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Abstract—This paper presents a novel and robust chaos-based cryptosystem for secure transmitted images and four others versions. In
the proposed block encryption/decryption algorithms, an 2D chaotic map is used to shuffle the image pixel positions. Then, substitution
(confusion) and permutation (diffusion) operations on every block, with multiple rounds, are combined using two perturbed chaotic
PWLCM maps. The perturbing orbit technique improves the dynamical statistical properties of generated chaotic sequences. The
obtained error propagation in various standard cipher block modes demonstrates that the proposed cryptosystem including OFB, or
CTR modes, is suitable to transmit cipher data over a corrupted digital channel. Finally, to quantify the security level of the proposed
cryptosystem, many standard tools are performed and experimental results show that the suggested cryptosystem has a high security
level.

Index Terms—Chaos-based cryptosystem, perturbed technique, error propagation, security.

I. INTRODUCTION
ECURE, transmission of confidential digital images has become a common interest on both research and applications.
With the desirable properties of pseudo-randomness, ergodiciy, high sensitivity to initial conditions and parameters,

chaotic maps have demonstrated great potential for information especially image encryption. Since the 1990s, a large amount of
work using digital chaotic systems to construct cryptosystems has been studied [1] - [3], and has attracted more and more
attention in the last years [4] - [7]. In order to be used in every application, chaotic sequences must seem absolutely random and
have good cryptographic properties. Many studies on chaotic maps are drawn [8] - [10].  In [11] and [12], we study and improve
some existing techniques used to generate chaotic signals with desired statistical properties and verifying NIST statistical tests.
Indeed, to obtain better dynamical statistical properties and to avoid the dynamical degradation caused by the digital chaotic
system working in a 2N finite state, a perturbation technique is used.
It is well known that images are different from texts in many aspects, such as high redundancy and correlation.  The main
obstacle in designing effective image encryption algorithms in that it is rather difficult to shuffle and diffuse such image data by
traditional cryptographic means [13]-[16]. In most of the natural images, the value of any given pixel can be reasonably
predicted from the values of its neighbors.
In order to solve this problem, many researchers have proposed schemes with combinational permutation techniques [17], [18]
that divide the image into blocks then shuffle their positions before passing them to the bit manipulation stage. In fact, bit level
permutations are particularly difficult for processors. Many researches tend to avoid it in the design of cryptography algorithm or
use very simple permutations [19], [20]. But recently, a number of candidate instructions have been proposed to efficiently
compute arbitrary bit permutations [6], [21]-[23]. In this paper, we propose a new approach for image encryption using a
combination of different permutation techniques: Pixels and bit permutations.
Moreover, cryptographic modes for block ciphers have received much attention lately, partly due to an announcement of NIST
[24]. No block cipher is ideally suited for all applications. This comes from differing tolerances of applications to properties of
various cryptographic modes. As we search to meet the requirements of the secure image transfer, so we examine the problem of
error propagation in various cipher block modes.

The paper is organized as follows: Section 2 describes the proposed algorithm; Section 3 introduces the perturbed chaotic map
used; Section 4 explains the S-box transformations used in the algorithm; Section 5 presents the cipher block modes used for the
encryption and compares the theoretical propagation error induced by each mode. The simulation results and security analysis
are given in section 6. And finally, we summarize our conclusions in section 7.
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II. ENCRYPTION ALGORITHM
In this section, we present the developed Algorithm called CBCSTI for Image Encryption that we implemented with Matlab.

Let I be an MxN image with b-byte pixel values, where a pixel value is denoted by I(i), 0 ≤ i < MxNxb. A block cipher is an
encryption scheme which breaks up the plaintext messages into blocks of fixed length and encrypts one block at a time.
The algorithm characteristics and steps are:

(1) The key size is 128-bits.
(2) The chaotic maps used is a 2 D chaotic map and two perturbed piecewise linear chaotic maps (P-PWLCM).

The perturbed chaotic values are generated each r ietrations.
(3) The permutation box (P-box) adding diffusion to the system includes two steps:

Firstly, the positions of the pixels of the original image are shuffled by 2D chaotic map. Then the pixel values are
permuted by bit permutation method.

(4) A more complex substitution box (S-box) is applied.
(5) Multiple rounds for encryption and decryption processes are used.

The encryption algorithm transforms an image I using a 2D chaotic map and an SP-network generated by a one dimensional
chaotic map and a 128-bit secret key. The algorithm performs r rounds of an SP-network on each pixel. Fig. 1 illustrates the flow
chart of the algorithm with OFB mode. This algorithm is implemented also with the other standard modes: ECB, CBC, CFB,
CTR (see section VI).
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Fig. 1. The proposed algorithm with the OFB mode

Many variants of the algorithm are drawn. They differ depending on the choice of permutation methods 2-D or 1-D used:
CBCSTI-A: use the standard map to do the pixel position permutation and Socek method as a bit permutation method.
CBCSTI-B: use Standard and CROSS methods.
CBCSTI-C : use Arnold and Socek methods.
CBCSTI-D : use Arnold and CROSS methods.
CBCSTI-E : use Socek method without a 2D chaotic map.
In the next section, we explain the perturbed PWLCM map used in the algorithm. Then, we discuss the SP box adopted in the
proposed algorithm.
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 III. PERTURBED PWLCM MAP
A piecewise linear chaotic map (PWLCM) is a map composed of multiple linear segments.
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(1)

where the positive control parameter p є (0; 0.5) and x(i) є (0; 1). Since digital chaotic iterations are constrained in a discrete
space with 2N  elements, it is obvious that every chaotic orbit will eventually be periodic and will finally go to a cycle with a
limited length not greater than 2N

 [25], [26]. Generally, each digital chaotic orbit includes two connected parts:
1 2 ,, ,..., lx x x  and 1 ,, ,...,l l l nx x x+ + , which are respectively called “transient branch” and “cycle”. Accordingly, l and n+1 are

respectively called “transient length” and “cycle period”, and l+n is called “orbit length”.
To improve the dynamical statistical properties of generated chaotic sequences, a perturbation-based algorithm is used. The

cycle length is expanded and consequently good statistical properties are reached. Many perturbation techniques are proposed.
For example, Socek [6] uses a perturbation-based algorithm. The orbits are perturbed by the encrypted blocks. Socek algorithm
is very secure but a bit error transmission causes a random number of erroneous bits in the decrypted image. In this paper, we use
another perturbation technique using maximal length LFSR, which is a suitable candidate for perturbing the signal generator
[25], [27].

Here, for computing precision N, each x can be described as:

{ }1 2( ) 0. ( ) ( )... ( )... ( ) ( ) 0,1
1, 2,...,

i N ix n x n x n x n x n x n
i N

= ∈

=
                                                  (2)

The perturbing bit sequence can be generated every n clock as follows:

1 0 0 1 1 1 1( ) ( ) ( ) ( ) ... ( )
0,1,2,...

k k k kQ n Q n g Q n g Q n g Q n
with n

+
− − −= = ⊕ ⊕ ⊕

=
                                                (3)

Where ⊕  represents ‘exclusive or’, 0 1 1[ ... ]kg g g g −=  is the tap sequence of the primitive polynomial generator, and 0 1 1... kQ Q Q −

are the initial register values of which at least one is non zero.
The perturbation begins at n= 0, and the next ones occur periodically every ∆ iterations (∆  is a positive integer), with n=

l× ∆ , l=1,2,…, The perturbed sequence is given by the equation (4):

[ ( 1)] 1
( )

[ ( 1)] ( ) 1
i

i
i N i

F x n i N k
x n

F x n Q n N k i N−

− ≤ ≤ −⎧⎪= ⎨ − ⊕ − + ≤ ≤⎪⎩
                                                     (4)

Where [ ( )]iF x n  represents the ith bit of [ ( )]F x n .
The perturbation is applied on the last k bits of [ ( )]F x n .
When n l≠ ×∆ , no perturbation occurs, so ( ) [ ( 1)]x n F x n= − .
The lower boundary of the system cycle length is

( )min 2 1kT =∆× −                                                                          (5)
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 IV. SP BOX TRANSFORMATION
In the proposed algorithm, we used two perturbed PWLCM chaotic maps. The chaotic orbits are real values. Then, we

transform it to unsigned integer on 32 bits using the following formula (eq. 6):
32( ) ( ( ) 2 )x n round x n= ×                                                                               (6)

The first binary suite is used to control the substitution and the second one is used to control the permutation. The SP box (the
substitution and permutation operations) are performed r (r=4) iterations. In this section, we explain the SP box used in the
CBCSTI algorithms and how the control is done.

A. Substitution box
A complex substitution box is applied (eq. 7).

rSigma (u,v)
( ) mod 256
u v if r is even
u v if r is odd
⊕⎧

= ⎨ +⎩                                                  
(7)

where u and v are two bytes and r is the round value.
In fact, u and v represent respectively the chaotic value and the plaintext block (see figure 1).

O(i)=substitution(O(i), c(mod((i+j),r))

c(mod((i+j),r)) is the chaotic value that we used to control the substitution technique. We said that we use a binary suite to
control the substitution technique. This suite in decomposed on four bytes and then transformed on four integers c(1), c(2), c(3)
and c(4). These values are used to r iterations of the substitution of O(i) block. O(i) can be the plaintext block or the output key
that we encrypted. It depends of the adopted operation mode ECB/CBC or OFB/CTR.

B. Permutation
In order to disturb the high correlation among adjacent pixels, we propose a scheme that includes two phases: firstly, the pixel

positions are permuted by 2D chaotic map. Then the gray values of the permuted image are encrypted by a bit permutation
method.

2D Permutation
The 2D chaotic map shuffles the pixel positions of the plain image and then disturbs the high correlation among the pixels.

Without loss of generality, the size of the original grayscale image I is assumed NxN.

Permutation by Arnold cat map
The coordinates of the pixel positions are ( ){ }, , 0,1,2,..., 1S x y x y N= = − . Arnold cat map [18] is described as follows (eq. 8).

( ) ( )' 1
mod mod

' 1
x x p x

A N N
y y q pq y
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                                                  (8)

Where p and q are positive integers, det(A)=1. The (x, y) and (x’, y’) are the original and the new positions, respectively. After
several iterations, the original image can be permuted completely. The parameters p, q and the iteration number M can be chosen
as the secret keys.

Permutation by Standard map
The Standard map is described with the following formula (eq. 9):
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x x y N
xNy y k N
π

= +⎧
⎪
⎨

= +⎪⎩

                                                                       (9)

Where k is a positive constant, (x, y) is the original pixel position and (x’, y’) is the newest one.

Bit permutation method
The permutation is made on the bits of each block formed of a byte. In other words, we use a permutation of degree 8 to add

diffusion to the system. Actually, the fastest way to achieve this is by using a table look up approach. This approach is fast but
the memory requirements are considerably high. A number of permutation methods have been proposed [6], [18]-[20]. Among
these, CROSS and Socek methods are the most attractive.  They have good cryptographic properties.
As we explained for the substitution technique. The chaotic binary suite is decomposed on two parts of 16 bits, then transformed
on decimal values d(1), d(2). These values are limited by 8! (modulo 8!)  that we permute 8 bits. In each iteration (j=1…4), we
chose a value to perform the permutation of the block O(i).

O(i)=permutation(O(i), d(mod((i+j),r))

In following, we present the Cross and Socek methods used in the proposed algorithm.

Cross permutation
It is controlled using the perturbed chaos in our algorithm. The control register R2 is filled by the chaotic binary suite. The

CROSS instruction is defined as follows:

R3=CROSS( m1, m2, R1, R2)

R1  is  the  source  register which  contains  the  bits  to  be  permuted, R2 is the configuration register and R3 is  the  destination
register  for  the permuted bits. One CROSS instruction performs two basic operations on the source according to the contents of
the configuration register and the values of m1 and m2. Fig. 2 shows how the CROSS instruction works on 8-bit systems.

1 0 0 1 1 10 0

a b c d e gf h

1 00 ---1 -

e b c h a gf d

1 -0 -01- -

c b e h g af d

Control bits R2

Data R1

Stage specified 
by m1=2

Temp value

Stage specified 
by m2=1

Result R3

Fig.2. The CROSS instruction on 8-bit systems

Socek permutation
The permutation method proposed by Socek is to permute the indices of bits of each pixel using the output of a chaotic map.

Then the bits are rearranged according to the new array indices (see Fig. 4). Fig. 5 presents the algorithm of Socek method.

Fig. 3. Socek method on 8 bits

P’j =[ b4, b6, b7, b1, b3, b8, b2, b5]

Pj= [ b1, b2, b3, b4, b5, b6, b7, b8]
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 V. DECRYPTION PROCESS
The decryption algorithm depends on the cipher mode used. For the modes OFB, CFB and CTR; the decryption algorithm is

the same as that of the encryption. But for the CBC mode, it differs slightly from the encryption algorithm. To decrypt an
encrypted image, we need to perform the inverse transformations. The inverse substitution will be as follows (eq. 10):

-1
rSigma (u,v)

( ) mod 256
u v if r is even
u v if r is odd
⊕⎧

= ⎨ −⎩                                                       
(10)

The inverse CROSS instruction is the same as that used for the encryption process but the contents of the configuration register
m1 and m2 are exchanged. The inverse of Socek method, the bits are rearranged according to the array indices (8-p(i)) instead of
p(i) used in the encryption process. Therefore, we need the reverse the order of the substitution and bit permutation method and
we use the inverse ones to decrypt the image.

 VI. CRYPTOGRAPHY MODES AND ERROR PROPAGATION
A cryptographic mode usually combines the basic cipher, some sort of feedback, and some simple operations. Some

applications need to parallelize encryption or decryption, while others need to be able to preprocess as much as possible.
A bit error is the substitution of a ‘0’ bit for a ‘1’ bit, or vice versa. These errors are generated by the transmission channel as a

consequence of interference and noise.
The error propagation phenomenon implies that errors in the encrypted text produce errors in the decrypted plaintext. So, it is

important that the decrypting process be able to recover from bit errors in the ciphertext.
In this section, we examine the problem of error propagation in various cipher block modes of operation, such as: Cipher

Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), and Counter mode (CTR) [17]. The dependence
between input and output error probability of the modes is presented. The results obtained can be used to choose the block cipher
and its mode to generate a suitable cryptogram for transmission over a noisy channel.

The CFB is a special mode witch which segments are operated. The segment is an s bit block, where 1 s b≤ ≤ . The j-th
plaintext and encrypted segment are denoted by #

jI  and '#
jI respectively.

The effect of the error bit '
,i jI or '#

,i jI  in the block ( )' ' ' '
1, 2, ,, ,...,j j j b jI I I I= or ( )'# '# '# '#

1, 2, ,, ,...,j j j b jI I I I= on the appearance of errors in the

plaintext for individual modes is summarized in the following table (table I).

TABLE Ι
 THE EFFECT OF BIT ERRORS FOR CIPHER BLOCK MODES

Mode Effect of bit errors in '
jI

ECB RBE in jI
CBC RBE in jI

SBE in 1jI +

CFB SBE in #
jI

RBE in #
1jI + , #

2jI + ,…, #
/j b sI +

OFB SBE in jI
CTR SBE in jI

In the table, SBE (Specific Bit Errors) means that an individual error bit '
,i jI or '#

,i jI produces in the appropriate decrypted block

an individual error bit ,i jI or #
,i jI . It occurs in the same bit positions as the bit errors in the encrypted image. RBE (random bit

errors) means that an individual error bit ,i jI or #
,i jI  affects randomly all bits in the decrypted block ,i jI or in the segments #

1jI + ,

#
2jI + ,…, #

/j b sI + .
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In the CBC mode for example, all bit positions that contain bit errors in a cipher text block will produce an RBE in the same
decrypted block and an SBE in the second one; the other bit positions are not affected. For the OFB and CTR modes, bit errors
within a ciphertext block do not affect the decryption of any other block.
Denote Pe the bit error probability in the decrypted image and pe the bit error probability in the encrypted image. As we said, in
the case of OFB and CTR modes, only the SBE type of error propagation can occur. For these modes, each error bit i,j  I' of the
encrypted image causes only one incorrect bit i,j  I  of the original image and thus the output error probability is equal to the input
one:

e eP p=                                                                                                 (11)

In the case of other modes (ECB, CBC, CFB), the RBE type of error appears. To present the dependence between the two
probability pe and Pe, we will give some definitions.
The probability P(x) that there are x error bits out of b received bits, is given by the formula (eq. 12):

( ) . .(1 ) , 01,2,...x b x
e e

b
P x p p x b

x
−⎡ ⎤

= − =⎢ ⎥
⎣ ⎦

                                                                     (12)

Then, it holds for the probability P0, that b bits are correct:

0 (1 )b
eP p= −                                                                                        (13)

and for the probability Q0, that at least one bit is incorrect:

0 01 1 (1 )b
eQ P p= − = − −                                                                              (14)

We call P0 the correct block probability and Q0  the incorrect block probability.
The probability Ph that the output bit changes its value as a consequence of modifying the input block is called the bit inversion
probability. We assume that Ph =1/2.

In the ECB mode, the output error probability Pe is equal to:

0
1 .[1 (1 ) ]
2

b
e h eP P Q p= = − −                                                                       (15)

The resulting output error probability Pe for the CBC mode is given by the equation:

1.(1 ) .[1 (1 ) ]
2

b b
e e e eP p p p= − + − −                                                               (16)

In fact, '
1j j jI U I −= ⊕   where '( )j k jU D I= .

The bit Iij is incorrect in the following cases:
a) the bit I’I,(j-1) is incorrect and the block I’j is correct,
b) the bit I’I,(j-1) is incorrect, the block I’j is incorrect and the bit ui,j is not inverted,
c) the bit I’I,(j-1) is correct but the block Ij is incorrect and the bit ui,j is inverted.

The probability of the error bit I’I,(j-1) is equal to pe and the probability of the correct block I’j is P0. Thus, the situation
a) occurs with the probability Pa) = pe.P0. The probability of the incorrect block I’j is equal to Q0 and the probability that the bit
ui,j is not inverted, amounts to (1-Ph). Then, the probability of the situation b) is equal to the quantity Pb) = pe.Q0.(1-Ph). The
probability of the correct bit I’i,(j-1) is equal to the value (1-pe), the probability of the incorrect block I’j is equal to Q0 and the
probability that the bit ui,j is inverted, amounts to Ph. Then, the probability of the situation c) is equal to the quantity Pc) = (1-
pe).Ph.Q0. Thus the resultant output error probability Pe for the CBC mode
is given by this equation:
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( ) ( )

) ) ) ) 0 0
1.
2

1. 1 . 1 1
2

e a b c a e

b b
e e e

P P P P P p P Q

p p p

= + + = = +

⎡ ⎤= − + − −⎢ ⎥⎣ ⎦
                                                                  ( 17)

 The equations in the case of (CBC) and (CFB) are the same. It follows that the output error probability Pe is the same for both
of the modes. Thus the CBC and CFB modes are equivalent from the viewpoint of error propagation. From equality (CFB), it is
also evident that the output error probability of the CFB mode does not depend on the length s of segments. Table ΙΙ presents the
dependence between the two probabilities pe and Pe for different operation modes [28].

TABLE ΙΙ
 THE DEPENDENCE BETWEEN THE BIT ERROR PROBABILITIES IN THE ENCRYPTED AND DECRYPTED IMAGES

Mode Effect of bit errors in '
jI

ECB
( )1 . 1 1

2
b

e eP p⎡ ⎤= − −⎢ ⎥⎣ ⎦
CBC, CFB

( ) ( )1. 1 . 1 1
2

b b
e e e eP p p p⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

OFB,CTR e eP p=

The results obtained for ECKBA algorithm not respect the expected one. In fact, Socek in his algorithm, use a perturbation
technique of PWLCM chaotic map using the encrypted data. Then, if a transmission error occurs in the cipher image, we obtain
random errors in the decrypted image. However, in our algorithm, we perturb the chaotic value with a LFSR. The encrypted
blocks are independent. For that, we avoid the propagation error in the decrypted image.

 VII. SIMULATION RESULTS AND SECURITY ANALYSIS
Some experimental results are given in this section to demonstrate the efficiency of our scheme. We implemented in Matlab

the different algorithms . The computer used is Pentium(R) D CPU 3Ghz, 2.99 Ghz, 2 Go RAM. The plain image used is
'MANDRILL.BMP' with the size 512x512x3 (Fig. 4(a)). The encryption time of different algorithms with different modes are
shown in table IV.

TABLE IV
 THE ENCRYPTION TIME FOR DIFFERENT ALGORITHMS WITH FOUR OPERATION MODES

CBC OFB CTR CFB
CBCSTI-A 525.2344 544.9688 663.6719 527.8281
CBCSTI-B 921.1563
CBCSTI-C 527.3438 503.0313 717.7344 525.1875
CBCSTI-D 926.1094
CBCSTI-E 537.9531 496.2813 643.6406 507.2188

AES 1741.9

The cipher image with CBCSTI-A algorithm is shown in Fig. 4(b). We plot their histograms of RGB color and we present that
of Red color in Fig. 5. As we can see, the histogram of the ciphered image is fairly uniform and is significantly different from
that of the original image.

 
(a)                                               (b)

Fig.4. (a) 'MANDRILL.BMP' image and (b) his encrypted image
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Fig.5. Histograms of red component of (a) 'MANDRILL.BMP' image, (b) encrypted image.

Common measures like correlation, NPCR (Number of pixels change rate) and UACI (Unified Average Changing Intensity)
are used to test the difference between the original image P1 and the encrypted one C1.
We calculate the correlation coefficient r of original and encrypted image by using the following formulas (18), (19) and (20),
(21):

1
1 1

1( ) ( , )
M N

i j

E x P i j
MxN

= =

= ∑∑                                                                                 (18)

2
1 1 1

1 1

1( ) [ ( , ) ( ( , ))]
M N

i j

D P P i j E P i j
MxN

= =

= −∑∑
 
                                                                   (19)

1 1 1 1 1 1
1 1

1cov( , ) [ ( , ) ( ( , ))][ ( , ) ( ( , ))]
M N

i j

P C P i j E P i j C i j E C i j
MxN

= =

= − −∑∑                                                  (20)

1 1
1 1

1 1

cov( , )
( ) ( )P C

P Cr
D P D C

=                                                                                (21)

where 1( , )P i j  and 1( , )C i j  are gray values of the original pixel and the encrypted one.
 NPCR stands for the number of pixel change rate.  Then, if D is a matrix with the same size as images P1 and C1, D (i,j) is

determined as follows (22):

1 11 ( , ) ( , )
( , )

0
if P i j C i j

D i j
else

≠⎧
= ⎨
⎩                                                                 

(22)

NPCR is defined by the following formula (23):

1 1

0 0

( , )

100

M N

i j

D i j

NPCR
M N

− −

= == ×
×

∑∑
                                                                   

(23)

where, M and N are the width and height of P1 and C1.

The UACI measures the average intensity of differences between the plain image and the ciphered image.
UACI is defined by the following formula (24):

1 1
1 1

0 0

( , ) ( , )1 100
255

M N

i j

P i j C i j
UACI x

MxN

− −

= =

−
= ∑∑                                                      (24)
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In table V, we summarize the correlation, NPCR and UACI obtained between the original image and the encrypted one.

TABLE V
The CORRELATION, NPCR AND UACI BETWEEN THE ORIGINAL IMAGE AND THE ENCRYPTED ONES

Operation mode

CBC CFB OFB CTR

                     (R)

correlation   (V)

                     (B)

0.0012

0.0007

0.0029

-0.0028

0.0029

0.0034

-0.0032

0.0022

-0.0003

-0.0022

-0.0032

0.0009

                     (R)

NPCR(%)    (V)

          (B)

99.5956

99.5804

99.6117

99.6147

99.5960

99.6128

99.6147

99.6071

99.6090

99.6265

99.6136

99.6021

                     (R)

UACI (%)    (V)

                     (B)

29.9514

28.5867

31.1631

30.0047

28.5662

31.1708

29.9928

28.5594

31.2590

30.0103

28.6119

31.2632

A. key sensitivity
An encryption scheme has to be key-sensitive, meaning that a tiny change in the key will cause a significant change in the

output. In order to demonstrate the key sensitivity, the following experiments have been done with a slightly different key.
key sensitivity at the emission

Fig.4 (b) shows the encrypted image with the following key:
alpha= 0.35899926, beta=0.25899926, x0=0.7239 and y0= 0.5672. We encrypt the same image using the little changed key as

follows: alpha= 0.3589992600001. Then, Fig. 10 shows the difference between the two ciphered images.
 As we can see even where the control parameter of the first orbit is changed a little (10-8), the encrypted image is absolutely

different from the first one.
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-100
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Fig.6. The difference between two ciphered images with a very small changed key.

In table VΙ, we summarize the NPCR and UACI for different algorithms: These results show that the proposed algorithm can
survive differential attacks.

TABLE VΙ
The NPCR BETWEEN TWO CIPHER IMAGES ENCRYPTED BY CBCSTI WITH DIFFERENT OPERATION MODES

key sensitivity at the reception
The goal of this test is to show the inability to decipher

using the key 2 (with alpha= 0.3589992600001), an image

CBC CFB OFB CTR

             (R)

NPCR  (V)

            (B)

53.1963

72.4106

87.7670

53.1967

72.4106

87.7663

53.1967

99.9996

100

53.1967

99.1566

99.1745

             (R)

 UACI  (V)

             (B)

17.9681

24.2914

29.5437

17.8900

24.3108

29.5047

  17.8439

33.5499

33.5449

17.8273

  33.4702

33.5063
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encrypted by the key 1 (see Fig. 4(b)). The result of decryption shown in Figure 7.

Fig.7. The decrypted image with a very small changed key.

B. Plaintext sensibility

This test measures the difference between two images with a single different bit.
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(a)                                                   (b)
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(c)                                               (d)
Figure 8: Difference between two successive: -a) original images of Mandrill with a different bit,-b) encrypted images with CBC mode, -c) encrypted images

with CFB mode,-d) encrypted images with OFB and CTR modes.

C. Correlation of two adjacent pixels

Statistical analysis on large amounts of images shows that averagely adjacent 8 to 16 pixels are correlative. To test the
correlation between horizontally, vertically and diagonally adjacent pixels from the image, we calculate the correlation
coefficient of a sequence of adjacent pixels by using the formulas (18), (19) and (20), (21).

Fig.9 shows the correlation distributions of two horizontally adjacent pixels in the original and the ciphered image
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(a)                                                          (b)
Fig.9. The correlation distributions of two horizontally adjacent pixels in the original image and in the ciphered image
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 In table VII, the correlation coefficients are shown for the original. Table VIII gives the coefficients for the encrypted images by
CBCSTI-A and CBCSTI-A with different operation mode. Table IX present the coefficients for the encrypted images by the
other algorithms with CTR mode.

TABLE VII
CORRELATION COEFFICIENTS OF ADJACENT PIXELS.IN THE ORIGINAL IMAGE

Corrélation horizontale 0.9203
Corrélation verticale 0.8631
Corrélation diagonale 0.8494

TABLE VIII
 CORRELATION COEFFICIENTS OF ADJACENT PIXELS FOR CBCSTI-A AND E.

Mode opératoire

Algorithm Correlation
CBC CFB OFB CTR

horizontal -0.0149 0.0149 -0.0092 0.0168

vertical -0.0193 0.0122 0.0096 -0.0171CBCSTI-A

diagonal 0.0381 -0.0226 -0.0083 0.0026

horizontal -0.0119 -0.0351 -0.0269 0.0143

vertical 0.0022 -0.0123 0.0030 0.0241
CBCSTI-E

diagonal -0.0034 -0.0105 -0.0095 -0.0134

TABLE IX
 CORRELATION COEFFICIENTS OF ADJACENT PIXELS FOR CBCSTI- B,C,D AND AES.

D. Information entropy analysis
Entropy is a statistical measure of randomness that can be used to characterize the texture of an image. It is well known that

the entropy H(m) of a message source m can be calculated as [29]:

( ) ( ) ( )

2 1

2
0

1log
N

i
ii

H m p m
p m

−

=

= ∑                                                                        (25)

Where p(mi) represents the probability of message mi.
When an image is encrypted, its entropy should ideally be 8. If it is less than this value, there exists a certain degree of
predictability which threatens its security.
In table X, we list the entropy of the images encrypted by three algorithms. The values obtained are very close to the theoretical
value 8. This means that information leakage in the encryption process is negligible and the encryption system is secure against
the entropy attack.

Correlation CBCSTI-B CBCSTI-C CBCSTI-D AES

horizontal 0.0282 -0.0064 -0.0123 -0.0188

vertical 0.0289 -0.0126 0.0130 -0.0024

diagonal -0.0083 0.0374 -0.0046 0.0019
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TABLE X
 ENTROPY VALUE FOR THE IMAGES ENCRYPTED WITH THREE DIFFERENT ALGORITHMS

Algorithm Original
image

CBCSTI-A CBCSTI-C CBCSTI-D

entropy 7.7624 7.9999 7.9997 7.9998

E.  NIST Statistical Tests
Among the numerous standard tests for pseudo-randomness, a convincing way to show the randomness of the produced

sequences is to confront them to the NIST (National Institute of Standards and Technology) Statistical Tests. The NIST
statistical test suite [17] is a statistical package consisting of 188 tests that were developed to test the randomness of arbitrary
long binary sequences produced by either hardware or software based cryptographic random or pseudorandom number
generators. These tests focus on a variety of different types of non-randomness that could exist in a sequence.

To verify our results, we use the above test suite to test the randomness of 100 encrypted images of length 2097152 bits. In
table XΙ, we show the results for a number of tests knowing that the sequence passed all the other tests. Note that the 100
encrypted images were generated with randomly selected secret keys. For each test, the default significance level α=0.01 was
used, at the same time a set of P-values, which is corresponding to the set of images, is produced. Each image is called success if
the corresponding P-value satisfies the condition P-value ≥ α, and is called failure otherwise and noted by a star.

TABLE XΙ
NIST STATISTICAL TEST FOR 100 ENCRYPTED IMAGES BY THREE PROPOSED ALGORITHMS CBCSTI-A, D AND E

CBCSTI-E CBCSTI-D CBCSTI-A

Frequency Monobit Test 93* 95* 97

Block Frequency Test 99 100 100

Cumulative Sums Test 94* 95* 98

Random Excursion Test 95* 97 100

Random Excursion Variant Test 95* 98 98

Runs Test 97 99 98

Longest Runs Test 97 99 98

Rank  Test 100 98 100

Discrete Fourier Transform 99 98 100

Serial 99 99 100
Non Overlapping Template

Matching Test 98 98 100

Overlapping Template Matching
Test 99 98 99

Approximate Entropy Test 98 99 100
Maurer’s « Universal Statistical »

Test 99 98 100

Linear Complexity Test 98 99 99

 VIII. CONCLUSION
In this paper, a new chaos-based cryptosystem is proposed. Our cryptosystem has some similarity with the Socek one, but

attains a higher security level, and produces cryptograms in OFB and CTR modes, suitable to be transmitted on insecure and
noisy channels. Indeed, in the new encryption/decryption algorithms, the key space is larger and the multi-rounds S-P network
operations on each pixel are more complex than some existing algorithms. Furthermore, the introduction of the perturbation
technique has expanded the length of the chaotic orbit cycle and then enhanced the dynamical statistical properties of the
generated chaotic sequences. The obtained results: uniformity, key sensitivity, correlation, entropy, NIST statistical tests, prove
the robustness and the high security level of the proposed cryptosystem.
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