
 
 

 

 
ABSTRACT 

 
Permutation is widely used in cryptographic algorithm. Recently, a number of candidate instructions have been proposed to 
efficient compute arbitrary bit permutations. Among these, we present the most attractive methods and having good inherent 
cryptographic properties. We propose to control it by the perturbed chaotic maps that we studied in [1]. Then, we measure the 
efficiency of the obtained chaotic permutation methods on a standard image. This study allows choosing a good chaotic 
permutation method to be used in a chaotic cryptosystem. 
 

1. INTRODUCTION 
 

Recently, chaos has been widely studied in secure communications, and the idea of using digital chaotic systems to construct 
cryptosystems has been extensively studied since 1990s, and attracts more and more attention in the last years [2, 3]. Chaotic 
output signal of one dimensional chaotic generator is used for both confusion and diffusion operations in a cryptosystem. 
Diffusion spreads the redundant information in the plain text over the cipher text. As a primary method to achieve diffusion, 
permutation is widely used in cryptographic algorithms. In fact, bit level permutations are particularly the core of any 
encryption algorithm. Recently, a number of candidate instructions as CROSS method have been proposed for efficient 
software implementation of arbitrary permutations [4, 5, 6].  
Their permutation techniques can be implemented in any programmable processor, whether they are general purpose 
microprocessor or application-specific cryptography processors. 
In another hand, chaotic permutation methods as Socek one were also proposed [7]. 
In this paper, we propose to control theses methods with perturbed chaotic generators. In order to be used in all applications, 
chaotic sequences must seem absolutely random. In [1], we study and improve some existing techniques used to generate 
chaotic signals with desired statistical properties and verifying NIST statistical tests. The perturbing orbit technique used 
improves the dynamical statistical properties of generated chaotic sequences.  
In [8], we proposed this generator to control a cryptographic algorithm but we didn’t study the performance of the chaotic 
permutation method used.  
In this paper, we proposed the utilization of the perturbed PWLCM chaotic map to control CROSS method and Socek 
permutation method.  Then, we compare the results obtained  
 
with the two methods controlled by perturbed chaotic PWLCM map and non-perturbed one. 
Indeed, it is well known that images are different from texts in many aspects, such as high redundancy and correlation.  The 
main obstacle in designing effective image encryption algorithms is that it is rather difficult to diffuse such image data. In most 
of the natural images, the value of any given pixel can be reasonably predicted from the values of its neighbors. For that, we 
choose images like applications to test our propositions.  
We implement the two proposed chaotic permutation methods CROSS and Socek using Matlab. Then, we permute the 
512x512x3 Mandrill image with these methods. We present the obtained results. And we demonstrate the obtained gain, 
specifically in the entropy value, using perturbed PWLCM chaotic map instead of simple PWLCM that Socek used in his 
method. 
This paper is organized as follows. Section 2 describes the perturbed PWLCM chaotic map. Section 3 explains the proposed 
permutation techniques. The simulation results are presented in section 4. And finally, we summarize our conclusions in 
section 5. 
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2. PERTURBED PWLCM MAP 

 
A piecewise linear chaotic map (PWLCM) is a map composed of multiple linear segments. 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<−≤−−

<−≤
−

−−

<−≤−

=

−=

115011

501
50
11

1011

1

)x(n.if)]x(nF[

.)x(npif
p.

p]x)[x(n

p)x(nif
p

)xx(n

)]F[x(nx(n)

                                                        (1) 

where the positive control parameter p є (0; 0.5) and x(i) є (0; 1). Since digital chaotic iterations are constrained in a discrete 
space with 2N  elements, it is obvious that every chaotic orbit will eventually be periodic and will finally go to a cycle with 
limited length not greater than 2N . Generally, each digital chaotic orbit includes two connected parts: 

1 2 ,, ,..., lx x x  and 1 ,, ,...,l l l nx x x+ + , which are respectively called “transient branch” and “cycle”. Accordingly, l and n+1 are 
respectively called “transient length” and “cycle period”, and l+n is called “orbit length”.  
To improve the dynamical degradation, a perturbation based algorithm is used [9]. The cycle length is expanded and so good 
statistical properties are reached.  
Here, for computing precision N, each x can be described as: 
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A suitable candidate for the perturbing signal generator is the maximal length LFSR because its generated sequences have the 
following advantages: 1) definite cycle length (2 1)k −  (k is the degree); 2) uniform distribution; 3) delta like autocorrelation 

function; 4) easy implementation; 5) controllable maximum signal magnitude given by 2 (2 1)N k− × −  when used in N-precision 
system. 
The perturbing bit sequence can be generated every n clock as follows: 
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Where ⊕  represents ‘exclusive or’, ]...[ 110 −= kgggg is the tap sequence of the primitive polynomial generator, and 

110 ,...,, −kQQQ are the initial register values of which at least one is non zero. 
The perturbation begins at n= 0, and the next ones occur periodically every ∆ iterations (∆  is a positive integer), with n= 
l× ∆ , l=1,2,…, The perturbed sequence is given by the equation (4):   
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Where [ ( )]iF x n  represents the ith bit of [ ( )]F x n .  
The perturbation is applied on the last k bits of [ ( )]F x n .  
When n l≠ ×∆ , no perturbation occurs, so ( ) [ ( 1)]x n F x n= − . The system cycle length is given by the following relation  
 

( )2 1kT σ= ×∆× −                                                                  (5) 

 
where σ is a positive integer. The lower bound of the system cycle length is 

( )min 2 1kT =∆× −                                                                    (6) 

 

 



 
 

 

3. CHAOTIC PERMUTATION METHODS 
 

We used a perturbed PWLCM chaotic map to control the chosen permutation techniques, CROSS and Socek ones. The chaotic 
values x are real. Then, a discretization method is applied to transform it to unsigned 

integer
 on 32 bits using the following 

formulas:  

)2.( 32xroundy =                                                                       (7) 

where x is a chaotic real value and y is the discretized one. The last one is used to control the chosen permutation methods that 
we will explain in the following paragraph.  

3.1. Cross permutation 
 

CROSS instruction is defined as follows:  
 

R3=CROSS( m1, m2, R1, R2)  

R1  is  the  source  register which  contains  the  bits  to  be  permuted, R2 is the configuration register and R3 is  the  destination  
register  for  the permuted bits. One CROSS instruction performs two basic operations on the source according to the contents 
of the configuration register and the values of m1 and m2. We propose to control this method by chaotic values. Then, in each 
iteration, the control register R2 is filled by the chaotic binary suite (8 bits). We said that the chaotic value is on 32 bits.  Then, 
the chaotic value (32 bits) is generated each 4 iterations. The chaotic suite is decomposed on 4 parts. Each chaotic byte is 
utilized to control a byte from the image. Fig. 1 shows how the CROSS instruction works on 8-bit systems. 
 

 
Figure 1. The CROSS permutation method performed on 8-bit  

 
The inverse CROSS instruction is the same as that used for the encryption process but the contents of the configuration register 
m1 and m2 are exchanged. 
 
3.2. Socek permutation 
 

The permutation method proposed by Socek is to permute the indices of bits p= [1, 2, 3, 4, 5, 6, 7, 8] of each pixel using the 
chaotic value. Then the bits are rearranged according to the new array indices q. Fig. 2 presents the algorithm of Socek method 
applied on a 8 bits. 

 
 
 
   

 

 
 

Figure 2. Socek method on 8 bits 

In this example, the new array of indices q= [4, 6, 7, 1, 3, 8, 2, 5]. 
To perform the inverse of Socek method, the bits are rearranged according to the array indices (8-q(i)) instead of q(i).  
 

4. SIMULATION RESULTS  

      [ b4, b6, b7, b1, b3, b8, b2, b5] 

                [ b1, b2, b3, b4, b5, b6, b7, b8] 



 
 

 

 
Some experimental results are given in this section to demonstrate the efficiency of proposed chaotic permutation methods. 
We implemented in Matlab the Cross and Socek methods.  The plain image used is  'MANDRILL.BMP' with the size 
512x512x3 (Fig. 3).  

 

 
Figure 3. Mandrill image 

Fig. 4 presents the permuted images. 

   
(a)                                      (b) 

Figure 4. Permuted image of Mandrill with (a) CROSS and (b) Socek method controlled by perturbed PWLCM map. 
 

As we can see, the bit permutation method doesn’t hide the texture of the image. Then, a substitution method is necessary to 
construct a chaotic cryptosystem. 

 
4.1 Difference between  the original and the encrypted image 

 
Common measures like NPCR (Number of pixels change rate) and UACI (Unified Average Changing Intensity) are used to test 
the difference between the original image P1 and the permuted one C1. 
NPCR stands for the number of pixel change rate.  Then, if D is a matrix with the same size as images P1 and C1, D (i,j) is 
determined as follows (8): 
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 NPCR is defined by the following formula (9): 
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where M and N are the width and height of P1 and C1.  
 
The UACI measures the average intensity of differences between the plain image and the permuted one. 
UACI is defined by the following formula (10): 
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The optimal values of these parameters are respectively: NPCRopt= 99.61% and UACIopt=33.46%. 
 
In table I, we summarize the mean values of NPCR and UACI obtained between the original image and the permuted one. 



 
 

 

 
Table 1. NPCR and UACI between the original image and the permuted one. 

 
 
 
 
 
 
As, we can see, Socek method gives better results than CROSS method.  

 
4.2. Correlation of  adjacent pixels in the permuted image 

 
Statistical analysis on large amounts of images shows that averagely adjacent 8 to 16 pixels are correlative. To test the 
correlation between horizontally, vertically and diagonally adjacent pixels from the image, we calculate the correlation 
coefficient of a sequence of adjacent pixels by using the formulas (18), (19) and (20), (21). 
We calculate the correlation coefficient r of original and encrypted image by using the following formulas (11), (12) and (13), 
(14): 
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where 1( , )P i j  and 1( , )C i j  are gray values of the original pixel and the encrypted one. 

 
Fig. 5 and 6 show the correlation distributions of horizontally adjacent pixels in the original and permuted images. And, table 
II gives the coefficients correlation of horizontal, vertical and diagonal pixels. 
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Figure 5. Correlation distributions of horizontally adjacent pixels in Mandrill image 
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(a) (b) 

Figure 6. Correlation distributions of horizontally adjacent pixels in the permuted images using the proposed chaotic (a) CROSS and (b) 
Socek methods. 

 

 

 

 Cross Socek 
NPCR 80.9926 98.5208 
UACI 20.0257 27.1395 



 
 

 

Table 2. Mean values of the coefficients correlation of horizontal, vertical and diagonal pixels. 
 
 
 
 
 
 
 
 
 

4.3. Information entropy analysis 
 

Entropy is a statistical measure of randomness that can be used to characterize the texture of an image. It is well known that the 
entropy H(m) of a message source m can be calculated as : 
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Where p(mi) represents the probability of message mi.  
When an image is encrypted, its entropy should ideally be 8. If it is less than this value, there exists a certain degree of 
predictability which threatens its security. 
In table 3, we list the entropy of the images permuted by the proposed chaotic permutation methods. The values obtained are 
very close to the theoretical value 8. This means that information leakage in the permutation process is negligible.  

 
Table 3.  Entropy value for the images permuted with CROSS and Socek method controlled by PWLCM and perturbed one. 

 

PWLCM Perturbed 
PWLCM  Original 

Image 
Cross Socek Cross Socek 

Entropy 7.762 7.881 7.888 7.913 7.950 
 

5. CONCLUSION 
 
In this paper, we propose a novel chaotic permutation techniques based on the previously proposed method by Lee and Socek 
[5, 7]. A much higher security level can be obtained with our approach. First, the length of the chaotic orbit cycle is increased. 
Then, the entropy value is improved. So, we can say that our chaotic permutation methods are more secure and suitable for 
chaotic image encryption schemes. 
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Model Mandrill 
image 

Cross Socek 

Horizontal 0.9203 0.1938 0.1132 

Vertical 0.8631 0.1644 0.1276 

Diagonal 0.8494 0.1703 0.0993 


