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Abstract. Let E be a non-supersingular elliptic curve over a finite field
Fq. At CRYPTO 2009, Icart [5] introduced a deterministic function Fq →
E(Fq) which can be computed efficiently, and allowed him and Coron
[3] to define well-behaved hash functions with values in E(Fq). Some
properties of this function rely on a conjecture which was left as an open
problem in [5]. We prove this conjecture below as well as analogues for
other hash functions. This allows us to prove that a related function is
surjective, which is a first step towards efficient hashing to the whole set
of points of elliptic curves.
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1 Introduction

In cryptography, it has been an open problem for a long time to trans-
form a random value in Fq into a random point on an elliptic curve in
a deterministic and efficient manner. Such transformations f are called
hash functions since they have been used, say in the context of identity-
based encryption, by first hashing an identity into a random value in Fq
using a standard cryptographic hash function h and then applying such
a transformation to get a point on the curve: H(m) = f(h(m)). They
have also applications in password-based authentication schemes. How-
ever, only probabilistic solutions were known before 2006.

The usual solution before 2006 was to take x ∈ Fq and check whether
this value corresponds to a valid abscissa of a point on the elliptic curve.
If not, try another abscissa until one of them works. Consequently, ran-
dom bits are needed to perform this random search and the running time
cannot be bounded and cannot be constant. The main drawback of this
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approach is that for password-based authentication schemes, an adver-
sary can perform timing attacks and off-line computations in exhaustive
search attacks. Some passwords do not need to be tested if the number
of iterations of the probabilistic process is not the correct one. Indeed,
security proofs for password-based authentication schemes rely on the
fact that only on-line attacks are possible and each try allows to remove
a small constant number of passwords, ideally one. Other cryptographic
solutions have been proposed to avoid the random process but they made
the protocol more complex. One of these is to apply the protocol twice,
once with the original curve and in parallel on one of the twisted curves
of the original curve. Now, any value in Fq corresponds either to an ab-
scissa of the original curve or of the associated twisted curve since the
two curves represent a distinct union of Fq. Finally, it is worth noticing
that the function h(m) ·G were G is a generator of the point group of the
curve is not a secure solution since the discrete log of the point is known
and this makes most protocols insecure.

Deterministic functions. To construct such function, Shallue and van
de Woestijne at ANTS 2006 [6] proposed a deterministic algorithm based
on Skalba’s inequality. The running time of this function is O(log4 q).
Later, a generalization for hyper-elliptic curve was proposed by Ulas [8].
At CRYPTO 2009, Icart [5] proposed another more efficient technique in
O(log3 q). Finally, Coron and Icart [3] propose another technique based
on a variant of the Shallue-Woestijne-Ulas (SWU) function, and explain
how to construct secure hash functions to elliptic curves based on Icart’s
function or SWU.

Ideally, it would be nice if the image of the hash function was the
whole curve, and if the distribution on the points was statistically close
to uniform. In order to prove such results, it is interesting to know how
many points there are in the image. Icart showed a coarse bound for his
function f : q/4 ≤ #f(Fq) ≤ q. He conjectured that∣∣∣∣#f(Fq)−

5q
8

∣∣∣∣ ≤ λ√q
for some constant λ but left this conjecture as an open problem. Similar
statements can be formulated about the size of the image of other hash
functions, such as the characteristic 2 version of Icart’s function, or the
simplified version of SWU proposed by Coron and Icart.

Here, we propose proofs of these conjectures by using number theoretic
tools such as the Chebotarev density theorem. It is interesting to note



that, depending on the particular function we consider, the number of
points in the image varies according to some Galois group associated
with the function.

That way, we can give precise estimates for the number of points in
the image, and since this number is large enough, it is easy to derive a
surjective function: F (u1, u2) = f(u1) + f(u2) from F2

q to E(Fq) using a
counting argument. This function F was considered in [?], but this paper
estabishes for the first time that it is surjective.

Organization of the paper. In section 2, we describe Icart’s hash
function and his conjecture. Then, we prove the conjecture for curves of
odd characteristic, of characteristic 2 and finally for the variant of SWU.

2 Preliminaries

2.1 Icart’s function

Let Fq be a finite field of characteristic > 3 and E an elliptic curve over Fq
that isn’t supersingular. E can be represented as the union of its neutral
element O and the set of points (x, y) in the affine plane over Fq such
that:

y2 = x3 + ax+ b

for some suitable constants a, b ∈ Fq satisfying 4a3 + 27b2 6= 0 (non-
singularity) and a 6= 0 (non-supersingularity).

When q−1 is not divisible by 3, Icart [5] defines the following function
fa,b : Fq → E(Fq). He sets fa,b(0) = O and for all u 6= 0, fa,b(u) = (x, y)
with:

x =
(
v2 − b− u6

27

)1/3

+
u2

3
y = ux+ v

where v = (3a− u4)/(6u). This function is shown to be well-defined and
easily computed in deterministic polynomial time. Moreover, if (x, y) is a
point in E(Fq), then fa,b(u) = (x, y) if and only if u satisfies the quartic
equation

u4 − 6xu2 + 6yu− 3a = 0



2.2 Icart’s conjecture

In [5], Icart conjectures that the image of fa,b contains (5/8) ·#E(Fq) +
O(q1/2) points of the curve. In view of the previous equation, and since
the curve itself has #E(Fq) = q + O(q1/2) points in Fq, this conjecture
can be stated as follows.

Conjecture 1 (Icart). Let K = Fq(x, y) = Fq(x)[Y ]/(Y 2 − x3 − ax − b)
be the function field of E, and P the polynomial of K[u] defined by
P (u) = u4 − 6xu2 + 6yu− 3a. Let further N be the number of points in
E(Fq) at which the reduction of P has a root in Fq. Then

N =
5
8
q +O(q1/2)

The next section is devoted to the proof of this conjecture.

3 Proof of Icart’s conjecture

3.1 Genericity of P

Proposition 1. The polynomial P (u) = u4 − 6xu2 + 6yu− 3a ∈ K[u] is
irreducible over K, and its Galois group is S4.

Proof. Introduce the Ferrari resolvent of P :

C(u) = u3 + 12xu2 + (36x2 + 12a)u+ 36y2

= u3 + 12xu2 + (36x2 + 12a)u+ 36(x3 + ax+ b) ∈ Fq(x)

According to classical facts about the quartic equation (see e.g. [2, The-
orem 13.1.1]), it suffices to prove that P and C are irreducible over K,
and that their common discriminant

∆ = −432(9x6 + 18ax4 + 90bx3 − 39a2x2 − 54abx+ 16a3 + 81b2)

is not a square in K. Moreover, we can prove these assertions after ex-
tending the field of scalars to F = F̄q. Indeed, if they hold over F , they
clearly hold a fortiori over Fq. The following three lemmas conclude the
proof.

Lemma 1. The Ferrari resolvent cubic C(u) is irreducible over F (x, y).



Proof. This amounts to showing that C(u) has no root in F (x, y). Note
first that it is actually sufficient to prove it has no root in F (x). Indeed,
if it is irreducible in F (x) but has a root in F (x, y), the degree of the
algebraic extension F (x, y)/F (x) must be divisible by degC(u) = 3. But
this extension is quadratic: hence a condraction.

Let then f/g be a root of C in F (x), with f and g coprime polynomials.
Multiplying the equation C(f/g) = 0 by f3, we get

f3 = −g ·
(
− 12xf2 − (36x2 + 12a)fg − 36(x3 + ax+ b)g2

)
Thus g divides f3, and since it is coprime to f , it must be constant.
Without loss of generality, we thus have g = 1 and

f3 + 12xf2 + (36x2 + 12a)f + 36(x3 + ax+ b) = 0

Let m = deg f . Then the terms in the previous sum are of respective
degrees 3m, 2m+1, m+2, 3. If m ≥ 2, the sum is thus of degree 3m, and
if m ≤ 0, it is of degree 3: in neither case can it be 0. The only possibility
is thus m = 1 and f = αx+ β. We get

(α3 + 12α2 + 36α+ 36)x3 + 3β(α2 + 8α+ 12)x2+

(3αβ2 + 12aα+ 12β2 + 36a)x+ (β3 + 12aβ + 36b) = 0

in F (x). Suppose β 6= 0. Since the coefficients of x3 and x2 must be zero,
this gives α3 + 12α2 + 36α+ 36 = α2 + 8α+ 12 = 0, which is impossible,
since the polynomials X3 + 12X2 + 36X + 36 and X2 + 8X + 12 are
coprime. Hence β = 0, and thus α3 + 12α2 + 36α+ 36 = 12a(α+ 3) = 0,
which is similarly seen to be impossible (as a 6= 0). This completes the
proof.

Lemma 2. The discriminant ∆ is not a square in F (x, y).

Proof. Again, we will show that it is sufficient to prove that ∆ is not
a square in F (x). Indeed, suppose that ∆ is not a square in F (x) but
becomes a square in F (x, y). Since the extension is quadratic, this gives
F (x, y) = F (x,

√
∆). In particular, if λ is a root of X3 + aX + b in F , the

extension F (x,
√
∆)/F (x) must be ramified at (x− λ). In other words, if

we specialize ∆(x) at x = λ, we must get 0. But

(λ− 3b/a)∆(λ) = 16 · 432(λ− 3b/a)(3a2λ2 + 9abλ− a3)

= 3a2(λ3 + aλ+ b)− (4a3 + 27b2)λ 6= 0

hence a contradiction.



It remains to prove that ∆ is not a square in F (x), or equivalently
in F [x] (since F [x] is integrally closed). A square root of ∆ in F [x] must
have the form S =

√
−432 ·(3x3 +rx2 +sx+t). The coefficient of x5 in S2

must be 0, hence r = 0. The coefficient of x4 must be 18a, hence s = 3a.
But then the coefficient of x2 is equal to both 9a2 and −39a2, which is a
contradiction since 48a2 6= 0. Hence the result.

Lemma 3. The polynomial P is irreducible over F (x, y).

Proof. Let σ be the non trivial Galois automorphism of the extension
F (x, y)/F (x) (σ(y) = −y). If P (u) decomposes as a product of non con-
stant factors in F (x, y)[u], then its norm P0(u) = P (u)P (u)σ is reducible
over F (x). We will show that this is not the case. Note first that P0(u)
can be written as Q0(u2), where

Q0(v) = v4 − 12xv3 + (36(x3 + ax+ b)− 6a)v2 − 36(x3 + b)v + 9a2

Now Q0(v) is easily seen to be an irreducible polynomial of F (x)[v]. In-
deed, if it had a root f/g ∈ F (x), the rational function f/g would be
constant, which is clearly impossible. And if it decomposes as a product
of degree 2 factors Q0 = (v2 + rv + s)(v2 + r′v + s′), these factors are
in F [x] (integrally closed domain). Since ss′ = 9a2, both s and s′ are
constant. Then, since the coefficient of v2, rr′ + s+ s′, is of degree 3, one
must have deg(r+r′) ≥ 2. But r+r′ is the coefficient of v3 in Q0, namely
−12x, hence a contradiction.

Now let w be a root of P0 in the separable closure of F (x), and let
L = F (x,w), L′ = F (x,w2). L′ is a subfield of L, and a rupture field of
Q0. In particular [L : F (x)] = [L : L′] · [L′ : F (x)] = 4[L : L′]. Since the
polynomial P0 is even, −w is another root of P0. As w 6∈ F (x), w 7→ −w
defines a non trivial F (x)-automorphism of L. This automorphism fixes
L′, so [L : L′] ≥ 2. This gives [L : F (x)] ≥ 8, and thus P0 must have
an irreducible factor of degree ≥ 8. In other words, P0 is irreducible over
F (x) as required.

3.2 Applying Chebotarev

Now that Proposition 1 is established, Conjecture 1 readily follows from
effective versions of the Chebotarev Density Theorem for function fields.
One such version is [4, Proposition 6.4.8], from which one can easily de-
duce:

Theorem 1 (Chebotarev). Let K be an extension of Fq(x) of degree
d < ∞ and L a Galois extension of K of degree m < ∞. Assume Fq



is algebraically closed in L, and fix some subset S of Gal(L/K) stable
under conjugation. Let s = #S and N(S ) the number of places v of K
of degree 1, unramified in L, such that the Artin symbol

(
L/K
v

)
(defined

up to conjugation) is in S . Then∣∣∣N(S )− s

m
q
∣∣∣ ≤ 2s

m

(
(m+ gL) · q1/2 +m(2gK + 1) · q1/4 + gL + dm

)
Proof (of Conjecture 1). In our case, K is the function field of E and
L the splitting field of P (u). In particular, d = 2, m = #S4 = 24 and
gK = 1. We consider the subset S ⊂ Gal(L/K) = S4 consisting of
permutations with at least one fixed point—these are the conjugates of
(1), (12) and (123), and there are s = 1 + 6 + 8 = 15 of them. Hence
s/m = 15/24 = 5/8.

The places v of K of degree 1 correspond to points of E(Fq) (in the
projective plane), and for a point (x0, y0) ∈ E(Fq) not at infinity, saying
that v = (x− x0) has its Artin symbol in S means that the reduction of
P (u) at (x0, y0) is a polynomial over Fq which decomposes into a products
of factors at least one of which is of degree 1 (it splits completely if the
symbol is (1), decomposes as two linear factors and a quadratic if it is
(12) and a product of a linear factor and a cubic if it is (123) up to
conjugation).

In other words, N(S ) is the same as N in the statement of Conjecture
1 up to a constant number accounting for ramified places (at most 12 since
∆ is a polynomial of degree 6 in x) and the point at infinity. We then get∣∣∣∣N − 5

8
q

∣∣∣∣ ≤ 5
4
(
(24 + gL) · q1/2 + 72q1/4 + gL + 48 + 13

)
To bound gL, note again that there are at most 12 ramified points, and the
ramification index is at most degP0 = 4 at each of them. The Riemann-
Hurwitz formula thus gives

2− 2gL ≥ 24(2− 2gK)− 12 · (4− 1) i.e. gL ≤ 17

and thus ∣∣∣∣N − 5
8
q

∣∣∣∣ ≤ 5
4
(
41q1/2 + 72q1/4 + 78

)
In particular, N = (5/8)q +O(q1/2). Concretely, for all q ≥ 229, we have∣∣∣∣N − 5

8
q

∣∣∣∣ ≤ 50q1/2 (1)



4 Analogue in Characteristic 2

In [5], Icart also introduces a variant of his function for elliptic curves
over finite fields Fq of even characteristic, i.e. q = 2n. Such an elliptic
curve has the form

y2 + xy = x3 + ax2 + b

with a, b ∈ Fq, b 6= 0. Icart’s function for such a curve E is defined when
n is odd as

fa,b : Fq → E(Fq)
u 7→ (x, ux+ v2)

where v = a+u+u2 and x = (v4 + v3 + b)1/3 + v. It is shown that u ∈ Fq
maps to (x, y) ∈ E(Fq) if and only if P (u) = 0, where P ∈ K[u] is defined
as

P (u) = u4 + u2 + xu+ (a+ y)

Using this result, we can prove the following analogue of Icart’s conjecture.

Proposition 2. The number of points N in the image of fa,b satisfies:

N =
3
4
q +O(q1/2)

where the implied constant in the big-O is universal.

The proof is identical to the one in §3.2. The only difference is that
the Galois group of P is A4 instead of S4, which leads to the constant
3/4 instead of 5/8 (as there are 1 + 8 = 9 permutations out of 12 in A4

which have at least one fixed point). Let us prove this fact now.

Proposition 3. The polynomial P (u) = u4 + u2 + xu + (a + y) ∈ K[u]
is separable and irreducible over K, and its Galois group is A4.

Proof. Since P ′ = x is a unit in K[u], P is certainly separable. Now,
the relevant case of [2, Theorem 13.1.1] is easily seen to hold in any
characteristic for separable polynomials, so it remains to prove that P
is irreducible, that its Ferrari resolvent C is irreducible, and that their
common discriminant ∆ is a square in K.

Note first that ∆ = x4, so the last point is obvious. Further, we have
C(u) = u3 − u2 − x2. If this polynomial had a root in Fq(x), it would
be a polynomial of Fq[x] dividing x2 by integral closure, which is clearly



impossible. Therefore, C(u) is irreducible over Fq(x), and also over K by
the same degree argument as in the proof of Lemma 1.

Finally, let us prove that P is irreducible. Let first σ be the non-
trivial Galois automorphism of K/Fq(x), namely y 7→ y + x, and set
P0 = PP σ ∈ Fq(x). It suffices to prove that P0 is irreducible over Fq(x).
We have

P0 = (u8+u4)+x(u4+u2)+x2(u2+u)+(x3+ax2+ax+a2+b) = Q0(u2+u)

where Q0(v) = v4 + xv2 + x2v + (x3 + ax2 + ax+ a2 + b).
If Q0 has a root over Fq(x), it is in fact in Fq[x], which is not possible

by inspection of the degrees of the four terms in the sum. Similarly, if
Q0 can be written as a product of factors of degree 2, we have Q0 =
(v2+r+s)(v2−r+s′) with r, s and s′ are all in Fq[x]. We get deg(ss′) = 3,
so the polynomials s±s′ must be of degree at least 2. Since r(s−s′) = −x2,
this implies that r is constant. But then the relation s+ s′− r2 = x gives
a contradiction. Therefore Q0 is irreducible over Fq(x).

Then, let w be a root of P0 in the separable closure of Fq(x), and set
L = Fq(x,w), L′ = Fq(x,w + w2). Like in the proof of Lemma 3, we have
a tower of extensions Fq(x) ⊂ L′ ⊂ L, and L′ is a rupture field of Q0, so
[L : Fq(x)] = 4[L : L′]. Furthermore, since P0(u + 1) = P (u), w 7→ w + 1
is a non-trivial L′-automorphism of L, which gives [L : Fq(x)] ≥ 8 and
hence, P0 is irreducible over Fq(x), which concludes the proof.

We can again give concrete bounds. With the notations of §3.2, we
have d = 2, m = 12, s = 8, gK = 1 and there is exactly one ramified
point corresponding to x = 0. The Riemann-Hurwitz formula then gives
gL ≤ 2, and thus: ∣∣∣∣N − 3

4
q

∣∣∣∣ ≤ 21q1/2 + 54q1/4 + 42

In particular, for q > 216 we get∣∣∣∣N − 3
4
q

∣∣∣∣ ≤ 25q1/2 (2)

5 Analogue for the simplified Shallue-Woestijne-Ulas
algorithm

The first deterministic algorithm for hashing to elliptic curves was in-
troduced by Shallue and Woestijne in [6]. It was later generalized and



simplified by Ulas in [8]. Coron and Icart [3] describe a further simplifi-
cation of the Shallue-Woestijne-Ulas (SWU) algorithm for elliptic curves
over fields Fq with q ≡ 3 (mod 4), based on the following result.

Theorem 2 ([3], Th. 5). Let Fq be a finite field and g(x) := x3 +ax+b,
where ab 6= 0. Consider the following rational functions.

X2(u) = − b
a

(
1 +

1
u4 − u2

)
, X3(u) = −u2X2(u), Z(u) = u3g

(
X2(u)

)
Then we have Z(u)2 = −g

(
X2(u)

)
· g
(
X3(u)

)
.

If q ≡ 3 (mod 4), −1 is a quadratic non-residue in Fq. Therefore, for
each u, exactly one of g

(
X2(u)

)
and g

(
X3(u)

)
is a square. This leads to

the following deterministic algorithm mapping elements in Fq to points
on the curve Ea,b : y2 = x3 + ax+ b.

Simplified SWU algorithm.
Input: Fq such that q > 3 and q ≡ 3 (mod 4), parameters a, b such that
ab 6= 0, and input u ∈ Fq.
Output: (x, y) ∈ Ea,b(Fq).

1. α← −u2

2. X2 ← − b
a

(
1 + 1

α2+α

)
3. X3 ← α ·X2

4. hj ← X3
j + aXj + b, j = 2, 3

5. If h2 is a square, return (X2, h
(q+1)/4
2 ); otherwise, return (X3,−h(q+1)/4

3 ).

This algorithm is a slightly modified version of the one described
in [3] §5.5. The only difference is the minus sign in (X3,−h(q+1)/4

3 ),
which ensures that, up to three possible exceptions (points with a zero
x-coordinate), the set of points obtained when g

(
X2(u)

)
is a square is

disjoint from the set of points obtained when g
(
X3(u)

)
is a square (which

improves the size of the image over the original version). Thus, the image
of this function Fq → Ea,b(Fq) is the (almost disjoint) union of the sets I2
and I3 defined by

Ij =
{

(x, y) ∈ Ea,b(Fq) | ∃u ∈ Fq, x = Xj(u) and y = (−1)j
√
g(x)

}
(where

√
· denotes the standard square root in Fq, obtained by exponen-

tiation by (q+ 1)/4). Again disregarding at most three points, Ij consists
of half the points on the curve with an x-coordinate of the form Xj(u)
for some u. Therefore, if N is the number of points in the image of the



algorithm and Nj denotes the number of points with an x-coordinate of
the form Xj(u), we get

N =
N2 +N3

2
+O(1)

and the implied constant is at most 6. We deduce the following result.

Proposition 4. The number of points N in the image of the simplified
SWU algorithm satisfies:

N =
3
8
q +O(q1/2)

where the implied constant in the big-O is universal.

Proof. The proof is again similar to the previous ones. What we actually
show is that Nj = (3/8)q + O(q1/2) for j = 2, 3, using the Chebotarev
density theorem again. Note that for all u ∈ Fq \ {−1, 0, 1}, we have

x = X2(u)⇐⇒ u4 − u2 +
1
ω

= 0

x = X3(u)⇐⇒ u4 − ωu2 + ω = 0

where ω = a
bx + 1. Hence, denoting by K = Fq(x, y) the function field

of Ea,b, it suffices to prove that the polynomials P2(u) = u4 − u2 + 1/ω
and P3(u) = u4 − ωu2 + ω are irreducible and have Galois group D8 (the
8-element dihedral group, viewed as a transitive subgroup of S4) over
K. Indeed, D8 has 8 elements, 3 of which have a fixed point: the same
technique as in §3.2 then gives the desired estimates for N2 and N3.

In view of [1, Theorems 2 and 3], a polynomial P (u) = u4− ru2 + s ∈
K[u] is irreducible with Galois groupD8 if and only if none of s, δ = r2−4s
or sδ are squares in K. For P2, we have (s, δ, sδ) = 1

ω2 (ω, ω(ω−4), ω−4),
and for P3, (s, δ, sδ) = (ω, ω(ω−4), ω2(ω−4)). Thus, all we have to prove
is that ω, ω−4 and ω(ω−4) are not squares in K. This is obvious in Fq(x)
(since these are polynomials of Fq[x] which are not square), and extends
to K by a ramification argument as in the proof of Lemma 2.

6 Constructing surjective hash functions

In view of the previous results, none of the known functions Fq → E(Fq)
are surjective. It is possible to use at least Icart’s function to construct
simple, efficient surjective hash functions, however, as explained in [5,
Corollary 2].



Indeed, let f be Icart’s function on Fq (which can be a field of char-
acteristic 2 or > 3) and consider

F : (Fq)2 → E(Fq)
(u1, u2) 7→ f(u1) + f(u2)

If we fix a point P0 ∈ E(Fq), the sets S1 = {f(u1) / u1 ∈ Fq} and
S2 = {P0 − f(u2) / u2 ∈ Fq} both consist of αq + O(q1/2) points of E,
with α = 5/8 (resp. 3/4) in characteristic > 3 (resp. 2). In any case,
#S1 + #S2 = 2αq+O(q1/2), which is greater than q+ 2

√
q+ 1 ≥ #E(Fq)

for large enough q. Hence, a pigeonhole argument ensures that P0 is in
the image of F provided that q is large enough.

More precisely, the conditions we have given for the explicit bounds
(1) and (2) to hold are sufficient to ensure that the previous inequality
is satisfied. Therefore, the function F is surjective as soon as q > 229 in
characteristic > 3 (resp. q > 216 in characteristic 2), which is always true
in cryptographic applications.

This leads to a hash function construction that is subtantially more
efficient than the one proposed in [3]. It is an interesting open problem,
however, to determine whether this construction is equally secure.

7 Conclusion

In this paper, we provide a technique to analyze the image of some hash
functions mapping elements of Fq to elliptic curves E(Fq). It relies on the
Chebotarev density theorem in function fields, and in order to apply it, we
need to prove the irreducibility of some related polynomial and compute
its Galois group.

The same technique should apply similarly to any deterministic, alge-
braic hash function to curves of any genus. Depending on the particular
hash function under consideration, the Galois group varies and the Cheb-
otarev density theorem yields different results accordingly.
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