
Authenticating Aggregate Range Queries over
Multidimensional Dataset

Jia Xu
National University of Singapore

xujia@comp.nus.edu.sg

Ee-Chien Chang
National University of Singapore
changec@comp.nus.edu.sg

ABSTRACT
We are interested in the integrity of the query results from an
outsourced database service provider. Alice passes a set D of
d-dimensional points, together with some authentication tag
T, to an untrusted service provider Bob. Later, Alice issues
some query over D to Bob, and Bob should produce a query
result and a proof based on D and T. Alice wants to verify the
integrity of the query result with the help of the proof, using
only the private key. In this paper, we consider aggregate
query conditional on multidimensional range selection. In its
basic form, a query asks for the total number of data points
within a d-dimensional range. We are concerned about the
number of communication bits required and the size of the
tag T. We give a method that requires O(d2) communi-
cation bits to authenticate an aggregate query conditional
on d-dimensional range selection. Besides counting, sum-
ming and finding of the minimum can also be supported.
Furthermore, our scheme can be extended to authenticate
d-dimensional usual (non-aggregate) range selection query
with O(d2) bits communication overhead, improving known
results that require O(logd−1N) communication overhead,
where N is the number of data points in the dataset.

Keywords
Authentication, Multidimensional Aggregate Query, Secure
Outsourced Database, Provable Remote Computing

1. INTRODUCTION
Alice has a set D of d-dimensional points. She prepro-

cesses the dataset D using her private key to generate some
authentication tag T. She sends (outsources) D and T to
an untrusted service provider Bob. Then Alice deletes the
original copy of dataset D and tag T from her local storage.
Later Alice may issue a query over D to Bob, for example,
an aggregate query conditional on a multidimensional range
selection, and Bob should produce the query result and a
proof based on D and T. Alice wants to authenticate the
query result, using only her private key.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

We are concerned about the communication cost and the
storage overhead on Bob’s side. Such requirements exclude
the following two straightforward approaches: (1) Bob sends
back the whole dataset D with its tag T; (2) During prepro-
cessing, Alice generates and signs answers to all possible
queries.

The problem we study in this paper fits in the frame-
work of the outsourced database applications [20,51], which
emerged in early 2000s as an example of “software-as-a-
service”(SaaS). By outsourcing database management, backup
services and other IT needs to a professional service provider,
companies can reduce expensive cost in purchase of equip-
ments and even more expensive cost in hiring or training
qualified IT specialists to maintain the IT services [24].

Researches in secure outsourced database focus on two
major aspects: privacy [51, 52, 53, 54] (i.e. protect the data
confidentiality against both the service provider and any
third party), and integrity [20,21,22,23,24,25,26,27,28,29,
30, 31, 32, 33, 34] (i.e. authenticate the soundness and com-
pleteness of query results returned by the service provider).
In the latter aspect, a lot of works are done for “identity
query” [26], i.e. the query result is a subset of the database.
Aggregate range query is arguably more challenging and
only a few works (e.g. [7]) are devoted to the authentica-
tion of aggregate query.

Figure 1: An example of 2D aggregate range query: How
many employees with age between 30 and 40 have salary
between $1500 and $4000? The query range is [30, 40] ×
[1500, 4000] and the query result is 2.

1

In this paper, we are interested in the authentication of
aggregate range query over static multidimensional dataset
with sublinear (w.r.t. the number of data points within the
query range) communication bits. A d-dimensional aggre-
gate range query specifies a d-dimensional rectangular range
(which can be represented by its two “end points”), and its
outcome is the aggregated value over all points inside the
range. Figure 1 shows a 2D aggregate range query. The ag-
gregate operations we consider in this paper include count-
ing, summing, and finding of the maximum and minimum.
Besides aggregate query, we also discuss the usual range se-
lection query as an extension.

Our results
We propose a scheme, which we call MAIA (Multidimen-
sional Aggregate query Integrity Authentication). For a
dataset D with N d-dimensional points, the number of com-
munication bits required is in O(d2) per query. The storage
overhead on Bob’s side is O(dN), which is linear w.r.t. the
size of D.

We now describe our main ideas in three steps: (1) We
describe a plausible scheme, which is insecure and requires
large amount of communication, to authenticate aggregate
range query. (2) We point out problems in this scheme and
difficulties to implement it. (3) We summarize the key tech-
niques we used to conquer such problems or difficulties.

Plausible Scheme
For simplicity, let D be a set of N 1D points. Let T be
an additive homomorphic authentication tag function, such
that T(x + y) = T(x)T(y). During setup, Alice prepro-
cesses the dataset D with a private key, to generate a tag
value T(x) for each point x ∈ D. Next, Alice sends D and
tag values {T(x) : x ∈ D} to Bob and deletes everything
except the private key from her storage. Let us consider a
summing query conditional on range B which asks for the
sum

P
x∈D∩B x. Bob is expected to send to Alice a num-

ber X as the query result, and a proof to show that indeed
X =

P
x∈D∩B x.

To process this query, Alice sends an auxiliary message
(called as Help-Info) {(T(x))α : x ∈ B} to Bob, in order
to help Bob to generate a proof for the query result. Here
the secret random nonce α prevents Bob from abusing this
Help-Info for other queries. Bob is expected to:

1. sum all x ∈ D ∩B to obtain X: X =
P
x∈D∩B x;

2. aggregate all T(x)’s for x ∈ D ∩B to obtain Ψ1:

Ψ1 =
Y

x∈D∩B

T(x) = T

 X
x∈D∩B

x

!
;

3. aggregate all (T(x))α’s for x ∈ D ∩B to obtain Ψ2:

Ψ2 =
Y

x∈D∩B

(T(x))α =

T

 X
x∈D∩B

x

!!α
.

Bob sends back X as query result and (Ψ1,Ψ2) as proof.
Alice can verify the correctness, by checking the following
two equalities:

Ψ1
?
= T(X)

Ψα
1

?
= Ψ2

For data point x ∈ D∩B, Bob has both T(x) and (T(x))α.
For any point x 6∈ D ∩ B, Bob cannot provide either T(x)
or (T(x))α, assuming it is difficult for Bob to forge T(x) or
(T(x))α without the private key and the random nonce α.
Hence, Bob is unable to include points outside D ∩B in the
computation of query result X and proof (Ψ1,Ψ2).

Problems and Difficulties
We identify 3 problems in the above scheme: (1) Bob still
can cheat by double counting or undercounting some points
in the set D ∩B. For example, Bob may send 2X as query
result and (Ψ1 ×Ψ1,Ψ2 ×Ψ2) as proof. Due to homomor-
phism of T, Alice will consider this proof valid. (2) Additive
homomorphism is unlikely secure [49], and the assumption
of unforgeability of T(x) and (T(x))α may not hold. (3)
The size of Help-Info is linear w.r.t. the size of query range
B, which is huge and possibly comparable to the domain
size of a data point. This implies large computation cost
(to generate Help-Info) and communication cost (to send
Help-Info).

Our solution
We employ or design several key techniques to solve these
problems, including:

1. To prevent double counting or undercounting, Alice
will check the complement query with range Bc, which
asks for the value of

P
x∈D∩Bc x. Nevertheless, a

malicious Bob may undercount some points in D ∩ B
and compensate it by double counting some points in
D ∩ Bc. To prevent such cheating, we introduce a se-
cret and random attribute to each data point and ag-
gregate it alongside with the requested value. Note
such strategy that verifies completeness by checking
the complement is also used in Chen et al. [19].

2. To decrease the size of query range B, we “normalize”
the dataset D, so that the values of normalized data
points are in [1, N]. Note N is the number of points in
D.

3. To further decrease the size of Help-Info, we separate
each dimension of a query range, and are able to com-
press Help-Info for each dimension. For example, let
B = [a1, b1]× [a2, b2] be a 2D range. Alice compresses
Help-Info for 1D range [a1, b1] to obtain $1, and com-
presses Help-Info for 1D range [a2, b2] to obtain $2.
From ($1, $2), Bob is able to reconstruct Help-Info
for the 2D range B. Such separation of dimensions
might cause collusion attack [1].

4. We specially design an authentication tag function,
which (1) allows Bob to do aggregation to generate
a short proof; (2) is unforgeable; (3) allows Help-Info
to be compressed and yet prevents collusion attack;
(4) binds a secret and random attribute to each point
and allows Alice to verify completeness by checking the
complement.

Our tag function, denoted as Tag, consists of three com-
ponents DTag, ITag and CTag. Let i be the normalized value
of point x ∈ D.

1. DTag(x) binds different dimensions of a d-dimensional
point x, so Bob cannot forge a new point by mixing
and combining different dimensions of different points
(e.g. (x2[1],x1[2],x1[3], . . . ,x1[d]));

2

Table 1: Performance of different authentication schemes for aggregate range query or range selection query. This table
consists of two parts: the first two rows are for aggregate query; the rest four rows are for range selection query. Our scheme
MAIA appears twice in this table, since it can authenticate both aggregate query and range selection query (with modifications
in Section 6.2.4). Note dN logN ≤ logdN , if d > log(dN)/ log logN .

Scheme Communica-
tion over-
head (bits)

Key
Size

Storage
overhead

Computation
(Verifier Al-
ice)

Computation
(Prover Bob)

Dimen-
sion
d

Query

PDAS [7] O(|S| logN) O(1) O(N) O(|S| logN) O(|S|+K2) d = 1 Sum,Count

MAIA (This paper) O(d2) O(d) O(dN) O(d logN)† O(dN logN)‡? d ≥ 1 Sum,Count,Min,Max

Atallah et al. [30] O(1) O(1) O(N) O(|S|) O(1) d = 1, 2 Range Selection

Martel et al. [21] O(logd−1N
+|S|)

- - - - d ≥ 1 Range Selection

Chen et al. [19] O(logdM) - O(N logdM) O(logdM) O(logdM) d ≥ 1 Range Selection

MAIA (Section 6.2.4) O(d2) O(d) O(dN) O(d logN)† O(dN logN)‡? d ≥ 1 Range Selection

N : The number of tuples in the dataset. S: The set of tuples satisfying the query condition.
K: The number of servers in PDAS [7]. M : The domain size of attributes in Chen et al. [19].
†: O(d logN) modular multiplications. ‡: O(dN logN) modular exponentiations.
?: If the query range is 1D, the cost is O(|S|).

2. ITag(i) is an authentication tag of i and allows Alice
to compress the Help-Info (The compression is based
on redactable signature scheme [49]);

3. CTag(i) prevents double counting and undercounting.

With private key, Alice is able to “extract” DTag(x), ITag(i)
or CTag(i) from the value of Tag(x, i). Without the private
key, Bob cannot decompose Tag(x, i). We construct Tag
using three cyclic multiplicative subgroups of Z∗n, where n
is the product of three safe primes [5, 55].

The main contributions in this paper can be summarized
as below:

1. We propose a scheme called MAIA (Section 5), to au-
thenticate multidimensional aggregate range queries,
based on a specially designed tag function Tag (Sec-
tion 4).

2. MAIA is efficient (See Table 1) and takes only O(d2)
communication bits for a d-dimensional aggregate range
query, independent of the query range size and dataset
size.

3. We prove that MAIA is secure (Theorem 2) under rea-
sonable assumptions (Assumption 1, Assumption 2,
etc.).

4. We extend MAIA to authenticate multidimensional range
selection query (Section 6.2.4). The performance is
showed in Table 1.

2. RELATED WORK
Privacy-preserving computation and integrity verification

are two major aspects of the security of outsourced comput-
ing. Many works in cryptography can be casted as privacy-
preserving computation over ciphertexts, including homo-
morphic encryption [8,9,11], Attribute Based Encryption [2,
3], Predicate Encryption [4,1,5,6], and Order Preserving En-
cryption [10].

Shi et al. [1] proposed MRQED (Multi-Dimensional Range
Query over Encrypted Data), a public key encryption scheme
supporting multidimensional range queries over ciphertexts.

Both MRQED [1] and MAIA deal with multidimensional
range selection and have to prevent collusion attack across
different queries. But they are essentially different in at
least these aspects: (1) MRQED dealt with privacy, and
MAIA deals with integrity. (2) In MAIA, there is an aggre-
gate operation after multidimensional range selection, and
the verification of aggregated value is an additional require-
ment and not easy to handle when communication cost is
concerned. (3) Besides collusion attack, MAIA also faces
other challenges, like undercounting and double-counting at-
tacks, which have no counterparts in researches of privacy-
preserving computation, like MRQED. It is unlikely to solve
our problem using MRQED as a black-box, and we doubt
whether it is possible to design an alternative solution based
on MRQED without significant modifications. However,
MAIA and MRQED indeed can be benefited from each other,
especially in how to represent a range compactly. We present
an alternative compression method in Section 6.2.1 based on
binary interval tree, which is employed by MRQED. On the
other hand, it is possible to design an alternative solution
for MRQED problem using redactable signature scheme [49],
which we employ as our compression method.

Several works [12, 13, 14, 15, 16, 17] in verification of in-
tegrity of data stored in remote storage server also adopted
some homomorphic and/or aggregatable verification tags to
achieve efficient communication cost.

There are roughly four categories of approaches for out-
sourced database authentication in the literatures [20,21,22,
23,24,25,26,27,28,29,30,31,32,33,34]. (1) (Homomorphic, or
aggregatable) Cryptographic primitives, like collision-resistant
hash, digital signature, commitment [24, 35, 7]. (2) Merkle
Hash Tree and variants [32, 28, 27]. (3) Computational ge-
ometry approach [21,27,30]. (4) Inserting and auditing fake
tuples [29].

Thompson et al. [7] proposed a scheme called PDAS, with
superlinear communication cost, more preciselyO(min{|S| logN,
N})(S is the subset of tuples selected by the query condi-
tion), and linear storage overhead, to authenticate 1D aggre-
gate (more precisely, Sum,Count) queries. PDAS is based

3

on Shamir’s threshold secret sharing [36] and Pedersen com-
mitment scheme [37], and protected the privacy of the ag-
gregated attributes from the verifier. The authors briefly
mentioned that their scheme could handle aggregate queries
conditional on multidimensional range selections over insen-
sitive attributes (stored in plaintext), but no details are pro-
vided. It seems that PDAS still requires superlinear com-
munication cost for multidimensional aggregate query. It is
worthy to point out that, the techniques in PDAS(like secret
sharing, and how to compare two integers privately) can be
integrated into MAIA to provide similar privacy protection,
without much tradeoff of communication cost (it may in-
crease by the factor of τ , where τ is the bit-length of the
maximum attribute value in the dataset).

3. FORMULATION
In this section, we formulize the problem and security

model. We introduce some key notations in Section 3.1,
formally describe the dataset and query in Section 3.2, give
a general security model in Section 3.3 for authentication of
outsourced computing, and introduce our security assump-
tions in Section 3.4.

3.1 Notations
For the convenience of presentation, we introduce sev-

eral operators ⊕,⊗ and ~ on vectors as follows: Let u =
(u1, u2, . . . , ud) and v = (v1, v2, . . . , vd) be two d-dimensional
vectors, where uj , vj ∈ N for 1 ≤ j ≤ d.

⊕ : u⊕ v = (u1 + v1, u2 + v2, . . . , ud + vd); (1)

⊗ : u⊗ v = (u1v1, u2v2, . . . , udvd); (2)

~ : u~ v = (uv11 , u
v2
2 , . . . , u

vd
d). (3)

We also introduce scalar multiplication au = (au1, au2, . . . , aud),
where a is a scalar, and modulo operator mod on vectors:

u mod n = (u1 mod n, . . . , ud mod n).

Additionally, we have vector e = (1, 1, . . . , 1| {z }
d 1’s

).

Here in Table 2, we summarize the key notations in this
paper.

3.2 Dataset and Query
We give a simplified (i.e. normalized [38]) data model,

and the main construction in Section 5 will be based on this
simplified data model. Later, in Section 6.2.2, we extend
our scheme to general data model. We emphasize that this
simplification does not lose generality, and serves two pur-
poses: (1) reduce computation cost (precisely, reduce the
size of Help-Info); (2) simplify the presentation.

Our data model consists of a set D and a vector-valued
attribute function Att, such that: (1) D = {i1, i2, . . . , iN} ⊆
[N]d, and for each j ∈ [d], the set {i1[j], i2[j], . . . , iN [j]} =
[N]; (2) Att : [N]d → Xd, where Xd ⊂ Nd is the domain of
attributes.

Let R = [a1, b1] × [a2, b2] × . . . × [ad, bd] ⊆ [N]d be a
rectangular range. A range selection query with range R
over the dataset D asks for the set of points i’s in D∩R, and
an aggregate sum query with range R over the dataset D,
denoted as Sum(R), asks for the sum

L
i∈D∩R Att(i).

3.3 Security Model

Table 2: Summary of Key Notations

• N: Set of all non-negative integers.

• x $←− S: x is uniformly randomly chosen from a finite set S.
• [a, b]: The set {a, a+ 1, a+ 2, · · · , b− 1, b}, where a ≤ b are

non-negative integers.
• [b]: The set {1, 2, 3, · · · , b}, where b is a positive integer.

• |S|: The size of the set (or multiset) S.

• i[j]: ij , where i = (i1, i2, · · · , ij , · · ·) is a vector of dimen-
sion greater than or equal to j.

• e: The d-dimensional vector with each dimension equal to
1.

• ⊕,⊗,~: Addition, multiplication and exponentiation oper-
ators over vectors.

• Prime: Set of all odd primes.
• Tag(x, i; ξ): Randomized function Tag with input (x, i) and

random coin ξ (Section 4).

• MAIA: It stands for “Multidimensional Aggregate query
Integrity Authentication” and it is our main scheme (Sec-
tion 5).

• ProVer: It stands for “Prover-Verifier” and it is an interac-
tive algorithm (Section 5).

• CollRes: It stands for “Collusion-Resistant” and it is a sub-
routine called by algorithm ProVer (Section 5).

We formulize the authentication problem described in Sec-
tion 1.

Let us view the query on a database as the function F :
D × Q → {0, 1}∗, where D is the domain of databases, Q
is the domain of queries, and the output of F is a binary
string. We define a remote computing protocol as follow:

Definition 1 (RC). A RC (Remote Computing) pro-
tocol for a function F : D × Q → {0, 1}∗, between Alice
and Bob, consists of a setup phase and a query phase. The
setup phase consists of a key generating algorithm KGen
and data encoding algorithm DEnc; the query phase con-
sists of a pair of interactive algorithms, namely the eval-
uator Eval and the extractor Ext. These four algorithms
(KGen,DEnc, 〈Eval,Ext〉) run in the following way:

1. Given security parameter κ, Alice generates a key k:
k ← KGen(1κ).

2. Alice encodes database x ∈ D: (px, sx) ← DEnc(x, k),
then sends px to Bob and keeps sx.

3. Alice selects a query r ∈ Q.

4. Algorithm Eval(px) on Bob’s side, interacts with al-
gorithm Ext(sx, r, k) on Alice’s side, to compute y ←
〈Eval(px),Ext(sx, r, k)〉. If y = ⊥, then Alice rejects.
Otherwise, Alice believes that y is equal to F (x, r).

In the setup phase, Alice executes Step (1) and (2). The
query phase consists of multiple query sessions. In each
query session, Alice and Bob execute Step (3) and (4).

We say a RC protocol is provable, if the following con-
ditions hold: (1) Alice accepts with o.h.p. (overwhelming
high probability), when Bob follows the protocol honestly;
(2) Alice rejects with o.h.p., when Bob returns a wrong re-
sult. Here we consider adversaries, i.e. malicious Bob, who
are allowed to interact with Alice and learn for polynomial
number of queries, before launching the attack. During the
learning, the adversary may store whatever it has seen or
leant in a state variable.

4

Definition 2 (PRC). A RC protocol (KGen,DEnc,
〈Eval,Ext〉) w.r.t. function F : D × Q → {0, 1}∗, is called
PRC (Provable Remote Computing) protocol, if the follow-
ing two conditions hold: Let κ be the security parameter.

• correctness: for any x ∈ D, PEval(x) � 1 − negl(κ)
(asymptotically larger or equal);

• soundness: for any PPT adversary A, for any x ∈ D,
PA(x) � 1− negl(κ) (asymptotically larger or equal),

where PEval and PA are defined as

PEval(x)
def
= Pr

266664
k ← KGen(1κ);
(px, sx)← DEnc(x, k);

r
$←− Q;

ζ ← 〈Eval(px),Ext(sx, r, k)〉 :
ζ = F (x, r)

377775 ,

PA(x)
def
= Pr

2666666666664

k ← KGen(1κ);
(px, sx)← DEnc(x, k);
for 1 ≤ i ≤ poly(κ)

ri
$←− Q;

ζi ← 〈A(px, view
Ext
A),Ext(sx, ri, k)〉;

r
$←− Q;

ζ ← 〈A(px, view
Ext
A),Ext(sx, r, k)〉 :

ζ = ⊥ ∨ ζ = F (x, r)

3777777777775
.

The probability is taken over all random coins used by re-
lated algorithms, poly(·) is an arbitrary but fixed polynomial
function, negl(·) is some negligible function, and viewExt

A is
a state variable1 describing all random coins chosen by A
and all messages A received from Ext during previous inter-
actions.

We remark that the security model is similar to the for-
mulation of POR (Proof of Retrievability) [18], and it is not
surprising that our scheme MAIA implies a (ρ, λ)-valid POR
system, with some parameters ρ and λ.

3.4 Assumptions
In this subsection, we state the assumptions that our pro-

posed scheme relies on.
Let the group generator G be a randomized algorithm,

which takes as input a security parameter 1κ and outputs
a tuple (n, p, q, r,Gp, Gq, Gr, gp, gq, gr), where n = (2p +
1)(2q+ 1)(2r+ 1) is a randomly chosen κ bits composite; all
of p, q, r, 2p+1, 2q+1 and 2r+1 are distinct primes; p, q and
r are of the same bit-length; Gp, Gq and Gr are three cyclic
multiplicative subgroups of Z∗n, of order p, q and r respec-
tively; and gp, gq and gr are randomly chosen generators of
Gp, Gq and Gr respectively.

Assumption 1. Algorithm G(1κ) is run to obtain (n, p, q, r,
Gp, Gq, Gr, gp, gq, gr). Let group G = Gp×Gq×Gr. The fol-
lowing two distributions are computationally indistinguish-
able,

• X def
= {Xκ

$←− G}, i.e. Xκ is uniformly randomly dis-
tributed over G;

• Y def
= {Yκ

$←− Gr}, i.e. Yκ is uniformly randomly dis-
tributed over Gr.

1The adversary A may keep updating this state variable.

Assumption 2. Algorithm G(1κ) is run to obtain (n, p, q, r,
Gp, Gq, Gr, gp, gq, gr). Let group G = Gp × Gq × Gr. De-
fine function R : G→ Zr, such that for any (x, y, z) ∈ Zp ×

Zq×Zr, R(gxpg
y
q g
z
r)

def
= z. Let ∆ be a set {gxpgyq gzr ∈ G : z

$←−
Zr and (x, y) are chosen from Zp×Zq under any distributions}.
Given only (n,∆), it is hard to compute (A,B), such that

A 6≡ 1 (mod n), B = R(A) mod r.

Assumption 1 can be considered as a variant version of the
p-Subgroup Assumption [39], and also a variant version of
the Subgroup Membership Problem (SMP) Assumption [9,
40, 41, 42, 43, 44, 45, 46], and Assumption 2 is closely related
to the Projection Problem (PP) Assumption [40,42].

4. AUTHENTICATION TAG
In this section, we first construct an authentication tag

function Tag (Section 4.1), which consists of three compo-
nents. Next, we give an algorithm to decompose an output
of the tag function into components (Section 4.2). At the
end of this section, we show that the tag function is unforge-
able (Section 4.3).

4.1 Construction of tag functions
We construct several tag functions dtag (stands for “tag

of data”), itag (stands for “tag of index”2), and ctag (stands
for “tag for completeness”). We combine these functions
together to obtain tag function tag.

Let G be as in Section 3.4.

Definition 3. Let (n, p, q, r,Gp, Gq, Gr, gp, gq, gr) be an
output of G. Let (s1, s2, s3) ∈ Z∗p×Z∗q×{0, 1}κ. Let key k =
(s1, s2, s3, n, p, q, r, gp, gq, gr). Define functions dtag, itag, ctag
and tag as follows:

dtagk(x; ξ) = gxpg
x+s2ξ
q mod n,

itagk(i) = g
s1
h(i)
p mod n,

ctagk(i) = g
fs3 (i)
r mod n,

tagk(x, i; ξ) = dtagk(x; ξ)× itagk(i)× ctagk(i) mod n,

where the random coin ξ
$←− Z∗q , h(·) : N → Prime is a

collision-resistant3 hash function, and {fs}s∈{0,1}κ is PRF [48].

Note that itag is a variant of signature scheme [47,49].
The data is in multidimensional vector form. For the con-

venience of presentation, we also define similar tag functions
in vector forms.

Definition 4. Let (n, p, q, r,Gp, Gq, Gr, gp, gq, gr) be an
output of G. Let (s`,1, s`,2, s`,3) ∈ Z∗p×Z∗q ×{0, 1}κ for each
` ∈ [d]. Let s1 = (s1,1, s2,1, . . . , sd,1), s2 = (s1,2, s2,2, . . . , sd,2)
and s3 = (s1,3, s2,3, . . . , sd,3). Let K = (s1, s2, s3, n, p, q, r, gp,
gq, gr). Define vector-valued functions DTag,ITag, CTag and
Tag as follows:

DTagK(x; ξ) =
`
dtagk1(x[1]; ξ), . . . , dtagkd(x[d]; ξ)

´
,

ITagK(i) = (itagk1(i[1]), . . . , itagkd(i[d])),

CTagK(i) = (ctagk1(i[1]), . . . , ctagkd(i[d])),

TagK(x, i; ξ) = (tagk1(x[1], i[1]; ξ), . . . , tagkd(x[d], i[d]; ξ)),

2Here “index” means the normalized value i of data x. See
the extended data model in Section 6.2.2.
3In other words, h should be division intractable. See Gen-
naro et al. [47] for the definition of “division intractable”.

5

where for each ` ∈ [d], k` = (s1[`], s2[`], s3[`], n, p, q, r, gp,
gq, gr), and the random coin ξ ∈ Z∗q .

In another equivalent expression,

TagK(x, i; ξ) = DTagK(x; ξ)⊗ ITagK(i)⊗ CTagK(i)

= ((gpgqe) ~ x)⊗ ITagK(i)⊗ DTagK(0; ξ)⊗ CTagK(i). (4)

Note: (1) We call gξq binding factor among d dimensions of
Tagk(x, i; ξ). Given a candidate Tag value t, we can extract
the binding factor from t[j] for each dimension j ∈ [d], and
check whether they are equal. (2) We do not store the val-
ues of ξ’s when we use the tag function Tag in our scheme.
Sometimes we may ignore ξ, and just write Tag(x, i).

4.2 Decompose a tag value
As mentioned in the introduction, Alice is able to extract

an ITag (or CTag, DTag) value from a Tag value, with the
private key. Such extraction or decomposition play an im-
portant role in the verification of our scheme (See Step A2
of CollRes in Section 5.3). We construct a pair of encoding
and decoding algorithms (E ,D) to reflect the idea of decom-
position: (1) E encodes outputs of DTag, ITag and CTag into
an output of Tag; (2) D decodes an output of Tag into out-
puts of DTag, ITag and CTag. The rest of this subsection
provides the details.

4.2.1 In Scalar Form
The output of function tag is an element from G. Recall

that n = (2p+1)(2q+1)(2r+1). With the factorization of n,
i.e. p, q, r, one can extract out the Gp, Gq or Gr component
from an element from G (or say, project a G element onto
subgroup Gp, Gq and Gr [40]).

Let λp = (qr)−1 mod p, λq = (pr)−1 mod q, λr = (pq)−1

mod r. Let t = gxpg
y
q g
z
r mod n. We have

Υp(t)
def
= (tqr)λp ≡ gxp (mod n);

Υq(t)
def
= (tpr)λq ≡ gyq (mod n);

Υr(t)
def
= (tpq)λr ≡ gzr (mod n).

Based on these, one can also extract out dtag, itag, or
ctag component from an output of function tag. Let t =
tagk(x, i; ξ). Note s1, s2, p, g, r, gp, gq and gr are parts of the
key k defined in Definition 3. We define

γ1(t, gxp)
def
= Υp(t)

`
gxp
´−1 ≡ itagk(i) (mod n);

γ2(t, gxq)
def
= Υq(t)

`
gxq
´−1 ≡ dtagk(0; ξ) (mod n);

γ3(t)
def
= Υr(t) ≡ ctagk(i) (mod n).

4.2.2 In Vector Form
Here we present the same decomposition in vector form.

We may consider Tag as a homomorphic encoding algorithm
E (See equation (4)):

TagK(x, i; ξ) = EK(ITagK(i),DTagK(0; ξ),CTagK(i),x);

EK(u1,v1,w1,x1)⊗ EK(u2,v2,w2,x2) =

EK(u1 ⊗ u2,v1 ⊗ v2,w1 ⊗w2,x1 ⊕ x2) (5)

The corresponding decoding algorithm D is: Let u,v,w
are the outputs of ITag,DTag,CTag, respectively, and ψ =

EK(u,v,w,x).

DK(ψ;x)
def
= (Γ1(ψ,x),Γ2(ψ,x),Γ3(ψ)) = (u,v,w) (6)

where Γ1,Γ2 and Γ3 are defined below,

Γ1(t,u)
def
= (γ1(t[1], gu[1]

p), . . . , γ1(t[d], gu[d]
p));

Γ2(t,u)
def
= (γ2(t[1], gu[1]

q), . . . , γ2(t[d], gu[d]
q));

Γ3(t)
def
= (γ3(t[1]), . . . , γ3(t[d])).

4.3 Security

Lemma 1. Let k be a key as in Definition 3. Given S =

{(xi, i, ti) : ξ
$←− Z∗q , ti ← tagk(xi, i; ξ))}1≤i≤N , it is com-

putationally hard to forge a tuple (y, j, t) 6∈ S, such that
γ1(t, gyp) = itagk(j) and γ3(t) = ctagk(j), under Assump-
tion 1 and Assumption 2.

The proof is given in Appendix B.1.

5. MAIA: MAIN CONSTRUCTION
Our scheme MAIA (Multidimensional Aggregate query In-

tegrity Authentication) is a RC protocol for aggregate range
query, and consists of algorithms (KGen, DEnc, 〈Eval,Ext〉).
The protocol consists of setup phase (Section 5.2) and query
phase (Section 5.3). The setup phase is associated with al-
gorithms KGen and DEnc, and the query phase is associated
with interactive algorithm 〈Eval,Ext〉, which calls subroutine
CollRes.

Our scheme achieves efficient communication complexity,
due to algorithms Compress and Uncompress. We defer the
constructions of Compress and Uncompress to Section 5.4.

Basically, the authentication consists of two parts. First,
Alice has a mechanism, i.e. the algorithm CollRes, to ensure
that Bob produces the result and proof solely using data
points within the query range R. Next, to verify complete-
ness, Alice also runs CollRes on aggregate query with the
complement range Rc, and checks whether the two query
results and proofs “sum” to the whole dataset. Since the
range Rc is not in the form that CollRes can handle, Al-
ice has to divide it into O(d) rectangular ranges, and runs
CollRes on each of them.

First of all, let us review the authentication tag function
Tag, which serves as the basis of our scheme.

5.1 Summary of tag function
Recall that, in section 4, we construct a key-ed tag func-

tion Tag, which consists of functions DTag, ITag and CTag as
components. We also wrap Tag as a homomorphic encoding
algorithm E : Let K be the key as in Definition 4.

TagK(x, i; ξ) = EK(ITagK(i),DTagK(0; ξ),CTagK(i),x);

EK(u1,v1,w1,x1)⊗ EK(u2,v2,w2,x2) =

EK(u1 ⊗ u2,v1 ⊗ v2,w1 ⊗w2,x1 ⊕ x2).

The corresponding decoding algorithm D is: Let u,v,w
are the outputs of ITag,DTag,CTag, respectively, and ψ =
EK(u,v,w,x).

DK(ψ,x) = (u,v,w).

6

5.2 Setup phase
Alice has a dataset D associated with attribute function

Att (See data model in Section 3.2). In the setup phase,
Alice generates a private key K by running key generating
function KGen, and preprocesses the dataset D using data
encoding algorithm DEnc with key K, in order to produce
an authentication tag T. At the end of setup phase, Alice
removes D and T from her storage after sending them to Bob.

KGen(1κ)

Alice

1. runs algorithm G(1κ) to generate (n, p, q, r,Gp, Gq,
Gr, gp, gq, gr), where G is defined in Section 3.4;

2. chooses (s`,1, s`,2, s`,3) at random from Z∗p×Z∗q×{0, 1}κ
for each ` ∈ [d].

Let s1 = (s1,1, s2,1, . . . , sd,1), s2 = (s1,2, s2,2, . . . , sd,2) and
s3 = (s1,3, s2,3, . . . , sd,3). LetK = (s1, s2, s3, n, p, q, r, gp, gq,
gr). Output K.

DEnc(D,K)

For each data point i ∈ D, Alice

1. chooses a number ξi at random from Z∗q ;
2. computes a tag ti using the private key K:

ti ← TagK(Att(i), i; ξi). (7)

Next, Alice sends dataset D, tag values T = {ti : i ∈ D} and
modulus n to Bob, deletes the local copy of D and T from
her storage, and keeps (K, n,N), where N = |D| is the size
of the dataset.

5.3 Query phase
During the query phase, Alice has private key K; Bob

has dataset D and tag values T. Alice and Bob share the
modulus n and the size N = |D| of the dataset D. The query
phase consists of multiple query sessions. In a query session,
Alice has a query Sum(R), where R = [a1, b1] × [a2, b2] ×
. . . [ad, bd] ⊆ [N]d. The result to the query w.r.t. dataset D

is
L
i∈D∩R Att(i).

To process this query, Alice and Bob run an interactive al-
gorithm ProVer (stands for “Prover-Verifier”), i.e. Alice run-
ning Ext interacts with Bob running Eval, where ProVer =
〈Eval,Ext〉. The algorithm ProVer calls algorithm CollRes
(stands for “Collusion-Resistant”) as subroutine. Note that
CollRes is a strengthened version of the plausible scheme
presented in Section 1.

CollRes(Sum(R))

Precondition. Range R = A1×A2×. . .×Ad, where Aj ⊆
[N], j ∈ [d] (This is required by the subroutine Compress).

A1: (Alice’s first step) Alice

(a) choosesα = (α1, α2, . . . , αd) at random from
`
Z∗p
´d

;

(b) computes δ using sk = (n, gp, φ(n), s1):

δ ← Compresssk(R,α). (8)

Next, Alice sends R and δ to Bob.
Note: (1) From δ, Bob is able to recover$ = {E(ITag(i)~
α,vi,wi,0) : i ∈ R} for some vi ∈ (Gq)

d and wi ∈

(Gr)
d. We call $ Help-Info, since it will help Bob to

produce a proof. Without considering randomness vi’s
and wi’s, one may view $ as {ITag(i) ~ α : i ∈ R}.
See Section 5.4 for details of function Compress. (2)
The secret random nonce α prevents Bob from abus-
ing this information for other queries, i.e. prevent col-
lusion attack. (3) s1 is part of key K.

B1: (Bob’s first step) Bob

(a) computes the sum X:

X =
M
i∈D∩R

Att(i); (9)

(b) aggregates all Tag values for i ∈ D ∩R:

Ψ1 ←
O
i∈D∩R

ti mod n; (10)

(c) uncompresses δ with pk = n: for each i ∈ D ∩R,

ui ← Uncompresspk(R, δ, i); (11)

(d) aggregates all ui’s for i ∈ D ∩R:

Ψ2 ←
O
i∈D∩R

ui mod n. (12)

Bob sends back to AliceX as query result, and (Ψ1,Ψ2)
as the proof.
Note: In Step B1(c), ui = E(ITag(i) ~ α,vi,wi,0)
for some vi ∈ (Gq)

d and wi ∈ (Gr)
d.

A2: (Alice’s second step) Alice verifies the query result in
the following way.

(a) Decode Ψ1 using (K,X), and decode Ψ2 using
(K,0):

(U1,V ,W)← DK(Ψ1,X)

(U2, V̂ , Ŵ)← DK(Ψ2,0)

(b) Check whether the ITag component of Ψ1 is con-
sistent with Ψ2 using the secret random nonce
α:

U1 ~α
?
= U2 mod n; (13)

(c) Check whether the binding factor gξq ’s among dif-
ferent dimensions are consistent: Is there some
a ∈ Zn, such that

V ~ s−1
2 = ae mod n? (14)

Note: (1) e is the d-dimensional vector with each
dimension equal to 1. (2) s2 is part of key K and
s−1
2 ⊗ s2 = e mod q.

(d) Alice extracts the CTag component from Ψ1:

π ←W [1].

Note: This π is required by algorithm ProVer to
prevent double counting or undercounting.

If all verifications succeed, Alice outputs (X, π). Oth-
erwise, Alice output ⊥.

Remark.

7

1. If Bob follows the protocol honestly, we have

Ψ1 = E(
O
i∈D∩R

ITag(i),
O
i∈D∩R

DTag(0; ξi),O
i∈D∩R

CTag(i),
M
i∈D∩R

Att(i)e);

U1 =
O
i∈D∩R

ITag(i) mod n;

U2 =

 O
i∈D∩R

ITag(i)

!
~α mod n;

V =
O
i∈D∩R

DTag(0; ξi) =

 Y
i∈D∩R

gξi
q

!
e

!
~ s2 mod n.

2. The equality test in equation (13) prevents Bob from
bringing in points that do not satisfy the query condi-
tion into the computation of query result and its proof.
For each point i ∈ D ∩R, Bob has both ti (provided
by Alice during setup) and4 ITag(i) ~ α (provided
by Alice during the current query session). For any
point i 6∈ D ∩ R, it is infeasible for Bob to forge ti
or ITag(i) ~ α, without the private key K and secret
random nonce α.

3. The equality test in equation (14) prevents Bob from
forging a new point by mixing and combining different
dimensions of different points. For example, without
this verification, Bob may fool Alice with a faked point
(i2[1], i1[2], i1[3], . . . , i1[d]) with tag (t2[1], t1[2], t1[3],
. . . , t1[d]), where points i1, i2 ∈ D and t1, t2 are their
corresponding Tag values. Furthermore, s2 prevents
permutation on dimensions of the same data point.

4. As mentioned in the introduction, the above proof sys-
tem can not ensure the completeness, due to the homo-
morphism of E . Bob could cheat by double counting or
undercounting some points in D∩R. For example, Bob
may claim the result is 2

P
i∈D∩R Att(i) by sending

(Ψ1 ⊗Ψ1,Ψ2 ⊗Ψ2) as proof. Due to homomorphism
of E , this forged proof can pass Alice’s verification in
equations (13) and (14). Such attacks can be detected
by algorithm ProVer.

5. The specially designed tag function Tag has the fol-
lowing properties:

(a) It allows Bob to do aggregation, since E is ho-
momorphic w.r.t. its inputs ITag(i),DTag(0, ξ),
CTag(i) and x (See equation (5)).

(b) It is unforgeable (See Lemma 1), and Tag(x, i; ξ)
itself is not homomorphic w.r.t. its inputs.

(c) It binds the point i and its attribute value x to-
gether in a secure way.

(d) It allows compression of Help-Info. More pre-
cisely, ITag allows compression.

To execute an aggregate query with range R = [a1, b1] ×
[a2, b2] × . . . [ad, bd] ⊆ [N]d, Alice runs algorithm Ext and
interacts with Bob who runs algorithm Eval. To verify the
completeness, Alice will divide the complement range Rc

carefully into many subregions, and invokes CollRes on each
subregion. The details is given below.

4Without considering the randomization, one may view
Help-Info $ as {ITag(i) ~α : i ∈ R}. See Section 5.4.

ProVer(Sum(R)) = 〈Eval(D, T, n),Ext(N,Sum(R),K)〉

Precondition: Alice knows the value5 π∗ =
Q
i∈D ctag(i[1]).

For each ` ∈ [d], let R` = [a1, b1] × [a2, b2] × . . .× [a`, b`] ×
[N]d−` ⊆ [N]d be an `-dimensional range. Let R0 be the
universal set [N]d.

A1: Alice interacts with Bob to simulate CollRes on (d+ 1)
queries Sum(Rd), and Sum(R`−1 \R`), ` ∈ [d].

B1: Bob interacts with Alice to simulate CollRes on (d+ 1)
queries Sum(Rd), and Sum(R`−1 \R`), ` ∈ [d].

A2: Alice obtains output (Xd+1, πd+1) of CollRes for query
Sum(Rd), and (X`, π`) for query Sum(R`−1 \R`), ` ∈
[d]. Alice accepts Bob’s reply and output X, ifY

1≤`≤d+1

π`
?≡ π∗ mod n. (15)

Otherwise, Alice outputs ⊥.

Note: The (d+ 1) ranges R`−1 \R`, ` ∈ [d], and Rd forms
a partition of the universal set [N]d.

Remark. Simply, Alice may precompute and store π∗.
We will explain more in Section 6.1.1.

Such division of the complement range Rc is essential,
since our compression algorithm Compress only works on
range of form A1 ×A2 × . . .×Ad, where Aj ⊆ [N], j ∈ [d].
Note that both R` and R`−1 \R` are of this form.

The main reasons that our scheme achieves efficient commu-
nication complexity are: (1) Alice can compress Help-Info
sent from Alice to Bob, using an algorithm Compress, and
Bob can uncompress and recover Help-Info, using an algo-
rithm Uncompress; (2) The specially designed authentication
tag functions Tag allows aggregation, so Bob just sends back
some aggregated values as proof.

5.4 Compress and Uncompress
Now we construct the algorithms Compress and Uncompress.

Johnson et al. [49] (in Section 5 “Set Homomorphic Signa-
tures”of that paper) proposed a redactable signature scheme,
based on the signature scheme in Gennaro et al. [47]. We
wrap this redactable signature scheme as two algorithms
compress and uncompress: Let (n, gp, s1) be as in Definition 4
and hash function h(·) be as in Definition 3, Let pk ← n;
sk ← (n, gp, φ(n), s1), for a set I of integers,

• compresssk(I): Output δ ← g
Q
i∈I h(i)−1

p mod n.

• uncompresspk(I, δ, Î): If Î 6⊆ I, output ⊥. Otherwise,

output δ̂: δ̂ ← δ
Q
i∈I\Î h(i)

mod n.

Then we define the compress/uncompress algorithms in
vector form. Let R ⊂ [N]d. Let Projj(R) denote the projec-
tion of R on j-th dimension, i.e. Projj(R) = {i[j] : i ∈ R},
j ∈ [d].

• Compresssk(R,α): for each 1 ≤ j ≤ d, let δj ←
compresssk(Projj(R)). Let v ← (δ1, δ2, . . . , δd) ~ s1,

u1
$←− (Gq)

d and u2
$←− (Gr)

d. δ ← (v~α)⊗u1⊗u2.
Output δ.

5The dimension 1 as in expression i[1] is an arbitrary choice
in [d], and this choice will influence how to divide Rc.

8

• Uncompresspk(R, δ, i): for each 1 ≤ j ≤ d, let set Îj =

{i[j]} and let δ̂j ← uncompresspk(Projj(R), δ[j], Îj).
Output δ̂ ← (δ̂1, δ̂2, . . . , δ̂d).

Remark.

1. The operation v ~ α aims to prevent reuse of δ, and
permutation on dimensions of δ (So does s1).

2. The operation (v~α)⊗u1⊗u2 aims to randomize v~α
with a random vector u1 from (Gq)

d and a random
vector u2 from (Gr)

d.

3. The output δ̂ of Uncompresspk(R, δ, i) equals to E(ITag(i)~
α,v,w,0) for some v ∈ (Gq)

d and w ∈ (Gr)
d. From

δ̂, Alice can extract ITag(i) ~α with private key.

4. Without considering those randomization factors, one
may view the output δ of Compresssk(R,α) as the
compression of {ITag(i) ~α : i ∈ R}.

5. The range R has to be of form A1 ×A2 × . . . ×Ad,
where Aj ⊆ [N], j ∈ [N]. Here Aj is not necessarily
continuous.

We also provide an alternative constructions of compress
and uncompress in Section 6.2.1.

5.5 Security
Our scheme is secure, under Definition 2. The proof is in

Appendix C.

Theorem 2. MAIA is a PRC (Provable Remote Com-
puting) protocol, w.r.t. d-dimensional aggregate Sum query,
under Assumption 1 and Assumption 2.

We defer the complexity analysis to the next section.

6. PERFORMANCE AND EXTENSIONS
In Section 6.1, we discuss some speedup methods and an-

alyze the complexity of our scheme MAIA. In Section 6.2, we
propose an alternative compression method, generalize the
dataset and query, and extend our scheme to authenticate
Count, Min queries, and range selection query.

6.1 Performance

6.1.1 1D Aggregate Range Query
Suppose the range R is 1D, i.e. R = [a1, b1]×[N]d−1. Due

to normalization, the first dimension of points within 1D
range R is predictable and continuous: {i[1] : i ∈ D ∩R} =
[a1, b1]. Hence, when running ProVer on query Sum(R), Al-
ice can set π∗ =

Q
i∈[a1,b1] ctag(i), which she can compute by

herself, and invoke only one instance of CollRes on Sum(R).
Furthermore, Alice does not need to provide Help-Info to
Bob in CollRes, since Alice can generate the right hand side
of equation (13) by herself. As a result, ProVer is much more
efficient when the query range is 1D, compared with higher
dimensional case.

6.1.2 `-Dimensional Aggregate Range Query
The algorithms ProVer and CollRes can also handle query

like
Px=Att(i)
i∈D∩R` x[1], where R` = [a1, b1] × [a2, b2] × . . . ×

[a`, b`] × [N]d−` is an `-dimensional range and ` ∈ [d]. For
such queries, we can do some optimizations: (1) Treat all
vectors Att(i), ti, δ,X,Ψ1 and Ψ2 etc. as `-dimensional
vectors, and ignore the remaining (d−`) dimensions. So the

communication cost of CollRes will be O(`) instead of O(d).
(2) To ensure completeness, check the relative complement
R1 \ Rd, instead of the absolute complement. So we save
one function call CollRes(R0 \ R1). (3) Run all ` calls to
CollRes simultaneously in parallel.

The parallel execution of ` instances of CollRes can save
us a lot: (1) Alice only sends values of a1, b1, . . . , a`, b` to
represent all of ` ranges R` and Rj−1 \ Rj , j ∈ [2, `]. (2)
Recall that, on input (R,α), Compress will separate each
dimension of R, and generate a Help-Info for each 1D range
[aj , bj]. For the above ` ranges, Alice can only generate
compressed Help-Info for 1D range [aj , bj] and [N] \ [aj , bj],
j ∈ [`], from which Bob is able to reconstruct Help-Info for
each of ` ranges.

Note that the query only asks for the sum of the first
dimension. For dimension j ∈ [2, `], Bob may send back

gX[j] mod n instead of the sumX[j] for the j-th dimension,
when X[j] is too large, so that the communication cost is
always independent of the size of dataset. Here g is some
generator of group G provided by Alice.

6.1.3 Other speedup techniques
There are some other tradeoff or speedup techniques, in-

cluding the following. (1) Batch executions of multiple queries:
Alice may find the smallest union set U of all query ranges,
and issue a new query with range U at the very beginning.
Next, Alice authenticates other queries by checking comple-
ment w.r.t U. (2) Precomputation: Partition the space into
regions, and store necessary information for proof of com-
pleteness inside each region, so that Alice only need check
the complement w.r.t. some union of regions that fully cover
the query range. (3) For any rectangle range R, Alice can
find the smallest rectangle range R̄ with help of Bob, such
that R̄ ⊆ R and D ∩R = D ∩ R̄. Then Alice can generate
Help-Info for R̄, instead of R. In many scenarios, R̄ is much
smaller than R. For example, in Figure 2, such smallest rect-
angle range for R1 = [3, 8]× [2, 7] is [4, 6]× [4, 7]. (4) Offline
verifications with multiple queriers: Charlie sends query Q
to Bob, and Bob returns (X, σ) to Charlie, where X is the
result to query Q and σ is the signature of (Q,X) under
Bob’s private key. Charlie may decide when (or whether) to
ask Alice to do the verification.

6.1.4 Complexity Analysis
Taking the modifications in Section 6.1.1 and Section 6.1.2

into account, we analyze the complexity of our scheme. Let
us consider query with range R ⊆ [N]d, which asks for the
sum

P
i∈D∩R Att(i)[1], where R is an `-dimensional rectan-

gular range, ` ∈ [d]. To process this query, ProVer requiresP
j∈[`]O(j) = O(`2) communication bits and O(1) rounds.

When ` = 1, the computation complexity per query is
very efficient: O(|S|) on both sides. Here S denotes the set
of points satisfying the query condition. For ` ∈ [2, d], the
computation complexity per query on Bob’s side is O(`N2)
(modular exponentiations). The dominant computation step
is Uncompress in Step B1(c) of CollRes in Section 5.3. The
computation complexity per query on Alice’s side is O(`N)
(modular multiplications). The dominant computation step
is Compress in Step A1(b) of CollRes in Section 5.3. We can
reduce the computation cost on Alice’s side to O(` logN)
(modular multiplications) at the cost of additional O(N)
storage on Bob’s side without sacrificing communication com-
plexity, and reduce the computation cost on Bob’s side to

9

O(`N logN) (modular exponentiations; the constant factor
behind big-O notation is about 1 and the base of log is 2),
with O(N) temporary storage. We save the details.

The storage overhead on Bob’s side, is O(dN). The stor-
age overhead on Alice’s side, i.e. the key size, is O(d).

The summary of complexities of MAIA compared with re-
lated schemes is given in Figure 1 in Section 1. Note that
when d > log(dN)/ log logN , we have dN logN ≤ logdN .

6.2 Extensions

6.2.1 Alternative Compression and Decompression
Here we present an alternative constructions of ITag, Compress

and Uncompress, using a binary interval tree [1].
Assume N = 2H for some integer H. Build a complete

binary tree with N leaves, such that: (1) Each tree node t is
associated with an interval, denoted as t.int. For the j-th
leaf t (counting from the left to right), t.int = {j}, and
for an internal node t with left child tl and right child tr,
t.int = tl.int ∪ tr.int. (2) Each tree edge e is associated
with a public random prime, denoted as e.p. (3) Each tree
node t is associated with an attribute, denoted as t.val.
Let (e1, e2, . . . , eu) be the path from the root to a node t.

Then t.val = r.val
Q

1≤j≤u ej.p mod n, where r denotes the
root of the tree.

Note ITag and Compress are just vector form of itag and
compress. We construct itag, compress as below. (1) itag(i):
Set r.val to be some generator of a subgroup of Z∗n. itag(i) =
t.val, where t is the i-th leaf. (2) compress([a, b], α): Given
an interval [a, b] ⊂ [N], find the minimum set {t1, t2, . . . , tv}
of tree nodes, where tj.int’s, j ∈ [v], form a partition of
[a, b]. Output {tj.valα, j ∈ [v]}. Then a corresponding
uncompress algorithm will recover {`j.valα : `j is the j-th leaf,
j ∈ [a, b]}, using the public primes associated to edges.

This alternative approach reduces the complexity of
uncompress from O(L) to O(logL), where L is the length of
the interval [a, b], at the cost of growth of output size (i.e.
communication bandwidth of MAIA) by a factor of O(logN).
Furthermore, the dynamic nature of tree provides us a clue
to support dynamic operations on the dataset, for example,
adding or deleting a point. We will look into this direction
in the future.

6.2.2 Generalization of Dataset and Query

Table 3: The dataset D̂ = {x1,x2, · · · ,x10}. For each 1 ≤
m ≤ 10, we write xm = (xm,1, xm,2), and (im,1, im,2) is
the rank vector of xm, i.e. im,1 is the rank of xm,1 among
{xm′,1 : 1 ≤ m′ ≤ 10}. Similar for im,2 and xm,2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

xm,1 5 7 11 24 31 45 58 61 83 97
im,1 1 2 3 4 5 6 7 8 9 10
xm,2 3 21 77 58 37 10 82 1 7 87
im,2 2 5 8 7 6 4 9 1 3 10

As mentioned previously, the dataset and query described
in Section 3.2 are simplified for the convenience of presenta-
tion, and our scheme MAIA can handle more general case.

Let D̂ = {x1,x2, . . . ,xN} ⊂ Nd be a dataset. An aggre-
gate Sum query with range B ⊂ Nd over dataset D̂ asks for

Figure 2: The set D̂ of 10 points x1,x2, · · · ,x10 are dis-
played on the [1, 10]× [1, 10] grid, where xm’s, 1 ≤ m ≤ 10,
are as defined in Table 3. Each point xm is labeled with
(xm, xm,2), and located at position (im,1, im,2). The 2D
range [3, 8]× [2, 7] selects the region denoted by “R1”.

the sum
L
x∈D̂∩B x.

We can authenticate such query in the following way. (1)
Normalize [38] the dataset D̂: for each dimension ` ∈ [d],
sort all xj ’s along the `-th dimension. Then associate a d-
dimensional rank vector ij for each point xj , j ∈ [N]. Let
D = {i1, i2, . . . , iN}. Table 3 and Figure 2 show a normalized
2D dataset. (2) Define a vector-valued attribute function
Att : D → D̂, such that Att(i) = x, where i ∈ D is the rank
vector of x ∈ D̂. (3) Set up for dataset D with attribute
function Att, by running algorithms KGen and DEnc. (4)
Translate query w.r.t. D̂ to query w.r.t. D: find a range
R ⊆ [N]d, such that

L
i∈D∩R Att(i) =

L
x∈D̂∩B x. Alice can

do this translation online with help of Bob and is able to
verify the correctness of the translation by authenticating
some tag values returned by Bob. (5) Run interactive
algorithm ProVer to authenticate query Sum(R) w.r.t. D.

We remark that the translation of queries can be done
with O(d) communication bits and in O(d) computation
time, and this generalization will not change the complexity
of our scheme asymptotically.

6.2.3 Authentication of Count, Min Queries
Besides Sum query, we can generalize our scheme to au-

thenticate aggregate Count query and Min query. Count
is just a special case of Sum: summing a constant attribute.
Min query can be converted to Count query: For any set
S of numbers, c = minS ⇔ c ∈ S ∧ |S| = |{x : x ∈
S ∧ x ≥ c}|. To process a Min query with range B, which
asks for minx∈D̂∩B x[1], Alice and Bob interact in this way:
(1) Bob sends back the query result c with the proof that
c ∈ S, where S = {x[1] : x ∈ D̂∩B}; (2) Alice generates two
queries6 Count(B) and Count(B∩ [c,+∞)×Nd−1) w.r.t.
D̂, which ask for the sizes of set S and set {x : x ∈ S∧x ≥ c},
respectively. Next, Alice issues the two queries to Bob and

6Note that with the generalization in Section 6.2.2, our
scheme can authenticate aggregate such queries.

10

gets two count numbers with proofs. If all proofs are valid
and the two count numbers are equal, Alice believes c is the
minimum value.

Similarly, Max query can be authenticated. So we con-
clude that: our scheme MAIA can authenticate all of Sum,
Count, Min and Max aggregate query.

6.2.4 Multidimensional Range Selection Query
It is straightforward to extend our scheme to authenticate

range selection query with range R, which asks for the set
{Att(i) : i ∈ D ∩ R}, with linear communication overhead:
(1) Bob sends back {(Att(i), i, ti) : i ∈ D ∩R}; (2) Authen-
ticate a Count query with range R to ensure completeness.

Next, we brief a method to authenticate range selection
query with O(d2) communication overhead. The key idea is
that we can extend CollRes to authenticate weighted sum.

Suppose Alice wants to authenticate a range selection
query with range R, which asks for S = {x[1] : i ∈ D ∩
R,x = Att(i)}. She does it in three steps: (1) Issue the
range selection query to Bob, and Bob returns the set S
without any proof; (2) Issue a Count query with range R
and verify the result; (3) Simulate (modified) CollRes with
Bob to authenticate a weighted sum query with range R.
More precisely, Alice asks for the weighted sum X[j] ←Px=Att(i)
i∈D∩R x[j] H(x[1]), j ∈ [d], with H(x[1]) as weights,

where H is some collision-resistant hash function. The mod-
ification to CollRes is: (a) In equation (9), replace Att(i)
with Att(i) ⊗ (H(Att(i)[1])e), where e is the d-dimensional
vector with each dimension equal to 1; (b) Modify equa-
tions (10) and (12) accordingly, by “raising” tx and the
output of Uncompress to power H(Att(i)[1])e (See equa-
tion (3) for vector exponentiation). (c) Modify Alice’s ver-

ification steps accordingly, and add one more test7 X[1]
?
=P

x∈S x H(x). We save the details.
Assume all (legitimate) attribute values are distinct. From

Step (3), Alice can verify the correctness of the result set S
returned in Step (1). With the help of the count number
from Step (2), Alice can ensure the completeness.

We remark that the generalization in Section 6.2.2 can be
applied here, so that Alice can authenticate range selection
query w.r.t. D̂ = {x1, . . . ,xN}, which asks for {x[1] : x ∈
D̂ ∩ B}. The complexity of authentication of range selec-
tion query using our modified scheme is shown in Table 1 in
Section 1.

7. CONCLUSION
We proposed a scheme to authenticate aggregate range

query over static multidimensional dataset, and the com-
munication complexity (in term of bits) is O(d2) (d is the
dimension) and independent of the query range size and the
dataset size. Aggregate operations that our scheme can sup-
port include summing, counting, and finding of the mini-
mum and maximum. Our scheme and techniques can be
useful in various other applications. In particular, we showed
that our scheme with slight modifications can authenticate
multidimensional range selection query, and improved the
communication overhead significantly compared with pre-
vious works. We will look into the possibility to support
dynamic operations on the dataset, like adding or deleting
a point, using a tree based compression method.

7If X is too large, Bob can just send back (ge)~X for some
generator g.

8. REFERENCES
[1] Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig,

A.: Multi-dimensional range query over encrypted data. In:
SP ’07: IEEE Symposium on Security and Privacy. (2007)
350–364

[2] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy
attribute-based encryption. In: SP ’07: IEEE Symposium
on Security and Privacy. (2007) 321–334

[3] Goyal, V., Pandey, O., Sahai, A., Waters, B.:
Attribute-based encryption for fine-grained access control
of encrypted data. In: CCS ’06: ACM conference on
Computer and communications security. (2006) 89–98

[4] Boneh, D., Waters, B.: Conjunctive, subset, and range
queries on encrypted data. In: TCC ’07: Theory of
Cryptography. (2007) 535–554

[5] Katz, J., Sahai, A., Waters, B.: Predicate encryption
supporting disjunctions, polynomial equations, and inner
products. In: EUROCRYPT ’08: International Conference
on Advances in Cryptology. (2008) 146–162

[6] Shi, E., Waters, B.: Delegating capabilities in predicate
encryption systems. In: ICALP ’08: International
colloquium on Automata, Languages and Programming.
(2008) 560–578

[7] Brian Thompson, Danfeng Yao, S.H.W.G.H., Sander, T.:
Privacy-preserving computation and verification of
aggregate queries on outsourced databases. In: PETS ’09:
Privacy Enhancing Technologies Symposium (PETS).
(2009)

[8] Rivest, R.L., Shamir, A., Adleman, L.: A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM 21(2) (1978) 120–126

[9] Paillier, P.: Public-key cryptosystems based on composite
degree residuosity classes. In: EUROCRYPT ’99:
International Conference on Advances in Cryptology.
(1999) 223–238

[10] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.:
Order-preserving symmetric encryption. In: EUROCRYPT
’09: International Conference on Advances in Cryptology.
(2009) 224–241

[11] Gentry, C.: Fully homomorphic encryption using ideal
lattices. In: STOC ’09: Annual ACM symposium on
Theory of computing. (2009) 169–178

[12] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner,
L., Peterson, Z., Song, D.: Provable data possession at
untrusted stores. In: CCS ’07: ACM conference on
Computer and communications security. (2007) 598–609

[13] Chang, E.C., Xu, J.: Remote integrity check with dishonest
storage server. In: ESORICS ’08: European Symposium on
Research in Computer Security. (2008) 223–237

[14] Shacham, H., Waters, B.: Compact proofs of retrievability.
In: ASIACRYPT ’08: International Conference on the
Theory and Application of Cryptology and Information
Security. (2008) 90–107

[15] Bowers, K.D., Juels, A., Oprea, A.: Hail: a
high-availability and integrity layer for cloud storage. In:
CCS ’09: ACM Conference on Computer and
Communications Security. (2009) 187–198

[16] Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability
via hardness amplification. In: TCC ’09: Theory of
Cryptography. (2009) 109–127

[17] Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from
homomorphic identification protocols. In: ASIACRYPT
’09: Annual International Conference on the Theory and
Application of Cryptology and Information Security. (2009)
319–333

[18] Juels, A., Kaliski, Jr. B. S.: Pors: proofs of retrievability
for large files. In: CCS ’07: ACM conference on Computer
and Communications Security. (2007) 584–597

[19] Chen, H., Ma, X., Hsu, W.W., Li, N., Wang, Q.: Access
control friendly query verification for outsourced data
publishing. In: ESORICS ’08: European Symposium on
Research in Computer Security. (2008) 177–191

11

[20] Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.:
Authentic third-party data publication. In: IFIP ’00: IFIP
TC11/ WG11.3 Working Conference on Database Security.
(2000) 101–112

[21] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong,
A., Stubblebine, S.G.: A general model for authenticated
data structures. Algorithmica 39(1) (2004) 21–41

[22] Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.:
Authentic data publication over the internet. J. Comput.
Secur. 11(3) (2003) 291–314

[23] Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verifying
completeness of relational query results in data publishing.
In: SIGMOD ’05: ACM SIGMOD international conference
on Management of data. (2005) 407–418

[24] Mykletun, E., Narasimha, M., Tsudik, G.: Authentication
and integrity in outsourced databases. Trans. Storage 2(2)
(2006) 107–138

[25] Pang, H.H., Tan, K.L.: Verifying completeness of relational
query answers from online servers. ACM Trans. Inf. Syst.
Secur. 11(2) (2008) 1–50

[26] Sion, R.: Query execution assurance for outsourced
databases. In: VLDB ’05: International conference on Very
large data bases. (2005) 601–612

[27] Cheng, W., Tan, K.L.: Query assurance verification for
outsourced multi-dimensional databases. J. Comput. Secur.
17(1) (2009) 101–126

[28] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.:
Dynamic authenticated index structures for outsourced
databases. In: SIGMOD ’06: ACM SIGMOD international
conference on Management of data. (2006) 121–132

[29] Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of
outsourced data. In: VLDB ’07: International conference
on Very large data bases. (2007) 782–793

[30] Atallah, M.J., Cho, Y., Kundu, A.: Efficient data
authentication in an environment of untrusted third-party
distributors. In: ICDE ’08: IEEE International Conference
on Data Engineering. (2008) 696–704

[31] Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.:
Authenticated join processing in outsourced databases. In:
SIGMOD ’09: ACM SIGMOD international conference on
Management of data. (2009) 5–18

[32] Mouratidis, K., Sacharidis, D., Pang, H.: Partially
materialized digest scheme: an efficient verification method
for outsourced databases. The VLDB Journal 18(1) (2009)
363–381

[33] Pang, H.H., Zhang, K.M.: Scalable verification for
outsourced dynamic databases. In: VLDB ’09:
International Conference on Very Large Data Bases. (2009)

[34] Goodrich, M.T., Tamassia, R., Triandopoulos, N.:
Super-efficient verification of dynamic outsourced
databases. In: CT-RSA ’08: The Cryptographers’ Track at
the RSA Conference. (2008) 407–424

[35] Haber, S., Horne, W., Sander, T., Yao, D.:
Privacy-preserving verification of aggregate queries on
outsourced databases. Technical report, HP Laboratories
(2006) HPL-2006-128.

[36] Shamir, A.: How to share a secret. Commun. ACM 22(11)
(1979) 612–613

[37] Pedersen, T.P.: Non-interactive and information-theoretic
secure verifiable secret sharing. In: CRYPTO ’91:
Advances in Cryptology. (1991) 129–140

[38] Preparata, F.P., Shamos, M.I.: Computational geometry:
an introduction. (1985)

[39] Okamoto, T., Uchiyama, S.: A new public-key
cryptosystem as secure as factoring. In: EUROCRYPT ’98:
International Conference on Advances in Cryptology.
(1998) 308–318

[40] González Nieto, J.M., Boyd, C., Dawson, E.: A public key
cryptosystem based on a subgroup membership problem.
Des. Codes Cryptography 36(3) (2005) 301–316

[41] Yamamura, A., Saito, T.: Private information retrieval

based on the subgroup membership problem. In: ACISP
’01: Australasian Conference on Information Security and
Privacy. (2001) 206–220

[42] Gjøsteen, K.: Subgoup membership problems and public
key cryptosystems. PhD thesis, NTNU (2004)

[43] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF
Formulas on Ciphertexts. In: TCC ’05: Theory of
Cryptography. (2005) 325–341

[44] Brown, J., Nieto, J.M.G., Boyd, C.: Concrete
chosen-ciphertext secure encryption from subgroup
membership problems. In: CANS ’06: Cryptology and
Network Security. (2006) 1–18

[45] Gjøsteen, K.: Symmetric subgroup membership problems.
In: PKC ’05: Public Key Cryptography. (2005) 104–119

[46] Hofheinz, D., Kiltz, E.: The group of signed quadratic
residues and applications. In: CRYPTO ’09: Advances in
Cryptology. (2009) 637–653

[47] Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign
signatures without the random oracle. In: EUROCRYPT
’99: International Conference on Advances in Cryptology.
(1999) 123–139

[48] Goldreich, O.: Foundations of Cryptography: Volume 1.
(2006)

[49] Johnson, R., Molnar, D., Song, D.X., Wagner, D.:
Homomorphic signature schemes. In: CT-RSA ’02: The
Cryptographer’s Track at the RSA Conference on Topics in
Cryptology. (2002) 244–262

[50] Boneh, D., Lynn, B., Shacham, H.: Short signatures from
the weil pairing. J. Cryptol. 17(4) (2004) 297–319

[51] Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing
sql over encrypted data in the database-service-provider
model. In: SIGMOD ’02: ACM SIGMOD international
conference on Management of data. (2002) 216–227

[52] Hacigümüs, H., Iyer, B.R., Mehrotra, S.: Efficient
execution of aggregation queries over encrypted relational
databases. In: DASFAA. (2004) 125–136

[53] Mykletun, E., Tsudik, G.: Aggregation queries in the
database-as-a-service model. In: IFIP ’06: IFIP WG 11.3
Working Conference on Data and Applications Security.
(2006) 89–103

[54] Ge, T., Zdonik, S.B.: Answering aggregation queries in a
secure system model. In: VLDB ’07: International
conference on Very large data bases. (2007) 519–530

[55] Hinek, M.J.: On the security of multi-prime rsa. Journal of
Mathematical Cryptology 2(2) (2008) 117–147

[56] Xu, J., Chang, E.C.: Authenticating Aggregate Range
Queries over Multidimensional Dataset. Cryptology ePrint
Archive, Report 2010/050 http://eprint.iacr.org/.

APPENDIX
A. IDEA OF PROOF

Here we brief the idea to prove Theorem 2. The secu-
rity model is given in Definition 2. The correctness part is
straightforward. We focus on the soundness part.

Let R be the variant logarithm function as defined in As-
sumption 2. We define P and Q similar to R. Define func-
tion P : G→ Zp, such that for any (x, y, z) ∈ Zp × Zq × Zr,

Q(gxpg
y
q g
z
r)

def
= x. Define function Q : G→ Zq, such that for

any (x, y, z) ∈ Zp × Zq × Zr, Q(gxpg
y
q g
z
r)

def
= y.

Claim 1. Assumption 2 holds for Q and R

During all interactions with Alice (i.e. adversary’s learn-
ing phase), Bob receives i’s, Att(i), values aj ’s,bj ’s which
specify query range, and a lot of elements from group G, in-
cluding tag values ti and compressed Help-Info δ. For any

12

http://eprint.iacr.org/

element gup g
v
q g
w
r ∈ G Bob receives, both v and w are (cryp-

tographicly secure) pseudo-random: (1) In a tag value ti, ξ
and s`,2, ` ∈ [d], are true random and fs(·) is PRF ; (2) In
each compressed Help-Info δ = (v ~ α) ⊗ u1 ⊗ u2, where
v ∈ (Gp)

d, u1 ∈ (Gq)
d and u2 ∈ (Gr)

d, both u1 and u2

are true random. See Section 5.4 for Compress. Hence, the
prerequisite of Assumption 2 is satisfied for both Q and R.

Claim 2. It is hard for a dishonest Bob to pass tests in
equations (13)(14), beyond homomorphism of E.

1. tag and itag are unforgeable, by Lemma 1 and [47]. The
details of the proof will require Assumption 1.

2. One may view itag(i)α as a variant version of multi-
prime RSA signature8 [55] on message itag(i), with
private key α and public key α−1 mod p, where both
public key and private key are kept securely from ad-
versaries. The definition of security of homomorphic
signature scheme (intuitively, unforgeability except for
homomorphism) is given in [49]. For simplicity, we ig-
nore the requirement of security of multi-prime RSA
signature in the main theorem.

3. Due to the binding factor gξq among different dimen-
sions (Equation (14) checks the binding factor), ITag(i)~
α can not be forged beyond homomorphism. This can
be proved by applying Assumption 2 on Q. Note this
homomorphism corresponds to double counting or un-
dercounting points that satisfy the query condition.

Claim 3. If an adversary cheats by double counting and
undercounting, and passes the verification in ProVer, then
he can break Assumption 2.

Suppose the adversary (i.e. malicious Bob) double counts
points in the multiset S1 = {iu,j : iu,j ∈ D, j ∈ [m]} and
undercounts points in set S2 ⊆ D, where S1 6= S2, and passes
the verification. That means, η1 = η2, where

η1 =
Y
i∈S1

ctag(i[1]) mod n; η2 =
Y
i∈S2

ctag(i[1]) mod n.

According to the definition of tag, itag and R, loggr η1 =
R(
Q
i∈S1

ti[1]) and loggr η2 = R(
Q
i∈S2

ti[1]). Hence,

R(

Q
i∈S1

ti[1]Q
i∈S2

ti[1]
) = R(

Y
i∈S1

ti[1])−R(
Y
i∈S2

ti[1]) = 0.

Let A =
Q

i∈S1
ti[1]Q

i∈S2
ti[1]

mod n. If A = 1, this will lead to

an efficient method to factorize n. See Lemma 6 in Ap-
pendix C. If A 6= 1, then (A, 0) is a contradiction to As-
sumption 2. Note that the Assumption 2 implies that it is
hard to factorize n.

B. SECURITY OF AUTHENTICATION TAG
FUNCTION

B.1 Proof of Lemma 1

Lemma 1. Let k be a key as in Definition 3. Given S =

{(xi, i, ti) : ξ
$←− Z∗q , ti ← tagk(xi, i; ξ))}1≤i≤N and the mod-

ulus n, it is computationally hard to forge a tuple (y, j, t) 6∈
8Or a symmetric key version of BLS signature [50].

S, such that γ1(t, gyp) = itagk(j) and γ3(t) = ctagk(j), under
Assumption 1 and Assumption 2.

Let X ∼ Y denote that X and Y are computationally
indistinguishable.

Proof. Suppose that some PPT adversary A takes as in-
put a set (S, n), and outputs (y, j, t) 6∈ S, such that γ1(t, gyp) =
itagk(j) and γ3(t) = ctagk(j) with non-negligible probabil-
ity. Note Assumption 2 is applicable for R.
Case 1: j ∈ [N]. Let (xj , j, tj) ∈ S be a tuple in the set S.
Since (y, j, t) 6∈ S, we have (y, t) 6= (xj , tj).

Case 1.1: tj 6= t. From γ3(t) = ctagk(j) = γ3(tj), we
have

R(t) = loggr γ3(t) = loggr γ3(tj) = R(tj).

Let A = tj t
−1 mod n. Let A 6≡ 1 (mod n), and B =

R(A) = 0. The tupe (A,B) is a contradiction with As-
sumption 2.

Case 1.2: tj = t and xj 6= y. From tj = t, we have,

P(tj) = P(t)

⇒ xj +
s1
h(j)

≡ y +
s1
h(j)

(mod p)

⇒ xj ≡ y (mod p).

Hence, p|(xj − y). Simulate A again, we can get another
multiple of p, then apply the GCD algorithm to obtain p.
Next, we show that with the knowledge of p, the adversary
can break Assumption 1.

Assumption 1 can also be applied on group Gp or Gq.

Let Yp = {yi : yi
$←− Gp}1≤i≤N and Yq = {yi : yi

$←−
Gq}1≤i≤N . Let St = {ti : ∃x, i, (x, i, ti) ∈ S}. Since ξ’s
are true random, by Assumption 1 with multiple sampling
(Theorem 3.2.6 [48]), St ∼ Yq ∼ X ∼ Yp. However, with
value of p, the adversary can distinguish St and Yp. Con-
tradiction!

Case 2: j 6∈ [N]. Note that in our use of tag in this paper,
this case will not consider as a valid forgery, since we are
only interested in normalized value i ∈ [N], and (y, j, t) with
j 6∈ [N] will be rejected by Alice immediately.

B.2 Security of tag function Tag

Let D = {i1, i1, . . . , iN} ⊂ [N]d be a dataset as in Sec-
tion 3.2. That is, D satisfies property: For any j ∈ [d],
{i[j] : i ∈ D} = [1, N].

Let K be a key as in Definition 4. We construct a set S
as below: For any i ∈ D,

1. let xi be any element in Nd;
2. choose ξi at random from Z∗q ;
3. compute ti ← TagK(x, i; ξ).

Let S = {(xi, i, ti) : i ∈ D}.

Lemma 3. Given (S, n), it is hard to forge (y, j, t) 6∈ S,
such that (1) Γ1(t,y) = ITagK(j), (2) there exists a ∈ Zn,
Γ2(t,y) ~ s2 = ae mod n, (3) Γ3(t) = CTagK(j), (4)
j ∈ [N]d, under Assumption 1 and Assumption 2.

Proof. (Sketch) Without considering the binding factor
gξq ’s, this problem can be considered as d instances of the
problemin Lemma 1.

The adversary either (1) forges a tuple (y, j, t) as in Lemma 1,
or (2) permutate on dimensions of a valid tuple in S; (3) mix

13

and combine different dimensions of different valid tuples in
S.

(1) is prevented by Lemma 1; (2) is prevented by s1, s2, s3,
which are parts of key K; (3) is prevented by the binding
factor.

C. PROOF OF THEOREM 2

C.1 For Claim 2
We extract out the verification in equation (13) and treat

as a private key signature scheme.

Lemma 4. Let S = {(XiYi,1Zi,1 mod n,Xα
i Yi,2Zi,2 mod n) :

Xi ∈ Gp, Yi,j ∈ Gq, Zi,j ∈ Gr, j ∈ {1, 2}}1≤i≤m, where m
is some polynomial of the seucrity parameter κ, i.e. the
bit length of the modulus n. Given (S, n), it is hard to
forge a valid pair (XY1Z1 mod n,XαY2Z2 mod n) 6∈ S,
X ∈ Gp, Y1, Y2 ∈ Gq, Z1, Z2 ∈ Gr, beyond multiplicative
homomorphism, if Multiple-Prime RSA [55] is unforgeable
beyond multiplicative homomorphism.

Proof. Let (X,Y, Z, U)
$←− (Gp, Gq, Gr, G). By Assump-

tion 1, X ∼ U, Y ∼ U,Z ∼ U . Then XY Z ∼ XU ∼ U ∼ X
(Here XY Z means X × Y × Z mod n.).

By multiple sampling (Theorem 3.2.6 [48]), we have

(X,Xα) ∼ (XY1Z1, X
αY2Z2) and (X,Xα) ∼ (U,Uα).

Hence,

(XY1Z1, X
αY2Z2) ∼ (U,Uα).

Note that (X,Xα) ∼ (U,Uα). (U,Uα) is the multiple-
Prime RSA signature scheme without revealing the public
key.

Let E and K be as in Section 4. Let D and S be the as in
Section B.2. Note that ti = EK(ITagK(i),vi,wi,xi), where
vi ∈ (Gq)

d and wi ∈ (Gr)
d.

Let R ⊆ [N]d be range. For each i ∈ R,

1. choose α at random from (Z∗p)d;

2. let ui ← EK(ITagK,vi,wi,0), where vi ∈ (Gq)
d and

wi ∈ (Gr)
d.

Let S̄ = {ui : i ∈ R}.
The following lemma is for the Claim 2.

Lemma 5. Given (S, S̄, n), it is hard to forge a tuple (Ψ1,Ψ2,X)
beyond homomorphism of E, where Ψ1 = EK(U ,V 1,W 1,X),Ψ2 =
EK(U~α,V 2,W 2,0), and U ∈ (Gp)

d,V 1,V 2 ∈ (Gq)
d,W 1,W 2 ∈

(Gr)
d, such that (Ψ1,Ψ2,X) passes verification in equa-

tions (13) (14).

Proof. (Sketch) Without considering the binding factor
gξq ’s, this problem can be considered as d instances of the
problem in Lemma 4.

The adversary either (1) forges a tuple as in Lemma 4, or
(2) permutate on dimensions of a valid tuple; (3) mix and
combine different dimensions of different valid tuples.

(1) is prevented by Lemma 4; (2) is prevented by s1, s2

(Note Alice does not have enough information to check CTag
with s3, so there is no s3 here), which are parts of key K;
(3) is prevented by the binding factor, which is checked in
equation (14).

C.2 For Claim 3
Let group G be as in Assumption 1.

Lemma 6. Given a set S = {yi : yi
$←− G}1≤i≤m and the

modulus n, it is hard to find a set S1 ⊂ S and a multiset
S2 ⊂ S, such that (1) S1 6= S2 and (2)

Q
y∈S1

y =
Q
y∈S2

y
mod n, assuming factoriztion of n is hard.

Here multiset S2 ⊂ S, means any element of S2 is in S,
without considering the number of duplications of elements
in S2.

Note that by Assumption 1, {ti[j] : ti ∈ T, j ∈ [d]} is
indistinguishable from uniform distribution over group G,
wher T is the set of tag values generated by DEnc (See Sec-
tion 5.2).

Proof. Assume that an algorithm A with inputs (S, n)
can output such two sets with non-negligible probability.

1. Choose g at random from Zn. With high chance (non-
negligible), the order of g is a generator of G.

2. For 1 ≤ i ≤ m, choose xi at random from [1, n2] and
compute yi ← gxi mod n (Here we purposely choose
the domain with size much larger than λ(n). So yi only
carries partial information of xi).

3. Let S = {yi : 1 ≤ i ≤ m}. Run A(S, n) to get sets S1

and S2.

4. Compute W1 ←
P
yi∈S1

xi and W2 ←
P
yi∈S2

xi.

5. We have λ(n)|(W1 −W2) and with high chance W1 −
W2 is not 0 (This is because we choose a domain of
size larger than n, and A has access to only a partial
information of xi’s).

14

	Introduction
	Related work
	Formulation
	Notations
	Dataset and Query
	Security Model
	Assumptions

	Authentication Tag
	Construction of tag functions
	Decompose a tag value
	In Scalar Form
	In Vector Form

	Security

	MAIA: Main Construction
	Summary of tag function
	Setup phase
	Query phase
	Compress and Uncompress
	Security

	Performance and Extensions
	Performance
	1D Aggregate Range Query
	-Dimensional Aggregate Range Query
	Other speedup techniques
	Complexity Analysis

	Extensions
	Alternative Compression and Decompression
	Generalization of Dataset and Query
	Authentication of Count, Min Queries
	Multidimensional Range Selection Query

	Conclusion
	References
	Idea of Proof
	Security of Authentication Tag Function
	Proof of Lemma 1
	Security of tag function Tag

	Proof of Theorem 2
	For Claim 2
	For Claim 3

