroup of F∗pp , pp− 1 = u|cξ| holds for a positive integer

u, thus

u =
pp − 1
|cξ| <

pp − 1
pp−1(p− 1)

< 2.
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Therefore, we have |cξ| = pp − 1, and so there is a element k in Fp such that kξt is a primitive
element of Fpp .

(v) Since gcd(Q, p−1) = 1, the order of kξt, denoted by o(kξt), is pp−1 = o(kξt) = o(k)o(ξt) ≤
(p− 1)o(ξ) ≤ (p− 1)Q = pp − 1, thus, o(ξ) = e = Q.

This procedure is somewhat simple than that we presented in Section 3. However, by this
method, we can not obtain the irreducibility of the polynomial xQ − x − 1 over Fp, this is the
reason why we use the language of p−modules.
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