
Authenticating Aggregate Range Queries over Multidimensional Dataset

Jia XU
National University of Singapore
Email: xujia@comp.nus.edu.sg

Ee-Chien CHANG
National University of Singapore

Email: changec@comp.nus.edu.sg

Abstract

We are interested in the integrity of the query results from
an outsourced database service provider. Alice passes a set D
of d-dimensional points, together with some authentication
tag T, to an untrusted service provider Bob. Later, Alice
issues some query over D to Bob, and Bob should produce
a query result and a proof based on D and T. Alice wants
to verify the integrity of the query result with the help of
the proof, using only the private key. In this paper, we
consider aggregate query conditional on multidimensional
range selection. In its basic form, a query asks for the total
number of data points within a d-dimensional range. We are
concerned about the number of communication bits required
and the size of the tag T. We give a method that requires
O(d2) communication bits to authenticate an aggregate
query conditional on d-dimensional range selection. Besides
counting, summing and finding of the minimum can also
be supported. Furthermore, our scheme can be extended
slightly to authenticate d-dimensional usual (non-aggregate)
range selection query with O(d2) bits communication over-
head, improving known results that require O(logd−1N)
communication overhead, where N is the number of data
points in the dataset.

Keywords

Authentication, Aggregate Query, Database Outsourcing

1. Introduction

Alice has a set D of d-dimensional points. She prepro-
cesses the dataset D using her private key to generate some
authentication tag T. She sends (outsources) D and T to
an untrusted service provider Bob. Then Alice deletes the
original copy of dataset D and tag T from her local storage.
Later Alice (or Charlie, in the public key setting) may issue
a query over D to Bob, for example, an aggregate query
conditional on a multidimensional range selection, and Bob
should produce the query result and a proof based on D
and T. Alice (or Charlie, in the public key setting) wants
to authenticate the query result, using only her private key
(using Alice’s public key, in the public key setting).

We are concerned about the communication cost and
the storage overhead on Bob’s side. Such requirements
exclude the following two straightforward approaches: (1)
Bob sends back the whole dataset D with its tag T; (2)
During preprocessing, Alice generates and signs answers to
all possible queries.

The problem we study in this paper fits in the framework
of the outsourced database applications [16], [41], which
emerged in early 2000s as an example of “software-as-
a-service” (SaaS). By outsourcing database management,
backup services and other IT needs to a professional service
provider, companies can reduce expensive cost in purchase
of equipments and even more expensive cost in hiring or
training qualified IT specialists to maintain the IT ser-
vices [20].

Researches in secure outsourced database focus on two
major aspects: privacy [41], [42], [43], [44] (i.e. protect the
data confidientiality against both the service provider and
any third party), and integrity [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30] (i.e.
authenticate the soundness and completeness of query results
returned by the service provider). In the latter aspect, a lot
of works are done for “identity query” [22], i.e. the query
result is a subset of the database. Only a few works [7] are
devoted to the authentication of aggregate query.

In this paper, we are interested in the authentication of
aggregate range query over static multidimensional dataset
with sublinear (w.r.t. the number of data points within
the query range) communication bits. A d-dimensional ag-
gregate range query specifies a d-dimensional rectangular
range (which can be represented by its two “end points”),
and its outcome is the aggregated value over all points
inside the range. Figure 1 shows a 2D aggregate range
query. The aggregate operations we consider in this paper
include counting, summing, and finding of the maximum
and minimum. Besides aggregate query, we also discuss the
usual range selection query as an extension.

Our results. We propose a scheme, which we call MAIA
(Multidimensional Aggregate query Integrity Authentica-
tion). For a dataset D with N d-dimensional points, the
number of communication bits required is in O(d2). The
storage overhead on Bob’s side is O(dN), which is linear in
the size of D. Although the data points are d-dimensional, by

Table 1: Performance of different authentication schemes for aggregate range query or range selection query. Note that this
table consists of two parts: (1) The first two rows are for aggregate query; (2) The rest four rows are for range selection
query, and our scheme MAIA appears twice in this table, since it can authenticate both aggregate query and range selection
query (with modifications in Section 6.1.3).

Scheme Communication
overhead (bits)

Key Size Storage over-
head

Computation
(Verifier
Alice)

Computation
(Prover Bob)

Dimension
d

Query

PDAS [7] O(|S| log N) O(1) O(N) O(|S| log N) O(|S|+ K2) d = 1 SUM,COUNT

MAIA (This paper) O(d2) O(d) O(dN) O(d log N)† O(dN log N)‡ d ≥ 1 SUM,COUNT,MIN,MAX

Martel et al. [17] O(logd−1 N
+|S|)

- - - - d ≥ 1 Range Selection

Atallah et al. [26] O(1) O(1) O(N) O(|S|) O(1) d = 1, 2 Range Selection
Chen et al. [15] O(logd M) - O(N logd M) O(logd M) O(logd M) d ≥ 1 Range Selection

MAIA (Section 6.1.3) O(d2) O(d) O(dN) O(d log N)† O(dN log N)‡ d ≥ 1 Range Selection

N : The number of tuples in the dataset. S: The set of tuples satisfying the query condition.
K: The number of servers in PDAS [7]. M : The domain size of attributes in Chen et al. [15].
†: O(d log N) modular multiplications. ‡: O(dN log N) modular exponentiations.

Figure 1: An example of 2D aggregate range query: How
many employees with age between 30 and 40 have salary
between $1500 and $4000? The query range is [30, 40] ×
[1500, 4000] and the query result is 2.

ignoring some dimensions, we can make an `-dimensional
range selection query, where 1 ≤ ` ≤ d. After preprocessing,
our scheme is able to authenticate `-dimensional aggregate
range query (for any ` dimensions) with O(`2) communica-
tion bits.

The main reason that our scheme achieves efficient
communication complexity, is that Alice can compress the
messages, which could be viewed as a sequence of pseu-
dorandom numbers, before sending them to Bob, and Bob
can uncompress them, using the redactable signature scheme
proposed by Johnson et al. [39].

The main idea of our construction is as follows: Let
us consider the aggregate query on counting, and let S
be the set of data points within the range. Recall that
Bob should send a value N0 to Alice and prove that
N0 = |S|. In the preprocessing, the dataset is normal-

ized (Section 3.1.1), and each data point x is associated
with a tag vector tagk(e,µx), where each component of
the vector µx is some pseudorandom number generated
from Alice’s private key k, and e = (1, 1, 1, · · · , 1︸ ︷︷ ︸

d 1’s

). Here

the function tag is homomorphic: tag(x + y,u + v) =
tag(x,u)⊗tag(y,v), where the binary operator ⊗ denotes
the direct product, i.e. for any vector u = (u1, u2, · · · , ud)
and vector v = (v1, v2, · · · , vd), u ⊗ v denotes the vector
(u1v1, u2v2, · · · , udvd). In the first step of a query session,
under our scheme, Alice is able to provide sufficient in-
formation (refered as Help-Info in Section 5) for Bob to
generate a vector tag(0, α ⊗ µx) for each x within the
query range, but not for data point outside the range, using
low communication cost, where α is a vector of random
nonces chosen by Alice.

Bob’s proof consists of two parts. The first part of
proof ensures that Bob indeed computes the aggregate
value using points inside the query range only. Using
homomorphic property of tag, Bob is able to compute
Ψ = tagk(

∑
x∈S e,

∑
x∈S µx) from the tag values that are

obtained from Alice in the setup, and Ψα = tagk(0, α ⊗∑
x∈S µx) from tag(0, α⊗µx)’s that are generated using

Help-Info provided by Alice in a query session. Bob presents
(Ψ,Ψα) as the first part of proof for N0 = |S|, and Alice can
verify the consistency between Ψ and Ψα using her private
key k and the random nonce α. More precisely, Alice checks
whether this equality holds: Let Ψ = (ψ1, ψ2, · · · , ψd) and
α = (α1, α2, · · · , αd),

(ψα1
1 , ψα2

2 , · · · , ψαdd) = Ψα ⊗ tagk(α⊗ N0e, 0),

where the count number N0 and (partial) proof Ψ and
Ψα come from Bob, and Alice keeps the secret nonce
α and computes tagk(α ⊗ N0e, 0). Note that if Ψ
is computed honestly, we have (ψα1

1 , ψα2
2 , · · · , ψαdd) =

tagk(α⊗ N0e, α⊗
∑

x∈S µx).
The second part of proof ensures the completeness of

the query result. Although the first part of proof can
prevent collusion attack1, it cannot prevent a dishonest
Bob from excluding some data points within the query
range, which we call undercounting. Furthermore, it cannot
prevent a dishonest Bob from double-counting, e.g. claim-
ing that the size of S was 2|S| with the partial proof
Ψ ⊗ Ψ = tag(2

∑
x∈S e, 2

∑
x∈S µx) and Ψα ⊗ Ψα =

tag(0, 2
(
α⊗

∑
x∈S µx

)
). With the second part of the

proof, Bob convinces Alice that he does not undercount or
double count, by dividing the domain into a few sub-regions
and showing sums among these sub-regions are consistent
(Similar strategy is also used in Chen et al. [15]). To achieve
efficiency, the sub-regions have to be crafted carefully.

It is worthy to point out that, the above description is
only for illustration of our ideas. So we purposely choose
different notations tag for the tag fucntion and µx for
the vector of random numbers to avoid confusion with the
detailed description in Section 5. The actual construction
relies on our specially designed tag function Tag (defined
in Section 3), which consists of three components. Each
component takes different role: (1) The first component
prevents dishonest Bob to bring points outside the query
range into the query result. (2) The second component binds
different dimensions of the same point together, so dishonest
Bob is not able to mix different dimensions of different
points together to forge a new data point. (3) The third
component is for the second part of proof. It ensures that
undercounting or double-counting can be detected.

We design the tag function Tag using three cyclic mul-
tiplicative subgroups of Z∗n, for some proper composite
modulus n. It may also be possible to design an alternative
tag function using bilinear map, to achieve similar goal (the
three roles described above). For example, the MRQED
scheme, proposed by Shi et al. [1], might be a candidate
(after some modifications). However, there are at least two
major differences: (1)Like our scheme MAIA, authentication
scheme for aggregate query based on MRQED (with modifi-
cations), just fits in the private key setting, although MRQED
itself is a public key encryption scheme for the problem in
paper [1]. MRQED is based on bilinear map, but our Tag
function does not utilize bilinear map yet. (2) MRQED based
approach may have O(d2 logN) communication cost and
O(dN logN) storage overhead on Bob’s side, where d is
the dimension and N is the number of points in the dataset.
In contrast, our scheme MAIA takes O(d2) communication
bits, independent of the dataset size and the query range,
and O(dN) storage overhead. For higher dimension d, in
particularly, when d > log(dN)/ log logN , the complexities

1. In this paper, the collusion attack means that, an adversary could
utilize the information gathered through interactions with the verifier when
authenticating previous queries, to cheat in the authentication of the next
new query. It’s a collusion across different query sessions.

of MAIA will surpass (asymptotically smaller than) MRQED
based scheme in communication cost, storage overhead, key
size, and computation cost. In the other direction, it may be
possible to apply some techniques in this paper to improve
or make a tradeoff among complexities of MRQED.

The main contributions in this paper can be summarized
as below:

1) We propose MAIA (Section 5), to authenticate mul-
tidimensional aggregate range queries, based on a
specially designed homomorphic MAC function Tag
(Section 4).

2) MAIA is efficient (See Table 1) and takes only O(`2)
communication bits for an `-dimensional aggregate
range query, for each 1 ≤ ` ≤ d, independent of the
query range size and dataset size.

3) We prove that MAIA is secure (Theorem 4, Corol-
lary 5) under reasonable assumptions (Assumption 1,
Assumption 2, etc.).

4) We extend MAIA to authenticate multidimensional
range selection query (Section 6.1.3). The performance
is showed in Table 1.

We also show a way to support multiple queriers using
private key version of MAIA in Section 6.2.2.

2. Related work

Cryptography. Privacy-preserving computation and in-
tegrity verification are two major aspects of the security of
outsourced computing. Many works in cryptography can be
casted as privacy-preserving computation over ciphertexts,
including homomorphic encryption [8], [9], Attribute Based
Encryption [2], [3], Predicate Encryption [4], [1], [5], [6],
and Order Preserving Encryption [10].

Shi et al. [1] proposed MRQED (Multi-Dimensional
Range Query over Encrypted Data), a public key encryp-
tion scheme supporting multidimensional range queries over
ciphertexts. Both MRQED [1] and MAIA deal with multi-
dimensional range selection and have to prevent collusion
attack cross different queries. But they are essentially differ-
ent in at least these aspects: (1) MRQED dealt with privacy,
and MAIA deals with integrity. (2) In MAIA, there is an
aggregate operation after multidimensional range selection,
and the verification of aggregated value is an additional re-
quirement and not easy to handle when communication cost
is concerned. (3) Besides collusion attack, MAIA also faces
other challenges, like undercounting and double-counting
attacks, which have no counterparts in researches of privacy-
preserving computation, like MRQED.

Several works [11], [12], [13], [14] in verification of
integrity of data stored in remote storage server also adopted
some homomorphic and/or aggregatable verification tags to
achieve efficient communication cost.

Secure Outsourced Database. There are roughly four cate-
gories of approaches for outsourced database authentication
in the literatures [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30]. (1) (Homomorphic,
or aggregatable) Cryptographic primitives, like collision-
resistant hash, digital signature, commitment [20], [31], [7];
(2) Merkle Hash Tree and variants (has a typical O(log |N |)
complexity for proof size) [28], [24], [23]; (3) Computa-
tional geometry approach [17], [23], [26] (4) Inserting and
auditing fake tuples [25].

Thompson et al. [7] proposed a scheme called PDAS,
with superlinear communication cost, more precisely
O(min{|S| logN, N})(S is the subset of tuples selected by
the query condition), and linear storage overhead, to authen-
ticate 1D aggregate (more precisely, SUM,COUNT) queries.
PDAS is based on Shamir’s threshold secret sharing [32]
and Pedersen commitment scheme [33], and protected the
privacy of the aggregated attributes from the verifier. The
authors briefly mentioned that their scheme could handle
aggregate queries conditional on multidimensional range
selections over insensitive attributes (stored in plaintext), but
no details are provided. It seems that PDAS still requires
superlinear communication cost for multidimensional aggre-
gate query. It is worthy to point out that, the techniques in
PDAS(like secret sharing, and how to compare two integers
privately) may be integrated into MAIA to provide similar
privacy protection, without much tradeoff of communication
cost (it may increase by the factor of τ , where τ is the bit-
length of the maximum attribute value in the dataset).

3. Formulation

In this section, we formulize the problem and security
model. We formally describe the dataset and query in Sec-
tion 3.1, and gives a general security model in Section 3.2
for authentication of outsourced computing. Here in Table 2,
we summarize the notations in this paper.

3.1. Problem

3.1.1. Dataset and Normalization. Let D ⊂ Zd be a set
of N d-dimensional points. Let x1,x2,x3, · · · ,xN be an
(arbitrary but fixed) enumeration of elements in D, where
each point xm = (xm,1, xm,2, · · · , xm,d), xm,j ∈ Z, 1 ≤
m ≤ N, 1 ≤ j ≤ d.

Let us consider the normalization of D. Normalization is
a technique commonly deployed in computational geome-
try [34]. That is, for each dimension 1 ≤ j ≤ d, we sort2 all
points in D along the j-th dimension in increasing order, in
order to get the rank, denoted as im,j , of xm,j , 1 ≤ m ≤ N ,
among {xm′,j : 1 ≤ m′ ≤ N}. As a result, each

2. Ties can be broken in an arbitrary way. For example, if xm1,j =
xm2,j , then xm1,j is “smaller” than xm2,j iff m1 < m2.

Table 2: Summary of Key Notations

• Z: Set of all non-negative integers.
• x

$←− S: x is uniformly randomly chosen from a finite set S.
• [a, b]: The set {a, a + 1, a + 2, · · · , b − 1, b}, where a < b

are non-negative integers.
• [b]: The set {1, 2, 3, · · · , b}, where b is a positive integer.
• i[j]: ij , where i = (i1, i2, · · · , ij , · · ·) is a vector of dimen-

sion ≥ j.
• |S|: The size of the set (or multiset) S.
• Prime: Set of all odd primes.
• Tag(x, i; ξ): Randomized function Tag with input (x, i) and

random coin ξ (Section 4).
• MAIA: It stands for “Multidimensional Aggregate query In-

tegrity Authentication” and it is our main scheme (Section 5).
• ProVer: It stands for “Prover-Verifier” and it is an interactive

algorithm (Section 5).
• CollRes: It stands for “Collusion Resistant” and it is a

subroutine called by algorithm ProVer (Section 5).

point xm = (xm,1, xm,2, · · · , xm,d) has a corresponding
d-dimensional rank vector im = (im,1, im,2, · · · , im,d),
where im,j is the rank of xm,j along j-th dimension of
D, 1 ≤ m ≤ N, 1 ≤ j ≤ d. One can view xm and im
as two different coordinates of the same point w.r.t. two
different coordinate systems. To distinguish these two types
of coordinates, we call xm as attribute vector or simply
attribute, and im as index vector or simply index.

We denote with Idx : D → [N]d the mapping from
attribute xm to index im w.r.t. dataset D. So Idx(xm) = im.

During the setup, Alice will compute the normalized
dataset of D. To process a query, Bob can do the conversion
between attributes and indices online, and Alice is able to
verify the correctness. For convenience of presentation, in
this paper we focus on range query over indices. The more
realistic case, where range query is over attributes (e.g. the
query in Figure 1), is handled in Section 6.1.1.

3.1.2. Query. Firstly, we describe the range selection query.
Let B = [a1, b1]× [a2, b2] · · · × [a`, b`]× [N]d−` ⊆ [N]d be
an `-dimensional (rectangular) range in [N]d, 1 ≤ ` ≤ d.
The result to the range selection query with range B is the
set of points in D whose index is in B, i.e. the set SB =
{xm ∈ D : Idx(xm) ∈ B, 1 ≤ m ≤ N}.

Next, we look at aggregate range queries. Let ι ∈ [d].
The sum query SUM(B, ι) asks for the the summation of
attribute values along the ι-th dimension of all points in SB,
i.e.

∑
x∈SB

x[ι]. Similarly, the min query MIN(B, ι) asks
for the minimum attribute value along the ι-th dimension
of all points in SB, i.e. minx∈SB

x[ι], and the count query
COUNT(B) asks for the number of points in SB, i.e. |SB|.

Remark. Although the above definition of `-dimensional
range restricts the very first ` dimensions, our scheme (with
trivial modifications) can handle the general case: range
selection over any ` out of d dimensions.

3.2. Security Model

First, we formulize the authentication problem described
in Section 1. Next, we will state the assumptions for the
security of our scheme.

Definition 1 (RC). A RC (Remote Computing) protocol for
a key-ed function F : M × KF → {0, 1}∗, between Alice
and Bob, consists of a setup phase and a query phase. The
setup phase consists of a key generating algorithm KGen
and data encoding algorithm DEnc; the query phase consists
of a sequence of query sessions, and each query session
consists of a pair of interactive algorithms, namely the
evaluator Eval and the extractor Ext. These four algorithms
(KGen,DEnc, 〈Eval,Ext〉) run in the following way:

1) Alice generates a key k : k ← KGen(1κ).
2) Alice encodes data x ∈ M: (px, sx) ← DEnc(x, k),

then sends px to Bob and keeps sx.
3) Alice selects a function key r ∈ KF .
4) Algorithm Eval(px) on the Bob’s side, interacts with

Algorithm Ext(sx, r, k) on the Alice’s side, to compute
y ← 〈Eval(px),Ext(sx, r, k)〉. If y = ⊥, then Alice
reject. Otherwise, Alice believes that y is equal to
F (x, r).

Definition 2 (PRC). A RC protocol
(KGen,DEnc, 〈Eval,Ext〉) w.r.t. function F : M × KF →
{0, 1}∗, is called PRC (Provable Remote Computing)
protocol, if the following two conditions hold
• correctness: for any x ∈ M, PEval(x) � 1 − negl(κ)

(asymptotically larger or equal);
• soundness: for any PPT adversary A, for any x ∈ M,

PA(x) � 1− negl(κ) (asymptotically larger or equal),
where PEval and PA are defined as

PEval(x) , Pr

k ← KGen(1κ);
(px, sx)← DEnc(x, k);

r
$←− KF ;

ζ ← 〈Eval(px),Ext(sx, r, k)〉 :
ζ = F (x, r)

 ,

PA(x) , Pr

k ← KGen(1κ);
(px, sx)← DEnc(x, k);
for 1 ≤ i ≤ poly(κ)

ri
$←− KF ;

ζi ← 〈A(px, viewExt
A),Ext(sx, r, k)〉;

r
$←− KF ;

ζ ← 〈A(px, viewExt
A),Ext(sx, r, k)〉 :

ζ = ⊥ ∨ ζ = F (x, r)

.

The probability is taken over all random coins used by
related algorithms, poly(·) is an arbitrary but fixed poly-
nomial function, and viewExt

A is a state variable3 describing

3. The adversary A may keep updating this state variable.

all random coins chosen by A and all messages A received
from Ext during previous interactions.

In this paper, the function F (·, ·) that we are dealing with,
is the aggregate SUM query over dataset D. More precisely,
the first argument of F is D and the second argument is the
query SUM(B, ι) as defined in Section 3.1, and the output
of F is the expected result to SUM(B, ι) w.r.t. dataset D.

Let the group generator G be a randomized algorithm,
which takes as input a security parameter 1κ and outputs
a tuple (n, p, q, r,Gp, Gq, Gr, gp, gq, gr), where n = (2p +
1)(2q + 1)(2r + 1) is a randomly chosen κ bits composite;
all of p, q, r, 2p + 1, 2q + 1 and 2r + 1 are distinct primes;
p, q and r are of the same bit-length; Gp, Gq and Gr are
three cyclic multiplicative subgroups of Z∗n, of order p, q
and r respectively; and gp, gq and gr are randomly chosen
generators of Gp, Gq and Gr respectively.

Assumption 1. Algorithm G(1κ) is run to obtain
(n, p, q, r,Gp, Gq, Gr, gp, gq, gr). Let group G = Gp×Gq×
Gr. The following two distributions are computationally
indistinguishable,

• X , {Xκ
$←− G}, i.e. Xκ is uniformly randomly

distributed over G;
• Y , {Yκ

$←− Gr}, i.e. Yκ is uniformly randomly
distributed over Gr.

Assumption 2. Algorithm G(1κ) is run to obtain
(n, p, q, r,Gp, Gq, Gr, gp, gq, gr). Let group G = Gp×Gq×
Gr. Define function R : G → Zr, such that for any
(x, y, z) ∈ Zp × Zq × Zr, R(gxpg

y
q g
z
r) , z. Let W be a

set {wi ∈ G : R(wi)
$←− Zr}. Given only (n,W), it is hard

to compute (A,B), such that

A 6≡ 1 (mod n), B = R(A) mod r.

Assumption 1 can be considered as a variant version
of the p-Subgroup Assumption [35], and also a variant
version of the Subgroup Membership Problem (SMP)
Assumption [36], and Assumption 2 is closely related to
the Projection Problem (PP) Assumption [36].

4. Homomorphic Verification MAC

Definition 3. Algorithm G(1κ) is run to obtain
(n, p, q, r,Gp, Gq, Gr, gp, gq, gr). Randomly choose
(s1, s2, s3) from Z∗p × Z∗q × {0, 1}κ. Define
(randomized) function Tag : Z × [N] → Z∗n with key
k = (s1, s2, s3, n, gp, gq, gr, p, q, r) as follows:

Tagk(x, i; ξ) , g
x+

s1
h(i)

p g−x+s2ξq g
fs3 (i)
r mod n

where the random coin ξ
$←− Z∗q , h(·) : Z → Prime is a

collision-resistant4 hash function, and {fs}s∈{0,1}κ is some

4. In other words, h should be division intractable. See Gennaro et
al. [37] for the definition of “division intractable”.

function (e.g. PRF [38]).

When we use the tag function Tag, we do not keep the
values of ξ. For simplicity, we may just write Tag(x, i). As
mentioned in the introduction, the tag function Tag consists
of three components P,Q,R:

P(x, s1/h(i)) = g
x+

s1
h(i)

p mod n,

Q(x, s2ξ) = g−x+s2ξq mod n,

R(fs3(i)) = g
fs3 (i)
r mod n,

Tagk(x, i; ξ) = P(x, s1/h(i))Q(x, s2ξ)R(fs3(i)) mod n.

Note that P,Q and R are homomorphic: for any inputs
y1, y2, z1, z2 ∈ Z,

P(y1, z1)P(y2, z2) ≡ P(y1 + y2, z1 + z2) (mod n);
Q(y1, z1)Q(y2, z2) ≡ Q(y1 + y2, z1 + z2) (mod n);

R(y1)R(y2) ≡ R(y1 + y2) (mod n).

Furthermore, P(y1, z1)p ≡ Q(y1, z1)q ≡ R(y1)r ≡ 1
(mod n). We point out that, with the key k, one can “ex-
tract”5 out P,Q or R component from a tag value generated
using Tag; without the key k, it is hard to do so, due to
Assumption 2.

Lemma 1. Given {(xi, i,Tagk(xi, i)) : xi ∈ Z}1≤i≤N , it
is computationally hard to forge a tuple (y, j,Tagk(y, j)),
under Assumption 1 and Assumption 2, and assuming that
fs3(·) is PRF.

The proof is given in Appendix A. Under Tag with key
k = (s1, s2, s3, n, gp, gq, gr, p, q, r), z is a valid MAC for
(x, i), if

zqr ≡
(
gqrp
)x+ s1

h(i) (mod n); (1)

zpq ≡ gpq fs3 (i)
r (mod n). (2)

Definition 4. Algorithm G(1κ) is run to obtain
(n, p, q, r,Gp, Gq, Gr, gp, gq, gr). Let (s`,1, s`,2, s`,3) ∈
Z∗p × Z∗q × {0, 1}κ for each 1 ≤ ` ≤ d and
k′ = (s1,1, s1,2, s1,3, s2,1, s2,2, s2,3, · · · , sd,1, sd,2, sd,3).
Define function TaG : Zd × [N]d → (Z∗n)d with
key k = (k′, n, gp, gq, gr, p, q, r) as follows: For
x = (x1, x2, · · · , xd) ∈ Zd, i = (i1, i2, · · · , id) ∈ [N]d,

TaGk(x, i; ξ) , (Tagk1(x1, i1, ξ),Tagk2(x2, i2, ξ),
· · · ,Tagkd(xd, id, ξ))

where for each `, 1 ≤ ` ≤ d, k` =
(s`,1, s`,2, s`,3, n, gp, gq, gr, p, q, r), and the random
coin ξ ∈ Z∗q .

Remark.

5. To “extract” the P component from a tag value t generated using Tag,
one can just raise t to power qr, where q and r are from key k.

• For every d-dimensional point in Zd, the vector-valued
function TaG defines a tag value consisting of d ele-
ments from Z∗n.

• The random number ξ binds together all d elements
from Z∗n generated using Tag.

• In the applications of TaG in this paper, we do not
keep the values of ξ’s. For simplicity, we may just write
TaG(x, i).

5. MAIA: Multidimensional Aggretate query
Ingegrity Authentication

Recall that Section 1 gives an overview of our scheme.
For illustration, we will first describe the scheme for d = 2
in Section 5.1. Then we will present the scheme for general
case d ≥ 1 in Section 5.2. We analyze the security of the
scheme in Section 5.3 and complexities in Section 5.4.

The main reason that our scheme achieves efficient
communication complexity, is that Alice can compress the
Help-Info and Bob can uncompress the compressed data to
generate a proof. The Compress and Uncompress algorithms
are described as follows:

Compress and Uncompress. Johnson et al. [39] (in Section
5 “Set Homomorphic Signatures” of that paper) proposed a
redactable signature scheme, based on the signature scheme
in Gennaro et al. [37]. We wrap this redactable signature
scheme as two algorithms Compress and Uncompress: Let
(n, gp) be defined as in Definition 3, pk ← n; sk ←
(n, gp, φ(n)), for a set I of integers,

• Compresssk(I): Output σ ← g

∏
i∈I

h(i)−1

p mod n.
• Uncompresspk(I, σ, Ĩ): If Ĩ 6⊆ I, output ⊥. Otherwise,

output σ̃: σ̃ ← σ

∏
i∈I\Ĩ

h(i)
mod n.

5.1. Illustration of MAIA over a 2D Dataset

Let us consider the dataset shown in Table 3 and Figure 2.
Table 3 and Figure 2 show a normalized (Section 3.1.1)
dataset D, consisting of 10 points x1,x2, · · · ,x10. Let us
consider the query that asks for the sum of the second
attribute values of all points within the range [3, 8] × [2, 7]
(i.e. the region R1 in Figure 2). Recall that this query is
denoted with notation SUM(R1, 2) (See Section 3.1.2).

5.1.1. Setup Phase. In the setup phase, Alice derives two
sub-keys k1 and k2 from the private key k. For each data
point xm = (xm,1, xm,2) with index im = (im,1, im,2),
Alice chooses a random number ξ, and generates a vec-
tor (Tagk1(xm,1, im,1; ξ),Tagk2(xm,2, im,2; ξ)), denoted as
Txm . Then Alice sends the dataset D together with all Txm ’s
to Bob. Figure 3 shows the construction of setup for general
case.

Table 3: The dataset D = {x1,x2, · · · ,x10}. . For each 1 ≤
m ≤ 10, we write xm = (xm,1, xm,2), and (im,1, im,2) is
the index vector of xm, i.e. im,1 is the rank of xm,1 among
{xm′,1 : 1 ≤ m′ ≤ 10}. Similar for im,2 and xm,2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

xm,1 5 7 11 24 31 45 58 61 83 97
im,1 1 2 3 4 5 6 7 8 9 10
xm,2 3 21 77 58 37 10 82 1 7 87
im,2 2 5 8 7 6 4 9 1 3 10

Figure 2: The set D of 10 points x1,x2, · · · ,x10 are dis-
played on the [1, 10]×[1, 10] grid, where xm’s, 1 ≤ m ≤ 10,
are as defined in Table 3. Each point xm is labeled with
(xm, xm,2), and located at position (im,1, im,2). The 2D
range [3, 8]× [2, 7] selects the region denoted by “R1”.

Recall that the tag function Tag consists of three compo-
nents P,Q,R (Section 4): Let dimension j ∈ {1, 2},

Tagkj (x, i; ξ) = g
x+

sj,1
h(i)

p g−x+sj,2ξq g
fsj,3 (i)
r

= P(x, sj,1/h(i))Q(x, sj,2ξ)R(fsj,3(i)).

Here sj,1, sj,2 and sj,3 are from the sub-key kj , and P,Q and
R are some homomorphic functions (See Section 4 for de-
tails). As mentioned in Section 4, with the private key, Alice
can extract P(x, sj,1/h(i)), Q(x, sj,2ξ), and R(fsj,3(i)) from
the value of Tagkj (x, i; ξ), using some function Υp,Υq and
Υr respectively (Notice that in the costruction in Figure 4
and Figure 5, Alice just raises a value t, generated using
Tag, up to a power qr to cancel out Q and R components
and retain only P component). Without the private key, it is
hard to break Tagkj (x, i; ξ) into P, Q and R components,
by Assumption 2.

5.1.2. Query Phase. In a query session, Alice issues an
aggregate range query to Bob, for example, the query

SUM(R1, 2): what is the sum of the attribute values (pre-
cisely xm,2) of all points inside range R1. Bob should
compute the query result 58 + 37 + 10 = 105, and convince
Alice that 105 is the correct answer. The two major chal-
lenges to Alice are: (1) How to prevent collusion attack, i.e.
prevent Bob from utilizing Help-Info gathered from Alice
in previous query sessions to cheat in the current session;
(2) How to ensure completeness, i.e. prevent Bob from
undercounting and double-counting (e.g. Bob may “remove”
the point x5 from range R1, or “forge” a new point x′6
as a duplicate copy of x6). As mentioned in Section 1,
Alice will use secret random nonces α’s in a proper way
to prevent collusion attack and check the complementary
region to ensure completeness.

Recall R1 = [3, 8]× [2, 7] is a 2D range. Let C = [3, 8]×
[1, 10] be a 1D range. Suppose Alice somehow “knows”
the correct result W to the query SUM(C, 2) and the
valid proof Π for W . The mechanism to prevent collusion
attack is captured in an algorithm called CollRes (stands for
“Collusion Resistant”). Alice interacts with Bob to simulate
CollRes with the query SUM(R1, 2) as input, and gets results
W1 and a partial proof π1. To ensure that 105 is computed
from all points inside range R1, without duplicating or
missing, Alice checks the complementary region C \ R1,
which is just the union of 2D ranges R2 and R3. Running
CollRes on queries SUM(R2, 2) and SUM(R3, 2) separately,
Alice obtains (W2, π2) and (W3, π3) from Bob respectively,
where W2 and W3 are query results, and π2 and π3 are
partial proofs. Alice checks (1) W ?= W1 + W2 + W3; (2)
whether (π1, π2, π3) is consistant with Π. Here π1 can be
viewed as the first part of proof for the query SUM(R1, 2),
and (Π, π2, π3) can be viewed as the second part of proof,
as mentioned in Section 1.

The whole interactive process between Alice and Bob is
captured in an algorithm called ProVer (stands for “Prover-
Verifier”). ProVer will call three instances of CollRes as sub-
routine on query SUM(R1, 2), SUM(R2, 2) and SUM(R3, 2)
respectively. Meanwhile, ProVer will recursively call itself
on query SUM(C, 2).

Part I. We describe the interactive algorithm CollRes on
a 2D aggregate range query SUM(R1, 2) step by step as
follows. The construction of CollRes for general case is
given in Figure 4.
A1: Alice issues the query SUM(R1, 2), and sends δ1 and

δ2 to Bob, where δ1 and δ2 are computed as follows,
a) Alice selects two independent random nonces α1

and α2, and computes the Help-Info
$1 = {P(0, 1/h(i))α1 : i ∈ [3, 8]} and
$2 = {P(0, 1/h(i))α2 : i ∈ [2, 7]}.

b) Alice compresses $1 and $2 using algorithm
Compress (details in Step A1(b) in Figure 4),
and randomizes the compressed data to obtain
δ1 and δ2 (details in Step A1(c) in Figure 4).

B1: Bob generates the query result w2, and the proof
(w1, ψ1, ψ2, ψ̃1, ψ̃2), in the following way, and sends
them to Alice.

a) Bob finds the set S = {x4,x5,x6} of points in
the range R1.

b) Bob uncompresses δ1 and δ2 to obtain $1 and
$2, using algorithm Uncompress, and computes

wj =
∑
x∈S

x[j]; ψj =
∏
x∈S

Tx[j];

ψ̃j =
i=Idx(x)∏

x∈S
P
(
0, 1/h(i[j])

)αj
Note that Tx is the tag vector of x generated
in the setup phase, Tx[j] refers to the j-th
component of the vector Tx, and i = Idx(x) is
the index of x, as defined in Section 3.1.

A2: Alice checks the correctness of w2 in two steps:
a) Alice extracts P components from ψj and ψ̃j

using private key, and checks the consistency
between these two P components using the secret
random nonce αj : For dimension j ∈ {1, 2},

Υp(ψ
αj
j)

?≡ P(αjwj , 0)Υp(ψ̃
sj,1
j) (mod n).

b) Alice verifies the consistency of the random
variables ξ’s between ψ1 and ψ2:

Υq(ψ
s2,2
1)

Q(s2,2w1, 0)
?≡ Q(0, s1,2s2,2

∑
x∈S

ξx)
?≡ Υq(ψ

s1,2
2)

Q(s1,2w2, 0)
(mod n).

Remark on Correctness.
1) Let Λj =

∑i=Idx(x)
x∈S 1/h(i[j]) for j ∈ {1, 2}. Due to

the homomorphism of P, one can derive the following
equalities,

Υp(ψj) = P
(
wj , sj,1

i=Idx(x)∑
x∈S

1/h(i[j])
)

= P(wj , sj,1Λj),

Υp(ψ̃j) = P
(
0, αj

i=Idx(x)∑
x∈S

1/h(i[j])
)

= P(0, αjΛj).

2) If wj’s, ψj’s, and ψ̃j’s are computed honestly accord-
ing to the protocol, we have

Υp(ψ
αj
j) = P(αjwj , αjsj,1Λj)

= P(αjwj , 0)P(0, αjsj,1Λj)

= P(αjwj , 0)Υp(ψ̃
sj,1
j) (mod n).

Hence, the equivalence in Step A2 (a) holds.

Remark on Soundness.
1) Bob is not able to forge a valid tag value w.r.t. Tag

due to Lemma 1. Bob could not compute ψ̃j’s neither,
without Help-Info from Alice.

2) If Bob intends to include the point of index (i1, i2)
outside the range R1 to the answer (W.L.O.G, assume
i1 6∈ [a1, b1]), he cannot forge P(0, 1/h(i1))α1 without
knowing α1, so the proof he generated cannot pass the
verification in Step A2(a) described above.

3) If Bob intends to combine the first dimenison of the
point x7 and the second dimension of the point x2

to forge a point inside the range R1, the proof he
generated cannot pass the verification in Step A2(b),
because x2 and x7 have different secret binding vari-
ables ξ’s.

4) Bob could not take use of Help-Info recevied from
Alice in previous sessions, to cheat in the processing
of the current query, because αj’s are secret random
nonces. Namely, collusion attack can be prevented.

Part II. We describe the interactive algorithm ProVer on
a 2D aggregate range query SUM(R1, 2) step by step as
follows. The construction of ProVer for general case is given
in Figure 6.
A1: Alice chooses three ranges R2, R3, and C, based on

range R1, where (R1,R2,R3) is a partition of 1D
range C.

B1: Bob interacts with Alice to simulate CollRes on
queries SUM(R1, 2), SUM(R2, 2) and SUM(R3, 2),
and simulate ProVer on query SUM(C, 2).

A2: (1) Alice interacts with Bob to simulate CollRes on
queries SUM(R1, 2), SUM(R2, 2) and SUM(R3, 2),
and receives their answers (W1, ψ1,1, ψ1,2),
(W2, ψ2,1, ψ2,2), (W3, ψ3,1, ψ3,2), respectively.
Recursively, Alice interacts with Bob to simulate
ProVer on query SUM(C, 2), and receives answer
(W4, ψ4,1).
(2) Assuming the answer (W4, ψ4,1) is correct,
Alice verifies the completeness of the answer to
SUM(R1, 2), by checking the consistency among W ’s
and among pseduorandom fsj,3(i)’s:

W1 +W2 +W3 = W4

Υr(ψ1,1)Υr(ψ2,1)Υr(ψ3,1) ≡ Υr(ψ4,1) (mod n)

Note that Υr(ψ1,1) is an “encrypted” form of the sum
of fsj,3(i)’s for range R1.

Remark.
1) The above procedure can prevent undercounting and

double-counting attacks based on the assumption that
we have a solution to handle 1D case. For 1D ag-
gregate query SUM(C, 2) (Recall that C = [3, 8] ×
[1, 10]), Alice has full information of I = {i[1] : i ∈
C∧ there is some data point at location i)} = [3, 8],

so she can reconstruct {fs1,3(i) : i ∈ I}, and
verifies the answer (W4, ψ4,1) to query SUM(C, 2) by
checking fs1,3(i) directly:

Υr(ψ4,1) ≡ g
∑

i∈I
fs1,3 (i)

r (mod n).

2) For 1D aggregate query, the set (e.g. I as in the
above example) of indices of points in the query range,
forms a sequence of consecutive integers, so it can
be expressed efficiently with two boundary integers
(e.g. [3, 8] represents I). This is the reason that our
scheme achieves constant communication complexity
in 1D case.

3) For higher dimensional aggregate query,
the set (e.g. I = {(i[1], i[2]) : i ∈
R1 ∧ there is some data point at location i} for
query SUM(R1, 2)) of indices of points in the
query range, cannot be expressed compactly as in
1D case (Note that, in general, I ([3, 8] × [2, 7]).
So Alice switches to verify the P component
of Tag to audit 1/h(i)’s. Alice comuptes
$j = {P(0, 1/h(i))αj : i ∈ [aj , bj]} embeding
a random once αj , and compress $j before sending
it to Bob. From comprssed $j , Bob is able to recover
$j , and to construct ψ̃j’s as a part of the proof. Due
to the compression of $j’s, our scheme can achieve
efficient communication complexity (i.e. O(`2) for
`-dimensional aggregate query. See Section 5.4).

5.2. The Main Construction: Generalize to high
dimension

In this subsection, we formally describe the RC protocol
MAIA = (KGen,DEnc, 〈Eval,Ext〉) (See Section 3.2 for RC
protocol) for multidimensional aggregate range query. The
key generating algorithm KGen and data encoding algorithm
DEnc are given in Figure 3. Note that for convenience of
presentation, we call 〈Eval,Ext〉 of MAIA as ProVer. In Fig-
ure 5, we present the interactive proof, denoted as ProVer1,
for 1D aggregate range query. In Figure 6, we present the
interactive proof, denoted as ProVer`, for `-dimensional
(2 ≤ ` ≤ d) aggregate range query. ProVer` will call a sub-
routine CollRes` (for `-dimensional query), which is given
in Figure 4. In the output (w0, ψ0,1, ψ0,2, · · · , ψ0,`, ψ0,ι) of
ProVer`, w0 is the result to the query and the rest is the
proof.

5.3. Security Analysis

In previous subsection, we have described our authenti-
cation scheme for multidimensional aggreagte query. That
is: (1) MAIA1, the solution to 1D case, consists of two
algorithms KGen and DEnc in Figure 3 for setup phase,
and an interactive algorithm 〈Eval,Ext〉 (namely ProVer1)

Figure 3: Setup phase of MAIA for dataset D.

(Alice) KGen(1κ). Randomly choose key k as in
Definition 4. Output k.

(Alice) DEnc(D; k).

1) Alice normalizes the dataset D to obtain an index
Idx(x) ∈ [N]d for each point x ∈ D (See Sec-
tion 3.1.1 for “normalize” and Idx), where N is
the number of points in D.

2) For each x ∈ D, Alice randomly chooses ξ from Z∗q ,
and create a tag value: Tx ← TaGk(x, Idx(x); ξ).

3) Alice sends D and {Tx : x ∈ D} to Bob, and
removes their local copy.

in Figure 5 for query phase; (2) MAIA`, the solution to `-
dimension case, consists of two algorithms KGen and DEnc
in Figure 3 for setup phase, and an interactive algorithm
〈Eval,Ext〉 (namely ProVer`) in Figure 6 for query phase.
Recall that the SUM query is defined in Section 3.1.

Theorem 2. MAIA1 is a PRC protocol (as defined in
Definition 2) w.r.t. 1D SUM query (as defined in Section 3.1),
under Assumption 1 and Assumption 2, and assuming that
fs(·) is PRF.

Lemma 3. Under Assumption 1 and Assumption 2, and
assuming that fs(·) is a PRF, MAIA` is a PRC protocol
w.r.t. `-dimensional aggregate SUM query , if MAIA`−1 is
a PRC protocol w.r.t. (` − 1)-dimensional aggregate SUM
query, where 2 ≤ ` ≤ d.

The proof of Theorem 2 is given in Appendix B, and
a sketch of proof of Lemma 3 is given in Appendix C.
From Theorem 2 and Lemma 3, we conclude the following
Theorem 4 as our main theorem.

Theorem 4. For any `, 1 ≤ ` ≤ d, MAIA` is a PRC
protocl, w.r.t. `-dimensional aggregate SUM query, under
Assumption 1 and Assumption 2, and assuming that fs(·)
is a PRF.

5.4. Complexity Analysis

The communication complexities of CollRes` and ProVer`

are only dependent on `, regardless of the query range or
the size of dataset D. The communication cost of CollRes`

is O(`). Denote the communication cost of ProVer` as
C(`). ProVer is a recursive algorithm. We have recurrence:
C(1) = O(1); C(`) = C(` − 1) + 3O(`). Hence
C(`) = O(`2). More precisely, C(`) is about 2.5`2κ bits.

It is straightforward to see that the round complexity of
ProVer is O(`). We can reduce it to O(1), by running

Figure 4: CollRes`: A subroutine of ProVer. Processing
query SUM(B, ι), where ι ∈ [d], 1 ≤ ` ≤ d, and
B = [a1, b1]× [a2, b2]× · · · × [a`, b`]× [N]d−`.

Alice has key k; Bob has dataset D and tags {Tx : x ∈ D}.
A1: Alice computes the Help-Info $j’s and randomizes

them to obtain δj’s, in the following way. Then
Alice sends (a1, a2, · · · , a`; b1, b2, · · · , b`; ι) and
(δ1, δ2, · · · , δ`, δι) to Bob.

a) If ι 6∈ [`], let aι = 1 and bι = N .
b) Let sk = (n, gp, φ(n)). For each j ∈ [`]∪{ι},

$j ← Compresssk([aj , bj]).
c) For each j ∈ [`] ∪ {ι}, αj

$←− Z∗p, ξ $←− Z∗q ,

λ
$←− Z∗r , δj ← $

αj
j gξqg

λ
r mod n.

B1: Bob generates the query result wι and the proof
(w1, w2, · · · , w`;ψ1, ψ2, · · · , ψ`, ψι; ψ̃1, · · · , ψ̃`, ψ̃ι)
in the following way, and sends them to Alice.

a) Let the set S = {x ∈ D : Idx(x) ∈ B} and
SI = {Idx(x) : x ∈ S}.

b) For each i ∈ SI , j ∈ [`] ∪ {ι}, ui,j ←
Uncompress([aj , bj], δj , i[j]).

c) For j ∈ [`] ∪ {ι},
wj ←

∑
x∈S x[j];

ψj ←
∏

x∈S Tx[j] mod n;
ψ̃j ←

∏
i∈SI ui,j mod n.

Note that SI ⊆ B. Recall that Tx denotes the
tag vector of x generated in Figure 3, and Tx[1]
denotes the 1st dimension of the vector Tx.

A2: Alice accepts Bob’s reply and outputs
(wι, ψ1, ψ2, · · · , ψ`, ψι), if the following (2` + 1)
equations hold:

∀j ∈ [`] ∪ {ι},(
ψj

g
wj
p

)qrαj
≡ ψ̃qrsj,1j (mod n); (3)

∀j ∈ [`],(
ψjg

wj
q

)prsι,2 ≡ (ψιgwιq)prsj,2 (mod n). (4)

Otherwize reject it and output ⊥.

all recursive calls to ProVer`−1,ProVer`−2, · · · ,ProVer1,
simultaneously and in parallel.

The storage overhead on Bob’s side, i.e. the total size
of all tags, is O(dN): dN elements from Z∗n. The storage
overhead on Alice’s side, i.e. the key size, is O(d): (3d+7)
elements from {0, 1}≤κ. The computation complexity per
query on Bob’s side is O(`N2) (modular exponentiations)
for `-dimensional aggregate range query. The dominant com-

Figure 5: ProVer1: The query phase of MAIA1. Processing
query SUM(B, ι), where ι ∈ [d] and B = [a1, b1]× [N]d−1.

Alice has key k and runs algorithm Ext; Bob has dataset
D and tags {Tx : x ∈ D} and runs algorithm Eval.
B1: Bob interacts with Alice to simulate CollRes1 on

query SUM(B, ι).
A1: a) Alice interacts with Bob to simulate CollRes1

on query SUM(B, ι). If rejected, then Alice
rejects the current interaction and output ⊥.
Otherwise, let (w1, wι, ψ1, ψι, ψ̃1, ψ̃ι) be the
message that Alice received from Bob in Step
A2 of CollRes1 in Figure 4.

b) Alice accepts Bob’s reply and output
(wι, ψ1, ψι), if all of the following equations
hold. Otherwise, rejcet it and output ⊥. Let
I = [a1, b1]; all equations are modulo n;

ψpq1 ≡ g
pq
(∑

i∈I
fs1,3 (i) mod r

)
r ; (5)

ψqr1 ≡
(
gqrp
)w1+

∑
i∈I

s1,1
h(i) mod p

. (6)

putation step is Uncompress in Step B1(b) in Figure 4. The
computation complexity per query on Alice’s side is O(`N)
(modular multiplications). The dominant computation step
is Compress in Step A1(b) in Figure 4. We can reduce the
computation cost on Alice’s side to O(` logN) (modular
multiplications) at the cost of additional O(N) storage on
Bob’s side, and reduce the computation cost on Bob’s side to
O(`N logN) (modular exponentiations; the constant factor
behind big-O notation is about 1 and the base of log is
2), with O(N) temporary storage. We save the details. The
summary of complexities of MAIA compared with related
schemes is given in Figure 1 in Section 1.

Note that the computation time for decryption in
MRQED [1] is O(logdN) (bilinear map group operations).
When d > log(dN)/ log logN , we have dN logN ≤
logdN , not to mention that MRQED uses bilinear map
operations and MAIA uses only modular exponentiations and
multiplications.

6. Extension and Performance of MAIA

In this section, we extend MAIA to support: (1) range
query over attributes; (2) COUNT, MIN and MAX queries;
(3) range selection query. After that, we discuss some
speedup methods, and show a way to support multiple
queriers with private key version of MAIA.

6.1. Extension of MAIA

Figure 6: ProVer`: The query phase of MAIA`. Processing
query SUM(B, ι), where ι ∈ [d], 2 ≤ ` ≤ d, and
B = [a1, b1]× [a2, b2]× · · · × [a`, b`]× [N]d−`.

Alice has key k and runs algorithm Ext; Bob has dataset
D and tags {Tx : x ∈ D} and runs algorithm Eval.
A1: Alice chooses three ranges B1,B2,B3, where

B1 = [a1, b1] × · · · × [a`−1, b`−1] × [1, a` − 1] ×
[N]d−`,
B2 = [a1, b1] × · · · × [a`−1, b`−1] × [b` + 1, N] ×
[N]d−`,
B3 = [a1, b1]× · · · × [a`−1, b`−1]× [N]d−`+1.
Note that (B,B1,B2) is a partition of B3.

B1: Bob
a) Interacts with Alice to simulate CollRes`

on query SUM(B, ι), SUM(B1, ι), and
SUM(B2, ι), sequentially.

b) Interacts with Alice to simulate ProVer`−1 on
query SUM(B3, ι).

A2: Alice
a) Interacts with Bob to simulate CollRes` on
query SUM(B, ι), SUM(B1, ι), and SUM(B2, ι),
sequentially. If any of the above three queries is
rejected, then reject the current query and output
⊥. Otherwise denote the three outputs as
(W0, ψ0,1, ψ0,2, · · · , ψ0,`, ψ0,ι),
(W1, ψ1,1, ψ1,2, · · · , ψ1,`, ψ1,ι), and
(W2, ψ2,1, ψ2,2, · · · , ψ2,`, ψ2,ι).
b) Interacts with Bob to simulate ProVer`−1 on
query SUM(B3, ι). If it is rejected, then reject the
current query and output ⊥. Otherwise denote the
output as (W3, ψ3,1, ψ3,2, · · · , ψ3,`−1, ψ3,ι).
c) Accepts Bob’s reply and output
(W0, ψ0,1, ψ0,2, · · · , ψ0,`, ψ0,ι), if the following
equations hold,

W0 +W1 +W2 = W3 (7)
∀ϑ ∈ [`− 1] ∪ {ι},

(ψ0,ϑψ1,ϑψ2,ϑ)pq ≡ (ψ3,ϑ)pq (mod n). (8)

Otherwise, reject and output ⊥.

6.1.1. Conversion from Attribute to Index. As we have
mensioned previously, our scheme can handle the more
realistic case: aggregate over attributes conditional on range
selection over attributes, e.g. the query in Figure 1. Our
strategy is that, Alice translates attribute values to index
values online with the help of Bob, and Alice is able to
verify the correctness of the translation.

Suppose Alice’s query is SUM(B̂, ι), i.e. what is the sum

of attribute values along the ι-th dimension of all points
x ∈ B̂, where B̂ = [ŷ1, ẑ1]× [ŷ2, ẑ2]×· · ·× [ŷ`, ẑ`]×Zd−`,
` ≥ 2, and for each 1 ≤ j ≤ `, ŷj , ẑj ∈ Z. Alice will have
one additional round of communication (Step A0 and B0)
with Bob just before Alice’s first step A1 and Bob’s first
step B1 in Figure 4. In Step A0, Alice sends {(ŷj , ẑj) :
1 ≤ j ≤ `} to Bob. Next, in Step B0, Bob sends back the
translated index and its proof {(aj , yj , ta,j) : 1 ≤ j ≤ `} and
{(bj , zj , tb,j) : 1 ≤ j ≤ `}. Alice accepts the translation, if
for each j, 1 ≤ j ≤ `, (1) yj ≥ ŷj and zj ≤ ẑj ; (2) ta,j and
tb,j are valid MACs of (yj , aj) and (zj , bj), respectively,
under Tag w.r.t. key kj (See Eq 1 and Eq 2). As a result,
the range B̂ over attributes is translated into range B =
[a1, b1]× [a2, b2]× · · · × [a`, b`]× [N]d−` over indices.

Particularly in case ` = 1, Bob has to send back
Π = {(al, yl, ta,l), (ar, yr, ta,r), (bl, zl, tb,l), (br, zr, tb,r)}
for (ŷ, ẑ). Alice accepts the translation, if6 (1) yl ≤ ŷ ≤ yr
and zl ≤ ẑ ≤ zr; (2) every 3-tuple in Π is a valid data-MAC
pair under Tag w.r.t. key k1. In this way, range [ŷ, ẑ] over
attribute values is translated into range [ar, bl] over indices.

Note that in 1D case, Alice has to check the two side
boundaries, while in higher dimensional case, Alice just
checks one side boundary.

6.1.2. Extend to COUNT, MIN Query. COUNT is just a
special case of SUM: summing a constant attribute. In the
setup, Alice attaches a new constant attribute value 1 to each
point x ∈ D. As a result, the dimension of each point x will
increase by 1. Then Alice performs the SUM query for this
constant attribute using MAIA over the resulting dataset.

Furthermore, MIN and MAX query can be converted to
COUNT query. The conversion is based on this property:
For any set S of numbers, c = minS ⇔ c ∈ S ∧ |S| =
|{x : x ∈ S ∧ x ≥ c}|. Suppose Alice asks Bob for the
minimum attribute value along the ι-th dimension of points
within range B̂ (as given in Section 6.1.1) . Bob returns
some value c, with the proof of c ∈ S, where S is the set of
attribute values along the ι-th dimension of all points within
range B̂, i.e. S = {x[ι] : x ∈ B̂∩D}. Then Alice issues two
COUNT queries to Bob: (1) COUNT(B̂), i.e. the size of set
S; (2) COUNT

(
B̂
⋂ (

Zι−1 × [c,+∞)× Zd−ι
))

, i.e. the
size of set {x : x ∈ S ∧ x ≥ c}. Bob is expected to return
the two count numbers with proofs following the (extended)
MAIA protocol. Alice believes c is the minimum value if all
proofs are valid and the two count nubmers are equal.

Similarly, MAX query can be authenticated. So we con-
clude that: MAIA can handle all of SUM, COUNT, MIN,
MAX aggregate query.

Corollary 5. For any `, 1 ≤ ` ≤ d, MAIA` (with slight mod-
ifications) is a PRC (Provable Remote Computing) protocol

6. We omit the two extreme cases: (1) ŷ is too small, e.g. ŷ < 0; (2) ẑ
is too large, e.g. ẑ = +∞.

(as defined in Definition 2) w.r.t. `-dimensional aggregate
SUM, COUNT, MIN, or MAX Query, under Assumption 1
and Assumption 2, and assuming that fs(·) is a PRF.

6.1.3. Multidimensional Range Selection Query. Besides
aggregate range query, our scheme (with slight modifica-
tions) can also authenticate multidimensional range selection
query, by authenticating a weighted sum of selected attribute
values.

Suppose Alice wants to select the ι-th dimension of all
points within range B̂. She does it in three steps: (1) Issue
the range selection query to Bob, and Bob returns a set
{x[ι] : x ∈ S} of attribute values without any proof, where
S denotes the set of points within range B̂; (2) Issue query
COUNT(B̂) to Bob using the extended MAIA; (3) Simulate
(modified) CollRes with Bob to authenticate a weighted
sum query with range B̂. More precisely, Alice asks for
the weighted sum wj ←

∑
x∈S x[j] H(x[ι]) with hash

of attribute as weights, where H is some collision-resistant
hash function. So in Bob’s first step B1 in Figure 4, the sum
wj ←

∑
x∈S x[j] is replaced by wj ←

∑
x∈S x[j]H(x[ι]),

and the computations of ψj’s and ψ̃j’s are modified corre-
spondingly.

Assume all (legitimate) attribute values are distinct. From
(3), Alice can verify the correctness of the result set returned
in (1). With the help of the count number from (2), Alice
can ensure the completeness of the range selection query.

6.2. Performance of MAIA

6.2.1. Tightest Bounding Box. The tightest `-dimensional
bounding box for a range B = [a1, b1] × · · · × [a`, b`] ×
[N]d−`, is the minimum `-dimensional rectangular range
B̄ that satisfies the following conditions: (1) B̄ ⊆ B; (2)
COUNT(B) = COUNT(B̄). For example, in Figure 2, the
tightest 2D bounding box for range R1 is [4, 6]× [4, 7].

We can find the tightest bounding box for range B in this
way: Let SI = {i ∈ B : ∃x ∈ D, Idx(x) = i}. For each 1 ≤
j ≤ d, let āj = mini∈SI i[j] and b̄j = maxi∈SI i[j]. Then
the tightest (`-dimensional) bounding box is B̄ = [ā1, b̄1]×
[ā2, b̄2] × · · · × [ā`, b̄`] × [N]d−`. We can replace aι, bι in
Step A1(a) of CollRes in Figure 4 with āι, b̄ι.

In certain scenarioes, B̄ (B. Alice can ask Bob for
the tightest bounding box B̄ for a query range B and just
generate Help-Info for B̄, instead of B itself. In the example
dataset in Figure 2, the (uncompressed) Help-Info for range
R1, i.e. [3, 8]×[2, 7], consists of (8−3+1)+(7−2+1) = 12
elements from Z∗n. In contrast, the (uncompressed) Help-
Info for the tightest bounding box [4, 6]× [4, 7], consists of
only (6 − 4 + 1) + (7 − 4 + 1) = 7 elements. Note that
the running time of Compress (in Step A1(b) in Figure 4)
and Uncompress (in Step B1(b) in Figure 4) w.r.t. range B̄ is
proportional to the sum of widths of the query interval along
each dimension j ∈ [`] ∪ {ι}, i.e.

∑
j∈[`]∪{ι} (b̄j − āj + 1).

Furthermore, Alice may sort the first ` dimensions in
decreasing order according to the width of the query interval,
and process each dimension in this order. That is, Alice will
process dimension j before dimension j′, if (b̄j − āj + 1) >
(b̄j′ − āj′ + 1), j, j′ ∈ [`].

6.2.2. Mitigation of Computation Cost and Support of
Multiple Queriers. In actual application, one may employ
our scheme MAIA in this way: The setup is as in Figure 3.
In a query session, anyone, say Charlie, issues a query Q
to Bob, and Bob should return a query result protected by
Bob’s signature, i.e. Bob returns (W,σ), where W is the
result to query Q, and σ is Bob’s signature on (Q,W). After
receiving (W,σ), Charlie may decide whether (or when) to
ask Alice to verify the correctness of W . If Alice receives
a verification request from Charlie, she will run MAIA with
query Q to verify the query result W by interacting with
Bob. Using MAIA in this way, will not weaken the benefits
of outsourcing significantly, because Alice just need run a
lightweight verification server with very small storage (for
the key and some temporary data, and the size of temporary
data is in O(d2) where d is the dimension).

7. Conclusion

We proposed a scheme to authenticate aggregate range
query over static multidimensional dataset, and the com-
munication complexity (in term of bits) is sublinear and
independent of the query range size and the dataset size.
Aggregate operations we considered in this paper include
summing, counting, and finding of the minimum and maxi-
mum. Our scheme and techniques can be useful in various
other applications. In particular, we showed that our scheme
with slight modifications can authenticate multidimensional
range selection query, and improved the communication
overhead significantly compared with previous works. How
to convert our scheme to the public key setting using bilinear
map, remains an open problem.

References

[1] Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.:
Multi-dimensional range query over encrypted data. In: SP
’07: IEEE Symposium on Security and Privacy. (2007) 350–
364

[2] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy
attribute-based encryption. In: SP ’07: IEEE Symposium on
Security and Privacy. (2007) 321–334

[3] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-
based encryption for fine-grained access control of encrypted
data. In: CCS ’06: ACM conference on Computer and
communications security. (2006) 89–98

[4] Boneh, D., Waters, B.: Conjunctive, subset, and range queries
on encrypted data. In: TCC ’07: Theory of Cryptography.
(2007) 535–554

[5] Katz, J., Sahai, A., Waters, B.: Predicate encryption support-
ing disjunctions, polynomial equations, and inner products.
In: EUROCRYPT ’08: International Conference on Advances
in Cryptology. (2008) 146–162

[6] Shi, E., Waters, B.: Delegating capabilities in predicate
encryption systems. In: ICALP ’08: International colloquium
on Automata, Languages and Programming. (2008) 560–578

[7] Brian Thompson, Danfeng Yao, S.H.W.G.H., Sander, T.:
Privacy-preserving computation and verification of aggregate
queries on outsourced databases. In: PETS ’09: Privacy
Enhancing Technologies Symposium (PETS). (2009)

[8] Rivest, R.L., Shamir, A., Adleman, L.: A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM 21(2) (1978) 120–126

[9] Paillier, P.: Public-key cryptosystems based on composite de-
gree residuosity classes. In: EUROCRYPT ’99: International
Conference on Advances in Cryptology. (1999) 223–238

[10] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-
preserving symmetric encryption. In: EUROCRYPT ’09:
International Conference on Advances in Cryptology. (2009)
224–241

[11] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L.,
Peterson, Z., Song, D.: Provable data possession at untrusted
stores. In: CCS ’07: ACM conference on Computer and
communications security. (2007) 598–609

[12] Chang, E.C., Xu, J.: Remote integrity check with dishonest
storage server. In: ESORICS ’08: European Symposium on
Research in Computer Security. (2008) 223–237

[13] Shacham, H., Waters, B.: Compact proofs of retrievability.
In: ASIACRYPT ’08: International Conference on the Theory
and Application of Cryptology and Information Security.
(2008) 90–107

[14] Bowers, K.D., Juels, A., Oprea, A.: Hail: A high-availability
and integrity layer for cloud storage. Cryptology ePrint
Archive, Report 2008/489 (2008) http://eprint.iacr.org/.

[15] Chen, H., Ma, X., Hsu, W.W., Li, N., Wang, Q.: Access
control friendly query verification for outsourced data pub-
lishing. In: ESORICS ’08: European Symposium on Research
in Computer Security. (2008) 177–191

[16] Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.:
Authentic third-party data publication. In: IFIP ’00: IFIP
TC11/ WG11.3 Working Conference on Database Security.
(2000) 101–112

[17] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A.,
Stubblebine, S.G.: A general model for authenticated data
structures. Algorithmica 39(1) (2004) 21–41

[18] Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Au-
thentic data publication over the internet. J. Comput. Secur.
11(3) (2003) 291–314

[19] Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verifying
completeness of relational query results in data publishing.
In: SIGMOD ’05: ACM SIGMOD international conference
on Management of data. (2005) 407–418

[20] Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and
integrity in outsourced databases. Trans. Storage 2(2) (2006)
107–138

[21] Pang, H., Tan, K.L.: Verifying completeness of relational
query answers from online servers. ACM Trans. Inf. Syst.
Secur. 11(2) (2008) 1–50

[22] Sion, R.: Query execution assurance for outsourced databases.
In: VLDB ’05: International conference on Very large data
bases. (2005) 601–612

[23] Cheng, W., Tan, K.L.: Query assurance verification for
outsourced multi-dimensional databases. J. Comput. Secur.
17(1) (2009) 101–126

[24] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic
authenticated index structures for outsourced databases. In:
SIGMOD ’06: ACM SIGMOD international conference on
Management of data. (2006) 121–132

[25] Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of
outsourced data. In: VLDB ’07: International conference on
Very large data bases. (2007) 782–793

[26] Atallah, M.J., Cho, Y., Kundu, A.: Efficient data authentica-
tion in an environment of untrusted third-party distributors.
In: ICDE ’08: IEEE International Conference on Data Engi-
neering. (2008) 696–704

[27] Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authen-
ticated join processing in outsourced databases. In: SIGMOD
’09: ACM SIGMOD international conference on Management
of data. (2009) 5–18

[28] Mouratidis, K., Sacharidis, D., Pang, H.: Partially mate-
rialized digest scheme: an efficient verification method for
outsourced databases. The VLDB Journal 18(1) (2009) 363–
381

[29] HweeHwa PANG, Jilian ZHANG, K.M.: Scalable verification
for outsourced dynamic databases. In: VLDB ’09: Interna-
tional Conference on Very Large Data Bases. (2009)

[30] Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-
efficient verification of dynamic outsourced databases. In: CT-
RSA ’08: The Cryptographers’ Track at the RSA Conference.
(2008) 407–424

[31] Haber, S., Horne, W., Sander, T., Yao, D.: Privacy-preserving
verification of aggregate queries on outsourced databases.
Technical report, HP Laboratories (2006) HPL-2006-128.

[32] Shamir, A.: How to share a secret. Commun. ACM 22(11)
(1979) 612–613

[33] Pedersen, T.P.: Non-interactive and information-theoretic
secure verifiable secret sharing. In: CRYPTO ’91: Advances
in Cryptology. (1991) 129–140

http://eprint.iacr.org/

[34] Preparata, F.P., Shamos, M.I.: Computational geometry: an
introduction. (1985)

[35] Okamoto, T., Uchiyama, S.: A new public-key cryptosystem
as secure as factoring. In: EUROCRYPT ’98: International
Conference on Advances in Cryptology. (1998) 308–318

[36] Gonzalez Nieto, J.M., Boyd, C., Dawson, E.: A public key
cryptosystem based on a subgroup membership problem. Des.
Codes Cryptography 36(3) (2005) 301–316

[37] Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign
signatures without the random oracle. In: EUROCRYPT ’99:
International Conference on Advances in Cryptology. (1999)
123–139

[38] Goldreich, O.: Foundations of Cryptography: Volume 1.
(2006)

[39] Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homo-
morphic signature schemes. In: CT-RSA ’02: The Cryptogra-
pher’s Track at the RSA Conference on Topics in Cryptology.
(2002) 244–262

[40] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the
weil pairing. J. Cryptol. 17(4) (2004) 297–319

[41] Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql
over encrypted data in the database-service-provider model.
In: SIGMOD ’02: ACM SIGMOD international conference
on Management of data. (2002) 216–227

[42] Hacigümüs, H., Iyer, B.R., Mehrotra, S.: Efficient execution
of aggregation queries over encrypted relational databases. In:
DASFAA. (2004) 125–136

[43] Mykletun, E., Tsudik, G.: Aggregation queries in the
database-as-a-service model. In: IFIP ’06: IFIP WG 11.3
Working Conference on Data and Applications Security.
(2006) 89–103

[44] Ge, T., Zdonik, S.B.: Answering aggregation queries in a
secure system model. In: VLDB ’07: International conference
on Very large data bases. (2007) 519–530

Appendix A.
Proof of Lemma 1

We define P and Q similar to R. Define function P :
G → Zp, such that for any (x, y, z) ∈ Zp × Zq × Zr,
Q(gxpg

y
q g
z
r) , x. Define function Q : G → Zq , such that

for any (x, y, z) ∈ Zp × Zq × Zr, Q(gxpg
y
q g
z
r) , y.

LEMMA 1. Given {(xi, i,Tagk(xi, i)) : xi ∈ Z}1≤i≤N , it
is computationally hard to forge a tuple (y, j,Tagk(y, j)),
under Assumption 1 and Assumption 2, and assuming that
fs3(·) is PRF.

Proof: Suppose that some PPT adversary A takes as
input a set S = {(xi, i, ti = Tagk(xi, i)) : xi ∈ Z}1≤i≤N ,
and outputs (x′, i′, t′) 6∈ S, where (x′, i′, t′) satisfies Eq 1
and Eq 2 with non-negligible probability.

Assumption 2 holds for R, since fs3(·) is PRF.
Case 1: i′ ∈ [N]. Let (xi′ , i′, ti′) ∈ S be the tuple with
index i = i′ in the set S. Since (x′, i′, t′) 6∈ S, we have
(xi′ , i′, ti′) 6= (x′, i′, t′), i.e. (xi′ , ti′) 6= (x′, t′)

Since both (xi′ , i′, ti′) and (x′, i′, t′) satisfy Eq 2,

R(ti′) = R(t′)

Let A = ti′ t
′−1 mod n. If ti′ 6= t′, with overwhelming

high probability, A 6≡ 1 (mod n), and B = R(A) = 0.
The tupe (A,B) is a contradiction with Assumption 2.
Otherwise, ti′ = t′ and xi′ 6= x′. Since both (xi′ , i′, ti′)
and (x′, i′, t′) satisfy Eq 1, we have

P(ti′) = P(t′)

⇒ xi′ +
s1
h(i′)

≡ x′ + s1
h(i′)

(mod p)

⇒ xi′ ≡ x′ (mod p).

Hence, p|(xi′−x′). With this information, one can factorize
n. Note that Assumption 1 or Assumption 2 implies that
factorization of n is hard.

Case 2: i′ 6∈ [N]. This will result in a contradiction with the
assumption that fs3(·) is PRF. We save the details. Note that
in our use of Tag in this paper, this case will not consider as
a valid forgery, since we are only interested in index i ∈ [N].

Appendix B.
Proof of Theorem 2

THEOREM 2. MAIA1 is a PRC protocol (as defined in
Definition 2) w.r.t. 1D SUM query (as defined in Section 3.1),
under Assumption 1 and Assumption 2, and assuming that
fs(·) is PRF.

Note: (1) We can apply Assumption 2 on both Q and
R. (2) All messages Alice sends to Bob (which may be
recorded in viewExt

A) is pseudorandom, by Assumption 1.
(3) As specified in Definition 3, the hash function h(·)
is division-intractable [37]. So Compress and Uncompress
work as desired with o.h.p.

Proof: Le PA be defined as in Definition 2. The cor-
rectness part is straightforward. We focus on the soundness
part, i.e. whether PA � 1− negl holds.

Let (w1, wι, ψ1, ψι, ψ̃1, ψ̃ι) denote the message generated
by an honest Bob (i.e. Eval), and (w∗1 , w

∗
ι , ψ

∗
1 , ψ

∗
ι , ψ̃

∗
1 , ψ̃

∗
ι)

denote the l message generated by malicious Bob (i.e.
adversary A).

1) If ψ1 satisfies Eq 5, then ψ∗1 = ψ1 with overwhelming
high probability, otherwise R(ψ1

ψ∗1
) = 0 is in contra-

diction with Assumption 2.
2) Since both (w1, ψ1) and (w∗1 , ψ

∗
1) satisfy Eq 6, and

ψ∗1 = ψ1, we have p|(w1 − w∗1). Since Assumption 1

implies that n is hard to factorize, we have w∗1 = w1

with o.h.p.
3) Since (w1, ψ1, wι, ψι) satisfies Eq 4, we have

prsι,2 (Q(ψ1) + w1) ≡ prs1,2 (Q(ψι) + wι) (9)
⇒ Q(ψι) ≡ sι,2s−1

1,2(Q(ψ1) + w1)− wι (mod q) (10)

(w∗1 , ψ
∗
1 , w

∗
ι , ψ

∗
ι) also satisfies Eq 4. So we have

Q(ψ∗ι) ≡ sι,2s−1
1,2(Q(ψ∗1)+w∗1)−w∗ι (mod q) (11)

Note we have w∗1 = w1, ψ
∗
1 = ψ1. Combining Eq 10

and Eq 11, we have

Q(
ψ∗ι
ψι

) ≡ Q(ψ∗ι)−Q(ψι) = wι − w∗ι (mod q).

If ψ∗ι
ψι
6≡ 1, then (ψ

∗
ι

ψι
, wι−w∗ι) is in contradiction with

Assumption 2. Hence, we have ψ∗ι ≡ ψι and wι = w∗ι ,
with o.h.p.

In summary, (w1, wι, ψ1, ψι) = (w∗1 , w
∗
ι , ψ

∗
1 , ψ

∗
ι) with o.h.p.

Hence, PA � 1− negl.

Appendix C.
Proof of Lemma 3

LEMMA 3. Under Assumption 1 and Assumption 2, and
assuming that fs(·) is a PRF, MAIA` is a PRC protocol
w.r.t. `-dimensional aggregate SUM query , if MAIA`−1 is
a PRC protocol w.r.t. (` − 1)-dimensional aggregate SUM
query.

Proof: (Sketch) The correctness part is straightforward.
We focus on the soundness part, i.e. whether PA � 1−negl
holds.

Let D̃ = (D, {Tx : x ∈ D}). The function computated by
MAIA` is

F (D̃, SUM(B, ι)) = (w0, ψ0,1, ψ0,2, · · · , ψ0,`, ψ0,ι),

where w0 is the answer to SUM(B, ι), and ψ0,j’s are some
aggregated values over Tag values (Check CollRes` and
MAIA` in Figure 4 and Figure 6 for details).

Suppose the output of MAIA` (precisely, output of Alice
in ProVer`) is not ⊥.

Step 1: Verifying 1D query aj ≤ x[j] ≤ bj . The first
(`+1) equations (Eq 3) in Step A2 of CollRes` in Figure 4,
intend to verify 1D query aj ≤ x[j] ≤ bj for each dimenion
j ∈ [`] ∪ {ι} separately, by checking the P componemt of
Tag values.

Let F1(wj , ψj) = ψjg
−wj
p and F2(ψ̃j) = ψ̃

qrsj,1
j . In Fig-

ure 4, Eq 3 can be expressed as F1(wj , ψj)qrαj ≡ F2(ψ̃j),
where αj is the secret random nonce chosen by Alice. Note
that F1(·) and F2(·) are homormorphic functions with secret
key (gp, q, r, sj,1) and the adversary cannot compute F1(·)

and F2(·) by themselves. If F1(w1, ψ1)β = F2(ψ̃1) and
F1(w2, ψ2)β = F2(ψ̃2), then

(F1 (w1 + w2, ψ1ψ2))β = F2

(
ψ̃1ψ̃2

)
(12)(

F1

(
w1 − w2,

ψ1

ψ2

))β
= F2

(
ψ̃1

ψ̃2

)
(13)

By Assumption 1, F1(w,ψ)’s are pseudorandom, and all
Help-Info sent in previous sessions (recorded in viewExt

A) are
pseudorandom to the adversary A. We claim that, the only
way that the adversary cheats and passes the verifications of
F1(·)β = F2(·) is through exploiting homomorphism of F1

and F2. The additive homomorphism (Eq 12) and subtractive
homomorphism (Eq 13) just correspond to double-counting
(twice or more times) and undercounting, respectively, of
some points inside the 1D query range [N]j−1 × [aj , bj]×
[N]d−j .

This claim can be proved with similar techniques used in
proof of BLS signature [40].

Step 2: Verifying Conjunctions of 1D Range Query.
The last ` equations (Eq 4) in Step A2 of CollRes` in
Figure 4, intend to verify the conjunctions of all ` 1D range
queries, i.e.

∧
1≤j≤` aj ≤ x[j] ≤ bj , by checking the

binding variable ξ’s in Tag values.
Similar with Step 1, since sj,2’s, j ∈ [`] ∪ {ι}, are secret

random numbers, the only way the adversary can cheat and
pass this verification is to exploit homomorphism, which is
actually double-counting (twice or more times) and miss-
counting of some points inside the `-dimensional query
range [a1, b1]× · · · × [a`, b`]× [N]d−`.

Step 3: Verifying Complementary Region. We
assume MAIA`−1 is a PRC. So the answer
(W3, ψ3,1, ψ3,2, · · · , ψ3,`−1, ψ3,ι)) to SUM(B3, ι) (See
Figure 6) is authentic with o.h.p.

Since R(ψi,j)’s (1 ≤ i ≤ 3, j ∈ [`] ∪ {ι}) are pseudo-
random and secret, by Assumption 2, PPT adversary cannot
find two distinct multisets K1 = {ψi1 , ψi2 , · · · , ψim} and
K2 = {ψj1 , ψj2 , · · · , ψjm′} with non-negligible probability,
such that∑

1≤v≤m

R(ψiv) ≡
∑

1≤v≤m′
R(ψjv) (mod r).

So that the adversary cannot pass verifications of ψ’s in Eq 8
in Step A2 in Figure 6, by miss-counting elements in K1

and double-counting elements in K2.

Summary. For the above reasons, the output of MAIA` is
F (D̃, SUM(B, ι)) with o.h.p. Hence, PA ≥ 1− negl.

	Introduction
	Related work
	Formulation
	Problem
	Dataset and Normalization
	Query

	Security Model

	Homomorphic Verification MAC
	MAIA: Multidimensional Aggretate query Ingegrity Authentication
	Illustration of MAIA over a 2D Dataset
	Setup Phase
	Query Phase

	The Main Construction: Generalize to high dimension
	Security Analysis
	Complexity Analysis

	Extension and Performance of MAIA
	Extension of MAIA
	Conversion from Attribute to Index
	Extend to Count, Min Query
	Multidimensional Range Selection Query

	Performance of MAIA
	Tightest Bounding Box
	Mitigation of Computation Cost and Support of Multiple Queriers

	Conclusion
	References
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Lemma 3

