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Abstract. We are interested in the integrity of the query results from an outsourced database service provider. Alice
passes a set D of d-dimensional points, together with some authentication tag T, to an untrusted service provider Bob.
Later, Alice issues some query over D to Bob, and Bob should produce a query result and a proof based on D and
T. Alice wants to verify the integrity of the query result with the help of the proof, using only the private key. In this
paper, we consider aggregate query conditional on multidimensional range selection. In its basic form, a query asks for
the total number of data points within a d-dimensional range. We are concerned about the number of communication
bits required and the size of the tag T. We give a method that requires O(d2 log2 Z) communication bits to authenticate
an aggregate count query conditional on d-dimensional range selection, where each data point is in the domain [1,Z]d

and Z is an integer. Our solution relies on Generalized Knowledge of Exponent Assumption proposed by Wu and
Stinson [1], and exploits a special property of BBG [2] HIBE scheme. Besides counting, our solution can be extended
to support summing, finding of the minimum and usual (non-aggregate) range selection with similar complexity.

Keywords: Authentication, Multidimensional Aggregate Query, Secure Outsourced Database, Provable Remote
Computing

1 Introduction

Alice has a set D of d-dimensional points. She preprocesses the dataset D using her private key to generate some
authentication tag T. She sends (outsources) D and T to an untrusted service provider Bob. Then Alice deletes
the original copy of dataset D and tag T from her local storage. Later Alice may issue a query over D to Bob,
for example, an aggregate query conditional on a multidimensional range selection, and Bob should produce the
query result and a proof based on D and T. Alice wants to authenticate the query result, using only her private
key.

We are concerned about the communication cost and the storage overhead on Bob’s side. Such requirements
exclude the following two straightforward approaches: (1) Bob sends back the whole dataset D with its tag T;
(2) During preprocessing, Alice generates and signs answers to all possible queries.

The problem we study in this paper fits in the framework of the outsourced database applications [3,4], which
emerged in early 2000s as an example of “software-as-a-service” (SaaS). By outsourcing database management,
backup services and other IT needs to a professional service provider, companies can reduce expensive cost in
purchase of equipments and even more expensive cost in hiring or training qualified IT specialists to maintain
the IT services [5].

Researches in secure outsourced database focus on two major aspects: privacy [4,6,7,8] (i.e. protect the data
confidentiality against both the service provider and any third party), and integrity [3,9,10,11,5,12,13,14,15,16,
17,18,19,20,21,22,23] (i.e. authenticate the soundness and completeness of query results returned by the service
provider). In the latter aspect, a lot of works are done for “identity query” [13], i.e. the query result is a subset
of the database. Aggregate range query is arguably more challenging and only a few works (e.g. [12, 22, 23]) are
devoted to the authentication of aggregate query.

1.1 Our results

We propose a scheme, which we call MAIA (Multidimensional Aggregate query Integrity Authentication), to
authenticate aggregate range query over static multidimensional outsourced dataset. For a dataset D ⊂ [1,Z]d

with N d-dimensional points, the number of communication bits required is in O(d2 log2Z) per query. The storage



overhead on Bob’s side is O(dN), which is linear w.r.t. the storage size of D. If the dataset D is normalized1 [24],
then Z = N and O(d2 log2Z) is sublinear in N and polynomial in d. To the best of our knowledge, this is the
first solution with communication overhead sublinear in the number of points in the dataset and polynomial in
dimension, without using fully homomorphic encryption scheme [25,26].

We now illustrate our main ideas in three steps: (1) We describe a preliminary scheme to authenticate count
query. This preliminary scheme requires large amount of communication bits and computation overhead on
client side, but can be proved secure (Theorem 3) under certain assumptions. (2) We brief our strategy and key
technique used in the main scheme (Section 4) to reduce the communication overhead and computation overhead.
(3) We brief the computational assumptions required by our security proofs of the preliminary scheme and the
main scheme

Preliminary Scheme Let D ⊂ [Z]d be a set of d-dimensional points. Let G be a multiplicative cyclic group of
prime order p. During setup, Alice chooses β ∈ Z∗p, θ ∈ G and a secret function f : [Z]d → G as the private key.
From the private key, Alice generates a tag value tx = (tx,1, tx,2) = (θf(x), f(x)β) for each data point x ∈ D.
Alice also computes a value π∗ =

∏
x∈D tx,2. Next, Alice sends dataset D and tag values T = {tx : x ∈ D} to

Bob and deletes everything except π∗ and the private key (β, θ, f(·)) from her storage.
Let us consider a count query conditional on range R ⊂ [Z]d, which asks for the the size of intersection

set D ∩R. Bob is expected to send to Alice a number X as the query result, and a proof to show that indeed
X = |D ∩R| (mod p).

To process this query, Alice chooses two random nonces2 ρ and ρ, computes and sends auxiliary messages3

(called as Help-Info) Φ = {f(x)ρ : x ∈ R} and Φ = {f(x)ρ : x ∈ R{} to Bob , in order to help Bob to generate a
proof for the query result. Bob is expected to compute X = |D ∩R| and X = |D ∩R{|, and generate the proof
(Ψ1, Ψ2, Ψ3, Ψ1, Ψ2, Ψ3) as below:

Step 1: Bob multiplies all tags tx for point x ∈ D ∩R to obtain Ψ1, Ψ2

Ψ1 ←
∏

x∈D∩R

tx,1 = θX
∏

x∈D∩R

f(x); Ψ2 ←
∏

x∈D∩R

tx,2 =
∏

x∈D∩R

f(x)β.

Step 2: Bob multiplies all values f(x)ρ from the Help-Info Φ for point x ∈ D ∩R to obtain Ψ3:

Ψ3 ←
∏

x∈D∩R

f(x)ρ.

Step 3: Bob repeats Step 1 and Step 2 for data points x ∈ D ∩ R{ using Help-Info Φ to obtain Ψ1, Ψ2, Ψ3

correspondingly.

Bob sends back (X,Ψ1, Ψ2, Ψ3;X,Ψ1, Ψ2, Ψ3) to Alice, and Alice verifies the returned message using the private
key (β, θ) and secret random nonces ρ, ρ in this way:

Step 1: Is (Ψ1, Ψ2) indeed an aggregated multiplication of valid tags?(
Ψ1

θX

)β
?= Ψ2.

Step 2: Is Ψ2 computed using only points inside D ∩R?

Ψρ2
?= Ψβ3 .

Step 3: Repeat Step 1 and Step 2 to verify (X,Ψ1, Ψ2, Ψ3) using private key and secret random nonce ρ.
Step 4: Is every point counted for exactly once?

π∗
?= Ψ2 · Ψ2. (1)

If all of above verifications succeed, Alice will believe that X is the correct query result.
1 For any dataset with size N , one can normalized [24] it by sorting the dataset along each dimension, so that the normalized dataset

is a subset of [1, N ]d. We remark that such normalization will not loss generality: queries over the original dataset can be translated
into queries over normalized dataset online by Bob and Alice can verify this translation by checking some authentication tags.

2 Here the secret random nonces prevent Bob from abusing this Help-Info for other queries.
3 Note that Alice is able to enumerate all points within the query range R. But she is not able to enumerate points within D after

the setup phase.



Remark.

– For point x 6∈ R, Bob does not have f(x)ρ; for point x 6∈ D, Bob does not have tx. Only for point x ∈ D∩R,
Bob can provide both tx and f(x)ρ.

– In the computations of Ψ1 and Ψ2, an adversary (playing the role of Bob) may multiply tags for some points
within D ∩R multiple times, and/or ignore some points within D ∩R, and try to pass the equality test in
equation (1). If such adversary succeeds, that means, the adversary can find integers µx’s, x ∈ D, such that∏
x∈D tµxx,2 = π∗ =

∏
x∈D tx,2 and for some x, µx 6= 1, where µx > 1 indicates that the point x is double counted,

µx < 1 indicates that the point x is undercounted, and µx might take negative integer value. This adversary
could be utilized to solve DLP (Discrete Log Problem) (See the sketch proof of Theorem 3 in Section 5.3 ).
In other words, such adversary does not exist under assumption that DLP is hard.

– In the preliminary scheme, the size of Help-Info is linear w.r.t. the size of query range R, which could be
huge and possibly comparable to the domain size Zd of a data point. This implies large computation cost on
client (Alice) side (to generate Help-Info), and large communication cost (to send Help-Info).

– The second component tx,2 = f(x)β in a tag tx is required to deal with adaptive adversary: An adversary
does not gain additional knowledge from adaptive learning, since it can generate Help-Info by itself from
{f(x)β : x ∈ D}, and the forged Help-Info is identically distributed to the Help-Info generated by Alice.

Deliver Help-Info efficiently and securely To reduce complexity, Alice needs a way to deliver the informa-
tion Φ = {f(x)ρ : x ∈ R} to Bob by sending only some auxiliary data δ (called Help-Info) of much smaller size,
and Bob should not know the value of f(x)ρ for point x 6∈ R. We design such delivery method by exploiting a
special property of existing HIBE scheme.

Polymorphic Property. We observe that some (HIBE) encryption scheme (KeyGen,Enc,Dec), e.g. BBG HIBE
scheme [2], satisfies a polymorphic property : From a pair of keys (pk, sk) ∈ KeyGen(1κ), a plaintext M , an
identity id, and a random coin r, one can efficiently find multiple tuples (pkj , skj ,Mj , rj), 1 ≤ j ≤ n, such that
for any 1 ≤ j ≤ n, (pkj , skj) ∈ KeyGen(1κ) is a valid key pair and

Encpk(id,M ; r) = Encpkj (id,Mj ; rj).

Overview. Alice can deliver the Help-Info in this way: For simplicity, assume all data points are in 1D and the
size of dataset D is N . Each point x in the domain is associated with an identity ID(x), which corresponds to a
leaf node in the identity hierarchy tree. In the setup phase, Alice computes some ciphertexts c1, . . . , cN , where
each ciphertext ci can be considered as encryption of Mi,j under key (pkj , skj), j = 1, 2, 3, . . . Alice sends these
N ciphertexts to Bob at the end of setup phase. Later, for a query range R, Alice chooses a random nonce ρ and
derives the delegation key δ w.r.t. the set S = {ID(x) : x ∈ R} of identities from the key pair (pkρ, skρ), and
sends δ as Help-Info to Bob. With this delegation key, Bob is able to decrypt ci to obtain Mi,ρ if xi ∈ D ∩R.
By carefully choosing parameters, we may have Mi,ρ = f(xi)ρ as desired.

In a HIBE scheme, every identity corresponds to a tree node (either leaf node or internal node). Due to
the tree structure of the hierarchy of identities, we can find a set S′ of identities, such that (1) The size |S′| =
O(log TreeSize) = O(logZ); (2) The collection of leaf nodes covered4 by tree nodes corresponding to identities in
S′, is the same as the collection of leaf nodes corresponding to identities in S. If Alice derives the delegation key δ
w.r.t. S′ instead of S, then the new Help-Info will contain only O(logZ) subkeys, where one subkey corresponds
to one identity in S′.

For high dimensional cases, we perform the above procedure for each dimension. The security of this method
can be reduced to the IND-sID-CCA security of the underlying HIBE scheme.

We call the above method as an expansion scheme: For any random nonce ρ, Alice can produce a Help-Info
δ of small size. From a fixed public information {c1, . . . , cN} and the Help-Info δ, Bob can produce {f(x)ρ : x ∈
D ∩R}, which could be much larger than δ.

4 We say a leaf node u is covered by a tree node v, if v is in the path from leaf u to the root node. It is possible that u = v.



Assumptions Our security proof relies on Computational Diffie-Hellman5 Assumption 1 [27] and Generalized
Knowledge of Exponent (GKEA) Assumption 2 [1], where both assumptions are over the target group of a
bilinear map. The GKEA assumption is an extension of KEA1 [28,29,30,31,32] and KEA3 [33], and proposed
by Wu and Stinson [1]. Roughly, GKEA assumption can be described as below:

For any adversary A that takes input {(ui, uβi ) : 1 ≤ i ≤ m} and returns (U1, U2) with Uβ1 = U2, there exists
an “extractor” Ā, which given the same inputs as A returns {µi : 1 ≤ i ≤ m}, such that

∏m
i=1 u

µi
i = U1.

GKEA can be proved secure in the generic group model, using the same technique for proof of KEA1 and
KEA3 by M. Abe and S. Fehr [34].

Additionally, the (Decision) `-wBDHI Assumption [2] is required for the IND-sID-CCA security of the under-
lying BBG HIBE scheme.

Contribution

1. We propose an expansion scheme in Section 3. In the setup of this expansion scheme, Alice generates a public
parameter C = {c1, . . . , cN} for a dataset D = {xi ∈ [Z]d : i ∈ [N ]} w.r.t. a function f . After the setup, in
each query session, for any range R ⊂ [Z]d and any random nonce ρ, Alice can generate a value δ, called as
Help-Info. From the Help-Info δ and the public parameter C, Bob can compute Φ = {f(x)ρ : x ∈ D ∩R}
but cannot generate f(x)ρ for point x 6∈ R. In this way, Alice can deliver information Φ of size O(N) to Bob
by sending only the Help-Info δ of size O(d log2Z).

2. We incorporate the expansion scheme into the preliminary scheme in Section 4. The resulting scheme called
as MAIA, is efficient in authenticating multidimensional aggregate count query: Communication overhead is
O(d2 log2Z) for a d-dimensional aggregate range query, and the storage overhead on Bob’s side is O(dN).

3. We prove that MAIA is secure (Theorem 2) under reasonable assumptions (Assumption 1, Assumption 2 and
`-wBDHI Assumption [2]). We describe our proof strategy in Section 5 and illustrate it by proving that the
preliminary scheme in Section 1 is secure. Due to the space constraint, we put the full proof for the main
scheme in appendix.

We remark that our scheme can be extended to support other types of aggregate range query with similar
complexity, including summing, finding of minimum, maximum or median, and even non-aggregate range selection
query. In fact, we start our work with summing. For the simplicity of presentation, we focus on counting in this
paper.

1.2 Related work

There are roughly three categories of approaches for outsourced database authentication in the literatures [3, 9,
10,11,5,12,13,14,15,16,17,18,19,20,21]. (1) (Homomorphic and/or aggregatable) Cryptographic primitives, like
collision-resistant hash, digital signature, commitment [5,35,22]. (2) Geometry partition and authenticated data
structure [9,14,17,19,15,23]. For example, Merkle Hash Tree (typically for 1D case) and variants, KD-tree with
chained signature [12], and R-Tree with chained signature [14]. (3) Inserting and auditing fake tuples [16].

To the best of our knowledge, the existing few works (e.g. [12, 22, 23]) on authentication of aggregate query
either only deal with 1D case, or have communication overhead6 linear (or even superlinear) w.r.t. the number
of data points in the query range, and/or exponential in dimension. Even for multidimensional (non-aggregate)
range selection query, the communication overhead is still in O(logd−1N+ |S|) (Martel et al. [9], Chen et al. [36]),
where S is the set of data points within the query range, N is the number of data points in the dataset, and d
is the dimension.

Very recently, Gennaro et al. [37] and Chung et al. [38] proposed methods to authenticate any outsourced (or
delegated) function, based on fully homomorphic encryption [25,26,39]. Without considering the efficiency (par-
ticularly ciphertext expansion) of fully homomorphic encryption scheme, Gennaro et al. [37] has communication
cost which is sublinear w.r.t. the number of points in a dataset and polynomial in dimension, to authenticate
5 Note that Diffie-Hellman Assumption implies Discrete Log Assumption.
6 The original papers either do not provide a tight theoretical asymptotic bound, or do not relate the bound to generic parameters,

including database size, domain size, dimension and security parameter.



aggregate range query. Our work is different in at least these aspects: (1) They authenticate a much more generic
class of functions, while our techniques only deal with some aggregate range query (like counting, summing,
finding of maximum or minimum or median) and non-aggregate range selection query. (2) Besides integrity
authentication, Gennaro et al. [37] even provides privacy protection of the outsourced data against the worker
(corresponding to Bob in our formulation). (3) Gennaro et al. [37] and Chung et al. [38] leverage on fully ho-
momorphic encryption scheme [25]. (4) To deal with aggregate range query over outsourced database, both
Gennaro et al. [37] and Chung et al. [38] have to treat the whole database as a single big chunk of data, so
the completeness can be easily guaranteed at the cost of efficiency. We adapt a different approach: We bind
each data point with an independent random number of special structure, and force Bob to process the dataset
along with these random numbers in an inseparable manner. Then we can verify the consistency between the
returned query result and the associated randomness. In this way, we can achieve better7 complexity than the
two generic methods. However, our approach requires more serious attention to deal with the completeness issue.
As Gennaro et al. [37] pointed out, it is meaningful to design more efficient authentication scheme8 without using
fully homomorphic encryption scheme, even at the cost of sacrificing privacy of outsourced data.

Shi et al. [40] proposed MRQED (Multi-Dimensional Range Query over Encrypted Data), a public key
encryption scheme supporting multidimensional range queries over ciphertexts. Both MRQED [40] and MAIA
deal with multidimensional range selection and have to prevent collusion attack across different queries. But they
are essentially different in at least these aspects: (1) MRQED dealt with privacy, and MAIA deals with integrity.
(2) In MAIA, there is an aggregate operation after multidimensional range selection, and the verification of
aggregated value is an additional requirement and not easy to handle when communication cost is concerned. (3)
Besides collusion attack, MAIA also faces other challenges, like completeness issue, which have no counterparts
in MRQED. It may be possible to construct an expansion scheme based on MRQED with different tradeoff in
complexities since it also has the polymorphic property. In the other direction, it is also possible to construct an
alternative solution to MRQED problem using techniques in this paper.

Several works [41, 42, 43, 44, 45, 46] in verification of integrity of data stored in remote storage server also
adopted some homomorphic and/or aggregatable verification tags to achieve efficient communication cost.

2 Formulation

In this section, we formalize the problem and security model, and describe the security assumptions formally.

2.1 Dataset and Query

The dataset D is a set of N d-dimensional points x1,x2, . . . ,xN from the domain [Z]d. Let R = [a1, b1] ×
[a2, b2]× . . .× [ad, bd] ⊆ [Z]d be a rectangular range. In this paper, we focus on aggregate count query function
F : F (D,R)def= |D ∩R| (mod p).

2.2 Security Model

We formulize the authentication problem described in Section 1. Let us view a (generic) query on a database as
the function F : D×R→ {0, 1}∗, where D is the domain of databases, R is the domain of ranges, and the output
of F is represented by a binary string. We define a remote computing protocol as follow:

Definition 1 (RC) A RC ( Remote Computing) protocol for a function F : D × R → {0, 1}∗, between Alice
and Bob, consists of a setup phase and a query phase. The setup phase consists of a key generating algorithm
KGen and data encoding algorithm DEnc; the query phase consists of a pair of interactive algorithms, namely the
evaluator Eval and the extractor Ext. These four algorithms (KGen,DEnc, 〈Eval,Ext〉) run in the following way:
7 Ciphertext expansion is not the only reason of communication overhead and storage overhead for Gennaro et al. [37] and Chung et

al. [38]. Gennaro et al. [37] assigns each bit of data with a large random number and encrypts this random number using fully
homomorphic encryption. Chung et al. [38] has to transmit κ number of ciphertexts of similar queries/results to process a single
query. The difference between their solutions and our work may become more clear when authenticating non-aggregate range
selection query: Both Gennaro et al. [37] and Chung et al. [38] will require linear or even superlinear communication overhead,
while our solution sill requires O(d2 log2 Z) communication cost.

8 Although our solution only supports a very small range of functions.



1. Given security parameter κ, Alice generates a key k: k ← KGen(1κ).
2. Alice encodes database D ∈ D: (Dp,Ds)← DEnc(D, k), then sends Dp to Bob and keeps Ds.
3. Alice selects a query R ∈ R.
4. Algorithm Eval(Dp) on Bob’s side, interacts with algorithm Ext(Ds,R, k) on Alice’s side, to compute (ζ,X,Ψ)←
〈Eval(Dp),Ext(Ds,R, k)〉, where ζ ∈ {accept, reject} and Ψ is the (partial) proof of result X. If ζ = reject,
then Alice rejects. Otherwise, Alice accepts and believes that X is equal to F (D,R).

In the setup phase, Alice executes Step (1) and (2). The query phase consists of multiple query sessions. In each
query session, Alice and Bob execute Step (3) and (4).

We say a RC protocol is provable, if the following conditions hold: (1) Alice accepts with o.h.p. (overwhelming
high probability), when Bob follows the protocol honestly; (2) Alice rejects with o.h.p., when Bob returns a
wrong result. Here we consider adversaries, i.e. malicious Bob, who are allowed to interact with Alice and learn
for polynomial number of query sessions, before launching the attack. During the learning, the adversary may
store whatever it has seen or leant in a state variable.

Definition 2 (PRC) A RC protocol E = (KGen,DEnc, 〈Eval,Ext〉) w.r.t. function F : D × R → {0, 1}∗, is
called PRC ( Provable Remote Computing) protocol, if the following two conditions hold: Let κ be the security
parameter.

– correctness: for any D ∈ D, any k ← KGen(1κ) and any R ∈ R, it holds that 〈Eval(Dp),Ext(Ds, r, k)〉 =
(accept, F (D, R),Ψ) for some Ψ , where (Dp,Ds)← DEnc(D, k).

– soundness: for any PPT (adaptive) adversary A, the advantage AdvE,A(1κ) ≤ negl(κ) (asymptotically less or
equal).

where AdvE,A(1κ) is defined as

AdvE,A(1κ) def= Pr

[
(ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ);
ζ = accept ∧ X 6= F (D,R)

]
;

Experiment ExpEA(1κ)

D← A(viewEA);
k ← KGen(1κ);
(Dp,Ds)← DEnc(D, k);
loop until A(viewEA) decides to stop

Ri ← A(Dp, view
E
A);

(ζi, Xi,Ψ i)← 〈A(Dp, view
E
A),Ext(Ds,Ri, k)〉;

R← A(Dp, view
E
A);

(ζ,X,Ψ)← 〈A(Dp, view
E
A),Ext(Ds,R, k)〉;

Output (ζ,X,Ψ , viewEA,D,R).

The probability is taken over all random coins used by related algorithms, negl(·) is some negligible function, and
viewEA is a state variable9 describing all random coins chosen by A and all messages A can access during previous
interactions with E.

We remark that the security model is inspired by the formulation of POR (Proof of Retrievability) [47] and
Computationally Sound Proof System (Definition 4.8.1 in [48]).

2.3 Assumptions

Throughout the whole paper, let p be a κ bits safe prime, and e : G × G → G̃ be a bilinear map, where G and
G̃ are two (multiplicative) cyclic groups of order p.

Assumption 1 (Computational Diffie Hellman Assumption) For any PPT algorithm A, it holds that

Pr
[
A(g, ga, gb) = gab

]
≤ ν1(κ),

where g is chosen at random from G̃, a and b are chosen at random from Z∗p, and ν1(·) is some negligible function.

9 The adaptive adversary A may keep updating this state variable.



Assumption 2 (Generalized KEA [28,33,1]) Let A and Ā be two algorithms. We define the GKEA-
advantage of A against Ā as

AdvGKEA
A,Ā (κ) def= Pr


Wm = {(ui, uβi ) : i ∈ [m], ui

$←− G̃, β $←− Z∗p}
(U1, U2)← A(Wm; r);
(µ1, µ2, . . . , µm)← Ā(Wm; r, r̄) :

U2 = Uβ1 ∧ U1 6=
∏m
j=1(uj)µj

 , (2)

where the probability is taken over all random coins used. For any PPT algorithm A (called as adversary), there
exists PPT algorithm Ā (called as extractor), such that the GKEA-advantage of A against Ā is upper bounded
by some negligible function ν2(κ), i.e. AdvGKEA

A,Ā (κ) ≤ ν2(κ), where m is polynomial in κ.

Remark.

– Basically, the assumption says, if a PPT algorithm can output a valid pair (U1, U2 = Uβ1 ), then the algorithm
essentially knows some µi’s, such that U1 =

∏m
j=1(uj)µj and U2 =

∏m
j=1

(
uβj

)µj
. The pair of adversary A and

extractor Ā is a way to formulize the notion of “essentially know”. Note that the extractor Ā can repeat the
execution of A(Wm; r) exactly, since Ā has access to the random coin r used by A.

– GKEA is a natural extension of KEA1 and KEA3, in the sense that GKEA ⇒ KEA3 ⇒ KEA1. M.
Abe and S. Fehr [34] proved KEA1 and KEA3 in generic group model. Following their techniques, GKEA
can be proved in generic group model.

Furthermore, the (Decision) `-wBDHI Assumption [2] is required for the IND-sID-CCA security of the under-
lying BBG HIBE scheme.

3 Expansion Scheme

We construct an expansion scheme by exploiting the polymorphic property of BBG [2] HIBE scheme, following
the overview given in Section 1.1.

3.1 Polymorphic Property of BBG HIBE Scheme

We observe that the BBG HIBE scheme [2] satisfies the polymorphic property: An encryption of a message M
can be viewed as the encryption of another message M̂ under different key. Precisely, let CT and ĈT be defined
as follows, we have CT = ĈT:

CT = Encrypt(params, id,M ; s) =
(
Ωs ·M, gs,

(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(
Ωsz · M̂, ĝsz,

(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`, Ω = e(g1, g2)), ̂master-key = gαz2 (3)

where M̂ = MΩs(1−z), ĝ = gz
−1 mod p, ĝ3 = gz

−1 mod p
3 and ĥi = hz

−1 mod p
i for 1 ≤ i ≤ `. To be self-contained,

the description of this BBG HIBE scheme is given in Appendix A. One can verify the above equality easily.

3.2 Define Identities based on Binary Interval Tree

An identity is a sequence of elements from Z∗p. To apply HIBE scheme, we intend to construct two mappings to

associate identities to integers or integer intervals: (1) ID maps an integer x ∈ [Z] into an identity ID(x) ∈
(
Z∗p
)`

.
(2) IdSet maps an integer interval [a, b] ⊆ [Z] into a set of identities. The two mappings ID and IdSet satisfy the
property: For any x ∈ [a, b], there is a unique identity id in the set IdSet([a, b]), such that identity id is a prefix
of identity ID(x). If x 6∈ [a, b], then there is no such identity id in IdSet([a, b]). For each dimension j ∈ [d], we will
construct (distinct) such mappings IDj and IdSetj using a binary interval tree [40], and make these mappings
public throughout the whole paper.



Binary Interval Tree. We construct a binary interval tree as below: First, we build a complete ordered binary
with Z = 2` leaf nodes. Then we associate an integer interval to each tree node in a bottom-up manner: (1)
Counting from the leftmost leaf, the j-th leaf is associate with interval [j, j]; (2) For any internal node, the
associated interval is the union of the two intervals associated to its left and right children respectively. As a
result, the interval associated to the root node is just [1,Z].

Constructions of Mappings ID and IdSet. Let H : Z2`+1 × Z2`+1 → Z∗p be a collision resistant hash function.
Let (v1, v2, . . . , vm) be the unique simple path in the binary interval tree from the root node v1 to the node vm.
We associate to node vm the identity (H(a1, b1),H(a2, b2), . . . ,H(am, bm)) ∈

(
Z∗p
)m

, where [aj , bj ] is the interval
associated to node vj , 1 ≤ j ≤ m.

For any x ∈ [Z], we define ID(x) as the identity associated to the x-th leaf node (counting from the left).
For any interval [a, b] ⊆ [Z], we find the minimum set {vj : vj is a tree node, 1 ≤ j ≤ n} such that the
intervals associated to vj ’s form a partition of interval [a, b], and then define IdSet([a, b]) as the set {idj :
idj is the identity associated to node vj , 1 ≤ j ≤ n}. One can verify that the newly constructed mappings ID
and IdSet satisfy the property mentioned in the beginning of Section 3.2. Furthermore, the size of set IdSet([a, b])
is in O(`).

3.3 Construction of Expansion Scheme based on HIBE

Let (Setup, KeyGen, Encrypt, Decrypt) be the BBG Hierarchical Identity Based Encryption proposed by Boneh et
al. [2] (We provide the description of this BBG HIBE scheme in Appendix A). Based on this HIBE scheme, we
construct an expansion scheme as in Figure 1.

Lemma 1 The scheme (ExpKGen,ExpSetup,ExpDelKey,Expand) constructed in Figure 1 satisfies this property:
For any (pk, sk)← ExpKGen(1κ), for any dataset D = {x1, . . . ,xN} ⊂ [Z]d, range R ⊂ [Z]d, nonce ρ ∈ Z∗p, and
for any xj ∈ D ∩R, it always holds that

Expand(R, δ, cj ,xj , j, pk) = f2(j) ·Ωρf1(j),

where {ci : i ∈ [N ]} ← ExpSetup(D, 〈f1〉, 〈f2〉, sk), δ ← ExpDelKey(R, ρ, sk), function f1 : [N ] → Z∗p, function
f2 : [N ]→ G̃, and Ω = e(g1, g2) ∈ G̃ is part of pk. (The proof is in Appendix C.)

If xj 6∈ D∩R, it is required that output of Expand(R, δ, cj , j, pk) is not equal to f2(j) ·Ωρf1(j) with o.h.p. This
requirement is necessary but not sufficient for the implementation of our authentication scheme in Section 4. In
this paper, we do not formulize or prove the security of expansion scheme separately.

4 The Construction of MAIA

The construction of Maia is in Figure 2.

Remark.

1. Alice chooses function f1 : [N ] → Z∗p in this way: Choose random elements z1, z2, . . . , zN from Z∗p indepen-
dently, and sets f1(i) = zi, i ∈ [N ]. Similar for f2. After the setup phase, Alice will not keep information of
f1 and f2, and thus cannot evaluate these functions any more.

2. To understand the verifications in CollRes, one may consider a homomorphic tag function Tag defined as
below: Let y be the input, K = (β, γ, θ) be the key, and v, w be random coins.

TagK(y; v, w) = (θyv, vβ, w, vγwρ);∏
i

TagK(yi; vi, wi) = TagK

(∑
i

yi;
∏
i

vi,
∏
i

wi

)
.

Note that the first three component of TagK(1; vi, wi) are just the three components of vector ti generated in
equation (5), and the fourth component vγwρ is the output of Expandpk(R, δ, ci,xi, i, pk) w.r.t. the random



Fig. 1: Construction of Expansion scheme based on BBG [2] HIBE Scheme (Setup, KeyGen, Encrypt, Decrypt)

Expansion Scheme

ExpKGen(1κ)

Let ` = dlogZe. Run algorithm Setup(`, κ) to obtain bilinear groups (p,G, G̃, e), public key params = (g, g1, g2, g3, h1, . . . , h`)

and private key master-key = gα2 , such that p is a κ bits prime, G, G̃ are cyclic multiplicative groups of order p, e : G× G→ G̃
is a bilinear map, g is a generator of G, α ∈ Zp, g1 = gα ∈ G, and g2, g3, h1, . . . , h` ∈ G. Let IDj and IdSetj , j ∈ [d], be the

mappings as in Section 3.2. Choose d random elements τ1, . . . , τd from Z∗p and let τ = (τ1, . . . , τd). Let pk = (p,G, G̃, e) and
sk = (pk, params, master-key, τ ). Make IDj ’s and IdSetj ’s public and output (pk, sk).

ExpSetup(D, 〈f1〉, 〈f2〉, sk) : 〈f1〉 and 〈f2〉 are descriptions of functions f1 and f2, respectively

For each xi = (xi,1, . . . , xi,d) ∈ D: Choose d random elements si,1, . . . , si,d from Zp with constraint f1(i) = −
∑d

j=1
si,jτj (mod p),

choose d random elements ηi,1, . . . , ηi,d from G̃ with constraint f2(i) =
∏d

j=1
ηi,j , and choose d random elements σi,1, . . . , σi,d

from G̃ with constraint
∏d

j=1
σi,j = Ω

−
∑d

j=1
si,j

. For each j ∈ [d], encrypt ηi,j · σi,j under identity IDj(xi,j) with random coin
si,j to obtain ciphertext ci,j as follows

ci,j ← Encrypt(params, IDj(xi,j), ηi,j · σi,j ; si,j), (4)

Let ci = (ci,1, . . . , ci,d). Output {ci : i ∈ [N ]}.

ExpDelKey(R, ρ, sk)

Parse the d-dimensional range R as A1 × A2 . . . × Ad ⊆ [Z]d and parse the private key sk as (params,master-key, τ ), where
τ = (τ1, . . . , τd). For each j ∈ [d], generate δj in this way: For each identity id ∈ IdSetj(Aj), generate the private key did, using
algorithm KeyGen and taking master-keyρτj as the master key. Set δj ← {did : id ∈ IdSetj(Aj)}. Let δ = (δ1, δ2, . . . , δd) and
output δ.

Expand(R, δ, ci,xi, i, pk)

Parse the d-dimensional range R as A1 ×A2 . . .×Ad ⊆ [Z]d and parse ci as (ci,1, . . . , ci,d). For each j ∈ [d], generate t̃i,j in this
way: If xi[j] 6∈ Aj , then output ⊥ and abort. Otherwise, do the followings: (1) Find the unique identity id∗ ∈ IdSetj(Aj) such
that id∗ is a prefix of identity IDj(xi[j]). (2) Parse δ as (δ1, . . . , δd) and find the private key did∗ ∈ δj = {did : id ∈ IdSetj(Aj)}
for identity id∗. (3) Generate the private key di,j for the identity IDj(xi[j]) from private key did∗ , using algorithm KeyGen. (4)
Decrypt ci,j using algorithm Decrypt with decryption key di,j , and denote the decrypted message as t̃i,j . Let t̃i =

∏
1≤j≤d t̃i,j .

Output t̃i.

nonce ρ. In the algorithm CollRes, Bob computes the product of Tag values of points within the query range
as the proof of the query result X. Then Alice verifies whether the returned proof (Ψ1, Ψ2, Ψ3, Ψ4) is a valid
Tag value for the returned query result X, with key K = (β, γ, θ) and without knowing the values of random
coins vj ’s and wj ’s. Since the fourth component of Tag is dynamic and depends on the random nonce ρ, we
separate it out from the other three components.

3. Intuitively, a more straightforward alternative construction of Tag is like this10

Tag′K(y; v, w) = (θyv, vβ, vρ),

where vρ is the output of Expandpk(R, δ, ci,xi, i, pk) w.r.t. the random nonce ρ. We give up this alternative
and introduce a new component in our construction for the sake of proof. A part of our proof strategy is
like this: Given the first two components of all tag values {(θyivi, vβi ) : i ∈ [N ]}, one can simulate Alice in
our scheme. Then invoke a malicious Bob to interact with Alice to produce a forgery. For the alternative
construction with Tag′, to simulate the expansion scheme (particularly ExpSetup), the simulator has to find
functions f1 and f2, such that for any ρ, f2(i)Ωρf1(i) = vρi (See Lemma 1), which could be infeasible due to
DLP (Discrete Log Problem). In our construction, since the additional term wi is independent on the first

two components of ti, the simulator can choose function f1 freely, set wi = Ωf1(i), and set f2(i) =
(
vβi

)γ′
.

10 Actually, the preliminary scheme in Section 1 is exactly like this.



Fig. 2: Construction of MAIA= (KGen,DEnc, 〈Ext,Eval〉), where 〈Ext,Eval〉 (namely ProVer) invokes 〈Ẽxt, Ẽval〉
(namely CollRes) as a subroutine.

(Alice) KGen(1κ):

Step 1: Run ExpKGen(1κ) to obtain public/private key pair (pk, sk).

Note: the public key pk contains as part a bilinear map e : G × G → G̃ and an element Ω ∈ G̃, where both G and G̃ are
multiplicative groups of prime order p.

Step 2: Choose β, γ at random from Z∗p, and θ at random from G̃. Let K = (β, γ, θ).
Step 3: Output (K, pk, sk).

(Alice) DEnc(D;K, pk, sk):

Step 1: Choose function f1 : [N ]→ Z∗p at random, and function f2 : [N ]→ G̃ at random.

Step 2: Dataset D = {x1,x2, . . . ,xN}. For each i ∈ [N ], generate tag ti ∈ G̃3: Let Ω ∈ G̃ be as in pk.

vi ← f2(i)γ
−1

; wi ← Ωf1(i); ti ←
(
θvi, v

β
i , wi

)
. (5)

Step 3: Run the setup algorithm ExpSetup of the expansion scheme w.r.t. functions f1, f2:

{ci : i ∈ [N ]} ← ExpSetup(D, 〈f1〉, 〈f2〉, sk). (6)

Note: 〈f1〉 and 〈f2〉 are descriptions of functions f1 and f2, respectively.

Step 4: Send Dp = (D, T = {ti : i ∈ [N ]}, C = {ci : i ∈ [N ]}, pk) to Bob, and keep key (K, pk, sk) and Ds =
(
N,π∗ =

∏
i∈[N ]

vβi

)
in local storage.

(Alice, Bob) ProVer = 〈Ext(N,π∗; R; K, sk, pk),Eval(D,T,C, pk)〉:
Precondition: The query range R ⊂ [Z]d is a rectangular range.

Step 1: Alice partitions the complement range R{ into 2d rectangular ranges {R` ⊂ [Z]d : ` ∈ [1, 2d]}, and sets R0 = R.

Step 2—Reduction: For 0 ≤ ` ≤ 2d, Alice and Bob invokes CollRes on range R`. Denote the output as (ζ`, X`, Ψ
(`)
2 ).

Step 3: Alice sets ζ = accept, if the following equalities hold

∀0 ≤ ` ≤ 2d, ζ`
?
= accept,

∏
0≤`≤2d

Ψ
(`)
2

?
≡ π∗; (7)

otherwise sets ζ = reject. Alice outputs (ζ,X0, π
∗).

(Alice, Bob) CollRes = 〈Ẽxt(N,π∗; R; K, sk, pk), Ẽval(D,T,C, pk)〉:
Precondition. The query range R ⊂ [Z]d is a rectangular range.

Step A1: (Alice’s first step) Alice chooses a random nonce ρ from Z∗p and produces Help-Info δ for range R by running algorithm
ExpDelKey: δ ← ExpDelKey(R, ρ, sk). Alice sends (R, δ) to Bob.

Step B1: (Bob’s first step) Bob computes the query result X and proof (Ψ1, Ψ2, Ψ3, Ψ4) as follows

X ← |D ∩R| ; (Ψ1, Ψ2, Ψ3)←
⊗

xi∈D∩R

ti; Ψ4 ←
∏

xi∈D∩R

Expand(R, δ, ci,xi, i, pk). (8)

Bob sends (X,Ψ1, Ψ2, Ψ3, Ψ4) to Alice.
Note: For xi ∈ D∩R, Expand(R, δ, ci,xi, i, pk) is supposed to output vγi w

ρ
i ; the operator

⊗
denotes component-wise multiplication

of vectors of the same dimension.
Step A2: (Alice’s second step) Let Λ← Ψ1

θX
. Alice sets ζ = accept, if the following equalities hold

Λβ
?
= Ψ2, ΛγΨρ3

?
= Ψ4. (9)

Otherwise sets ζ = reject. Alice outputs (ζ,X, Ψ2).



Consequently, f2(i)Ωρf1(i) = vβγ
′

i wρi as desired (taking γ as βγ′). Thus the simulation of ExpSetup can be
done.

4. To ensure completeness and prevent double counting or undercounting, we need to run CollRes on the com-
plement query range R{. Due to the limitation of our construction of expansion scheme, we have to divide
range R{ into multiple rectangular ranges, and then run CollRes on each of them.

5. The (2d+ 1) invocations of CollRes can be executed in parallel.
6. Like [37, 38], in our scheme, Alice’s accept/reject decisions should be hidden from Bob. This is due to the

limitation of our proof.

5 Security Analysis

5.1 Our main theorem

Theorem 2 (Main Theorem) Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is
IND-sID-CCA secure. Then the RC protocol E = (KGen,DEnc,ProVer) constructed in Figure 2 is PRC w.r.t.
function F (·, ·) as defined in Section 2.1, under Definition 2. Namely, E is correct and sound w.r.t. function F .
(The proof is in appendix.)

5.2 Overview of Proof

To process a query, our scheme (particularly the algorithm ProVer) invokes (2d+1) instances of protocol CollRes.
In each instance of CollRes, Bob is supposed to return a 5-tuple (X,Ψ1, Ψ2, Ψ3, Ψ4) where X is the query result and
(Ψ1, Ψ2, Ψ3, Ψ4) is the proof, and Alice will verify whether the proof is valid w.r.t. the query result. Furthermore,
after all of (2d+1) invocations, Alice will perform one additional verification (equation (7)) to ensure completeness
and prevent double counting or undercounting. In order to fool Alice with a wrong query result, an adversary
has to provide a valid 5-tuple for each invocation of CollRes and pass the equation (7). Therefore, an adversary
against E = (KGen,DEnc,ProVer) is also an adversary against Ẽ = (KGen,DEnc,CollRes).

We consider various types of PPT adversaries against E or Ẽ , which interacts with Alice by playing the role
of Bob and intends to output a wrong query result and a forged but valid proof:

– Type I adversary: This adversary is not confined in any way in its attack strategy and produces a 5-tuple
(X,Ψ1, Ψ2, Ψ3, Ψ4) on a query range R.

– Type II adversary: A restricted adversary which can produce the same forgery11 from the same input as
Type I adversary, additionally, it finds N integers12 µi’s, 1 ≤ i ≤ N , such that Ψ2 =

∏
i∈[N ]

(
vβi

)µi
, where β

and vi’s are as in Figure 2.
– Type III adversary: The same as Type II adversary, with additional constraint: µi = 0 for xi ∈ D ∩R{.
– Type IV adversary: The same as Type III adversary, with additional constraint: µi = 1 for xi ∈ D ∩R.

Note that the Type II (or Type III, Type IV) adversary explicitly outputs {µ1, . . . , µN}, and implicitly outputs
(X,Ψ1, Ψ2, Ψ3, Ψ4) which is exactly the output of the corresponding Type I adversary. This is similar to KEA
extractor and KEA adversary.

To prove the main Theorem 2, we introduce and prove Lemma 5, Theorem 6, and Theorem 7. Due to
the space constraint, we put these lemmas/theorems together with their full proof in appendix: Lemma 5 is
in Appendix D.2, Theorem 6 is in Appendix E, and Theorem 7 is in Appendix F. Additionally, the proof of
Theorem 2 based on the above lemmas/theorems is in Appendix G. Basically, our proof framework is like this:

– Lemma 5: The existence of Type I adversary implies the existence of Type II adversary, under GKEA
Assumption 2, where Type I adversary is a counterpart of adversary A in GKEA and Type II adversary is a
counterpart of the extractor Ā in GKEA.

– Theorem 6: If there exists a Type II adversary which is not in Type III, then there exists a PPT algorithm
to break the IND-sID-CCA security of the underlying BBG HIBE scheme.

11 This is possible, if the Type II adversary just invokes Type I adversary as a subroutine using the same random coin.
12 Note that µi can take negative integer value, and µi > 1 (µi < 1, respectively) corresponds to the case of double counting

(undercounting, respectively) point xi.



– Theorem 7: If there exists a Type III adversary which is not in Type IV, then there exists a PPT algorithm
to break Discrete Log Problem.

– (Part of )Theorem 2: If there exists a Type IV adversary which breaks our scheme, then there exists a PPT
algorithm to break Assumption 1.

Informally, by combining all together, Theorem 2 states that if there exists a Type I adversary which outputs result
X and a valid proof, then X has to be equal to the correct query result with o.h.p, under related computational
assumptions. Note that Lemma 5 and Theorem 6 focus on the partial scheme Ẽ and Theorem 7 and Theorem 2
focus on the whole scheme E .

The structure of our proof or the relationships among all assumptions, lemmas and theorems are shown as
below. Note that the proof of correctness (Lemma 1) does not rely on any computational assumption.

Assumption 2⇒ Lemma 4⇒ Lemma 5
BBG is IND-sID-CCA secure [2]

Assumption 1

⇒ Theorem 6

Assumption 1⇒ DLP Assumption

⇒ Theorem 7

Assumption 1
Lemma 1


⇒ Theorem 2

5.2.1 Some remarks on our proof. Like many other proofs, the proof in this paper reduces a successful
adversary to an algorithm which breaks a hard problem: Given an input of some hard problem, we simulate the
behaviors of Alice in our scheme, and invoke the adversary (who plays the role of Bob) to interact with Alice to
produce a forgery. Then we convert the forgery to a result of the hard problem. We argue that if the forgery is
valid, then the result to the hard problem is correct. As a result, we conclude that such adversary does not exist
based on the hard problem assumption.

In our proof, the simulated scheme is identical to the real scheme, from the view of adversary. That is, all
messages that the adversary receives from Alice in the simulated scheme, are identically distributed as messages
they will receive in the case of real scheme. However, in some cases, the simulator may not have full information of
private key and thus may not be able to perform some verification steps. We just exploit the fact that the output
of a successful adversary should pass all verifications with non-negligible probability13, although we cannot tell
whether the adversary succeeds or not in each single instance. This limitation of the simulation in our proof
implies that we are in the same situation as [37,38]: The accept/reject decision for each query processing should
be hidden from Bob (or adversary).

5.3 The Preliminary Scheme is secure

In this subsection, we prove that the preliminary scheme described in Section 1.1 is secure, following the proof
framework in Section 5.2. This proof sketch serves as an illustration of our proof strategy and as a warm up of
our full proof for the main scheme in appendix.

Theorem 3 Suppose Assumption 1 and Assumption 2 hold for group G and f(·) is a random oracle. The
preliminary scheme described in Section 1.1 is a PRC w.r.t. function F (·, ·) as defined in Section 2.1, under
Definition 2. Namely, E is correct and sound w.r.t. function F .

Proof (sketch of Theorem 3). The correctness part is straightforward. We just focus on soundness.
Part I: Suppose there exists Type I adversary B against the preliminary scheme. We try to construct a Type II
adversary B̄ based on GKEA Assumption. We follow the proof framework for the statement that KEA3 implies
KEA1 by Bellare et al. [33]. First, we construct a GKEA adversary A based on the Type I adversary B:

1. The input is {(ui, uβi ) : 1 ≤ i ≤ m}.
2. Choose two independent random elements R1, R2 ∈ G. There exist some unknown θ, v0 ∈ G, such that R1 = θv0, R2 = vβ0 .
3. Let D = {x1, x2, . . . , xm+1} be the dataset. Let um+1 = 1. Define function f : For any xi ∈ D, f(xi) = uiv0; for any x ∈ [Z]d \D,

choose zx ∈ Z∗p at random and set f(x) = uzx1 . Note that f(x)β still can be computed, although β is unknown.

13 This is just the definition of “successful adversary”.



4. Invoke the preliminary scheme (Alice’s part) with parameters β, θ and function f . Note that tag ti = (θf(xi), f(xi)
β) =

(uiR1, u
β
i R2) still can be computed without knowing the values of θ, β, f(xi).

5. Invoke the adversary B (Bob’s part) to interact with Alice. For any query R made by B, generate Help-Info from {f(x)β} in this

way: choose ρ′ ∈ Z∗p at random, and send {f(x)βρ
′

: x ∈ R}. Note the actual random nonce ρ = βρ′ is unknown.

6. Obtain output (X,Ψ1, Ψ2, Ψ3) from B, and output
(
Ψ1
RX1

, Ψ2
RX2

)
.

If the adversary B’s output (X,Ψ1, Ψ2, Ψ3) can pass Alice’s verification step 1, i.e.
(
Ψ1

θX

)β
= Ψ2, then the

GKEA adversary A’s output is valid:(
Ψ1

RX1

)β
=

Ψβ1

θXβvXβ0

=
Ψ2

vXβ0

=
Ψ2

RX2
.

By GKEA Assumption, there exists an extractor Ā, which outputs {µi : 1 ≤ i ≤ m} from the same input14

of A, such that Ψ2

RX2
=
∏m
i=1 u

βµi
i . Then we can construct an adversary B2 based on Ā which just outputs

{µi : 1 ≤ i ≤ m + 1}, where µm+1 = X −
∑m
i=1 µi. We conclude that B2 is a Type II adversary against the

preliminary scheme, since

m+1∏
i=1

f(xi)βµi = f(xm+1)βµm+1

m∏
i=1

f(xi)βµi = R
X−
∑m

i=1
µi

2

m∏
i=1

(
uβi R2

)µi
= RX2

m∏
i=1

uβµii = Ψ2.

Part II: If there exists a Type II adversary which is not in Type III, then there exists a PPT algorithm to break
Computational Diffie Hellman Assumption 1.

1. The input is (v, va, u). The goal is to find ua

2. Define function f : For each xi ∈ D, choose zi at random and set f(xi) = vzi .
3. Choose i∗ from [N ] at random and redefine f(xi∗): f(xi∗) = u.
4. Invoke the preliminary scheme (Alice’s part) with function f and invoke the Type II adversary (Bob’s part) to interact with

Alice. The adversary’s adaptive queries can be answered in the same way as above.
5. Let R be the adversary’s challenging query range. If xi∗ ∈ R, abort and fail. Otherwise, generate Help-Info with random nonce

ρ = a: the value f(xi)
a = (va)zi for xi ∈ R can be computed, although a is unknown.

6. Let (X,Ψ1, Ψ2, Ψ3, µ1, . . . , µN ) be the output of adversary. If µi∗ 6= 0, then compute ϕ as below and output ϕµ
−1
i∗ (This is the

success case).

ϕ← Ψ3∏i6=i∗
1≤i≤N f(xi)aµi

Otherwise, abort and fail.

Let S# = {i : µi 6= 0, xi ∈ D ∩R{}. Since the adversary is not in Type III, S# 6= ∅. It is easy to verify that, in
the success case, i.e. when the adversary’s output pass Alice’s verifications and Ψ2 =

∏N
i=1 f(xi)βµi and i∗ ∈ S#,

then the output ϕµ
−1
i∗ = f(xi∗)a = ua. Since the index i∗ is uniformly random in [N ] and tags for all N points

are identically distributed, there is non-negligible probability that the success case will be reached, and thus the
value of ua can be found.
Part III: If thre exists a Type III adversary which is not in Type IV, then there exists a PPT algorithm to
break Discrete Log Assumption.

1. The input is (v, va). The goal is to find a.
2. Define function f : For each xi ∈ D, choose zi at random and set f(xi) = vziva; otherwise, set f(x) to a random number.
3. Invoke the preliminary scheme (Alice’s part) with function f and invoke the Type III adversary (Bob’s part) to interact with

Alice. The adversary’s adaptive queries can be answered in the same way as in the preliminary scheme. Note the simulator has
all of private key.

4. Let R be the challenging query range. Let (X,Ψ1, Ψ2, Ψ3, {µi : xi ∈ D ∩ R}) be the output of adversary for range R and let
(X,Ψ1, Ψ2, Ψ3, {µi : xi ∈ D ∩R{}) be the output of adversary for the complement range R{.

14 Including the random coin.



5. If the adversary succeeds, we have

N∏
i=1

f(xi)
βµi =

∏
xi∈D∩R

f(xi)
βµi

∏
xi∈D∩R{

f(xi)
βµi = Ψ2 · Ψ2 = π∗ =

N∏
i=1

f(xi)
β

6. Since the adversary is not Type IV, there exists some i, such that µi 6= 1. Consequently, a univariable equation in unknown a of
order 1 can be formed from the above equation. Solve this equation to get root a′ and output a′.

Note that Computational Diffie Hellman Assumption 1 implies Discrete Log Assumption. Part IV: If there
exists a Type IV adversary which breaks our scheme, then there exists a PPT algorithm to break Assumption 1.
Given input (u, uβ, vβ), we can construct an algorithm to find v. Choose a random number R. There exists some
θ, such that R = θv. Similar as the construction of GKEA adversary A in Part I, from input (u, uβ, θv, vβ), we
can simulate the preliminary scheme (Alice’s part). Let R be the challenging query range. let (X ′, Ψ ′1, Ψ

′
2, Ψ

′
3, {µi :

xi ∈ D ∩ R}) be an output of a Type IV adversary on query R and let (X,Ψ1, Ψ2, Ψ3, {µi : xi ∈ D ∩ R}) be
the output of an honest Bob on query R. If the Type IV adversary succeeds, then Ψ ′2 =

∏
xi∈D∩R f(xi)βµi ,

where µi = 1, 1 ≤ i ≤ N , and
(
Ψ ′1
θX′

)β
= Ψ ′2. On the other hand, the output from an honest Bob also passes

Alice’s verifications:
(
Ψ1

θX

)β
= Ψ2 and Ψ2 =

∏
xi∈D∩R f(xi)β = Ψ ′2. Combining the above equations, we have(

Ψ ′1
Ψ1

)(X−X′)−1

= θ. As a result, we find the value of v: v = R
θ .

Combining the results in Part I, II, III and IV, we conclude that no adversary against the preliminary scheme
can output a wrong result and forged a valid proof. In other words, the preliminary scheme is sound. ut

6 Performance and Extension

6.1 Performance

In the setup phase, the computation complexity on Alice’s side is O(dN) and the dominant step is ExpSetup
in Step 3 of DEnc in Figure 2. In the query phase, the communication overhead (in term of bits) per query
is O(d2 log2Z): (1) In CollRes, the communication overhead is dominated by the size of Help-Info δ, which is
in O(d log2Z), i.e. O(logZ) decryption keys for each dimension, and each decryption key of size O(logZ); (2)
There are O(d) invocations of CollRes to process one query. Computation complexity on Bob’s side is O(dN logZ)
(bilinear map): (1) In CollRes, O(d|D ∩R| logZ) computation is required on query range R and the dominant
computation step is Expand in Step B1 of CollRes in Figure 2; (2) As a total,

∑2d
`=0O(d|D ∩ R`| logZ) =

O(dN logZ), where {R` : ` ∈ [0, 2d]} is a partition of the domain [Z]d. The computation complexity per query
on Alice’s side is O(d2 log2Z) (group multiplications). The dominant computation step is ExpDelKey in Step A1
of CollRes in Figure 2. The storage overhead on Bob’s side, is O(dN). The storage overhead on Alice’s side, i.e.
the key size, is O(d).

6.2 Extension

We can extend our scheme to authenticate other types of aggregate range query, including summing, averaging,
finding min/max/median. Furthermore, our scheme can be extended to authenticate d-dimensional usual (non-
aggregate) range selection query with O(d2 log2Z) bits communication overhead, improving known results that
require O(logd−1N) communication overhead, where N is the number of data points in the dataset. Due to the
space constraint, we will report these results in the full version of this paper.

7 Conclusion

We proposed a scheme to authenticate aggregate range query over static multidimensional outsourced dataset,
and the communication complexity (in term of bits) is O(d2 log2Z) (d is the dimension and each data point is in
domain [Z]d). Aggregate operations that our scheme can (potentially) support include counting, summing, and
finding of the minimum or maximum or median. Our scheme and techniques can be useful in other applications,
and the idea and construction of expansion scheme may have independent interest. We will look into the possibility
to support dynamic operations on the dataset, like adding or deleting a point, by exploiting the dynamic property
of the identity hierarchy tree.
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A HIBE

We restate the HIBE scheme proposed by Boneh et al. [2], to make this paper self-contained. Let p be a κ bits
safe prime, and e : G × G → G̃ be a bilinear map, where the orders of G and G̃ are both p. The HIBE scheme
contains four algorithms (Setup,KeyGen,Encrypt,Decrypt), which are described as follows.

Setup(`)

To generate system parameters for an HIBE of maximum depth `, select a random generator g ∈ G, a random
α ∈ Zp, and set g1 = gα. Next, pick random elements g2, g3, h1, . . . , h` ∈ G. The public parameters and the
master key are

params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2 .

KeyGen(dID|k−1, ID)

To generate a private key dID for an identity ID = (I1, . . . , Ik) ∈
(
Z∗p
)k

of depth k ≤ `, using the master
secret, pick a random r ∈ Zp and output

dID =
(
gα2 ·

(
hI11 . . . hIkk · g3

)r
, gr, hrk+1, . . . , h

r
`

)
∈ G2+`−k

The private key for ID can be generated incrementally, given a private key for the parent identity ID|k−1 =

(I1, . . . , Ik−1) ∈
(
Z∗p
)k−1

. Let

dID|k−1 =
(
gα2 ·

(
hI11 . . . h

Ik−1

k−1 · g3

)r′
, gr

′
, hr

′
k , . . . , h

r′
`

)
= (K0,K1,Wk, . . . ,W`)

be the private key for ID|k−1. To generate dID, pick a random t ∈ Zp and output

dID =
(
K0 ·W Ik

k ·
(
hI11 . . . hIkk · g3

)t
, K1 · gt, Wk+1 · htk+1, . . . ,W` · ht`

)
.

This private key is a properly distributed private key for ID = (I1, . . . , Ik) for r = r′ + t ∈ Zp.



Encrypt(params, ID,M ; s)

To encrypt a message M ∈ G̃ under the public key ID = (I1, . . . , Ik) ∈
(
Z∗p
)k

, pick a random s ∈ Zp and
output

CT =
(
Ωs ·M, gs,

(
hI11 . . . hIkk · g3

)s)
∈ G̃×G2. (10)

Decrypt(dID,CT)

Consider an identity ID = (I1, . . . , Ik). To decrypt a given ciphertext CT = (A,B,C) using the private key
dID = (K0,K1,Wk+1,W`), output

A · e(K1, C)
e(B,K0)

.

For a valid ciphertext, we have

e(K1, C)
e(B,K0)

=
e
(
gr,
(
hI11 . . . hIkk · g3

)s)
e
(
gs, gα2

(
hI11 . . . hIkk · g3

)r) =
1

e(gs, gα2 )
=

1
e(g1, g2)s

=
1
Ωs

. (11)

B Two Propositions

Some analysis in our proof is based on the following propositions (We do not claim the discovery of Proposition 1
or Proposition 2.)

Proposition 1 If event A implies event B, then Pr[A] ≤ Pr[B].

Proof. Since A⇒ B, we have Pr[¬A ∨B] = 1 and Pr[A ∧ ¬B] = 0. Therefore,

Pr[A] = Pr[A ∧ ¬B] + Pr[A ∧B] = 0 + Pr[A ∧B] = Pr[A|B]Pr[B] ≤ Pr[B].

ut

Proposition 2 For any n events A1, . . . , An, it always holds that Pr[
∧

1≤i≤n Ai] ≥ 1−
∑n
i=1 Pr[¬Ai].

Proof.

Pr[
∧

1≤i≤n
Ai] = 1− Pr[

∨
1≤i≤n

¬Ai] ≥ 1−
n∑
i=1

Pr[¬Ai].

ut

C Proof of Lemma 1

Lemma 1 The scheme (ExpKGen,ExpSetup,ExpDelKey,Expand) constructed in Figure 1 satisfies this property:
For any (pk, sk)← ExpKGen(1κ), for any dataset D = {x1, . . . ,xN} ⊂ [Z]d, range R ⊂ [Z]d, nonce ρ ∈ Z∗p, and
for any xj ∈ D ∩R, it always holds that

Expand(R, δ, cj ,xj , j, pk) = f2(j) ·Ωρf1(j),

where {ci : i ∈ [N ]} ← ExpSetup(D, 〈f1〉, 〈f2〉, sk), δ ← ExpDelKey(R, ρ, sk), function f1 : [N ] → Zp, function
f2 : [N ] → G̃, and Ω = e(g1, g2) ∈ G̃ is part of pk. Note 〈f1〉 and 〈f2〉 are descriptions of functions f1 and f2,
respectively.



Proof (of Lemma 1). We observe that the BBG HIBE scheme [2] satisfies the polymorphic property: An encryption
of a message M can be viewed as the encryption of another message M̂ under different key. Precisely, let CT and
ĈT be defined as follows, we have CT = ĈT:

CT = Encrypt(params, ID,M ; s) =
(
Ωs ·M, gs,

(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, ID, M̂ ; sz) =
(
Ωsz · M̂, ĝsz,

(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`, Ω = e(g1, g2)), ̂master-key = gαz2 (12)

where M̂ = MΩs(1−z), ĝ = gz
−1 mod p, ĝ3 = gz

−1 mod p
3 and ĥi = hz

−1 mod p
i for 1 ≤ i ≤ `. To be self-contained,

the description of this BBG HIBE scheme [2] is given in Appendix A. One can verify the above equality easily.
Let (pk, sk) ← ExpKGen(1κ). Given D = {x1, . . . ,xN}, R, ρ from proper domains. Let {ci : i ∈ [N ]} ←

ExpSetup(D, 〈f1〉, 〈f2〉, sk) and δ ← ExpDelKey(R, ρ, sk).
We consider dimension j ∈ [d] and apply the polymorphism property of BBG scheme (equation (12)): Take

M = ηi,jσi,j , s = si,j and z = ρτj . Then M̂ = MΩs(1−z) = ηi,jσi,jΩ
si,j(1−τjρ). Therefore, if xi ∈ D ∩R, then the

HIBE decryption will succeed in the process of Expand and we have

t̃i,j = M̂ = ηi,jwi,jΩ
si,j(1−τjρ), j ∈ [d].

Combining all d dimensions, and applying the three equalities (see algorithm ExpSetup in Figure 1) f1(i) =

−
∑d
j=1 si,jτj mod p, f2(i) =

∏d
j=1 ηi,j and

∏d
j=1 σi,j = Ω−

∑si,j
j we have,

t̃i =
d∏
j=1

t̃i,j =
d∏
j=1

(
ηi,jσi,jΩ

si,j(1−τjρ)
)

=
d∏
j=1

ηi,j ·
d∏
j=1

σi,j ·
d∏
j=1

Ωsi,j ·

 d∏
j=1

Ω−si,jτj

ρ

= f2(i) ·Ω−
∑d

j=1
si,j ·

d∏
j=1

Ωsi,j ·
(
Ωf1(i)

)ρ
= f2(i) ·Ωρf1(i).

ut

D A valid proof should be generated from points within dataset D

The notion that a valid proof is essentially generated from points (and their tags) within the dataset D, is
formulized by Lemma 5. We prove Lemma 5 in two steps: first we show that the GKEA Assumption 2 implies
Lemma 4 (which states that an alternative form of GKEA problem is hard); then we derive Lemma 5 from
Lemma 4.

We remark that both the proof of Lemma 4 in Appendix D.1 and proof of Lemma 5 in Appendix D.2 follow
the proof framework for statement that KEA3 implies KEA in [33]. Their proof can be outlined as follows: Given
any adversary algorithm AKEA, construct an adversary algorithm AKEA3. Then applying KEA3 Assumption,
there exists an extractor algorithm ĀKEA3. Based on ĀKEA3, construct extractor algorithm ĀKEA for AKEA.
The key point is how to convert the input/output between ĀKEA (AKEA, respectively) and ĀKEA3 (AKEA3,
respectively).

Lemma 4 Suppose Assumption 2 holds. For any PPT algorithm A, there exists a PPT algorithm Ā, such that

AdvLem 4
A,Ā (κ) def= Pr


Sm+1 ← {(θvi, vβi ) : i ∈ [m+ 1], vi

$←− G̃, θ $←− G̃, β $←− Z∗p}
(Ψ1, Ψ2, X)← A(Sm+1; r);
(Ψ1, Ψ2, X, µ1, µ2, . . . , µm, µm+1)← Ā(Sm+1; r, r̄) :

Ψ2 =
(
Ψ1

θX

)β
∧ Ψ2 6=

∏m+1
j=1 (vβj )µj

 ≤ ν2(κ), (13)



where the probability is taken over all random coins used, m is polynomial in κ and function ν2(·) is as in
Assumption 2.

D.1 Proof of Lemma 4

Proof (of Lemma 4). Let adversary A be as in Lemma 4. We construct a GKEA adversary A1 based on an
adversary A.

Construction of GKEA adversary A1: Based on an adversary A

1. The input is Wm = {(ui, uβi ) ∈ G̃2 : 1 ≤ i ≤ m} and the random coin is r1.

2. Choose two independent random elements R1, R2 ∈ G̃2 based on the random coin r1. There exists some unknown θ, vm+1 ∈ G̃,
such that R1 = θvm+1 and R2 = vβm+1.

3. For each 1 ≤ i ≤ m, define vi = uivm+1 and compute θvi = ui(θvm+1) = uiR1 and vβi = (uivm+1)β = uβi R2. Let Sm+1 =
{(θvi, vβi ) : 1 ≤ i ≤ m+ 1}.

4. Invoke the adversary A with random coin r derived from r1: (Ψ1, Ψ2, X)← A(Sm+1; r).
5. Output (U1 = Ψ1

RX1
, U2 = Ψ2

RX2
).

Since
(
Ψ1

RX1

)β
= Ψβ1

θXβvXβm+1

and Ψ2

RX2
= Ψ2

vXβm+1

, we have

(
Ψ1

θX

)β
= Ψ2 ⇔

(
Ψ1

RX1

)β
=

Ψ2

RX2
. (14)

According to Assumption 2, there exists an extractor Ā1 for the adversary A1, such that AdvGKEA
A1,Ā1

is
negligible. Now we construct an extractor Ā for A based on Ā1.

Construction of extractor Ā for A: Based on GKEA extractor Ā1

1. The input is Sm+1 = {(θvi, vβi ) : 1 ≤ i ≤ m+ 1}. The random coin is (r, r̄).

2. For each 1 ≤ i ≤ m, set ui = θvi
θvm+1

and compute uβi =
v
β
i

v
β
m+1

. Let Wm = {(ui, uβi ) : 1 ≤ i ≤ m}.

3. Invoke adversary A1 with random coin r1 = (θvm+1, v
β
m+1, r): (U1 = Ψ1

RX1
, U2 = Ψ2

RX2
)← A1(Wm; r1).

Note: We can represent the random coin r1 used by A1 as (R1, R2, r).
4. Invoke extractor Ā1 with random coin (r1, r̄1 = r̄): (µ1, . . . , µm)← Ā1(Wm; r1, r̄1).
5. Define µm+1 = X −

∑m

i=1
µi. Output (µ1, . . . , µm, µm+1).

If U2 =
∏m
i=1 u

βµi
i , then we have

m+1∏
i=1

vβµii = v
βµm+1

m+1

m∏
i=1

vβµii = v
β(X−

∑m

i=1
µi)

m+1

m∏
i=1

uβµii

m∏
i=1

vβµim+1 = vβXm+1U2 = RX2 U2 = Ψ2.

That is,

U2 =
m∏
i=1

uβµii ⇒
m+1∏
i=1

vβµii = Ψ2. (15)

If Uβ1 = U2 ⇒ U2 =
∏m
i=1 u

βµi
i , combining with equation (14) and equation (15), we have(

Ψ1

θX

)β
= Ψ2 ⇒ Uβ1 = U2 ⇒ U2 =

m∏
i=1

uβµii ⇒ Ψ2 =
m+1∏
i=1

vβµii .

As a result, (
Uβ1 = U2 ⇒ U2 =

m∏
i=1

uβµii

)
⇒
((

Ψ1

θX

)β
= Ψ2 ⇒ Ψ2 =

m+1∏
i=1

vβµii

)



Note that the implications in equation (14) and equation (15) are always true, while the implication that Uβ1 =
U2 ⇒ U2 =

∏m
i=1 u

βµi
i is true only with certain probability.

Applying the Proposition 1 in Appendix B, we have

Pr

[
Uβ1 = U2 ⇒ U2 =

m∏
i=1

uβµii

]
= 1− AdvGKEA

A1,Ā1
≤ Pr

[(
Ψ1

θX

)β
= Ψ2 ⇒ Ψ2 =

m+1∏
i=1

vβµii

]
= 1− AdvLem 4

A,Ā .

Hence,
AdvLem 4

A,Ā ≤ AdvGKEA
A1,Ā1

≤ ν2.

ut

D.2 Proof of Lemma 5

Lemma 5 Suppose Assumption 2 holds. For any PPT algorithm A, there exists a PPT algorithm Ā, such that
AdvLem 5

A,Ā (1κ) ≤ ν2(κ), where the advantage AdvLem 5
A,Ā of A against Ā w.r.t. scheme Ẽ = (KGen,DEnc,CollRes)

is defined as

AdvLem 5
A,Ā (1κ) def= 1− Pr

 (ζ,X, Ψ2, view
Ẽ
A,D,R)← ExpẼA(1κ);

({µi : i ∈ [N ]})← Ā(viewEA) :
ζ = accept ⇒ Ψ2 =

∏
i∈[N ]

(
vβi

)µi
 ,

where vβi is the second component of tag ti for data point xi ∈ D (See Step 2 of DEnc in Figure 2).

Proof (of Lemma 5). Let A be any PPT adversary against Ẽ = (KGen,DEnc,CollRes). We construct a PPT
algorithm B based on A.

Adversary B w.r.t. Lemma 4: Based on A

1. The input is Sm = {(θvj , vβj ) ∈ G̃2 : j ∈ [m]}. The random coin used in this algorithm is r.

2. Simulate Alice in the experiment ExpẼA.
(a) Invoke adversary A with a random coin derived from r. A chooses a set D = {xi ∈ [Z]d : i ∈ [N ]} of N = m d-dimensional

data points. Note: If N > m, B can generate more tuples (θvj , v
β
j ) for j = m + 1, . . . , N from Sm. For simplicity, we just

assume N = m.
(b) Simulate KGen:

i. Invoke ExpKGen(1κ) to obtain public/private key pair (pk, sk).
ii. Choose γ at random from Z∗p. B does not know the values of θ and β.

(c) Simulate DEnc:

i. Choose a function f1 : [N ]→ Z∗p at random and define function f2(i)
def
=
(
vβi
)γ′

, i ∈ [N ].

ii. For each i ∈ [N ], let ti =
(
θvi, v

β
i , Ω

f1(i)
)
.

iii. Invoke ExpSetup(D, 〈f1〉, 〈f2〉, sk) to obtain C = {ci : i ∈ [N ]}, where 〈f1〉 and 〈f2〉 are descriptions of functions f1 and
f2 respectively.

(d) Simulate CollRes: For each query range Rj received from A during A’s learning phase and challenging phase
i. (Step A1) Choose random nonce ρ ∈ Z∗p and invoke algorithm ExpDelKey(Rj , ρ, sk) using the private key sk.

ii. (Step A2) Does not perform verifications, after receiving reply from A.
3. Receive output (X,Ψ1, Ψ2, Ψ3, Ψ4) for the challenging query range R from A. Output (X,Ψ1, Ψ2).

Remarks on Algorithm B.

1. B has the private key sk, and can generate the Help-Info in the same way as in CollRes.
2. B has no knowledge of β or θ, and consequently cannot perform verification as in CollRes.
3. The view of adversary A after interacting with simulated scheme is identically distributed with the the view

viewEA of A after interacting with the real scheme in the experiment ExpEA.
(a) KGen: The simulator B generates key (pk, sk) in the same way as the real scheme. The unkonw secret

key β ∈ Z∗p, θ ∈ G̃ and γ = (βγ′)−1 ∈ Z∗p are independently and uniformly randomly distributed over
corresponding domains.



(b) DEnc: The dataset D is generated in the same as in real experiment. Functions f1 and f2 are truly
randomly chosen as in the real experiment. The ciphertexts C are generated in the same way as in real
experiment. As a result, the public encoding Dp = {D,T,C} A received is identically distributed as in
real experiment.

(c) CollRes

i. Step A1: The simulator just follows the procedure in Figure 2 with key sk and random nonce ρ to
execute this step.

ii. Step A2: Since the simulator does not know the values of secret key (β, γ, θ) and cannot perform the
verifications. However, according to our scheme, the accept/reject decisions are always kept secret
from Bob (or adversary).

4. If A is a successful adversary, then its output will indeed pass all verifications with non-negligible probability,
although the simulator cannot perform the actual verifications and yet cannot know whether A succeeds or
not in each single attack instance.

From the random coin r, B can simulate the experiment ExpẼA and produce a view viewr which is identically
distributed as the view viewẼA produced by a real experiment. In the other direction, information theoretically,
the random coin r can be recovered from the adversary’s view viewr, considering r as the collection of all (true)
random bits flipped in the simulation. Consequently, we can view viewr as an alternative representation of random
coin r.

By Lemma 4, there exists a PPT algorithm B̄ such that AdvLem 4
B,B̄ ≤ ν2. We construct an extractor Ā for

adversary A based on B̄.

Extractor Ā: Based on B̄

1. The input is viewẼA, a state variable describing all random coins chosen and all message accessed by A during interactions with

Ẽ in the experiment ExpẼA.

2. Recover D,T,C from viewẼA and construct a set SN ← {(θvi, vβi ) : i ∈ [N ]}, where θvi and vβi are the first two components of
tag ti ∈ T.

3. Invoke B on input SN with random coin viewẼA. B extracts information from viewẼA and replays15 the interaction between Alice

and Bob (i.e. the adversary A) in the experiment ExpẼA. Denote the output of experiment as (ζ,X,Ψ , viewẼA,D,R). Recover the

reply of A on the challenging query R from viewẼA, and denote it with (X,Ψ1, Ψ2, Ψ3, Ψ4). B outputs (X,Ψ1, Ψ2).

4. Let B̄ be the extractor such that AdvLem 4
B,B̄ ≤ ν2. Invoke B̄ on input SN using random coin viewEA, and obtain output (µ1, . . . , µN )

from B̄. Output (Ψ1, Ψ2, X, µ1, . . . , µN ).

Note that according to the algorithm CollRes, ζ = accept implies that the verification is passed and Ψ2 =(
Ψ1

θX

)β
(the first equality test in equation (9)). We have

ζ = accept ∧ Ψ2 6=
∏
i∈[N ]

(vβi )µi ⇒ Ψ2 =
(
Ψ1

θX

)β
∧ Ψ2 6=

∏
i∈[N ]

(vβi )µi

Hence, by applying Proposition 1, we have

AdvLem 5
A,Ā = Pr

ζ = accept ∧ Ψ2 6=
∏
i∈[N ]

(vβi )µi


≤AdvLem 4

B,B̄ = Pr

Ψ2 =
(
Ψ1

θX

)β
∧ Ψ2 6=

∏
i∈[N ]

(vβi )µi

 ≤ ν2.

ut

15 Since A is invoked with the same random coin recovered from viewẼA, its behaviors become deterministic.



E A valid proof should be generated from points within intersection D ∩ R

Theorem 6 Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is IND-sID-CCA secure.
For any PPT algorithm A, there exists PPT algorithm Ā, such that both AdvLem 5

A,Ā and AdvThm 6
A,Ā are negligible,

where the advantage AdvThm 6
A,Ā of A against Ā w.r.t. scheme Ẽ = (KGen,DEnc,CollRes) is defined as

AdvThm 6
A,Ā (1κ) def= 1− Pr


(ζ,X, Ψ2, view

Ẽ
A,D,R)← ExpẼA(1κ);

({µi : i ∈ [N ]})← Ā(viewẼA) :
ζ = accept ∧ Ψ2 =

∏
i∈[N ]

(
vβi

)µi ⇒ ∀xi ∈ D ∩R{, µi = 0

 ,
where vβi is the second component of tag ti for data point xi ∈ D (See Step 2 of DEnc in Figure 2).

Proof (of Theorem 6).

The idea of proof. For any PPT algorithm A, applying Lemma 5, let Ā be the PPT algorithm such that
AdvLem 5

A,Ā is negligible. Using proof of contradiction, assume that AdvThm 6
A,Ā is non-negligible. Based on A and

Ā, we construct a PPT algorithm B, such that B breaks IND-sID-CCA security of BBG HIBE scheme [2] with
non-negligible advantage

AdvIND-sID-CCA
BBG,B ≥ 1

4dN
AdvThm 6

A,Ā − 1
4
ν1.

where ν1 is as in Assumption 1 and AdvIND-sID-CCA
BBG,B is defined in [2]. The contradiction implies that our hypothesis

is wrong, and thus Theorem 6 is proved.
Construct IND-sID-CCA adversary B against BBG HIBE based on Ā:

IND-sID-CCA adversary B against BBG HIBE

1. Setup:
(a) Invoke adversary A: A chooses a dataset D = {x1, . . . ,xN} ⊂ [Z]d of N d dimensional points.
(b) Choose i∗ ∈ [N ] at random and ξ ∈ [1, d] at random. Denote with id∗ the identity associate with the ξ-th dimension of xi∗ ,

i.e. id∗ = IDξ(xi∗ [ξ]). Send id∗ to the IND-sID-CCA challenger.
(c) The IND-sID-CCA challenger runs BBG setup algorithm Setup and generates a pair of key (master-key, params). The challenger

gives params to B and keeps master-key private.
2. Phase 1: Do nothing.
3. Challenge: Choose a function f2 : [N ]→ G̃ at random. Let M0 = f2(i∗) and choose M1 from G̃ at random. Send (M0,M1) to the

challenger and receive the challenging ciphertext CT = Encrypt(params, id∗,Mb), b ∈ {0, 1}, from the IND-sID-CCA challenger.

Simulate Alice in the experiment ExpẼA as follows.
Simulate KGen:
– Choose β, γ ∈ Z∗p and θ ∈ G̃ at random. Let K = (β, γ, θ).

– Choose τ = (τ1, . . . , τd) ∈
(
Z∗p
)d

at random. Let pk = (p,G, G̃, e) and sk = (pk, params,master-key, τ ). Take (pk, sk) as the
output of ExpKGen(1κ). Note: B knows only params and does not know master-key.

Simulate DEnc:
– Choose a function f1 : [N ]→ Zp at random.
– For i ∈ [N ], generate ti in the same way as in the Step 2 of algorithm DEnc in Figure 2.
– B executes algorithm ExpSetup on dataset D w.r.t. functions f1 and f2, with params and τ , and generates C = {ci : i ∈ [N ]}.

Note: In our construction in Figure 1, the execution of ExpSetup requires only the public key params for BBG encryption, and
secret value τ to find numbers ui,j’s. Full information of sk (particularly master-key) is not necessary.

– Redefine ci∗ based on challenging ciphertext CT:
• Choose (d − 1) random elements si∗,1, . . . , si∗,ξ−1, si∗,ξ+1, . . . , si∗,d from Z∗p. Choose d random elements ηi∗,1, . . . , ηi∗,d

from G̃ with constraint f2(i∗) =
∏d

j=1
ηi∗,j .

• Parse the challenging ciphertext CT as (c1, c2, c3) and c1 = MbΩ
s for some unknown s. Let si∗,ξ be the unknown value,

such that Ωsi∗,ξ = c1M
−1
0 . Choose d random elements σi∗,1, . . . , σi∗,d from G̃ with constraint

d∏
j=1

σi∗,j = Ω
−
∑d

j=1
si∗,j = Ω

−
∑

j∈[d]
j 6=ξ

si∗,j

· c−1
1 M0

Note: In case of b = 0, si∗,ξ = s.
• For each j ∈ [d] and j 6= ξ, generate ci∗,j in the same way as in algorithm ExpSetup: cij∗ ,j is the ciphertext of ηi∗,jwi∗,j

under identity IDj(xi∗ [j]) with random coin si∗,j .



• For dimension ξ, ci∗,ξ = (c1σi∗,ξ, c2, c3), where CT = (c1, c2, c3). Set ci∗ = (ci∗,1, . . . , ci∗,d).
– Redefine tag ti∗ by setting its third component wi∗ as

Ω
−
∑d

j=1
si∗,jτj = Ω

−
∑

j∈[d]
j 6=ξ

si∗,jτj

·Ω−si∗,ξτξ = Ω

−
∑

j∈[d]
j 6=ξ

si∗,jτj

·
(
c−1
1 M0

)τξ
Note: After this redefinitions of ci∗ and ti∗ , the new tags and ciphertexts (T,C) are consistent w.r.t. to functions f ′1 and f2,

where f ′1(i) = f1(i) if i 6= i∗ and i ∈ [N ], and f ′1(i∗) = −
∑d

j=1
si∗,jτj is unknown since si∗,ξ is unknown. However, the value

Ωf
′
1(i∗) can be computed since Ωsi∗,ξ = c1M

−1
0 .

4. Phase 2: Simulate A. Choose Z ∈ G̃ at random. For every query Ri made by A, B responds in the following way.
– A is in learning phase: Taking Z as the master key, execute Step A1 of CollRes in Figure 2, and do nothing in Step A2.

Note: There exists an unknown $ such that master-key$ = Z. If the simulator chooses random nonce ρ′, then the generated
Help-Info δ is identical to the one generated from master-key and random nonce ρ = ρ′$. Since $ is unknown, the simulator
is unable to do verifications in Step A2 of CollRes.

– A is in challenging phase: The challenging query range is R.
• Parse R as A1 ×A2 × . . .Ad, where Aj ⊂ [Z], j ∈ [d].
• If xi∗ [ξ] 6∈ Aξ, then make a corresponding query to IND-sID-CCA challenger, and forward its response to A after some

conversion.
∗ For any id ∈ IdSetj(Aj), j ∈ [d] , send a private key query with identity id to the challenger. Let the did =

(a0, a1, bk, . . . , b`) be the response from the challenger. Choose ρ at random from Z∗p, and compute d′id = (a
ρτj
0 , a

ρτj
1 , b

ρτj
k , . . . , b

ρτj
` ).

Send δ = {d′id : id ∈ IdSetj(Aj), j ∈ [d]} to A as Help-Info for query range R.
∗ Received reply from A. Do verifications and obtain output (ζ,X, Ψ) as in Step A2 of CollRes.
Note: For this query, the simulator can perform the verifications since it knows (β, γ, ρ).

• If xi∗ [ξ] ∈ Aξ, then abort and output a random bit b′ ∈ {0, 1}. Denote this event as E1.
5. Guess: Eventually, Ā outputs {µi : i ∈ [N ]}.

– If ζ = accept, Ψ2 =
∏
i∈[N ]

(
vβi
)µi

and µi∗ 6= 0, then Output b′ = 0. Denote this event as E2.

– Otherwise, then abort and output a random bit b′ ∈ {0, 1}. Denote this event as E3.

Remarks on algorithm B.

1. The constructed algorithm B is a PPT IND-sID-CCA adversary against BBG HIBE scheme with O(d logZ)
chosen private key query and no chosen decryption queries.

2. In the learning phase, the simulator takes a random number Z ∈ G̃ as the master key and “forge” the Help-
Info by itself. As a result, the simulator does not know the value of “real” ranom nonce ρ = ρ′$ and thus
cannot perform some verification (i.e. the second equality test in equation (9)) in Step A2 of CollRes.

3. In the challenging phase, the simulator sends private key queries to the IND-sID-CCA challenger, and produce
the Help-Info using the response from the challenger together with a random nonce ρ of its own choice. In
this case, the simulator can perform the all verifications in Step A2 of CollRes.

4. In case of b = 0: Ωsi∗,ξ = c1M
−1
0 = MbΩ

sM−1
0 = Ωs, and the new value of ci∗,ξ is a BBG encryption of

ηi∗,ξσi∗,ξ under identity IDξ(xi∗ [ξ]) with random coin si∗,ξ = s. After redefining the tag ti∗ and ciphertext
ci∗ based on the challenging ciphertext CT, the new (T,C) is consistent with functions f ′1 and f2, and
Expand(R, δ, ci∗ ,xi∗ , i∗, pk) will output f2(i∗)Ωf ′1(i∗). The simulated scheme is identical to a real one (with
functions f ′1 and f2), from the view of adversary.

5. In the case of b = 1, Ωsi∗,ξ = c1M
−1
0 = MbΩ

sM−1
0 = Ωs ·

(
M1M

−1
0

)
, si∗,ξ is randomly distributed independent

on s. the generated ciphertext ci∗,ξ is a valid BBG encryption of ηi∗,ξσi∗,ξ under indentity IDξ(xi∗ [ξ]) with
random coin s 6= si∗,ξ. Thus the output of Expand(R, δ, ci∗ ,xi∗ , i∗, pk) is not equal to f2(i∗)Ωf ′1(i∗) with o.h.p,
and the simulated scheme is (information theoretically) not identical to the real scheme, from the view of
adversary (Note adversary has C = {ci : i ∈ [N ]}).

Note that all three events E1, E2 and E3 are mutually exclusive, and only E2 is the success case, and both
of E1 and E3 correspond to failure.

Pr[b = b′] =
1
2
Pr [E1 ∨E3] + Pr

[
b = b′,E2

]
=

1
2

(1− Pr [E2]) + Pr
[
b = b′,E2

]
=

1
2

+ Pr
[
b = b′,E2

]
− 1

2
Pr [E2] (16)



Therefore,

AdvIND-sID-CCA
BBG,B =

∣∣∣∣Pr
[
b = b′,E2

]
− 1

2
Pr [E2]

∣∣∣∣ (17)

≥
∣∣∣∣ ∣∣∣∣12Pr

[
b = b′,E2 | b = 0

]
− 1

4
Pr [E2 | b = 0]

∣∣∣∣− ∣∣∣∣12Pr
[
b = b′,E2 | b = 1

]
− 1

4
Pr [E2 | b = 1]

∣∣∣∣ ∣∣∣∣ (18)

AdvIND-sID-CCA
BBG,B conditional on b = 0.

Recall that by the hypothesis, A is a Type II adversary but not a Type III adversary. That is, ζ = accept and
Ψ2 =

∏
i∈[N ]

(
vβi

)µi
with o.h.p, and there exists xi ∈ D ∩R{, such that µi 6= 0 with non-negligible probability.

We denote with E4 the event that ζ = accept and Ψ2 =
∏
i∈[N ]

(
vβi

)µi
, and there exists xi ∈ D ∩R{, such that

µi 6= 0.

Pr[E4 | b = 0] = Pr

ζ = accept ∧ Ψ2 =
∏
i∈[N ]

(
vβi

)µi ∧ ∃xi ∈ D ∩R{, µi 6= 0 | b = 0

 = AdvThm 6
A,Ā

In the case of b = 0, the event E2 is equivalent to conjunctions of three events: ¬E1, E4, and E5, where E5

represents the event i∗ ∈ S# = {i ∈ [N ] : xi ∈ D∩R{, µi 6= 0}. Since the conjunctions of E4 and E5 implies that
xi∗ 6∈ R and ξ ∈ [d] is independently and randomly chosen, we have

Pr [¬E1 | E4 ∧E5 ∧ b = 0] = Pr [xi∗ [ξ] 6∈ Aξ | E4 ∧E5 ∧ b = 0] ≥ 1
d
.

Therefore,

Pr [E2 | b = 0] = Pr [¬E1 ∧E4 ∧E5 | b = 0] = Pr [¬E1 | E4 ∧E5 ∧ b = 0] Pr [E4 ∧E5 | b = 0]

≥ 1
d
Pr [E4 | b = 0] Pr [E5 | E4, b = 0]

=
1
d
AdvThm 6

A,Ā · 1
|S#|

≥ 1
dN

AdvThm 6
A,Ā ( Event E4 implies that S# 6= ∅)

According to the construction of B, if b = 0 and event E2 occurs, the algorithm B will output b′ = 0 = b.
That is, Pr [b = b′|E2, b = 0] = 1.

Hence, conditional on b = 0, the advantage of B is

AdvIND-sID-CCA
BBG,B |b=0 =

∣∣∣∣Pr [E2 | b = 0] (Pr
[
b = b′ | E2, b = 0

]
− 1

2
)
∣∣∣∣ ≥ 1

2dN
AdvThm 6

A,Ā . (19)

AdvIND-sID-CCA
BBG,B conditional on b = 1.

Next we show that Pr[E2 | b = 1] is negligible under CDH assumption.

Claim E.01 There exists a PPT algorithm which break Computational Diffie Hellman problem with probability
equal to Pr[E2 | b = 1].

Proof (of Claim E.01). The proof idea is as below: Given input (v, vγ , u), we simulates the scheme Ẽ =
(KGen,DEnc,CollRes) and the IND-sID-CCA adversary B. When event E2 occurs, we try to compute uγ .

Algorithm C: Break Computational Diffie Hellman problem

1. Input is (v, va, u) ∈ G̃, where a ∈ Z∗p is uniformly randomly distributed. The goal is to output ua.

2. Simulate the scheme Ẽ = (KGen,DEnc,CollRes):
(a) Run algorithm KGen,DEnc,CollRes as normal, except that:

i. Let γ be the unknown value a.
ii. Let the set D with N d-dimensional points be the dataset chosen by adversary A.



iii. Choose i∗ ∈ [N ] at random and ξ ∈ [d] at random.
iv. Choose function f1 freely and define function f2 in this way: (1) For each i ∈ [N ] and i 6= i∗, choose zi ∈ Z∗p at random

and set f2(i) = (vγ)zi ; (2) Choose Z ∈ G̃ at random and set f2(i∗) = Z. Although γ is unknown, we have f2(i)γ
−1

= vzi

for any i ∈ [N ] and i 6= i∗.
v. For point xi∗ , set vi∗ = u and the tag ti∗ = (θ · vi∗ , uβ , Ωf1(i∗)).

Note: Since γ is unknown, some verifications can not be done.

3. Simulate the IND-sID-CCA adversary B based on the above simulated scheme, except that

(a) Do not redefine ci∗ or ti∗ .

(b) When the adversary A is in challenging phase, the verification cannot be done.

4. Let (X,Ψ1, Ψ2, Ψ3, Ψ4) denote the reply returned by adversary A on the challenging query range R and ρ be the corresponding

random nonce. Compute φ as below and output φµ
−1
i∗ :

φ← Ψ4

Ψρ3 ·
∏i 6=i∗
i∈[N ]

(vγi )µi

In case of b = 1, the algorithm B is identical to the one simulated by C, to the view of adversary A: except
tag ti∗ and ci∗ , all are identical to the experiment ExpẼA with a real scheme as constructed in Figure 2; for point
xi∗ , the output of Expand(R, δ, ci∗ ,xi∗ , i∗, pk) is random and independent on the desired value uγwρi∗ .

Suppose b = 1 and event E2 occurs, that is, ζ = accept and Ψ2 =
∏
i∈[N ]

(
vβi

)µi
and µi∗ 6= 0. It is easy to

show that
φ = v

γµi∗
i∗ ; φµ

−1
i∗ = vγi∗ = uγ = ua

Hence, the above algorithm C solve the CDH problem with probability

Pr[E2 | b = 1] Pr[φµ
−1
i∗ = ua | E2, b = 1] = Pr[E2 | b = 1].

ut

Therefore, under CDH assumption, Pr[E2 | b = 1] = ν1, where ν1(·) is some negligible function. As a result,
conditional on b = 0, the advantage of B is

AdvIND-sID-CCA
BBG,B |b=1 =

∣∣∣∣Pr [E2 | b = 1] (Pr
[
b = b′ | E2, b = 1

]
− 1

2
)
∣∣∣∣ ≤ 1

2
ν1. (20)

AdvIND-sID-CCA
BBG,B ≥

∣∣∣∣12AdvIND-sID-CCA
BBG,B |b=0 −

1
2
AdvIND-sID-CCA

BBG,B |b=1

∣∣∣∣ ≥ 1
4dN

AdvThm 6
A,Ā − 1

4
ν1.

ut

F A valid proof should be generated by processing each point within intersection D ∩ R
for exactly once

Theorem 7 Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is IND-sID-CCA secure.
For any PPT algorithm A, there exists a PPT adversary Ā, such that all of AdvLem 5

A,Ā , AdvThm 6
A,Ā , and AdvThm 7

A,Ā
are negligible, where the advantage AdvThm 7

A,Ā of A against Ā w.r.t. scheme E = (KGen,DEnc,ProVer) is defined
as

AdvThm 7
A,Ā (1κ) def= 1− Pr

 (ζ,X, π∗, viewEA,D,R)← ExpEA(1κ);
({µi : i ∈ [N ]})← Ā(viewEA) :

ζ = accept ⇒
(
π∗ =

∏
i∈[N ]

(
vβi

)µi ∧ ∀i ∈ [N ], µi = 1
)
 ,

where vβi is the second component of tag ti for data point xi ∈ D (See Step 2 of DEnc in Figure 2).

Proof (of Theorem 7).



Idea of proof. For any PPT algorithm A, applying Theorem 6, let Ā be the PPT algorithm, such that AdvLem 5
A,Ā ≤

ε5 and AdvThm 6
A,Ā ≤ ε6 for some negligible functions ε5(·) and ε6(·). Using proof of contradiction, assume that

AdvThm 7
A,Ā ≥ ε7 for some non-negligible function ε7(·). We construct a PPT algorithm B based on A and Ā, such

that B breaks Discrete Log Problem with non-negligible advantage ε7 − (2d+ 1)(ε5 + ε6).

Denote with E1 the event that ζ = accept
∧

π∗ 6=
∏
i∈[N ]

(
vβi

)µi
, and with E2 the event that ζ =

accept
∧
π∗ =

∏
i∈[N ]

(
vβi

)µi ∧ ∃j ∈ [N ], µj 6= 1. We can split the probability AdvThm 7
A,Ā into two parts,

AdvThm 7
A,Ā = Pr

 (ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ);
({µi : i ∈ [N ]})← Ā(viewEA) :

ζ = accept
∧
π∗ 6=

∏
i∈[N ]

(
vβi

)µi
+ Pr


(ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ);
({µi : i ∈ [N ]})← Ā(viewEA) :

ζ = accept
∧
π∗ =

∏
i∈[N ]

(
vβi

)µi
∧ ∃j ∈ [N ], µj 6= 1


= Pr[E1] + Pr[E2].

Part I: Pr[E1] ≤ (2d+ 1)
(
AdvLem 5

A,Ā + AdvThm 6
A,Ā

)
. Suppose that: (1) The challenging query range is R. (2)

Alice partitions R{ into 2d rectangualr ranges R1, . . . ,R2d and sets R0 = R. (3) For 0 ≤ ` ≤ 2d, denote with
(ζ`, X`, Ψ

(`)
2 ) the reply returned by adversary A in the excution of CollRes on range R`. (4) Denote with (ζ,X, π∗)

the output of Alice in the execution of ProVer. (5) Recall that Alice keeps the value π∗ =
∏
i∈[N ] v

β
i .

According to the construction in Figure 2 (i.e. Step 3 of ProVer), we have ∧
`∈[0,2d]

ζ` = accept

 ∧ π∗ =
∏

`∈[0,2d]

Ψ
(`)
2 ⇔ ζ = accept (21)

The conjunctions of equation (21) (denoted as statement A) and statements A` : ζ` = accept ⇒ Ψ
(`)
2 =∏

i∈[N ] v
βµi
i , 0 ≤ ` ≤ 2d, and statements B` : ζ` = accept ∧ Ψ (`)

2 =
∏
i∈[N ] v

βµi
i ⇒ ∀xi ∈ D ∩ R{, µi = 0,

0 ≤ ` ≤ 2d, directly imply that

ζ = accept ⇒ π∗ =
∏

xi∈D∩
(⋃

0≤`≤2d
R`

) vβµii =
∏

xi∈D

vβµii . (22)

Applying Proposition 1 and Proposition 2 in Appendix B, we have

Pr

ζ = accept⇒ π∗ =
∏

xi∈D

vβµii

 ≥ Pr [A ∧A0 ∧ . . . ∧A2d ∧B0 ∧ . . . ∧B2d]

≥ 1− Pr[¬A]−
2d∑
`=0

Pr [¬A`]−
2d∑
`=0

Pr [¬B`]

≥ 1− 0−
2d∑
`=0

AdvLem 5
A,Ā −

2d∑
`=0

AdvThm 6
A,Ā

= 1− (2d+ 1)
(
AdvThm 6

A,Ā + AdvLem 5
A,Ā

)
.

Therefore,

Pr[E1] = 1− Pr

ζ = accept⇒ π∗ =
∏

xi∈D

vβµii

 ≤ (2d+ 1)
(
AdvLem 5

A,Ā + AdvThm 6
A,Ā

)
.



Part II: Break Discrete Log Problem. Applying the result in Part I, we have Pr[E2] = AdvThm 7
A,Ā −Pr[E1] ≥

AdvThm 7
A,Ā − (2d + 1)

(
AdvLem 5

A,Ā + AdvThm 6
A,Ā

)
. We construct the following algorithm to break the Discrete Log

Problem.

B: DLP Adversary

1. The input is (v, va) ∈ G̃2. The goal is to find a ∈ Zp.
2. Define function f2 : [N ]→ G̃ in this way: For each i ∈ [N ], choose zi ∈ Zp at random and set f(i) = vziva.
3. Invoke scheme E = (KGen,DEnc,ProVer) with f2 defined as above. Note: B has full information of private key.
4. Simulate the experiment ExpEA, by invoking the adversary A (playing the role Bob) to interact with Alice in E . Then invoke Ā

to obtain {µi : i ∈ [N ]}.
5. With probability equal to Pr[E2], it holds that ζ = accept

∧
π∗ =

∏
i∈[N ]

(
vβi
)µi ∧ ∃j ∈ [N ], µj 6= 1.

6. According to our scheme in Figure 2 (Step 4 of DEnc), π∗ =
∏
i∈[N ]

vβi . So a univariable equation in the unknown variable a of

order 1 in group Zp can be formed by substituting vj = f(j)γ
−1

= v(zj+a)γ−1
. Solve this equation and get a root a∗. Output a∗.

The PPT algorithm B constructed as above breaks DLP with probability Pr[E2]. Therefore, under Computational
Diffie Hellman Assumption 1, DLP is infeasible and thus Pr[E2] has to be negligible.

Combining results in Part I and II, we have

AdvThm 7
A,Ā ≤ (2d+ 1)

(
AdvLem 5

A,Ā + AdvThm 6
A,Ā

)
+ AdvDLP

B .

ut

G Proof of Main Theorem 2

Theorem 2 (Main Theorem) Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme
is IND-sID-CCA secure. Then the RC protocol E = (KGen,DEnc,ProVer) constructed in Figure 2 is PRC w.r.t.
function F (·, ·) as defined in Section 2.1, under Definition 2. Namely, E is correct and sound w.r.t. function F .

Proof (of Theorem 2). The correctness is straightforward once we have Lemma 1. Here we save the details and
focus on the soundness part.

Suppose E is not sound, i.e. there exists a PPT algorithm A, with non-negligible advantage ε6 against E :

AdvEA = Pr

[
(ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ);

ζ = accept
∧
X 6= F (D,R) (mod p)

]
≥ ε6.

Applying Theorem 7, let Ā be the extractor for A such that all of AdvLem 5
A,Ā , AdvThm 6

A,Ā , and AdvThm 7
A,Ā are

negligible.
We intend to construct a PPT algorithm B based on A to break Assumption 1 (Computational Diffie-Hellman

Problem), and argue that B succeeds with probability about ε6, with the help of Ā, under Assumption 1,
Assumption 2, and the assumption that BBG [2] HIBE is IND-sID-CCA secure. The contradiction will imply that
such adversary A does not exist and the constructed scheme E is sound.

B: Adversary against Computational Diffie-Hellman Problem

1. The input is (u, uβ , vβ) ∈ G̃. The goal is to find v.

2. Choose a random number R1 from G̃. Then R1 = vθ for some unkonwn θ ∈ G̃.
3. For 1 ≤ j ≤ m, choose zj at random from Z∗p and set uj ← uzj and compute uβj =

(
uβ
)zj

. Let Wm = ({uj , uβj : j ∈ [m]}).
4. Convert (Wm, R1, R2 = vβ) to Sm+1 = {(viθyi , vβi , yi)}

m
i=0 in the same way as in construction of algorithm A1 in the proof of

Lemma 4 in Appendix D.1.
5. From Sm+1, simulate the scheme E just as adversary B in the proof of Lemma 5 in Appendix D.2.
6. Invoke the adversary A and simulate the experiment ExpEA. Let (X, Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4) be the reply returned by adversary A on

challenging query range R in the execution of CollRes.
7. Simulate the experiment ExpEA honestly (just using the algorithm Eval instead of adversary A) and get query result Y = |D∩R|

and proof (Ψ1, Ψ2, Ψ3, Ψ4).



8. Let Z be the inverse of (X − Y ) modulo p and compute θ′ =
(
Ψ̄1
Ψ1

)Z
.

Note: (1) Y = F (D,R). (2) If A succeeds, then X 6= F (D,R) (mod p). Recall the definition of function F : D × R → Zp in
Section 2.1.

9. Output R1
θ′ .

Note that as in proof of Lemma 5, the simulated scheme E is identical to a real one from the view of adversary
A.

Claim G.02 Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is IND-sID-CCA secure.

If A succeeds, it holds with o.h.p. (i.e. with probability (1− negl)) that
(
Ψ̄1

θX

)β
= Ψ̄2 = Ψ2 =

(
Ψ1

θY

)β
.

Proof (of Claim G.02). If A succeeds, then its output (X, Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4) will pass all verifications in the scheme
E (Step A2 of CollRes and Step 3 in ProVer in Figure 2). So we have(

Ψ̄1

θX

)β
= Ψ̄2, ζ = accept. (23)

where ζ ∈ {accept, reject} denotes the corresponding decision (a part of output of ProVer) regarding A’s reply
on the challenging query.

Let (µ1, . . . , µN ) be the output of extractor Ā. Under Assumption 1, Assumption 2 and the assumption that
BBG [2] HIBE scheme is IND-sID-CCA secure, by applying Lemma 5, Theorem 6 and Theorem 7, the following
implications hold with o.h.p.,

ζ = accept ⇒

π∗ =
∏
i∈[N ]

(
vβi

)µi ∧ ∀i ∈ [N ], µi = 1

 ;

ζ = accept ⇒ Ψ̄2 =
∏

xi∈D∩R

(
vβi

)µi
.

Hence, conditional on A succeeds, with o.h.p. we have

Ψ̄2 =
∏

xi∈D∩R

(
vβi

)µi
=

∏
xi∈D∩R

vβi . (24)

The output (X,Ψ1, Ψ2, Ψ3, Ψ4) returned by an honest Bob also passes all verifications (Since the scheme E is
correct). (

Ψ1

θY

)β
= Ψ2, where Ψ2 =

∏
xi∈D∩R

vβi is computed following the scheme. (25)

Combing equations (23)(24)(25), Claim G.02 can be implied directly:(
Ψ̄1

θX

)β
= Ψ̄2 = Ψ2 =

(
Ψ1

θY

)β
.

ut

From Claim G.02, it is straightforward that

Pr

[
R1

θ′
= v

]
= Pr

[
θ′ = θ

]
≥ Pr [A succeeds] (1− negl) ≥ ε6(1− negl),

where negl(·) is some negligible function. Therefore, the constructed algorithm B breaks Assumption 1 with
non-negligible probability ε6(1 − negl). The contradiction implies that our hypothesis is wrong: such adversary
A does not exist. Thus, the constructed scheme E is sound and Theorem 2 is proved. ut
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