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ABSTRACT⎯ This paper presents a novel chaos-based cryptosystem for secure transmitted images. In the proposed
block encryption/decryption algorithm, two chaotic permutation methods (key-dependant shift approach and Socek
method) are used to shuffle the image pixel bits.  These methods are controlled using a perturbed chaotic PWLCM
map. The perturbing orbit technique improves the dynamical statistical properties of generated chaotic sequences.
Our algorithm is based on tree encryption cryptosystems (Socek, Yang and Xiang algorithms). In this paper, we
prove that the proposed cryptosystem overcomes the drawbacks of these algorithms. Finally, many standard tools are
performed to quantify the security level of the proposed cryptosystem, and experimental results show that the
suggested cryptosystem has a high security level.

Keywords⎯Chaos-based cryptosystem, NIST, perturbed technique.

I. Introduction

Chaos has sensitivity to initial condition and system parameter, ergodicity and mixing which are analogous to the
confusion and diffusion properties of a good cryptosystem.

In recent years, a large amount of work using digital chaotic systems to construct cryptosystems has been studied [1] -
[4], and has attracted more and more attention in the last years. Basically, a number of very different approaches to the
use of chaos can be found in the literature [5] - [9].

In order to be used in all applications, chaotic sequences must seem absolutely random and have good cryptographic
properties. Many studies on chaotic maps are drawn [10], [11].

In [12], we study and improve some existing techniques used to generate chaotic signals with desired statistical
properties and verifying NIST statistical tests. Indeed, to obtain better dynamical statistical properties and to avoid the
degradation caused by the digital chaotic system working in a 2N finite state, a perturbation technique is used.

It is well known that images are different from texts in many aspects, such as high redundancy and correlation.  In most
of the natural images, the value of any given pixel can be reasonably predicted from the values of its neighbors. Many
researchers have proposed schemes with combinational permutation techniques [13], [14].

In this paper, we propose an algorithm based on two chaotic permutation methods: The cyclic shift bits permutation
method and a bit permutation method. The first one can be a permutation of bits, bytes or a set of bytes and the last one is
applied on eight bits that their positions is also controlled by chaos.

The proposed algorithm is an enhancement of ECKBA proposed by Socek [7] and the cryptosystems proposed by
Xiang [8] and Yang [9]. The algorithm proposed by Xiang has two remaining problems: the encryption speed is still slow
compared with conventional cryptosystems. The encryption of a symbol needs 320-383 iterations (Table 1 in [8]) and the
binary sequence, used to the substitution, will leak the trajectory of the chaotic map for easy cryptanalysis.

To overcome the drawbacks mentioned above, a new block cryptosystems with output feedback is proposed.
Socek and Yang, in their algorithms, propose to perturb the chaotic values by the encrypted data. The perturbation that

they propose is not efficient because each encrypted block depends on all the previous encrypted ones. Then, if an error
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occurs in the encrypted image transmitted on a noisy channel, we will obtain random errors in the decrypted image.
Consequently, it is better to use an extern perturbation independent of the encrypted data, as we did in our algorithm.

In another hand, ECKBA algorithm proposed by Socek is an iterated algorithm that treats a byte in each iteration, it
consists on a SP box formed by permutation and substitution controlled by PWLCM. In the proposed algorithm we
propose the using of perturbed PWLCM to control two chaotic permutation methods and a substitution that enhance the
security of the encryption system.

The paper is organized as follows. Section II briefly introduces the original schemes proposed by Socek [7], Xiang [8]
and Yang [9]. Section III describes the proposed algorithm, Section IV introduces the perturbed generator used. Section
V explains the S-box transformations used in the algorithm; the simulation results and security analysis are given in
section VI. The last section concludes this paper.

II. Overview of Two Existing Algorithms

1. Socek Algorithm

Fig. 1. Socek encryption algorithm

The algorithm, characteristics and steps are:
(1) The key size is 128-bits.
(2) The piecewise linear chaotic map encrypted by the encrypted image.
(3) A pseudo-random permutation generator is used in the encryption and decryption process, forming a

permutation box (P-box) and adding diffusion to the system.
(4) A more complex substitution box (S-box) is applied.
(5) Multiple rounds for encryption and decryption processes are used.

The encryption algorithm transforms an image P using an SP-network generated by a one-dimensional chaotic map and
a 128-bit secret key. The algorithm performs r rounds of an SP-network on each pixel (see Fig. 1).
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The permutation is made on the eight bits of each block formed of 4 bytes. In other words, we use a permutation of
degree 8 to add diffusion to the system. Actually, the fastest way to achieve this is by using a table look up approach. This
approach is fast but the memory requirements are considerably high. A number of permutation methods have been
proposed [7], [18]-[20]. Among these, Socek method [7] is the most attractive; it is fast and has good cryptographic
properties (Fig. 2).

Fig. 2 : Socek method

Where Pj is the original block (byte) and P’j is the encrypted one.

2. Xiang and Yang algorithm

The proposed scheme is described below and an illustration is given in Fig. 3.
The algorithm steps are:

(1) The logistic map is iterated 70 times.
(2) Obtain binary sequences Aj supplied by all the third bits of the chaotic values.
(3) An integer Dj  is computed as the decimal value of a part of chaotic value bits.
(4) The key dependent permutation method [8], [9] is used. This method permutes the block with left cyclic shift

Dj bits as illustrated in Fig. 3.
(5) A bit xor operation is used to mask the permuted data by the binary sequence Aj.
(6) The value Dj will be used to iterate the logistic map successively after the current block has been encrypted.

Logistic map

Iterate 70 times

Sequence Aj

Plaintext block Pj

Encrypted block Cj 

Dj Key dependent permutation

Fig. 3. Xiang encryption algorithm

P’j =[ b4, b6, b7, b1, b3, b8, b2, b5]

Pj= [ b1, b2, b3, b4, b5, b6, b7, b8]
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PartIIPartI

Dj bits

Dj bits

PartIPartII

Fig. 4. Xiang method

The key dependent permutation is controlled by the chaotic value. The permutation is then different for different
message blocks. It can be pixel positions permutation or a bits permutation.

But this algorithm is not secure. The binary sequence Aj leak the trajectory of the chaotic map for easy cryptanalysis
and the encryption speed is slow. The number of iterations needed to the encryption of a symbol is big and random.

Then, Yang in his paper [9] has proposed to use an output feed back to overcome this problem. He generates the binary
sequence Aj using the cipher image.

The use of the encrypted blocks to perturb the chaotic orbits, proposed by Socek or Yang, in their algorithm is not
efficient. The resulting algorithms cause propagation of errors in the decrypted images, if a bit error accurate in the
transmitted encrypted image. Consequently, they are not suitable to the transmission on a noisy channel. In [21], we
propose an improvement of Socek algorithm using a different manner to perturb the chaotic orbit. But the encrypted
images cannot pass all NIST tests. In the next section, we propose a new algorithm, secure and suitable for transmission
compared to these algorithms.

III. Proposed Encryption Algorithm

In this section, we present the developed Algorithm for Image Encryption that we implemented with Matlab.
Let I be an MxN image with b-byte pixel values, where a pixel value is denoted by P(i), 0 ≤ i < MxN/b. A block cipher

is an encryption scheme which breaks up the plaintext messages into blocks of fixed length (32 bits or b=4 bytes) and
encrypts one block at a time.
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Plaintext block Pj
(32 bits)

Dj,muj,Chj

P’j=Permutation _Xiang(Dj,Pj)

SCj=P’j(muj+1,muj+8)

SCj=Permutation_Socek(Chj,SCj)

P’j(muj+1,muj+8)=SCj

yj =Perturbed PWLCM 
map (32 bits )

Encrypted block Cj 
(32 bits)

xj =Perturbed PWLCM 
map (32 bits)

Cj=Substitution (yj,P’j)

Fig. 5: Proposed encryption Algorithm

The algorithm characteristics and steps are:
(1) The key size is 128-bits.
(2) The piecewise linear chaotic map currently used is substituted by a perturbed one   (perturbed PWLCM) to

improve statistical properties.
(3) In fact, the chaotic value is generated on 32 bits and then decomposed on tree parts of bits. One part is

considered as Dj, the second is equal to muj the position of the eight bits considered to be permuted by
Socek method and the last part Chj is used to control the last permutation method.

(4) The permutation box (P-box) adding diffusion to the system includes two steps:
       Firstly, the bits of each block are permuted with left cyclic shift Dj bits according to the approach illustrated

in Fig. 4. Then it is permuted by Socek method. The last one permutes only 8 bits of the block. These bits
are chosen by the chaotic value and this permutation is also controlled by the chaotic map.

(5). Another perturbed chaotic map is used to control substitution box (S-box). The substitution box used is the
classical chaotic masking technique. The following manipulation is applied (1).

(5) j j jSubstitution (ch ,P' ) chj P'= ⊕
                                                          

(1)

          where u and v are two blocks of 4 bytes.

N
 
In order to disturb the high correlation among adjacent pixels, we propose a scheme that includes two permutation

methods. These methods, Xiang and Socek ones, are chaotic. They are applied on a block of four bytes. The first one can
be a bit permutation or a pixel permutation method and the second one permutes eights bits that their positions are given
by the chaotic value muj.

Our algorithm not permits the propagation of errors and uses a perturbed chaotic map with good dynamical properties
that we explain in the next section.

Fig. 6 and 7 show the encryption algorithms with OFB and CBC operation modes.
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xj =Perturbed PWLCM 
(32 bits)

d=mod(xj,31)
mu=mod(floor (xj/27),25)
Ch=mod(floor(xj/216 , 8!))

O=Permutation_Xiang(d,O)

SO=O(mu,mu+7)

SO=Permutation _Socek(Ch,SO)

O(mu,mu+7)=SO

Original block  Pj 
(32 bits)

Encrypted block Cj 
(32 bits)

Cj=Substitution (yj,O)

yj =Perturbed PWLCM 
(32 bits)

Fig.6. Proposed encryption Algorithm with OFB operation mode

xj =Perturbed PWLCM 
(32 bits)

d=mod(xj,31)
mu=mod(floor (xj/27),25)
Ch=mod(floor(xj/216 , 8!))

P’j=Permutation _Xiang(d,P’j)

Sp’=P’j(mu,mu+7)

Sp’=Permutation _Socek(Ch,Sp’)

P’j(mu,mu+7)=Sp’

Encrypted block Cj 
(32 bits)

P’j=Pj xor Cj-1

Cj=Substitution (yj,P’j)

xj =Perturbed PWLCM 
(32 bits)

Fig.7. Proposed encryption Algorithm with CBC operation mode
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IV. Decryption Process

The decryption algorithm depends on the cipher mode used. For the modes OFB, CFB and CTR; the decryption
algorithm is the same as that of the encryption. But for the CBC mode, it differs slightly from the encryption algorithm.
To decrypt an encrypted image, we need to perform the inverse transformations (Fig. 8).

xj =Perturbed PWLCM 
(32 bits )

d=mod(xj,31)
mu=mod(floor (xj/27),25)
Ch=mod(floor(xj/216 , 8!))

Pj=Permutation_Xiang(d,Pj)

Sp’=Pj(mu,mu+7)

Sp=Permutation_Socek(Ch,Sp)

Pj(mu,mu+7)=Sp

Original block Pj 
(32 bits)

Pj=Substitution (yj,Cj)

yj =Perturbed PWLCM 
(32 bits)

Pj=Pj xor Cj-1

Fig.8. Proposed decryption Algorithm with CBC operation mode
To inverse Socek method, the bits are rearranged according to the array indices (8-p(i)) instead of p(i) used in the

encryption process. Therefore, we need to reverse the order of the substitution and bit permutation methods. Then, we use
the inverse methods to decrypt the image.

V. Perturbed PWLCM Map

A piecewise linear chaotic map (PWLCM) is a map composed of multiple linear segments.

( ) ( )

( ) ( )

( ) ( )

( ) ( )

[ 1 ]

11 0 1

11 1 0.5
0.5

[1 1 ] 0.5 1 1

x n F x n

x n if x n p
p

x n p if p x n
p

F x n if x n

= −

⎧ − × ≤ − <⎪
⎪
⎪
⎡ ⎤= − − × ≤ − <⎨⎣ ⎦ −⎪
⎪ − − ≤ − <
⎪
⎩                                                           

(2)

where the positive control parameter p є (0; 0.5) and x(i) є (0; 1). Since digital chaotic iterations are constrained in a
discrete space with 2N  elements, it is obvious that every chaotic orbit will eventually be periodic and will finally go to a
cycle with a limited length not greater than 2N

 [15], [16]. Generally, each digital chaotic orbit includes two connected
parts:

1 2 ,, ,..., lx x x  and 1 ,, ,...,l l l nx x x+ + , which are respectively called “transient branch” and “cycle”. Accordingly, l and n+1 are
respectively called “transient length” and “cycle period”, and l+n is called “orbit length”.

To improve the dynamical statistical properties of generated chaotic sequences, a perturbation-based algorithm is used.
The cycle length is expanded and consequently good statistical properties are reached. Many perturbation techniques are



8

proposed. For example, Socek [7] uses a perturbation-based algorithm. The orbits are perturbed by the encrypted blocks.
Socek algorithm is very secure but a bit error transmission causes a random number of erroneous bits in the decrypted
image. In this paper, we use another perturbation technique using maximal length LFSR, which is a suitable candidate for
perturbing the signal generator [15], [17].

Here, for computing precision N, each x can be described as:

{ }1 2( ) 0. ( ) ( )... ( )... ( ) ( ) 0,1
1, 2,...,

i N ix n x n x n x n x n x n
i N

= ∈

=
                                              (3)

The perturbing bit sequence can be generated every n clock as follows:

1 0 0 1 1 1 1( ) ( ) ( ) ( ) ... ( )
0,1,2,...

k k k kQ n Q n g Q n g Q n g Q n
with n

+
− − −= = ⊕ ⊕ ⊕

=                                                
(4)

Where ⊕  represents ‘exclusive or’, 0 1 1[ ... ]kg g g g −=  is the tap sequence of the primitive polynomial generator,
and 0 1 1... kQ Q Q −  are the initial register values of which at least one is non zero.

The perturbation begins at n= 0, and the next ones occur periodically every ∆ iterations (∆  is a positive integer), with
n= l× ∆ , l=1,2,…, The perturbed sequence is given by the equation (5):

[ ( 1)] 1
( )

[ ( 1)] ( ) 1
i

i
i N i

F x n i N k
x n

F x n Q n N k i N−

− ≤ ≤ −⎧⎪= ⎨ − ⊕ − + ≤ ≤⎪⎩
                                                  (5)

Where [ ( )]iF x n  represents the ith bit of [ ( )]F x n .
The perturbation is applied on the last k bits of [ ( )]F x n .

When n l≠ × ∆ , no perturbation occurs, so ( ) [ ( 1)]x n F x n= − .
The lower boundary of the system cycle length is given by the formula (6) (see appendix1):

( )min 2 1kT =∆× −                                                                              (6)

VI. Simulation results and security analysis

Some experimental results are given in this section to demonstrate the efficiency of our scheme. The plain image
'LENA.BMP' with the size 512x512 and its cipher image are shown in Fig. 9. Their histograms are shown in Fig.10. As
we can see, the histogram of the ciphered image is fairly uniform and is significantly different from that of the original
image.

           

(a)                                                  (b)

Fig.9. (a) 'LENA.BMP' image and (b) his encrypted image
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(a)                                                        (b)

Fig.10. Histograms of (a) 'LENA.BMP' image, (b) the encrypted image.

1. Comparison between original and encrypted image

Common measures like correlation, NPCR (Number of pixels change rate) and UACI (Unified Average Changing
Intensity) are used to test the difference between the original image P1 and the encrypted one C1.

We calculate the correlation coefficient r of original and encrypted image by using the following formulas (7), (8) and
(9), (10):

1
1 1

1( ) ( , )
M N

i j

E x P i j
MxN

= =

= ∑∑                                                                           (7)

2
1 1 1

1 1

1( ) [ ( , ) ( ( , ))]
M N

i j

D P P i j E P i j
MxN

= =

= −∑∑
 
                                                          (8)

1 1 1 1 1 1
1 1

1cov( , ) [ ( , ) ( ( , ))][ ( , ) ( ( , ))]
M N

i j

P C P i j E P i j C i j E C i j
MxN

= =

= − −∑∑
                                                

(9)

1 1
1 1

1 1

cov( , )
( ) ( )P C

P Cr
D P D C

=                                                                         (10)

where 1( , )P i j  and 1( , )C i j  are gray values of the original pixel and the encrypted one.

 NPCR stands for the number of pixel change rate.  Then, if D is a matrix with the same size as images P1 and C1, D
(i,j) is determined as follows (11):

1 11 ( , ) ( , )
( , )

0
if P i j C i j

D i j
else

≠⎧
= ⎨
⎩                                                               

(11)

NPCR is defined by the following formula (12):

1 1

0 0

( , )

100

M N

i j

D i j

NPCR
M N

− −

= == ×
×

∑∑
                                                            

(12)

where, M and N are the width and height of P1 and C1.

The UACI measures the average intensity of differences between the plain image and the ciphered image.
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UACI is defined by the following formula (13):

1 1
1 1

0 0

( , ) ( , )1 100
255

M N

i j

P i j C i j
UACI x

MxN

− −

= =

−
= ∑∑                                                    (13)

In table 1, we summarize the correlation, NPCR and UACI obtained between the original image and the encrypted one.

Table 1. The correlation, NPCR and UACI between the original image and the encrypted one

correlation NPCR UACI
-0.0022 99.6246 29.9932

We can see that we have obtained a low correlation between the original and the cipher image. The NPCR and UACI
are high enough to say that the two images are very different.

2. key sensitivity

An encryption scheme has to be key-sensitive, meaning that a tiny change in the key will cause a significant change in
the output. In order to demonstrate the key sensitivity, the following experiments have been done with a slightly different
key.

Fig.9(b) shows the encrypted image with the following key: alpha= 0.35899926, beta=0.25899926, x0=0.7239 and y0=
0.5672.

alpha and beta are the control parameters of the PWLCM chaotic maps and x0 and y0 are the initial conditions of theses
maps.

We encrypt the same image using the little changed key as follows: alpha= 0.35899927. We obtain a figure similar to
Fig. 9(b).

Table 2 shows the difference between the two ciphered images.

Table 2. The correlation, NPCR and UACI between two cipher images encrypted with slightly different keys

Correlation NPCR UACI
0.0029 99.6128 33.4420

As we can see that our algorithm has a very good sensibility to the key. The two obtained encrypted images are very
different and it looks like random data.

3. Correlation of  adjacent pixels

Statistical analysis on large amounts of images shows that averagely adjacent 8 to 16 pixels are correlative.
To test the correlation between horizontally, vertically and diagonally adjacent pixels from the image, we calculate the

correlation coefficient of a sequence of adjacent pixels by using the following formulas (7), (8), (9) and (10).

Fig.6 shows the correlation distributions of two horizontally adjacent pixels in the original and the ciphered image. In
table 3, we show the correlation coefficients.
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(a)                                                          (b)
Fig.11. The correlation distributions of two horizontally adjacent pixels in (a) the original image and in (b) the ciphered image

Table 3. Correlation coefficients of adjacent pixels.

Model Original image Ciphered image
Horizontal 0.9829 0.0377

Vertical 0.9907 0.0107

Diagonal 0.9722 0.0119

4. Information entropy analysis

Entropy is a statistical measure of randomness that can be used to characterize the texture of an image. It is well known
that the entropy H(m) of a message source m can be calculated as formula (14): 

( ) ( ) ( )

2 1

2
0

1log
N

i
ii

H m p m
p m

−

=

= ∑                                                                   (14)

Where p(mi) represents the probability of message mi, N=8 .
When an image is encrypted, its entropy should ideally be 8. If it is less than this value, there exists a certain degree of

predictability which threatens its security. In table 4, we show the entropy of the original image and the encrypted one by
Xiang algorithm [8] and the proposed one. The values obtained are very close to the theoretical value 8 and the entropy
found using our algorithm is better than the value obtained by Xiang algorithm. This means that information leakage in
the encryption process is negligible and the encryption system is secure upon the entropy attack.

Table 4. Entropy value for the images encrypted with different algorithms.

Algorithm Original
image

Xiang
algorithm

Proposed
image

entropy 7.3479 7.9950 7.9993

5. NIST Statistical Tests

Among the numerous standard tests for pseudo-randomness, a convincing way to show the randomness of the produced
sequences is to confront them to the NIST (National Institute of Standards and Technology) Statistical Tests. The NIST
statistical test suite [22] is a statistical package consisting of 188 tests that were developed to test the randomness of
arbitrary long binary sequences produced by either hardware or software based cryptographic random or pseudorandom
number generators. These tests focus on a variety of different types of non-randomness that could exist in a sequence.

To verify our results, we use the above test suite to test the randomness of a sequence formed by 100 encrypted images
of length 512x512=2097152 bits. We test sequence given by the improved Socek algorithm that we proposed in [21] and
the explained proposed algorithm. In table 5, we show the results for a number of tests knowing that the sequences passed
all the other tests. Note that the 100 encrypted images were generated with randomly selected secret keys.
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Table 5. NIST statistical test for 100 encrypted images by enhanced Socek and the proposed algorithm.

STATISTICAL TEST Improved Socek
algorithm

Proposed
algorithm

Frequency 93* 100
Block frequency 99 98

Runs 97 97
Longest run 97 97

Rank 100 98
Discrete Fourier Transform 99 97

Cumulative sums 1 94* 100
Approximate entropy 98 98

Universal 99 97
Serial 1 99 98

 Linear complexity 98 100
Overlapping templates 99 98

VII. Propagation error

A bit error is the substitution of a ‘0’ bit for a ‘1’ bit, or vice versa. These errors are generated by the transmission
channel as a consequence of interference and noise.

The error propagation phenomenon implies that errors in the encrypted text produce errors in the decrypted plaintext.
So, it is important that the decrypting process be able to recover from bit errors in the ciphertext.

In this section, we examine the problem of error propagation in two cipher block modes of operation, such as: Cipher
Block Chaining (CBC), and Output Feedback (OFB).

TABLE 6. The effects of bit errors for cipher block modes operation OFB and CBC.

Number of erroneous
blocks in the deciphered

image

The erroneous  blocks in the
deciphered image

The erroneous
blocks in the

ciphered image
OFB mode CBC mode OFB mode CBC mode

(1,1) 1 2 (1,1) (1,1), (1,4)

(50,100) 1 2 (50,100) (50,100),
(50,104)

(405,238) 1 2 (405,238) (405,238),
(405,241)

As we can see in table 6. In the CBC mode for example, all bit positions that contain bit errors in a cipher text block
will produce an RBE in the same decrypted block and an SBE in another one; the other bit positions are not affected. For
the OFB mode, bit errors within a ciphertext block do not affect the decryption of any other block.

The results obtained for Socek and Yang algorithm not respect the expected one [23]. In fact, in their algorithms, they
use a perturbation technique of the chaotic map using the encrypted data. Then, if a transmission error occurs in the
cipher image, we obtain random errors in the decrypted image. However, in our algorithm, we perturb the chaotic value
with a LFSR. The encrypted blocks are independent. For that, we avoid the propagation error in the decrypted image.

VIII. Conclusion

In this paper, a new chaos-based cryptosystem is proposed.
Our cryptosystem is based on the Socek, improved Socek algorithm, Xiang and Yang ones, but attains a higher security

level, and produces cryptograms suitable to be transmitted on insecure and noisy channels.
Furthermore, the introduction of the perturbation technique has expanded the length of the chaotic orbit cycle and then

enhanced the dynamical statistical properties of the generated chaotic sequences. The obtained results: uniformity, key
sensitivity, correlation, entropy, NIST statistical tests, prove the robustness and the high security level of the proposed
cryptosystem.
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Appendix 1

Theoretical analysis of expanded cycle length
Assume that the system has entered a period T state after n0 iterations, i.e. ( ) ( )i ix n T x n+ = ( )0for n > n  ; 1 i N≤ ≤  and

1 1 0n l n= × ∆ > ( 1l  is a positive integer), then 1 1( ) ( )i ix n T x n+ = for 1 i N≤ ≤ . IfT l≠ ×∆ (l is a positive integer), the above
equation implies 1 1 1[ ( 1 )] [ ( 1)] ( )i i N iF x n T F x n Q l−− + = − ⊕ ( 1 )forN k i N− + ≤ ≤ . Since period T is defined as 1 1[ ( 1 )] [ ( 1)]i iF x n T F x n− + = −

for (1 )i N≤ ≤ , thus, 1( ) 0N iQ l− =  ( 1 )for N k i N− + ≤ ≤ . Because the initial sequences 0 1 1, ,..., kQ Q Q −  are not all zeros, the
previous case will not occur. This implies that we only have T l= × ∆ , which
means 1 1 1 1[ ( 1 )] ( ) [ ( 1)] ( )i N i i N iF x n T Q l l F x n Q l− −− + ⊕ + = − ⊕  (for 1 )N k i N− + ≤ ≤ . As a result, we find 

1 1( ) ( )N i N iQ l l Q l− −+ =  (for 1N k i N− + ≤ ≤ ). This implies: ( )2 1kl σ= − where σ is a positive integer. Therefore the system

cycle length is given by: (2 1)kT σ= × ∆ × −  and

min (2 1)LT = ∆ × − is the lower bound of the system cycle length.
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