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Abstract. We are interested in the integrity of the query results from an outsourced database service provider.
Alice passes a set D of d-dimensional points, together with some authentication tag T, to an untrusted service
provider Bob. Later, Alice issues some query over D to Bob, and Bob should produce the query result and a proof
based on D and T. Alice wants to verify the integrity of the query result with the help of the proof, using only
the private key. In this paper, we consider aggregate query conditional on multidimensional range selection. In
its basic form, a query asks for the total number of data points within a d-dimensional range. We are concerned
about the number of communication bits required and the size of the tag T. We give a scheme that requires
O(d2 log2 N) communication bits to authenticate an aggregate count query conditional on d-dimensional range
selection, where N is the number of points in the dataset. The security of our scheme relies on Generalized
Knowledge of Exponent Assumption proposed by Wu and Stinson [1]. The low communication bandwidth is
achieved due to a new functional encryption scheme, which exploits a special property of BBG [2] HIBE scheme.
Besides counting, our scheme can be extended to support summing, finding of the minimum and usual (non-
aggregate) range selection with similar complexity, and the proposed approach potentially can be applied to other
queries by using suitable functional encryption schemes.

Keywords: Authentication, Multidimensional Aggregate Query, Secure Outsourced Database, Generalized Knowl-
edge of Exponent Assumption, Functional Encryption

1 Introduction

Alice has a set D of d-dimensional points. She preprocesses the dataset D using her private key to generate some
authentication tag T. She sends (outsources) D and T to an untrusted service provider Bob. Then Alice deletes the
original copy of dataset D and tag T from her local storage. Later Alice may issue a query over D to Bob, for example,
an aggregate query conditional on a multidimensional range selection, and Bob should produce the query result and
a proof based on D and T. Alice wants to authenticate the query result, using only her private key. In this paper, we
focus on count query conditional on a multidimensional range selection, that is, counting the number of points within
a multidimensional rectangular range. Our solution can be extended to support other types of aggregate queries, like
summing attributes of all points within the query range, and non-aggregate range selection, which asks for all points
within the query range.

The problem we study in this paper fits in the framework of the outsourced database applications [3, 4], which
emerged in early 2000s as an example of “software-as-a-service” (SaaS). By outsourcing database management, backup
services and other IT needs to a professional service provider, companies can reduce expensive cost in purchase of
equipments and even more expensive cost in hiring or training qualified IT specialists to maintain the IT services [5].

We are concerned about the communication cost and the storage overhead on Alice/Bob’s side. Such requirements
exclude the following straightforward approaches: (1) Bob sends back the whole dataset D with its tag T; (2) Alice
keeps a local copy of the dataset; (3) During preprocessing, Alice generates and signs answers to all possible queries.
Recently, Gennaro et al. [6] and Chung et al. [7] showed that, in general any outsourced/delegated function can be
verified efficiently using a private verification key in the outsourced computation model, by using fully homomorphic
encryption (e.g. Gentry [8]). Nevertheless, it is still meaningful to devise more efficient scheme for small class of
functions, without using fully homomorphic encryption, as mentioned by Gennaro et al. [6].

There are many works on authenticating non-aggregate range selection query (e.g. [9, 10, 5, 11, 12, 13, 14, 15, 16]).
Although there are efficient solutions for 1D and 2D range selection (e.g. Atallah et al. [13] for 2D grid dataset),
solutions for higher dimension typically rely on geometric partitions which suffer from the “curse of dimensionality”,
leading to exponential communication overhead. Aggregate range query is arguably more challenging, and only a
few works (e.g. [17, 18, 19]) are devoted to the authentication of aggregate query, which require high communication
overhead for high dimensional dataset. Table 1 gives a comparison between our result and several previous works.



Table 1: Worst case performance of different authentication schemes for aggregate range query or range selection query. This
table consists of two parts: the first three rows are for aggregate query; the rest four rows are for range selection query.
Note: (1) The symbol “-” indicates that the authors do not provide such information in their paper. (2) We do not include Pang et
al. [17] and Cheng et al. [11] in this table, since no concise asymptotic bound are provided. Nevertheless, their performaces are
limited by their data strucutre, i.e. KD-tree [17] and R-Tree [11], which requires exponential (in dimension) communication
overhead in the worst case. (3) Our scheme supports private key verification, while the other works in this table support public
key verification. (4) Our scheme can be extended to provide similar privacy protection like PDAS [18] (the extension is in our
technique report [20]).

Scheme Dimension
d

Communica-
tion overhead
(bits)

Storage over-
head

Computation
(Verifier Alice)

Computation
(Prover Bob)

Query Techniques

PDAS [18] d = 1 O(|S| logN) O(N) O(|S| logN) O(|S|+K2) Sum,Count Aggregated commitment
+ Shamir’s Secret-Sharing
Scheme

Li et al. [19] d ≥ 1 O(dN + 2d) Ω(dN) O(dN) Ω(N
1− 1

d ) Sum or Count or Min or
Max (One authentica-
tion data structure per
query type)

MHT-like authentication
structure for B-Tree/R-Tree

This paper and ex-
tension in our tech.
report [20]

d ≥ 1 O(d2 log2N) O(dN) O(d2 log2N)† O(dN logN)‡ Sum,Count,Min,Max,
Median

(customer designed) func-
tional encryption + GKEA
based homomorphic tag

Atallah et al. [13] d = 1, 2 O(1) O(N) O(|S|) O(1) Range Selection Precomputed prefix sum +
BLS signature

Martel et al. [9] d ≥ 1 O(logd−1N
+|S|)

- - - Range Selection Authentication Data Struc-
ture + Geometry Partition

Chen et al. [21] d ≥ 1 O(logdM) O(N logdM) O(logdM) O(logdM) Range Selection Authentication Tree Struc-
ture + Access Control

Extension of this
paper in our tech.
report [20]

d ≥ 1 O(d2 log2N) O(dN) O(d2 log2N)† O(dN logN)‡ Range Selection (customer designed) func-
tional encryption + GKEA
based homomorphic tag

N : The number of tuples in the dataset. S: The set of tuples satisfying the query condition.
K: The number of servers in PDAS [18]. M : The domain size of attributes in Chen et al. [21].
†: O(d logN) modular multiplications. ‡: O(dN logN) modular exponentiations.

A Short Outline of Our Scheme The design of our scheme consists of a few techniques. The first technique exploits
the Generalized Knowledge of Exponent Assumption (GKEA) proposed by Wu and Stinson [1], to verify that the
result is computed only from data points within the query range. This is achieved by first associating a secret number
with each location in the space. Next, a homomorphic tag is computed by Alice from the secret number for each data
point and kept in Bob’s storage. To authenticate a query, Alice generates and sends to Bob another homomorphic tag
for each location within the query range, based on the associated secret number and a random nonce. Bob aggregates
these two types of tags for all data points within the query range, and sends the two aggregated values together with
the query result to Alice. The aggregated values can be verified due to homomorphism, and it is difficult to forge the
aggregated values using data points outside the query range, under Computational Diffie Hellman Assumption and
GKEA.

However, there are two main drawbacks if the above mentioned technique is employed by itself. Firstly, the validity
of the aggregated tags do not rule out “over-counting” (where a data point is used more than once by Bob) and
“under-counting” (where a data point is omitted by Bob). To prevent over-counting and under-counting, we further
query for data points outside the original query range, and check for consistency between proofs and results of the
queries.

The second drawback is the high communication overhead required—Alice has to send a tag for each location
within the query range. In order to lower the communication complexity, we design a functional encryption scheme by
exploiting a special property of BBG HIBE scheme [2]. Using this functional encryption scheme, Alice encrypts secret
numbers associated with each data point, and sends the resulting ciphertexts to Bob during the setup. For each query,
from the query range and the random nonce, Alice can generate a short decryption key. From the decryption key, Bob
can decrypt those ciphertexts to obtain the tags for data points within the query range as the decrypted values, and
learn nothing for data points outside the range, due to the property of our functional encryption scheme.



Contribution Our main contributions can be summarized as below:

1. We propose a functional encryption scheme in Section 5, by exploiting a special property (we call it “polymorphic
property”) of the BBG HIBE scheme [2]. Under this functional encryption scheme, given a message Msg and an
identity x, which is a d-dimensional point in domain [1,Z]d where Z is an integer, a ciphertext can be generated
using the private1 key. A decryption key w.r.t. a d-dimensional rectangular range R and a random nonce ρ can
also be derived from the private key. With this decryption key and the ciphertext for message Msg under identity
x, the decryption algorithm will output Ωρ·Msg iff x ∈ R, where Ω is a part of key of the functional encryption
scheme. The size2 of a private key is in O(1), the size of a ciphertext is in O(d), and the size of a decryption key
is in O(d log2Z).

2. We prove that the proposed functional encryption scheme is weak-IND-sID-CPA secure (as defined in Section 5.3),
if BBG HIBE scheme [2] is IND-sID-CPA secure (See Theorem 2).

3. We propose a scheme for aggregate count query in Section 6, by incorporating the functional encryption scheme
into the preliminary scheme presented in Section 3. The resulting scheme is efficient. For a dataset with N points in
[1,Z]d and a d-dimensional rectangular query range, round complexity is one per query, communication overhead
is O(d2 log2Z) bits per query, and the storage overheads on Alice/Bob’s side are O(1) and O(dN), respectively.
If the dataset D is normalized3 [24], then Z = N and O(d2 log2Z) is sublinear in N and polynomial in d. To the
best of our knowledge, this is the first solution with worst case communication overhead sublinear in the number
of points in the dataset and with polynomial storage overhead on server side, without using fully homomorphic
encryption scheme [8,25]. We compare our result with several previous works in Table 1.

4. We prove that the proposed scheme is secure (Theorem 3) under reasonable assumptions (Computational Diffie
Hellman assumption, GKEA and `-wBDHI assumption [2]). We describe our proof strategy in Section 7 and
illustrate it by proving that the preliminary scheme in Section 3 is secure. The full proof is in appendix.

We remark that, for the clarity in presentation, we focus on counting in this paper. However, our scheme can
be extended to support other types of aggregate range query with similar complexity, including summing, finding of
minimum, maximum or median, and even non-aggregate range selection query. Furthermore, our scheme can also be
augmented to support dynamic dataset, provide privacy protection on data points, and prevent Alice from framing
Bob. All of these extensions are reported in a separate paper [20].

Organization The rest of this paper is organized as follows: Section 2 reviews related works, Section 3 gives a more
detailed overview of our scheme. The problem formulation and security definition are presented in Section 4. We
propose the functional encryption scheme in Section 5 and our authentication scheme in Section 6. We give the main
theorem on the security of our authentication scheme and its proof outline in Section 7. After that, we analyze the
performance of our authentication scheme in Section 8, and conclude the paper with Section 9.

2 Related work

Researches in secure outsourced database focus on two major aspects: (1) privacy (i.e. protect the data confidentiality
against both the service provider and any third party) e.g. [4,26,27,28], and (2) integrity (i.e. authenticate the soundness
and completeness of query results returned by the service provider) e.g. [3,9,29,10,5,17,30,11,12,31,13,32,14,15,16,
18, 19]. In the latter aspect, a lot of works are done for “identity query” [30], i.e. the query result is a subset of the
database. Aggregate range query is arguably more challenging and only a few works (e.g. [17, 18, 19]) are devoted to
the authentication of aggregate query.

There are roughly four categories of approaches for outsourced database authentication in the literature [3,9,29,10,
5, 17, 30, 11, 12, 31, 13, 32, 14, 15, 16]. (1) Cryptographic primitives, like collision-resistant hash, (Homomorphic and/or
aggregatable) digital signature/commitment [5,33,18]. (2) Geometry partition and authenticated data structure [9,11,

1 Unlike [22,23], our functional encryption scheme is a symmetric key encryption system. However, in the case that dimension
d = 1, our functional encryption scheme can become a public key encryption scheme.

2 Since the private key contains O(d) random elements from Z∗p and O(`) random elements from G̃, its size can be reduced
from O(`+ d) to O(1) (precisely, O(1) number of secret seeds, and each seed with length equal to the security parameter κ),
using a pseudorandom function.

3 For any dataset with size N , one can normalized [24] it by sorting the dataset along each dimension, so that the normalized
dataset is a subset of [1, N ]d. We remark that such normalization will not loss generality: queries over the original dataset
can be translated into queries over normalized dataset online by Bob and Alice can verify this translation by checking some
authentication tags.



13,14,12,19]. For example, Merkle Hash Tree (typically for 1D case) and variants, KD-tree with chained signature [17],
R-Tree with chained signature [11], and MHT-like authenticated B-Tree/R-Tree [19]. (3) Authenticated precomputed
partial result, e.g. authenticated prefix sum [13, 19] (the static case solution in [19]) and authenticated partial sum
hierarchy [17]. (4) Inserting and auditing fake tuples [31].

To the best of our knowledge, the existing few works (e.g. [17, 18, 19]) on authentication of aggregate query either
only deal with 1D case, or have communication overhead linear (or even superlinear) w.r.t. the number of data points in
the query range. Besides, some works are also suffering from exponential (in dimension) communication overhead. Even
for multidimensional (non-aggregate) range selection query, the communication overhead is still in O(logd−1N + |S|)
(Martel et al. [9], Chen et al. [21]), where S is the set of data points within the query range, N is the number of data
points in the dataset, and d is the dimension.

Recently, Gennaro et al. [6] and Chung et al. [7] proposed methods to authenticate any outsourced (or delegated)
function, based on fully homomorphic encryption [8, 25, 34]. They [6, 7] also gave a good discussion on why previous
techniques (e.g. interactive proofs, probabilistic checkable proof (PCP), and interactive arguments ) are insufficient for
authenticating outsourced function from the performance point of view. If a function has input size Γ1 and output size
Γ2, then both Gennaro et al. [6] and Chung et al. [7] have communication overhead in Ω(Γ1 +Γ2) to authenticate this
function, where the hidden constant behind the big-Ω notation could be huge. The difference between their solutions
and our work may become more clear when authenticating non-aggregate range selection query: Both Gennaro et al. [6]
and Chung et al. [7] will require linear communication overhead, while our solution (the full version of this paper) sill
requires O(d2 log2Z) communication cost.

Shi et al. [35] proposed a predicate encryption scheme called MRQED (Multi-Dimensional Range Query over
Encrypted Data). Under their scheme, given a message and an identity, which is a d-dimensional point, a ciphertext
can be generated. A short decryption key for a d-dimensional rectangular range can be generated from the master
secret key. From this decryption key and the ciphertext, the original message can be decrypted, iff the identity point
associated with the ciphertext is within the range. There is a subtle but crucial difference between MRQED scheme
and our implementation of functional encryption scheme [22,23,36,37]: After a successful decryption, MRQED scheme
reveals the message, whereas our functional encryption scheme reveals only a function value of the message and a
nonce. As the nonce plays a crucial role in preventing replay attack, it is not suitable to adopt MRQED for our
problem. On the other hand, MRQED has its own advantages over our functional encryption scheme, including that
MRQED is a public key encryption scheme and has a stronger security model.

Several works [38, 39, 40, 41, 42, 43] in verification of integrity of data stored in remote storage server also adopted
some homomorphic and/or aggregatable verification tags to achieve efficient communication cost.

3 Overview of Our Scheme

We illustrate our main ideas in two parts: (1) The first part presents a preliminary scheme that authenticates count
query. This preliminary scheme is secure (Theorem 4) under Computational Diffie Hellman assumption and GKEA.
However, it requires high communication and computation cost. (2) The second part describes the technique that
reduces the communication and computation cost. In particular, the reduction is achieved using a functional encryption
scheme which is constructed by exploiting a special property of BBG HIBE scheme [2].

3.1 Preliminary Scheme

Let D ⊂ [Z]d be a set of d-dimensional points. Let G be a cyclic multiplicative group of prime order p and {Fs : [Z]d →
G}s∈{0,1}κ be a pseudorandom function. During setup, Alice chooses at random β ∈ Z∗p, θ ∈ G, and s ∈ {0, 1}κ as the
private key. From the private key, Alice generates a tag value tx = (tx,1, tx,2) = (θFs(x),Fs(x)β) for each data point
x ∈ D. Alice also computes a value ∆ =

∏
x∈D tx,2. Next, Alice sends dataset D and tag values T = {tx : x ∈ D} to

Bob and deletes everything except ∆ and the private key (β, θ, s) from her storage.
Consider a count query conditional on a range R ⊂ [Z]d, which asks for the size of D∩R. Bob is expected to send

to Alice a number X as the query result, and a proof to show that indeed X = |D ∩R| (mod p).
To authenticate this query, Alice chooses two random nonces4 ρ and ρ̂, computes and sends auxiliary messages

(called as Challenge-Message) Φ = {Fs(x)ρ : x ∈ R} and Φ̂ = {Fs(x)ρ̂ : x ∈ R{} to Bob, where R{ = {x ∈ [Z]d : x 6∈ R}
is the complement set of range R. Bob is expected to compute X = |D∩R| and X̂ = |D∩R{|, and generate the proof
(Ψ1, Ψ2, Ψ3, Ψ̂1, Ψ̂2, Ψ̂3) as below:

4 Here the secret random nonces prevent Bob from abusing this Challenge-Message for other queries.



Step B1: Bob multiplies all tags tx for point x ∈ D ∩R to obtain Ψ1, Ψ2

Ψ1 ←
∏

x∈D∩R

tx,1 = θX
∏

x∈D∩R

Fs(x); Ψ2 ←
∏

x∈D∩R

tx,2 =
∏

x∈D∩R

Fs(x)β .

Step B2: Bob multiplies all values Fs(x)ρ from the Challenge-Message Φ for point x ∈ D ∩R to obtain Ψ3:

Ψ3 ←
∏

x∈D∩R

Fs(x)ρ.

Step B3: Bob repeats Step 1 and Step 2 for data points x ∈ D ∩R{ using Challenge-Message Φ̂ to obtain Ψ̂1, Ψ̂2, Ψ̂3 corre-
spondingly.

Bob sends back (X,Ψ1, Ψ2, Ψ3; X̂, Ψ̂1, Ψ̂2, Ψ̂3) to Alice, and Alice verifies the returned message using the private key
(β, θ, s) and secret random nonces ρ, ρ̂ in this way:

Step A1: Is (Ψ1, Ψ2) indeed an aggregated multiplication of valid tags?(
Ψ1

θX

)β
?
= Ψ2.

Step A2: Is Ψ2 computed using only points inside D ∩R?

Ψρ2
?
= Ψβ3 .

Step A3: Repeat Step 1 and Step 2 to verify (X̂, Ψ̂1, Ψ̂2, Ψ̂3) using private key and secret random nonce ρ̂.
Step A4: Is every point counted for exactly once?

∆
?
= Ψ2 · Ψ̂2. (1)

If all of above verifications succeed, Alice accepts that X is the correct query result.

Remark.

– In the computations of Ψ1 and Ψ2, an adversary (playing the role of Bob) may try to multiply tags for some points
within D ∩R multiple times, and/or ignore some points within D ∩R. That is, the adversary try to find integers
µx’s for each point x ∈ D, treat (tµxx,1, t

µx
x,2) as the tag of point x ∈ D in the computations of Ψ1 and Ψ2, and

compute the query result X =
∑
x∈D∩R µx. Here µx > 1 indicates that the point x is over-counted, µx < 1

indicates that the point x is under-counted, and µx might take negative integer value. By doing so, the adversary
can pass the verifications in Step A1, A2 and A3. However, if such adversary succeeds in passing Step A4, i.e. he
can find integers µx’s, for each x ∈ D, such that

∏
x∈D tµxx,2 = ∆ =

∏
x∈D tx,2, then he can solve DLP (Discrete

Log Problem).
– The above attack is “restrictive”. A stronger adversary may performance something else to pass the verifications.

Fortunately, under GKEA, we can show that it is not restrictive: If there exists an efficient (arbitrary) adversary
that breaks the preliminary scheme, then there exists such “restrictive” adversary that breaks the preliminary
scheme.

– In the preliminary scheme, the size of Challenge-Message is linear w.r.t. |R|, which can be very large, and Zd in
the worst case, leading to large computation and communication cost.

– The second component tx,2 = Fs(x)β in a tag tx is required to deal with adaptive adversary: An adversary does
not gain additional knowledge from adaptive learning, since it can generate Challenge-Message by itself from
{Fs(x)β : x ∈ D}, and the forged Challenge-Message is identically distributed to the Challenge-Message generated
by Alice.

3.2 Deliver Challenge-Message efficiently and securely

To reduce complexity, Alice needs a way to deliver the information Φ = {Fs(x)ρ : x ∈ R} to Bob by sending some
auxiliary data of much smaller size, and Bob must not know the value of Fs(x)ρ for point x 6∈ R. We design such
delivery method by exploiting a special property of existing HIBE scheme.



Polymorphic Property. We observe that some (HIBE) encryption scheme (KeyGen,Enc,Dec), e.g. BBG HIBE scheme [2],
satisfies a polymorphic property : From a pair of keys (pk, sk) ∈ KeyGen(1κ), a plaintext M , an identity id, and a
random coin r, one can efficiently find multiple tuples (pkj , skj ,Mj , rj), 1 ≤ j ≤ n, such that for any 1 ≤ j ≤ n,
(pkj , skj) ∈ KeyGen(1κ) is a valid key pair and Encpk(id,M ; r) = CT = Encpkj (id,Mj ; rj). From the opposite point of
view, a ciphertext CT can be decrypted into different values Mj ’s using different decryption keys. We can view these
decrypted values Mj ’s as a function of the original plaintext M which is used to produce the ciphertext CT. Hence,
such polymorphic property may lead to a new way to construct functional encryption schemes [22,23,36,37].

Overview of the Delivery Method. Alice can deliver the Challenge-Message in this way: For simplicity, assume all data
points are in 1D and the size of dataset D is N . Each point x in the domain is associated with an identity ID(x),
which corresponds to a leaf node in the identity hierarchy tree. In the setup phase, Alice computes some ciphertexts
c1, . . . , cN , where each ciphertext ci can be considered as encryption of Mi,j under key (pkj , skj), j = 1, 2, 3, . . . Alice
sends these N ciphertexts to Bob at the end of setup phase. Later, for a query range R, Alice chooses a random nonce
ρ and derives the delegation key δ w.r.t. the set S = {ID(x) : x ∈ R} of identities from the key pair (pkρ, skρ), and
sends δ as Challenge-Message to Bob. With this delegation key, Bob is able to decrypt ci to obtain Mi,ρ if xi ∈ D∩R.
By carefully choosing parameters, we may have Mi,ρ = Fs(xi)ρ as desired.

In a HIBE scheme, every identity corresponds to a tree node (either leaf node or internal node). Due to the tree
structure of the hierarchy of identities, we can find a set S′ of identities, such that (1) The size |S′| = O(log TreeSize) =
O(logZ); (2) The collection of leaf nodes covered5 by tree nodes corresponding to identities in S′, is the same as the
collection of leaf nodes corresponding to identities in S. If Alice derives the delegation key δ w.r.t. S′ instead of S,
then the new Challenge-Message will contain only O(logZ) subkeys, where one subkey corresponds to one identity in
S′.

For high dimensional cases, we perform the above procedure for each dimension, and have a way to prevent collusion
attack [35]. The security of this method can be reduced to the IND-sID-CPA security of the underlying HIBE scheme.

4 Formulation

In this section, we formalize the problem and security model, and describe the security assumptions formally.

4.1 Dataset and Query

The dataset D is a set of N d-dimensional points x1,x2, . . . ,xN from the domain [Z]d where Z is a big integer (e.g.
64 bits integer). Let R = [a1, b1]× [a2, b2]× . . .× [ad, bd] ⊆ [Z]d be a d-dimensional rectangular range. In this paper,
we focus on aggregate count query function F : F (D,R)def= |D ∩R| (mod p), where p is a large prime. Note that p
is exponential in the security parameter κ and N is polynomial in κ. In practice, p could be a 400 bits prime and N
could be around a million.

4.2 Security Model

We formulize the authentication problem described in Section 1, as a special case of Verifiable Computation [6]
particular for the function (i.e. query over a dataset) we are interested in this paper. Let us view a (generic) query on
a database as the function F : D × R → {0, 1}∗, where D is the domain of datasets, R is the domain of ranges, and
the output of F is represented by a binary string. We define a remote computing protocol as follow:

Definition 1 (RC) A RC ( Remote Computing) protocol for a function F : D×R→ {0, 1}∗, between Alice and Bob,
consists of a setup phase and a query phase. The setup phase consists of a key generating algorithm KGen and data
encoding algorithm DEnc; the query phase consists of a pair of interactive algorithms, namely the evaluator Eval and
the extractor Ext. These four algorithms (KGen,DEnc, 〈Eval,Ext〉) run in the following way:

1. Given security parameter κ, Alice generates a key K: K ← KGen(1κ).
2. Alice encodes dataset D ∈ D: (DB,DA)← DEnc(D,K), then sends DB to Bob and keeps DA.
3. Alice selects a query R ∈ R.
4. Algorithm Eval(DB) on Bob’s side, interacts with algorithm Ext(DA,R,K) on Alice’s side, to compute (ζ,X,Ψ)←
〈Eval(DB),Ext(DA,R,K)〉, where ζ ∈ {accept, reject} and Ψ is the (partial) proof of result X. If ζ = reject,
then Alice rejects. Otherwise, Alice accepts and believes that X is equal to F (D,R).

5 We say a leaf node u is covered by a tree node v, if v is in the path from leaf u to the root node. It is possible that u = v.



In the setup phase, Alice executes Step (1) and (2). The query phase consists of multiple query sessions. In each query
session, Alice and Bob execute Step (3) and (4).

We are interested in efficient RC protocol such that: (1) the size of K and DA are both in O(d) where d is the
dimension of dataset D; (2) communication complexity is O(poly(d, log |D|)); (3) the size of DB is O(poly(d, |D|))
(this implies the complexity of DEnc is in O(poly(d, |D|)) ). Similar as in [6, 7], to make the outsourcing/delegation
meaningful, we require that Alice’s verification (i.e. the algorithm Ext) should be more efficient than computing F .

We say a RC protocol is provable, if the following conditions hold: (1) Alice always accepts, when Bob follows the
protocol honestly; (2) Alice rejects with o.h.p. (overwhelming high probability), when Bob returns a wrong result. Here
we consider adversaries, i.e. malicious Bob, who are allowed to interact with Alice and learn for polynomial number
of query sessions, before launching the attack. During the learning, the adversary may store whatever it has seen or
learnt in a state variable.

Definition 2 (PRC) A RC protocol E = (KGen,DEnc, 〈Eval,Ext〉) w.r.t. function F : D×R→ {0, 1}∗, is called PRC
( Provable Remote Computing) protocol, if the following two conditions hold: Let κ be the security parameter.

– correctness: for any D ∈ D, any K ← KGen(1κ) and any R ∈ R, it holds that 〈Eval(DB),Ext(DA,R,K)〉 =
(accept, F (D,R), Ψ) for some Ψ , where (DB,DA)← DEnc(D,K).

– soundness: for any PPT (adaptive) adversary A, the advantage AdvE,A(1κ) ≤ negl(κ) (asymptotically less or
equal).

where AdvE,A(1κ) is defined as

AdvE,A(1κ) def= Pr

[
(ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ) :

ζ = accept ∧ X 6= F (D,R)

]
;

Experiment ExpEA(1κ)

D← A(viewEA);
K ← KGen(1κ);
(DB,DA)← DEnc(D,K);
loop until A(viewEA) decides to stop

Ri ← A(DB, view
E
A);

(ζi, Xi,Ψ i)← 〈A(DB, view
E
A),Ext(DA,Ri,K)〉;

R← A(DB, view
E
A);

(ζ,X,Ψ)← 〈A(DB, view
E
A),Ext(DA,R,K)〉;

Output (ζ,X,Ψ , viewEA,D,R).

The probability is taken over all random coins used by related algorithms, negl(·) is some negligible function, and viewEA
is a state variable6 describing all random coins chosen by A and all messages A can access during previous interactions
with E.

4.3 Assumptions

Throughout the whole paper, let p be a κ bits safe prime, and e : G×G→ G̃ be a bilinear map, where G and G̃ are
two cyclic multiplicative groups of order p.

Assumption 1 (Computational Diffie Hellman Assumption) For any PPT algorithm A, it holds that

Pr
[
A(g, ga, gb) = gab

]
≤ ν1(κ),

where g is chosen at random from G̃, a and b are chosen at random from Z∗p, and ν1(·) is some negligible function.

The GKEA assumption is an extension of KEA1 [44, 45, 46, 47, 48] and KEA3 [49], and proposed by Wu and
Stinson [1]. Roughly, GKEA assumption can be described as below:

For any adversary A that takes input {(ui, uβi ) : 1 ≤ i ≤ m} and returns (U1, U2) with Uβ1 = U2, there exists an
“extractor” Ā, which given the same inputs as A returns {µi : 1 ≤ i ≤ m}, such that

∏m
i=1 u

µi
i = U1.

6 The adaptive adversary A may keep updating this state variable.



Assumption 2 (Generalized KEA [44,49,1, 50]) Let A and Ā be two algorithms. We define the GKEA-advantage
of A against Ā as

AdvGKEA
A,Ā (κ) def= Pr


Wm = {(ui, uβi ) : i ∈ [m], ui

$←− G̃, β $←− Z∗p}
(U1, U2)← A(Wm; r);
(µ1, µ2, . . . , µm)← Ā(Wm; r, r̄) :

U2 = Uβ1 ∧ U1 6=
∏m
j=1(uj)µj

 , (2)

where the probability is taken over all random coins used and with m fixed. For any PPT algorithm A (called as
adversary), there exists PPT algorithm Ā (called as extractor), such that the GKEA-advantage of A against Ā is
upper bounded by some negligible function ν2(κ), i.e. AdvGKEA

A,Ā (κ) ≤ ν2(κ), where m is polynomial in κ.

Remark.

– GKEA is a natural extension of KEA1 and KEA3, in the sense that GKEA⇒ KEA3⇒ KEA1. M. Abe and
S. Fehr [51] proved KEA1 and KEA3 in generic group model. Following their techniques, GKEA can be proved
in generic group model.

– If ui = gx
i

for each i with some random g and x, then Assumption 2 will become the q-PKE Assumption proposed
by J. Groth [50].

Furthermore, the (Decision) `-wBDHI Assumption [2] is required for the IND-sID-CPA security of the underlying
BBG HIBE scheme.

5 Functional Encryption Scheme

We construct a functional encryption [22,23] scheme by exploiting the polymorphic property of BBG HIBE scheme [2],
following the overview given in Section 3.

5.1 Polymorphic Property of BBG HIBE Scheme

We observe that the BBG HIBE scheme [2] satisfies the polymorphic property: An encryption of a message M can be
viewed as the encryption of another message M̂ under different key. Precisely, let CT and ĈT be defined as follows, we
have CT = ĈT:

CT = Encrypt(params, id,M ; s) =
(
Ωs ·M, gs,

(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(
Ωsz · M̂, ĝsz,

(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`, Ω = e(g1, g2)), ̂master-key = gαz2 (3)

where M̂ = MΩs(1−z), ĝ = gz
−1 mod p, ĝ3 = gz

−1 mod p
3 , ĥi = hz

−1 mod p
i for 1 ≤ i ≤ ` and identity id = (I1, . . . , Ik) ∈(

Z∗p
)k. To be self-contained, the description of this BBG HIBE scheme is given in Appendix A. One can verify the

above equality easily.

5.2 Define Identities based on Binary Interval Tree

An identity is a sequence of elements from Z∗p. To apply HIBE scheme, we intend to construct two mappings to

associate identities to integers or integer intervals: (1) ID(·) maps an integer x ∈ [Z] into an identity ID(x) ∈
(
Z∗p
)`.

(2) IdSet(·) maps an integer interval [a, b] ⊆ [Z] into a set of identities. The two mappings ID and IdSet satisfy the
property: For any x ∈ [a, b] ⊆ [Z], there is a unique identity id in the set IdSet([a, b]), such that identity id is a prefix
of identity ID(x). If x 6∈ [a, b], then there is no such identity id in IdSet([a, b]). For each dimension ι ∈ [d], we will
construct (distinct) such mappings IDι and IdSetι using a binary interval tree [35], and make these mappings public
throughout the whole paper.



Binary Interval Tree. We construct a binary interval tree as below: First, we build a complete ordered binary with
Z = 2` leaf nodes. Then we associate an integer interval to each tree node in a bottom-up manner: (1) Counting from
the leftmost leaf, the j-th leaf is associate with interval [j, j]; (2) For any internal node, the associated interval is the
union of the two intervals associated to its left and right children respectively. As a result, the interval associated to
the root node is just [1,Z].

Constructions of Mappings IDι and IdSetι for dimension ι. Let H : Z2`+1 × Z2`+1 × [d] → Z∗p be a collision resistant
hash function. Let (v1, v2, . . . , vm) be the unique simple path from the root node v1 to the node vm in the binary
interval tree. We associate to node vm the identity (H(a1, b1, ι), . . . ,H(am, bm, ι)) ∈

(
Z∗p
)m, where [aj , bj ] is the interval

associated to node vj , 1 ≤ j ≤ m.
For any x ∈ [Z], we define IDι(x) as the identity associated to the x-th leaf node (counting from the left). For any

interval [a, b] ⊆ [Z], we find the minimum set {vj : vj is a tree node, 1 ≤ j ≤ n} such that the intervals associated to vj ’s
form a partition of interval [a, b], and then define IdSetι([a, b]) as the set {idj : idj is the identity associated to node vj , 1 ≤
j ≤ n}. One can verify that the newly constructed mappings IDι and IdSetι satisfy the property mentioned in the
beginning of Section 5.2. Furthermore, the size of set IdSetι([a, b]) is in O(`).

5.3 Construction of Functional Encryption Scheme based on HIBE

Let (Setup, KeyGen, Encrypt, Decrypt) be the BBG Hierarchical Identity Based Encryption (HIBE) scheme proposed by
Boneh et al. [2] (We provide the description of this BBG HIBE scheme in Appendix A). Based on this HIBE scheme,
we construct a functional encryption scheme FE = (f Setup, f Enc, f KeyGen, f Dec,Mult) as in Figure 1.

Let us define a key-ed function family {fρ : Z∗p → G̃}ρ∈Z∗p as below: Let Ω ∈ G̃ be as in f Setup of Figure 1.

f1(Msg) = ΩMsg; ∀ρ ∈ Z∗p, fρ(Msg) = f1(Msg)ρ. (4)

Lemma 1 The functional encryption scheme FE described in Figure 1 satisfies these properties:

(a) For any (pk, sk)← f Setup(1κ, d,Z), for any message Msg ∈ Z∗p, for any point x ∈ [Z]d, for any rectangular range
R ⊆ [Z]d, if CT← f Enc(Msg,x, sk) and δ ← f KeyGen(R, ρ, sk), then

f Dec(CT, x, R, δ, pk) =
{
fρ(Msg) (if x ∈ R)
⊥ (otherwise) (5)

(b) For any (pk, sk)← f Setup(1κ, d,Z), for any message Msg ∈ Z∗p, for any point x ∈ [Z]d, for any rectangular range
R ⊆ [Z]d, for any y ∈ G̃, if CT← f Enc(Msg,x, sk) and δ ← f KeyGen(R, ρ, sk), then

f Dec(Mult(CT, y, pk), x, R, δ, pk) =
{
y · fρ(Msg) (if x ∈ R)
⊥ (otherwise) (6)

(The proof is in Appendix C.)

We formulize the security requirement of our functional encryption scheme by modifying the IND-sID-CPA security
game [2] for the sake of our usage of FE in our final construction in Section 6. The resulting weak-IND-sID-CPA security
game between an adversary A and a challenger C is defined as below.

Commit: The adversary A chooses the target identity x∗ from the identity space [Z]d and sends it to the challenger
C.
Setup: The challenger C runs the setup algorithm f Setup and gives A the resulting system parameters pk, keeping
the secret key sk to itself.
Challenge: C chooses two plaintexts Msg0,Msg1 at random from the message space Z∗p, and a random bit b ∈ {0, 1}.
C sets the challenge ciphertext to CT = f Enc(Msgb,x

∗, sk), and sends (CT, f1(Msg0), f1(Msg1)) to A.
Learning Phase: A adaptively issues queries to C, where each query is one of the following:

– Delegation key query (R, ρ), where x∗ 6∈ R: C responds by running algorithm f KeyGen(R, ρ, sk) to generate the
delegation key δ, and sends δ to A.

– Anonymous delegation key query (R): C responds by choosing ρ at random from the function key space Z∗p and
running algorithm f KeyGen(R, ρ, sk) to generate the delegation key δ, and sends δ to A.

– Encryption query (Msg,x): C responds by running f Enc(Msg,x, sk) to obtain a ciphertext, and sends the ciphertext
to A.



Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins if b = b′.
We refer to such an adversary A as a weak-IND-sID-CPA adversary. We define the advantage of the adversary A in

attacking the scheme FE as

Advweak-IND-sID-CPA
FE,A =

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ .
Theorem 2 (Informal) If the BBG HIBE scheme is IND-sID-CPA secure (as defined in [2]), then the functional
encryption scheme FE constructed in Figure 1 is weak-IND-sID-CPA secure. That is, there is no PPT adversary that
can win the weak-IND-sID-CPA game against the scheme FE with non-negligible advantage Advweak-IND-sID-CPA

FE,A . (The
formal version of this theorem and its proof appear in Appendix D).

Most of previous functional encryption schemes (e.g. attribute-based encryption [52], and predicate encryption [53]),
if not all, allow the decryptor to obtain the original plaintext Msg in “good” case (e.g. if the attribute of plaintext
and/or the decryption key satisfy the designated predicate) from a ciphertext of Msg, and nothing otherwise. In
contrast, our functional encryption scheme FE only allows the decryptor to obtain f1(Msg)ρ in “good” case, from a
ciphertext of Msg. Our security formulation is weaker than previous works (e.g. [22, 23]), but it is sufficient for our
construction of the authentication scheme in Section 6.

We remark that, unlike [22,23], our functional encryption scheme is a symmetric key system, since the encryption
algorithm f Enc requires the secret value τ , which (together with the random nonce ρ) is responsible to defeat collusion
attack [35]. However, in the extreme case that dimension d = 1, the collusion attack is no longer possible, so we can
save the secret value τ . As a result, our functional encryption scheme becomes a public key system in 1D case.

6 The Main Construction

By incorporating the newly constructed functional encryption scheme FE into the preliminary scheme presented in
Section 3, we construct a RC protocol E = (KGen,DEnc, 〈Eval,Ext〉) in Figure 2, to authenticate aggregate count query
over multidimensional dataset.
Remark.

1. To understand the verifications in CollRes, one may consider a homomorphic tag function Tag defined as below:
Let y be the input, K = (β, γ, θ) be the key, and v, w be random coins.

TagK(y; v, w) = (θyv, vβ , w, vγwρ);∏
i

TagK(yi; vi, wi) = TagK

(∑
i

yi;
∏
i

vi,
∏
i

wi

)
.

Note that the first three component of TagK(1; vi, wi) are just the three components of vector ti generated in
equation (8), and the fourth component vγwρ is the output of f Dec(CTi,xi,R, δ, pk) w.r.t. the random nonce ρ
(i.e. δ ← f KeyGen(R, ρ, sk) ). In the algorithm CollRes, Bob computes the product of Tag values of points within
the query range as the proof of the query result X. Then Alice verifies whether the returned proof (Ψ1, Ψ2, Ψ3, Ψ4)
is a valid Tag value for the returned query result X, with key K and without knowing the values of random coins
vj ’s and wj ’s. Since the fourth component of Tag is dynamic and depends on the random nonce ρ, we separate it
out from the other three components.

2. Intuitively, a more straightforward alternative construction of Tag is like this7

Tag′K(y; v, w) = (θyv, vβ , vρ),

where vρ is the output of f Dec. We give up this alternative and introduce a new component in our construction
for the sake of proof. A part of our proof is like this: Given the first two components of all tag values {(θyivi, vβi ) :
i ∈ [N ]}, one can simulate Alice in our scheme. Then invoke a malicious Bob to interact with Alice to produce a
forgery. For the alternative construction with Tag′, to simulate the functional encryption scheme FE (particularly
f Enc), the simulator has to find a ciphertext for some message Wi ∈ Z∗p, such that f1(Wi) = ΩWi = vβi , which could
be infeasible due to DLP (Discrete Log Problem). In our construction, since the additional term wi is independent
on the first two components of ti, the simulator can choose Wi freely, and generate wi ← f1(Wi) and the ciphertext

7 Actually, the preliminary scheme in Section 3 is exactly like this.



Fig. 1: Construction of Functional Encryption Scheme FE = (f Setup, f Enc, f KeyGen, f Dec,Mult) based on BBG HIBE
Scheme [2] (Setup, KeyGen, Encrypt, Decrypt)

f Setup(1κ, d,Z) : security parameter κ, dimension d, maximum integer Z; the domain of points is [Z]d

1. Let ` = dlogZe. Run algorithm Setup(`, κ) to obtain bilinear groups (p,G, G̃, e), public key params =

(g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)) and private key master-key = gα2 , such that p is a κ bits prime, G, G̃ are cyclic

multiplicative groups of order p, e : G × G → G̃ is a bilinear map, g is a generator of G, α ∈ Zp, g1 = gα ∈ G, and
g2, g3, h1, . . . , h` ∈ G.

2. Let IDι and IdSetι, ι ∈ [d], be the mappings as in Section 5.2. We request that for any i, j ∈ [d], x, y ∈ [Z], if identity IDi(x)
and identity IDj(y) share a non-empty prefix, then i = j.

3. Choose d random elements τ1, . . . , τd from Z∗p and let τ = (τ1, . . . , τd).

4. Let pk = (p,G, G̃, e, Ω) and sk = (pk, params, master-key, τ ). Make IDι’s and IdSetι’s public and output (pk, sk).

f Enc(Msg,x, sk) : message Msg, d-dimensional point x

1. Parse the d-dimensional point x as (x1, . . . , xd) ∈ [Z]d; parse the private key sk as (pk, params,master-key, τ ), where
τ = (τ1, . . . , τd).

2. Choose d random elements s1, . . . , sd from Z∗p with constraint Msg = −
∑d

j=1
sj · τj (mod p).

3. Choose d random elements σ1, . . . , σd from G̃ with constraint
∏d

j=1
σj = Ω

−
∑d

j=1
sj

.

4. For each j ∈ [d], encrypt σj under identity IDj(xj) with random coin sj to obtain ciphertext cj as follows

cj ← Encrypt(params, IDj(xj), σj ; sj). (7)

5. Output ciphertext CT = (c1, . . . , cd).

f KeyGen(R, ρ, sk) : d-dimensional rectangular range R, function key ρ ∈ Z∗p

1. Parse the d-dimensional range R ⊆ [Z]d as A1 ×A2 . . .×Ad, where Aj ⊆ [Z] for each j ∈ [d]; parse the private key sk as
(pk, params,master-key, τ ), where τ = (τ1, . . . , τd).

2. For each j ∈ [d], generate a set δj in this way:
(a) For each identity id ∈ IdSetj(Aj), generate the private key did, using algorithm KeyGen and taking master-keyρτj as the

master key.
(b) Set δj ← {did : id ∈ IdSetj(Aj)}.

3. Output delegation decryption key δ = (δ1, δ2, . . . , δd).

f Dec(CT,x,R, δ, pk) : ciphertext CT, d-dimensional point x, d-dimensional rectangular range R, delegation

decryption key δ

1. Parse the d-dimensional range R ⊆ [Z]d as A1 ×A2 . . .×Ad, where Aj ⊆ [Z] for each j ∈ [d]; parse the ciphertext CT as
(c1, . . . , cd); parse the d-dimensional point x as (x1, . . . , xd).

2. For each j ∈ [d], generate t̃j in this way: If xj 6∈ Aj , then output ⊥ and abort. Otherwise, do the followings:
(a) Find the unique identity id∗ ∈ IdSetj(Aj) such that id∗ is a prefix of identity IDj(xj).
(b) Parse δ as (δ1, . . . , δd) and find the private key did∗ ∈ δj = {did : id ∈ IdSetj(Aj)} for identity id∗.
(c) Generate the private key dj for the identity IDj(xj) from private key did∗ , using algorithm KeyGen.
(d) Decrypt cj using algorithm Decrypt with decryption key dj , and denote the decrypted message as t̃j .

3. Output t̃ =
∏

1≤j≤d t̃j .

Mult(CT′, y, pk) : ciphertext CT′, y ∈ G̃

1. Parse ciphertext CT′ as (c′1, . . . , c
′
d).

2. Choose d random elements η1, . . . , ηd from G̃ with constraint
∏d

j=1
ηj = y ∈ G̃.

3. For each j ∈ [d]: parse c′j as (A,B,C) and set cj = (A · ηj , B, C).
4. Output ciphertext CT = (c1, . . . , cd).

Note: Both c′j and cj are valid BBG ciphertexts for different plaintexts under the same identity.



Fig. 2: Construction ofRC protocol E = (KGen,DEnc, 〈Eval,Ext〉) based on functional encryption scheme FE constructed
in Figure 1, where 〈Eval,Ext〉 (namely ProVer) invokes 〈Ẽval, Ẽxt〉 (namely CollRes) as a subroutine.

(Alice) KGen(1κ):

Step 1: Run f Setup(1κ) to obtain public/private key pair (pk′, sk), where pk′ = (p,G, G̃, e, Ω). Set pk = (p,G, G̃, e).
Note: e is a bilinear map e : G×G→ G̃, Ω ∈ G̃, and both G and G̃ are multiplicative groups of prime order p.

Step 2: Choose β, γ at random from Z∗p, and θ at random from G̃. Let K = (pk′, sk, β, γ, θ).
Step 3: Output (K, pk).

(Alice) DEnc(D;K):

Step 1: Choose N random elements W1, . . . ,WN from Z∗p independently and N random elements v1, . . . , vN from G̃ indepen-
dently.

Step 2: Dataset D = {x1,x2, . . . ,xN}. For each i ∈ [N ], generate tag ti ∈ G̃3:

ti ←
(
θvi, v

β
i , wi = f1(Wi)

)
. (8)

Note: Alice can evaluate functions {fρ(·)}ρ∈Z∗p , since Alice has Ω ∈ G̃.
Step 3: For each i ∈ [N ]:

(a) encrypt message Wi under point xi: CT′i ← f Enc(Wi,xi, sk);
(b) apply the homomorphic property of FE to attach vγi to ciphertext: CTi ← Mult(CT′i, v

γ
i , pk

′).

Step 4: Send DB = (D, T = {ti : i ∈ [N ]}, C = {CTi : i ∈ [N ]}, pk) to Bob, and keep only key K and DA =(
N, d,∆ =

∏
i∈[N ]

vβi

)
in local storage.

(Alice, Bob) ProVer = 〈Eval (DB) , Ext (DA, R, K)〉: DA = (N, d,∆), DB = (D,T,C, pk)
Precondition: The query range R ⊂ [Z]d is a rectangular range.

Step 1: Alice partitions the complement range R{ into 2d rectangular ranges {R` ⊂ [Z]d : ` ∈ [1, 2d]}, and sets R0 = R.

Step 2—Reduction: For 0 ≤ ` ≤ 2d, Alice and Bob invokes CollRes on range R`. Denote the output as (ζ`, X`, Ψ
(`)
2 ).

Step 3: Alice sets ζ = accept, if the following equalities hold

∀0 ≤ ` ≤ 2d, ζ`
?
= accept,

∏
0≤`≤2d

Ψ
(`)
2

?
≡ ∆; (9)

otherwise sets ζ = reject. Alice outputs (ζ,X0,∆).

(Alice, Bob) CollRes =
〈
Ẽval (DB) , Ẽxt (DA, R, K)

〉
: DA = (N, d,∆), DB = (D,T,C, pk)

Precondition. The query range R ⊂ [Z]d is a rectangular range.

Step A1: (Alice’s first step) Alice chooses a random nonce ρ from Z∗p and produces Challenge-Message δ for range R by running
algorithm f KeyGen: δ ← f KeyGen(R, ρ, sk). Alice sends (R, δ) to Bob.

Step B1: (Bob’s first step) Bob computes the query result X and proof (Ψ1, Ψ2, Ψ3, Ψ4) as follows

X ← |D ∩R| ; (Ψ1, Ψ2, Ψ3)←
⊗

xi∈D∩R

ti; Ψ4 ←
∏

xi∈D∩R

f Dec(CTi,xi,R, δ, pk). (10)

Bob sends (X,Ψ1, Ψ2, Ψ3, Ψ4) to Alice.
Note: For xi ∈ D∩R, f Dec(CTi,xi,R, δ, pk) is supposed to output vγi f1(Wi)

ρ = vγi w
ρ
i ; the operator

⊗
denotes component-

wise multiplication of vectors of the same dimension.
Step A2: (Alice’s second step) Let Λ← Ψ1

θX
. Alice sets ζ = accept, if the following equalities hold

Λβ
?
= Ψ2, ΛγΨρ3

?
= Ψ4. (11)

Otherwise sets ζ = reject. Alice outputs (ζ,X, Ψ2).



CTi ← Mult
(

f Enc (Wi,xi, sk) , vβ·γ
′

i , pk
)

where γ′ ∈ Z∗p is randomly chosen. Consequently, if xi ∈ R, then by

Lemma 1, f Dec (CTi,xi,R, f KeyGen(R, ρ, sk), pk) = vβγ
′

i fρ(Wi) = vγi w
ρ
i as desired (taking γ as βγ′). Thus the

simulation of f Enc can be done.
3. To ensure completeness and prevent over-counting or under-counting, we need to run CollRes on the complement

query range R{. Since our functional encryption scheme FE only supports high dimensional rectangular ranges, we
have to divide range R{ into multiple high dimensional rectangular ranges, and then run CollRes on each of them.

4. The (2d + 1) invocations of CollRes can be executed in parallel. As a result, the round complexity of our scheme
is exactly 1.

5. In Step 2 of ProVer, in the extreme case that R` = ∅, Alice can save the execution of CollRes on range R`, since
Alice can predict the correct result (ζ` = accept, X` = 0, Ψ1 = Ψ2 = Ψ3 = Ψ4 = 1 ∈ G̃).

6. Like [6,7], in our scheme, Alice’s accept/reject decisions should be hidden from Bob. This is due to the limitation
of our proof.

7 Security Analysis

7.1 Our main theorem

Theorem 3 (Main Theorem) Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is IND-
sID-CPA secure. Then the RC protocol E = (KGen,DEnc,ProVer) constructed in Figure 2 is PRC w.r.t. function F (·, ·)
as defined in Section 4.1, under Definition 2. Namely, E is correct and sound w.r.t. function F . (The proof is in
appendix.)

7.2 Overview of Proof

To process a query, our scheme (particularly the algorithm ProVer) invokes (2d+ 1) instances of interactive algorithm
CollRes. In each instance of CollRes, Bob is supposed to return a 5-tuple (X,Ψ1, Ψ2, Ψ3, Ψ4) where X is the query result
and (Ψ1, Ψ2, Ψ3, Ψ4) is the proof, and Alice will verify whether the proof is valid w.r.t. the query result. Furthermore,
after all of (2d + 1) invocations, Alice will perform one additional verification (equation (9)) to ensure completeness
and prevent over-counting or under-counting. In order to fool Alice with a wrong query result, an adversary has
to provide a valid 5-tuple for each invocation of CollRes and pass the equation (9). Therefore, an adversary against
E = (KGen,DEnc,ProVer) is also an adversary against Ẽ = (KGen,DEnc,CollRes).

We consider various types of PPT adversaries against E or Ẽ , which interacts with Alice by playing the role of Bob
and intends to output a wrong query result and a forged but valid proof:

– Type I adversary: This adversary is not confined in any way in its attack strategy and produces a 5-tuple
(X,Ψ1, Ψ2, Ψ3, Ψ4) on a query range R.

– Type II adversary: A restricted adversary which can produce the same forgery8 from the same input as Type I
adversary, and can find N integers9 µi’s, 1 ≤ i ≤ N , such that Ψ2 =

∏
i∈[N ]

(
vβi

)µi
, where β and vi’s are as in

Figure 2.
– Type III adversary: The same as Type II adversary, with additional constraint: µi = 0 for xi ∈ D ∩R{.
– Type IV adversary: The same as Type III adversary, with additional constraint: µi = 1 for xi ∈ D ∩R.

Note that the Type II (or Type III, Type IV) adversary explicitly outputs {µ1, . . . , µN}, and implicitly outputs
(X,Ψ1, Ψ2, Ψ3, Ψ4) which is exactly the output of the corresponding Type I adversary. This is similar to KEA extractor
and KEA adversary.

Basically, our proof framework is like this:

– Lemma 6: The existence of Type I adversary implies the existence of Type II adversary, under GKEA Assump-
tion 2, where Type I adversary is a counterpart of adversary A in GKEA and Type II adversary is a counterpart
of the extractor Ā in GKEA.

– Theorem 7: If there exists a Type II adversary which is not in Type III, then there exists a PPT algorithm to
break the weak-IND-sID-CPA security of the functional encryption scheme FE.

– Theorem 8: If there exists a Type III adversary which is not in Type IV, then there exists a PPT algorithm to
break Discrete Log Problem.

8 This is possible, if the Type II adversary just invokes Type I adversary as a subroutine using the same random coin.
9 Note that µi can take negative integer value, and µi > 1 (µi < 1, respectively) corresponds to the case of over-counting

(under-counting, respectively) point xi.



– (Part of )Theorem 3: If there exists a Type IV adversary which breaks our scheme, then there exists a PPT
algorithm to break Assumption 1.

Informally, by combining all together, Theorem 3 states that if there exists a Type I adversary which outputs result
X and a valid proof, then X has to be equal to the correct query result with o.h.p, under related computational
assumptions. Note that Lemma 6 and Theorem 7 focus on the partial scheme Ẽ and Theorem 8 and Theorem 3 focus
on the whole scheme E .

The structure of our proof or the relationships among all assumptions, lemmas and theorems are shown as below.
Note that the proof of correctness (Lemma 1) does not rely on any computational assumption.

Assumption 1
BBG is IND-sID-CPA secure [2]⇒ Theorem 2

Assumption 2⇒ Lemma 5⇒ Lemma 6

⇒ Theorem 7

Assumption 1⇒ DLP Assumption

⇒ Theorem 8

Assumption 1
Lemma 1


⇒ Theorem 3

7.3 The Preliminary Scheme is Secure

In this subsection, we prove that the preliminary scheme described in Section 3 is secure, following the proof framework
in Section 7.2. This proof sketch serves as an illustration of our proof strategy and as a warm up of our full proof for
the main scheme in appendix.

Theorem 4 Suppose Assumption 1 and Assumption 2 hold for the cyclic multiplicative group G of order p and Fs(·)
is a random oracle. The preliminary scheme described in Section 3 is a PRC w.r.t. function F (·, ·) as defined in
Section 4.1, under Definition 2. Namely, the preliminary scheme is correct and sound w.r.t. function F .

Proof (sketch of Theorem 4). The correctness part is straightforward. We just focus on soundness.
Part I: The existence of Type I adversary implies the existence of Type II adversary, under GKEA Assumption 2.
Suppose there exists Type I adversary B against the preliminary scheme. We try to construct a Type II adversary
B̄ based on GKEA Assumption. We follow the proof framework for the statement that KEA3 implies KEA1 by
Bellare et al. [49]. First, we construct a GKEA adversary A1 based on the Type I adversary B:

Construction of GKEA adversary A1 based on the Type I adversary B
1. The input is {(ui, uβi ) : ui ∈ G, 1 ≤ i ≤ m}, where β ∈ Zp is unknown.
2. Choose two independent random elements R1, R2 ∈ G. There exist some unknown θ, v0 ∈ G, such that R1 = θv0, R2 = vβ0 .
3. Let D = {x1, x2, . . . , xm+1} ⊂ [Z]d be the dataset. Let um+1 = 1. Define function Fs: For any xi ∈ D, Fs(xi) = uiv0; for

any x ∈ [Z]d \D, choose zx ∈ Z∗p at random and set Fs(x) = uzx1 . Note that Fs(x)β still can be computed, although β is
unknown.

4. Invoke the preliminary scheme (Alice’s part) with parameters β, θ and function Fs. Note that tag ti = (θFs(xi),Fs(xi)
β) =

(uiR1, u
β
i R2) still can be computed without knowing the values of θ, β,Fs(xi).

5. Invoke the adversary B (Bob’s part) to interact with Alice. For any query R made by B, generate Challenge-Message from

{Fs(x)β} in this way: choose ρ′ ∈ Z∗p at random, and send {Fs(x)βρ
′

: x ∈ R}. Note the actual random nonce ρ = βρ′ is
unknown.

6. Obtain output (X,Ψ1, Ψ2, Ψ3) from B, and output
(
Ψ1
RX1

, Ψ2
RX2

)
.

If the adversary B’s output (X,Ψ1, Ψ2, Ψ3) can pass Alice’s verification step 1, i.e.
(
Ψ1
θX

)β
= Ψ2, then the GKEA

adversary A1’s output is valid: (
Ψ1

RX1

)β
=

Ψβ1

θXβvXβ0

=
Ψ2

vXβ0

=
Ψ2

RX2
.

By GKEA Assumption, there exists an extractor Ā1, which outputs {µi : 1 ≤ i ≤ m} from the same input10 of A, such
that Ψ2

RX2
=
∏m
i=1 u

βµi
i . Then we can construct an adversary B2 based on Ā1 which just outputs {µi : 1 ≤ i ≤ m+ 1},

where µm+1 = X−
∑m
i=1 µi mod p. We conclude that B2 is a Type II adversary against the preliminary scheme, since

m+1∏
i=1

Fs(xi)βµi = Fs(xm+1)βµm+1

m∏
i=1

Fs(xi)βµi = R
X−
∑m

i=1
µi

2

m∏
i=1

(
uβi R2

)µi
= RX2

m∏
i=1

uβµii = Ψ2.

10 Including the random coin.



Part II: If there exists a Type II adversary which is not in Type III, then there exists a PPT algorithm to break
Computational Diffie Hellman Assumption 1.

Construction of adversary A2 against Computational Diffie Hellman Problem

1. The input is (v, va, u) ∈ G3 where a ∈ Zp. The goal is to find ua.
2. Define function Fs: For each xi ∈ D, choose zi at random from Zp and set Fs(xi) = vzi ∈ G.
3. Choose i∗ from [N ] at random and redefine Fs(xi∗): Fs(xi∗) = u.
4. Invoke the preliminary scheme (Alice’s part) with function Fs and invoke the Type II adversary (Bob’s part) to interact

with Alice. The adversary’s adaptive queries can be answered in the same way as in Step 5 of algorithm A1.
5. Let R be the adversary’s challenging query range. If xi∗ ∈ R, abort and fail. Otherwise, generate Challenge-Message with

random nonce ρ = a: the value Fs(xi)
a = (va)zi for xi ∈ R can be computed, although a is unknown.

6. Let (X,Ψ1, Ψ2, Ψ3, µ1, . . . , µN ) be the output of adversary. If µi∗ 6= 0, then compute ϕ as below and output ϕµ
−1
i∗ (This is

the success case).

ϕ← Ψ3∏i 6=i∗
1≤i≤N Fs(xi)aµi

Otherwise, abort and fail.

Let S# = {i : µi 6= 0, xi ∈ D ∩R{}. Since the adversary is not in Type III, S# 6= ∅. It is easy to verify that, in the
success case, i.e. when the adversary’s output pass Alice’s verifications and Ψ2 =

∏N
i=1 Fs(xi)βµi and i∗ ∈ S#, then the

output ϕµ
−1
i∗ = Fs(xi∗)a = ua. Since the index i∗ is uniformly random in [N ] and tags for all N points are identically

distributed, there is non-negligible probability that the success case will be reached, and thus the value of ua can be
found.
Part III: If there exists a Type III adversary which is not in Type IV, then there exists a PPT algorithm to break
Discrete Log Assumption.

Construction of adversary A3 against Discrete Log Problem

1. The input is (v, va) ∈ G2. The goal is to find a ∈ Zp.
2. Define function Fs: For each xi ∈ D, choose yi, zi at random from Zp and set Fs(xi) = (va)yi · vzi ∈ G; otherwise, set Fs(x)

to a random number in G.
3. Invoke the preliminary scheme (Alice’s part) with function Fs and invoke the Type III adversary (Bob’s part) to interact

with Alice. The adversary’s adaptive queries can be answered in the same way as in the preliminary scheme. Note the
simulator has all of private key.

4. Let R be the challenging query range. Let (X,Ψ1, Ψ2, Ψ3, {µi : xi ∈ D∩R}) be the output of adversary for range R and let
(X,Ψ1, Ψ2, Ψ3, {µi : xi ∈ D ∩R{}) be the output of adversary for the complement range R{.

5. If the adversary succeeds, we have

N∏
i=1

Fs(xi)
βµi =

∏
xi∈D∩R

Fs(xi)
βµi

∏
xi∈D∩R{

Fs(xi)
βµi = Ψ2 · Ψ2 = ∆ =

N∏
i=1

Fs(xi)
β

6. Since the adversary is not Type IV, there exists some i, such that µi 6= 1. Consequently, a univariable equation in unknown
a of order 1 can be formed from the above equation. Solve this equation to get root a′ and output a′.

Note that Computational Diffie Hellman Assumption 1 implies Discrete Log Assumption.
Part IV: If there exists a Type IV adversary which breaks our scheme, then there exists a PPT algorithm to break
Assumption 1. Given input (u, uβ , vβ), we can construct an algorithm to find v. Choose a random number R. There
exists some θ, such thatR = θv. Similar as the construction of GKEA adversaryA1 in Part I, from input (u, uβ , θv, vβ),
we can simulate the preliminary scheme (Alice’s part). Let R be the challenging query range. let (X ′, Ψ ′1, Ψ

′
2, Ψ

′
3, {µi :

xi ∈ D∩R}) be an output of a Type IV adversary on query R and let (X,Ψ1, Ψ2, Ψ3, {µi : xi ∈ D∩R}) be the output of
an honest Bob on query R. If the Type IV adversary succeeds, then Ψ ′2 =

∏
xi∈D∩R Fs(xi)βµi , where µi = 1, 1 ≤ i ≤ N ,

and
(
Ψ ′1
θX′

)β
= Ψ ′2. On the other hand, the output from an honest Bob also passes Alice’s verifications:

(
Ψ1
θX

)β
= Ψ2

and Ψ2 =
∏
xi∈D∩R Fs(xi)β = Ψ ′2. Combining the above equations, we have

(
Ψ ′1
Ψ1

)(X−X′)−1

= θ. As a result, we find

the value of v: v = R
θ .

Combining the results in Part I, II, III and IV, we conclude that no efficient adversary against the preliminary
scheme can output a wrong result and forged a valid proof. In other words, the preliminary scheme is sound. ut



8 Performance

In the setup phase, the computation complexity on Alice’s side is O(dN logZ) and the dominant step is Step 3 of
DEnc in Figure 2. In the query phase, the communication overhead (in term of bits) per query is O(d2 log2Z): (1) In
CollRes, the communication overhead is dominated by the size of Challenge-Message δ, which is in O(d log2Z), i.e.
O(logZ) decryption keys for each dimension, and each decryption key of size O(logZ); (2) There are O(d) invocations
of CollRes to process one query. Computation complexity on Bob’s side is O(dN logZ) (bilinear map): (1) In CollRes,
O(d|D∩R| logZ) computation is required on query range R and the dominant computation step is Step B1 of CollRes

in Figure 2; (2) In total,
∑2d
`=0O(d|D∩R`| logZ) = O(dN logZ), where {R` : ` ∈ [0, 2d]} is a partition of the domain

[Z]d. The computation complexity per query on Alice’s side is O(d2 log2Z) (group multiplications). The dominant
computation step is Step A1 of CollRes in Figure 2. The storage overhead on Bob’s side, is O(dN). The storage overhead
on Alice’s side, i.e. the key size, is O(d+ `), which can be reduced to O(1) (precisely O(1) number of seeds and each
seed with length equal to the security parameter κ) using a pseudorandom function.

9 Conclusion

We proposed a scheme to authenticate aggregate range query over static multidimensional outsourced dataset, and
the communication complexity (in term of bits) is O(d2 log2Z) (d is the dimension and each data point is in domain
[Z]d). Aggregate operations that our scheme can (potentially) support include counting, summing, and finding of the
minimum or maximum or median. Our authentication scheme and techniques can be useful in other applications, if
suitable functional encryption scheme can be constructed. The proposed functional encryption scheme and the idea of
implementing functional encryption by exploiting the polymorphic property of existing encryption schemes may have
independent interests.
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A HIBE

We restate the HIBE scheme proposed by Boneh et al. [2], to make this paper self-contained. Let p be a κ bits safe
prime, and e : G × G → G̃ be a bilinear map, where the orders of G and G̃ are both p. The HIBE scheme contains
four algorithms (Setup,KeyGen,Encrypt,Decrypt), which are described as follows.

Setup(`)

To generate system parameters for an HIBE of maximum depth `, select a random generator g ∈ G, a random
α ∈ Zp, and set g1 = gα. Next, pick random elements g2, g3, h1, . . . , h` ∈ G. The public parameters and the master
key are

params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2 .

KeyGen(did|k−1, id)

To generate a private key did for an identity id = (I1, . . . , Ik) ∈
(
Z∗p
)k of depth k ≤ `, using the master secret key

master-key, pick a random r ∈ Zp and output

did =
(
gα2 ·

(
hI11 . . . hIkk · g3

)r
, gr, hrk+1, . . . , h

r
`

)
∈ G2+`−k

The private key for id can be generated incrementally, given a private key for the parent identity id|k−1 =

(I1, . . . , Ik−1) ∈
(
Z∗p
)k−1. Let

did|k−1 =
(
gα2 ·

(
hI11 . . . h

Ik−1
k−1 · g3

)r′
, gr

′
, hr

′

k , . . . , h
r′

`

)
= (K0,K1,Wk, . . . ,W`)

be the private key for id|k−1. To generate did, pick a random t ∈ Zp and output

did =
(
K0 ·W Ik

k ·
(
hI11 . . . hIkk · g3

)t
, K1 · gt, Wk+1 · htk+1, . . . ,W` · ht`

)
.

This private key is a properly distributed private key for id = (I1, . . . , Ik) for r = r′ + t ∈ Zp.

Encrypt(params, id,M ; s)

To encrypt a message M ∈ G̃ under the public key id = (I1, . . . , Ik) ∈
(
Z∗p
)k, pick a random s ∈ Zp and output

CT =
(
Ωs ·M, gs,

(
hI11 . . . hIkk · g3

)s)
∈ G̃×G2. (12)

Decrypt(did,CT)

Consider an identity id = (I1, . . . , Ik). To decrypt a given ciphertext CT = (A,B,C) using the private key did =
(K0,K1,Wk+1, . . . ,W`), output

A · e(K1, C)
e(B,K0)

.

For a valid ciphertext, we have

e(K1, C)
e(B,K0)

=
e
(
gr,
(
hI11 . . . hIkk · g3

)s)
e
(
gs, gα2

(
hI11 . . . hIkk · g3

)r) =
1

e(gs, gα2 )
=

1
e(g1, g2)s

=
1
Ωs

. (13)



B Two Propositions

Some analysis in our proof is based on the following propositions (We do not claim the discovery of Proposition 1 or
Proposition 2.)

Proposition 1 If event A implies event B, then Pr[A] ≤ Pr[B].

Proof. Since A⇒ B, we have Pr[¬A ∨B] = 1 and Pr[A ∧ ¬B] = 0. Therefore,

Pr[A] = Pr[A ∧ ¬B] + Pr[A ∧B] = 0 + Pr[A ∧B] = Pr[A|B]Pr[B] ≤ Pr[B].

ut

Proposition 2 For any n events A1, . . . , An, it always holds that Pr[
∧

1≤i≤n Ai] ≥ 1−
∑n
i=1 Pr[¬Ai].

Proof.

Pr[
∧

1≤i≤n

Ai] = 1− Pr[
∨

1≤i≤n

¬Ai] ≥ 1−
n∑
i=1

Pr[¬Ai].

ut

C Proof of Lemma 1

Lemma 1 The functional encryption scheme FE described in Figure 1 satisfies these properties:

(a) For any (pk, sk)← f Setup(1κ, d,Z), for any message Msg ∈ Z∗p, for any point x ∈ [Z]d, for any rectangular range
R ⊆ [Z]d, if CT← f Enc(Msg,x, sk) and δ ← f KeyGen(R, ρ, sk), then

f Dec(CT, x, R, δ, pk) =
{
fρ(Msg) (if x ∈ R)
⊥ (otherwise) (14)

(b) For any (pk, sk)← f Setup(1κ, d,Z), for any message Msg ∈ Z∗p, for any point x ∈ [Z]d, for any rectangular range
R ⊆ [Z]d, for any y ∈ G̃, if CT← f Enc(Msg,x, sk) and δ ← f KeyGen(R, ρ, sk), then

f Dec(Mult(CT, y, pk), x, R, δ, pk) =
{
y · fρ(Msg) (if x ∈ R)
⊥ (otherwise) (15)

Proof (of Lemma 1). We observe that the BBG HIBE scheme [2] satisfies the polymorphic property: An encryption of
a message M can be viewed as the encryption of another message M̂ under different key. Precisely, let CT and ĈT be
defined as follows, we have CT = ĈT:

CT = Encrypt(params, id,M ; s) =
(
Ωs ·M, gs,

(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(
Ωsz · M̂, ĝsz,

(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`, Ω = e(g1, g2)), ̂master-key = gαz2 (16)

where identity id = (I1, . . . , Ik) ∈
(
Z∗p
)k, M̂ = MΩs(1−z), ĝ = gz

−1 mod p, ĝ3 = gz
−1 mod p

3 and ĥi = hz
−1 mod p
i for

1 ≤ i ≤ `. To be self-contained, the description of this BBG HIBE scheme [2] is given in Appendix A. One can verify
the above equality easily.

Proof of Lemma 1(a): Let (pk, sk)← f Setup(1κ), message Msg ∈ Z∗p, point x ∈ [Z]d, R be a d-dimensional
rectangular range, and ρ ∈ Z∗p. Let CT← f Enc(Msg,x, sk), δ ← f KeyGen(R, ρ, sk), and y ∈ G̃.

We consider dimension j ∈ [d] and apply the polymorphic property of BBG scheme (equation (16)): Take M =
σj , s = sj and z = ρτj . Then M̂ = MΩs(1−z) = σjΩ

sj(1−τjρ).



In case x ∈ R. If x ∈ R, then the HIBE decryption will succeed in the process of f Dec (Figure 1). Let t̃j be as
in Step 2(d) of f Dec for decrypting ciphertext CT. We have

t̃j = M̂ = σjΩ
sj(1−τjρ), j ∈ [d]. (17)

Combining all d dimensions, and applying the two equalities (see algorithm f Enc in Figure 1) Msg = −
∑d
j=1 sjτj

mod p and
∏d
j=1 σj = Ω

−
∑d

j=1
sj we have,

f Dec(CT, x, R, δ, pk) = t̃ =
d∏
j=1

t̃j =
d∏
j=1

(
σjΩ

sj(1−τjρ)
)

=
d∏
j=1

σj ·
d∏
j=1

Ωsj ·

 d∏
j=1

Ω−sjτj

ρ

= Ω
−
∑d

j=1
sj ·

d∏
j=1

Ωsj ·
(
ΩMsg

)ρ
= ΩρMsg

= fρ(Msg).

In case x 6∈ R. Let R = A1 ×A2 . . . ×Ad as in Step 1 of f Dec. If x 6∈ R, then for some dimension j ∈ [d],
x[j] 6∈ Aj , and f Dec will output ⊥ (Step 2 of f Dec in Figure 1).

Proof of Lemma 1(b):

In case x ∈ R. Check the decryption algorithm Decrypt of BBG HIBE (See Appendix A), it is easy to verify
that: For any η ∈ G̃, if Decrypt(did, (A,B,C)) outputs M , then Decrypt(did, (A · η,B,C)) will output η ·M .

Let η1, . . . , ηd be as in Step 2 of Mult in Figure 1. Similar as the argument for Lemma 1(a), for dimension j ∈ [d],
we have ( t̃j is as in equation (17) and t̃′j is the counterpart of t̃j for decrypting ciphertext Mult(CT, y, pk) )

t̃′j = ηjM̂ = ηj t̃j .

Combining all d dimensions and applying the equation
∏d
j=1 ηj = y (See Step 2 of Mult) and the result in Lemma 1(a),

we have

f Dec(Mult(CT, y, pk), x, R, δ, pk) =
d∏
j=1

t̃′j =
d∏
j=1

(
ηj t̃j

)
=

 d∏
j=1

ηj

 · f Dec(CT, x, R, δ, pk) = y · fρ(Msg).

In case x 6∈ R. The same argument for the case x 6∈ R of Lemma 1(a) applies. ut

D Proof of Theorem 2

Theorem 2 Suppose there exists a weak-IND-sID-CPA adversary AFE, which runs in time tFE and has non-negligible
advantage ε against the functional encryption scheme FE with one chosen delegation key query and Naq chosen anony-
mous delegation key queries and Nenc chosen encryption queries. Then there exists an IND-sID-CPA adversary ABBG,
which has advantage ε

2d against the BBG HIBE scheme [2] with O(d`) chosen private key queries and zero chosen
decryption query, and runs in time tFE + O(d` · tmax · (Naq +Nenc)), where tmax is the maximum time for a random
sampling (within a space of size at most p), a BBG encryption Encrypt, or a BBG key generation KeyGen.

Proof.



The proof idea. Let AFE be the weak-IND-sID-CPA adversary against the functional encryption scheme FE as in
Theorem 2. We try to construct an IND-sID-CPA adversary ABBG against BBG based on AFE: Choose two random
messages m0 and m1, and send them to the BBG challenger. After receiving the challenge ciphertext CT for message
mb where b ∈ {0, 1}, guess b = 0 and construct a FE challenge (f1(Msg0), f1(Msg1),CTFE) based on the BBG challenge
CT. If the adversary AFE wins the weak-IND-sID-CPA game, then output a guess b′ = 0; otherwise output a guess
b′ = 1.

We argue that if indeed b = 0, then the forged FE challenge is valid, and the hypothesis is applicable: AFE wins
with probability 1/2 + ε. If b = 1, the forged FE challenge is invalid, we cannot apply the hypothesis. However, in
this case the forged FE challenge is independent on the value of b. Hence, in case of b = 1, AFE wins with probability
exactly 1/2.

Recall that the BBG HIBE scheme is (Setup,KeyGen,Encrypt,Decrypt) and the functional encryption scheme FE is
(f Setup, f Enc, f KeyGen, f Dec,Mult). Now let us construct the IND-sID-CPA adversary ABBG against BBG. ABBG will
simulate the weak-IND-sID-CPA game where ABBG takes the role of challenger and invokes AFE in the hypothesis as
the adversary.

Construction of IND-sID-CPA adversary ABBG against BBG HIBE scheme based on AFE

BBG Commit :

FE Commit : Adversary AFE chooses a random point x∗ = (x1, . . . , xd) ∈ [Z]d. AFE sends x∗ to FE challenger ABBG as
the target identity.

BBG adversary ABBG chooses ξ ∈ [d] at random and sends target identity id∗ = IDξ(xξ) ∈
(
Z∗p
)`

to BBG challenger CBBG.

BBG Setup : BBG challenger CBBG runs setup algorithm Setup, and give ABBG the resulting system parameter params, keeping
the master-key private.

BBG Phase 1 : Adversary ABBG does nothing.
BBG Challenge : Adversary ABBG chooses m0,m1 at random from the plaintext space G̃, and sends (m0,m1) to the challenger
CBBG. CBBG picks a random bit b ∈ {0, 1} and sends the challenge ciphertext CT = Encrypt(params, id∗,mb; s) to ABBG

BBG Phase 2 :

FE Setup : ABBG chooses d random elements τ1, . . . , τd from Z∗p and let τ = (τ1, . . . , τd). Let (p,G, G̃, e) be a part of params,

where p is a prime, both G and G̃ are cyclic multiplicative group of order p, and e : G×G→ G̃ is a bilinear map. Let
pk = (p,G, G̃, e) and sk = (pk, params,master-key, τ ). ABBG sends pk to AFE. Note: ABBG does not know master-key.

FE Challenge : The FE challenger ABBG chooses a random bit a ∈ {0, 1} and a random message Msg1−a from the message
space Z∗p. ABBG will decide Msga and generate the challenge ciphertext CTFE in this way:

1. Parse the BBG challenge ciphertext as CT = (A,B,C), where A = Ωsmb.
2. Choose (d− 1) random elements s1, . . . , sξ−1, sξ+1, . . . , sd (i.e. excluding sξ) from Z∗p.
3. Choose d random elements σ1, . . . , σd from G̃ with constraint

d∏
j=1

σj = (Ωsmb)
−1 m0 ·Ω

−
∑

1≤j≤d
j 6=ξ

sj

4. For each j ∈ [d] and j 6= ξ, encrypt σj under identity IDj(xj) with random coin sj to obtain ciphertext cj as follows

cj ← Encrypt(params, IDj(xj), σj ; sj). (18)

5. Define cξ based on the BBG challenge ciphertext CT = (Ωsmb, B,C):

cξ = (Ωsmb ·m−1
0 · σξ, B, C).

6. Define Msga = −
∑

j∈[d]
sj · τj , where unknown sξ ∈ Zp is defined by Ωsξ = Ωsmb ·m−1

0 . Although the value Msga
is unknown since sξ is unknown, ABBG can still compute f1(Msga):

f1(Msga) = ΩMsga =
(
(Ωsmb)

−1 ·m0

)τξ ·Ω−∑1≤j≤d
j 6=ξ

sj ·τj

7. Set the challenge ciphertext to CTFE = (c1, . . . , cd), and send (CTFE, f1(Msg0), f1(Msg1)) to AFE.

FE Learning Phase :

1. AFE issues a delegation key query (R, ρ), where x∗ 6∈ R and R = A1 ×A2 . . .×Ad ⊆ [Z]d: If xξ ∈ Aξ, then ABBG

abort and output a random bit b′ ∈ {0, 1} (Denote this event as E1). Otherwise, simulate the procedure of f KeyGen:



(a) The private key is sk = (params,master-key, τ = (τ1, . . . , τd)), where ABBG has only params and τ , and does
not know master-key (which is kept securely by the BBG challenger CBBG).

(b) For each j ∈ [d], generate a set δj in this way:
– For each identity id ∈ IdSetj(Aj), issue a private key query with identity id to BBG challenger CBBG and get

reply did. Note: The BBG private key query (id) is valid, i.e. id 6= id∗ and id is not a prefix of id∗. This
is implied by the two properties: (1) For any i, j ∈ [d], x, y ∈ [Z], if IDi(x) and IDj(y) share a non-empty
prefix, then i = j (See f Setup in Figure 1); (2) For any ∈ [a, b] ⊆ [Z], iff x ∈ [a, b], there exits an identity id
in the set IdSetj([a, b]), such that id is a prefix of identity IDj(x) (See Section 5.2).

– For each identity id ∈ IdSetj(Aj), parse the key did as (K0,K1, Υk, . . . , Υ`) and set d′id = (K
ρτj
0 ,K

ρτj
1 , Υ

ρτj
k , . . . , Υ

ρτj
` ).

– Set δj ← {d′id : id ∈ IdSetj(Aj)}.
(c) Send δ = (δ1, δ2, . . . , δd) to AFE as the delegation decryption key w.r.t. (R, ρ).
Note: AFE can make at most one delegation key query.

2. AFE issues an anonymous delegation key query (R): Choose a random element Z ∈ G̃. For each anonymous delegation
key query (R), choose ρ ∈ Z∗p at random, run the algorithm f KeyGen(R, ρ, sk′), where sk′ = (params, Z, τ ) (i.e.
taking Z as the master key), and get output δ. Send δ to AFE as the delegation key w.r.t. R.
Note: (1) ABBG can answer anonymous delegation key query without the help of BBG challenger CBBG. (2) There
exists an unknown ω, such that Z = master-keyω. The generated delegation key δ corresponds to range R and
(unknown) function key ρω, where ρω is uniformly distributed in Z∗p as desired.

3. AFE issues an encryption key query (Msg,x): Run the encryption algorithm: C ← f Enc(Msg,x, sk) and send the
resulting ciphertext C to AFE as the reply.

FE Guess : Adversary AFE outputs a bit a′ ∈ {0, 1}.
BBG Guess : If a = a′, adversary ABBG outputs b′ = 0. Otherwise, ABBG outputs b′ = 1.

The constructed BBG adversary ABBG made O(d`) private key query and zero decryption query to the BBG

challenger CBBG. Let id∗ = IDξ(xξ) = (I1, I`) ∈
(
Z∗p
)`. Recall that the two BBG ciphertexts CT and cξ are

CT = (A, B, C) =
(
Ωs ·mb, g

s,
(
hI11 . . . hI`` · g3

)s)
∈ G̃×G2

cξ = (Ωsξ · σξ, B, C) =
(
Ωsξ · σξ, gs,

(
hI11 . . . hI`` · g3

)s)
∈ G̃×G2

where Ωsξ = Ωsmb ·m−1
0 . If b = 0, then sξ = s and cξ is a valid BBG encryption of σξ under identity IDξ(xξ) with

random coin sξ. Consequently, the FE scheme simulated by ABBG is identical to a real one from the view of AFE (even
if AFE is computationally unbounded). If b = 1, then sξ is independent on s. As a result, in the FE scheme simulated
by ABBG, the challenging ciphertext CTFE is independent on the value of Msga. Note that adversary AFE does not
know m0,m1, params.

Let the d-dimensional range R = A1 × . . .×Ad. Define set S#:

S# = {j ∈ [d] : x∗[j] 6∈ Aj}

Since x∗ 6∈ R, S# is not empty and |S#| ≥ 1. We have

Pr[¬E1] = Pr[ξ ∈ S#] =
|S#|
d
≥ 1
d
.

Note that adversary ABBG has two terminal cases: (1) If event E1 occurs, ABBG outputs a random bit b′ ∈ {0, 1}.
(2) If event E1 does not occur, ABBG outputs b′ = 0 iff AFE outputs a′ = a.

In case of E1: Conditional on event E1, Pr[b = b′] = 1/2.

In case of ¬E1: Suppose event E1 does not occur. Then b′ = 0 ⇔ a = a′ and b′ = 1 ⇔ a 6= a′. Applying the
Proposition 1, we have Pr[b′ = 0|b = 0] = Pr[a = a′|b = 0] and Pr[b′ = 1|b = 1] = Pr[a 6= a′|b = 1].

As a result, conditional on event ¬E1,

Pr[b = b′] = Pr[b = b′ = 0] + Pr[b = b′ = 1]
= Pr[b = 0]Pr[b′ = 0|b = 0] + Pr[b = 1]Pr[b′ = 1|b = 1]
= Pr[b = 0]Pr[a = a′|b = 0] + Pr[b = 1]Pr[a 6= a′|b = 1]

=
1
2
×
(

1
2

+ ε

)
+

1
2
× 1

2

=
1
2

+
1
2
ε



Combining the two cases (E1 and ¬E1), we obtain the advantage of ABBG against BBG scheme in the IND-sID-CPA
game:

AdvABBG

BBG +
1
2

= Pr[E1]× 1
2

+ Pr[¬E1]×
(

1
2

+
1
2
ε

)
=

1
2

+
ε

2
Pr[¬E1] ≥ 1

2
+

ε

2d

The adversary ABBG wins the game with probability at least 1/2 + ε/(2d) using O(d`) private key queries and running
in time tFE + O(d` · tmax · (Naq + Nenc)), where tmax is the maximum time for random sampling (within a space of
size at most p), BBG encryption Encrypt, or BBG key generation KeyGen, and Naq (Nenc, respectively) is the number
of anonymous delegation key queries (encryption key queries, respectively) made by AFE. ut

E A valid proof should be generated from points within dataset D

The notion that a valid proof is essentially generated from points (and their tags) within the dataset D, is formulized
by Lemma 6. We prove Lemma 6 in two steps: first we show that the GKEA Assumption 2 implies Lemma 5 (which
states that an alternative form of GKEA problem is hard); then we derive Lemma 6 from Lemma 5.

We remark that both the proof of Lemma 5 in Appendix E.1 and proof of Lemma 6 in Appendix E.2 follow the
proof framework for statement that KEA3 implies KEA in [49]. Their proof can be outlined as follows: Given any
adversary algorithm AKEA, construct an adversary algorithm AKEA3. Then applying KEA3 Assumption, there exists
an extractor algorithm ĀKEA3. Based on ĀKEA3, construct extractor algorithm ĀKEA for AKEA. The key point is
how to convert the input/output between ĀKEA (AKEA, respectively) and ĀKEA3 (AKEA3, respectively).

E.1 Lemma 5 and Proof

Lemma 5 Suppose Assumption 2 holds. For any PPT algorithm A, there exists a PPT algorithm Ā, such that

AdvLem 5
A,Ā (κ) def= Pr


Sm+1 ← {(θvi, vβi ) : i ∈ [m+ 1], vi

$←− G̃, θ $←− G̃, β $←− Z∗p}
(Ψ1, Ψ2, X)← A(Sm+1; r);
(Ψ1, Ψ2, X, µ1, µ2, . . . , µm, µm+1)← Ā(Sm+1; r, r̄) :

Ψ2 =
(
Ψ1
θX

)β ∧ Ψ2 6=
∏m+1
j=1 (vβj )µj

 ≤ ν2(κ), (19)

where the probability is taken over all random coins used, m is polynomial in κ and function ν2(·) is as in Assumption 2.

Proof (of Lemma 5). Let adversary A be as in Lemma 5. We construct a GKEA adversary A1 based on an adversary
A.

Construction of GKEA adversary A1: Based on an adversary A

1. The input is Wm = {(ui, uβi ) ∈ G̃2 : 1 ≤ i ≤ m} and the random coin is r1.

2. Choose two independent random elements R1, R2 ∈ G̃2 based on the random coin r1. There exists some unknown θ, vm+1 ∈
G̃, such that R1 = θvm+1 and R2 = vβm+1.

3. For each 1 ≤ i ≤ m, define vi = uivm+1 and compute θvi = ui(θvm+1) = uiR1 and vβi = (uivm+1)β = uβi R2. Let
Sm+1 = {(θvi, vβi ) : 1 ≤ i ≤ m+ 1}.

4. Invoke the adversary A with random coin r derived from r1: (Ψ1, Ψ2, X)← A(Sm+1; r).
5. Output (U1 = Ψ1

RX1
, U2 = Ψ2

RX2
).

Since
(
Ψ1
RX1

)β
= Ψβ1

θXβvXβ
m+1

and Ψ2
RX2

= Ψ2

vXβ
m+1

, we have

(
Ψ1

θX

)β
= Ψ2 ⇔

(
Ψ1

RX1

)β
=

Ψ2

RX2
. (20)

According to Assumption 2, there exists an extractor Ā1 for the adversary A1, such that AdvGKEA
A1,Ā1

is negligible.
Now we construct an extractor Ā for A based on Ā1.

Construction of extractor Ā for A: Based on GKEA extractor Ā1



1. The input is Sm+1 = {(θvi, vβi ) : 1 ≤ i ≤ m+ 1}. The random coin is (r, r̄).

2. For each 1 ≤ i ≤ m, set ui = θvi
θvm+1

and compute uβi =
v
β
i

v
β
m+1

. Let Wm = {(ui, uβi ) : 1 ≤ i ≤ m}.

3. Invoke adversary A1 with random coin r1 = (θvm+1, v
β
m+1, r): (U1 = Ψ1

RX1
, U2 = Ψ2

RX2
)← A1(Wm; r1).

Note: We can represent the random coin r1 used by A1 as (R1, R2, r).
4. Invoke extractor Ā1 with random coin (r1, r̄1 = r̄): (µ1, . . . , µm)← Ā1(Wm; r1, r̄1).
5. Define µm+1 = X −

∑m

i=1
µi. Output (µ1, . . . , µm, µm+1).

If U2 =
∏m
i=1 u

βµi
i , then we have

m+1∏
i=1

vβµii = v
βµm+1
m+1

m∏
i=1

vβµii = v
β(X−

∑m

i=1
µi)

m+1

m∏
i=1

uβµii

m∏
i=1

vβµim+1 = vβXm+1U2 = RX2 U2 = Ψ2.

That is,

U2 =
m∏
i=1

uβµii ⇒
m+1∏
i=1

vβµii = Ψ2. (21)

If Uβ1 = U2 ⇒ U2 =
∏m
i=1 u

βµi
i , combining with equation (20) and equation (21), we have(

Ψ1

θX

)β
= Ψ2 ⇒ Uβ1 = U2 ⇒ U2 =

m∏
i=1

uβµii ⇒ Ψ2 =
m+1∏
i=1

vβµii .

As a result, (
Uβ1 = U2 ⇒ U2 =

m∏
i=1

uβµii

)
⇒

((
Ψ1

θX

)β
= Ψ2 ⇒ Ψ2 =

m+1∏
i=1

vβµii

)
Note that the implications in equation (20) and equation (21) are always true, while the implication that Uβ1 = U2 ⇒
U2 =

∏m
i=1 u

βµi
i is true only with certain probability.

Applying the Proposition 1 in Appendix B, we have

Pr

[
Uβ1 = U2 ⇒ U2 =

m∏
i=1

uβµii

]
= 1− AdvGKEA

A1,Ā1
≤ Pr

[(
Ψ1

θX

)β
= Ψ2 ⇒ Ψ2 =

m+1∏
i=1

vβµii

]
= 1− AdvLem 5

A,Ā .

Hence,
AdvLem 5

A,Ā ≤ AdvGKEA
A1,Ā1

≤ ν2.

ut

E.2 Lemma 6 and Proof

Lemma 6 Suppose Assumption 2 holds. For any PPT algorithm A, there exists a PPT algorithm Ā, such that
AdvLem 6

A,Ā (1κ) ≤ ν2(κ), where the advantage AdvLem 6
A,Ā of A against Ā w.r.t. scheme Ẽ = (KGen,DEnc,CollRes) is

defined as

AdvLem 6
A,Ā (1κ) def= 1− Pr


(ζ,X, Ψ2, view

Ẽ
A,D,R)← ExpẼA(1κ);

{µi : i ∈ [N ]} ← Ā(viewẼA) :

ζ = accept ⇒ Ψ2 =
∏
i∈[N ]

(
vβi

)µi
 ,

where vβi is the second component of tag ti for data point xi ∈ D (See Step 2 of DEnc in Figure 2).

Proof (of Lemma 6). Let A be any PPT adversary against scheme Ẽ = (KGen,DEnc,CollRes). We construct a PPT
adversary B against Lemma 5 based on A.

Adversary B against Lemma 5: Based on A



1. The input is Sm = {(θvj , vβj ) ∈ G̃2 : j ∈ [m]}. The random coin used in this algorithm is r.

2. Simulate Alice in the experiment ExpẼA.
(a) Invoke adversary A with a random coin derived from r. A chooses a set D = {xi ∈ [Z]d : i ∈ [N ]} of N = m d-

dimensional data points. Note: If N > m, B can generate more tuples (θvj , v
β
j ) for j = m + 1, . . . , N from Sm. For

simplicity, we just assume N = m.
(b) Simulate KGen:

i. Invoke f Setup(1κ) to obtain public/private key pair (pk, sk).
ii. Choose γ′ at random from Z∗p. B does not know the values of θ, β.

(c) Simulate DEnc:
i. Choose N random elements W1, . . . ,WN from Z∗p.

ii. For each i ∈ [N ], compute a tag ti =
(
θvi, v

β
i , f1(Wi)

)
.

iii. For each i ∈ [N ], encrypt message Wi under point xi: CT′i ← f Enc(Wi,xi, sk); attach vβγ
′

i to ciphertext by applying

the homomorphic property of the functional encryption scheme: CTi ← Mult(CT′i, v
βγ′

i , pk).
iv. Send DB = {D,T = {ti : i ∈ [N ]},C = {CTi : i ∈ [N ]}, pk} to adversary A.

(d) Simulate CollRes: For each query range Rj chosen by A during A’s learning phase and challenging phase
i. (Step A1) Choose random nonce ρ ∈ Z∗p, generate delegation key δ ← f KeyGen(Rj , ρ, sk), and send (Rj , δ) to

adversary A.
ii. (Step A2) Do not perform verifications, after receiving reply from A.

3. Receive output (X,Ψ1, Ψ2, Ψ3, Ψ4) for the challenging query range R from A. Output (X,Ψ1, Ψ2).

Remarks on Algorithm B.

1. Adversary B has the private key sk, and can generate the Challenge-Message in the same way as in CollRes in
Figure 2.

2. Adversary B has no knowledge of β or θ, and consequently cannot perform verification as in CollRes.
3. The view of adversary A after interacting with the simulated scheme is identically distributed with the the view

viewẼA of A after interacting with the real scheme in the experiment ExpẼA.
(a) KGen: The simulator B generates key (pk, sk) in the same way as the real scheme. The unknown secret key

β ∈ Z∗p, θ ∈ G̃ and γ = (βγ′)−1 ∈ Z∗p are independently and uniformly randomly distributed over corresponding
domains.

(b) DEnc: The dataset D is generated in the same way as in real experiment. The tags T are identically distributed
as in real experiment. The ciphertexts C are generated in the same way as in real experiment. As a result,
DB = {D,T,C} that A received is identically distributed as in real experiment.

(c) CollRes
i. Step A1: The simulator just follows the procedure in Figure 2 with key sk and random nonce ρ to execute

this step.
ii. Step A2: Since the simulator does not know the values of secret key (β, γ, θ), it cannot perform the

verifications. However, according to our scheme, the accept/reject decisions are always kept secret from
Bob (or adversary).

4. If A is a successful adversary, then its output will indeed pass all verifications with non-negligible probability,
although the simulator cannot perform the actual verifications and yet cannot know whether A succeeds or not in
each single attack instance.

From the random coin r, B can simulate the experiment ExpẼA and produce a view viewr which is identically

distributed as the view viewẼA produced by a real experiment. In the other direction, information theoretically, the
random coin r can be recovered from the adversary’s view viewr, considering r as the collection of all (true) random
bits flipped in the simulation. Consequently, we can view viewr as an alternative representation of random coin r.

By Lemma 5, there exists a PPT algorithm B̄ such that AdvLem 5
B,B̄ ≤ ν2. We construct an extractor Ā for adversary

A based on B̄.

Extractor Ā: Based on B̄

1. The input is viewẼA, a state variable describing all random coins chosen and all message accessed by A during interactions

with Ẽ in the experiment ExpẼA.

2. Recover D,T,C from viewẼA and construct a set SN ← {(θvi, vβi ) : i ∈ [N ]}, where θvi and vβi are the first two components
of tag ti ∈ T.



3. Invoke B on input SN with random coin viewẼA. B extracts information from viewẼA and replays11 the interaction between

Alice and Bob (i.e. the adversary A) in the experiment ExpẼA. Denote the output of experiment as (ζ,X,Ψ , viewẼA,D,R).

Recover the reply of A on the challenging query R from viewẼA, and denote it with (X,Ψ1, Ψ2, Ψ3, Ψ4). B outputs (X,Ψ1, Ψ2).

4. Let B̄ be the extractor such that AdvLem 5
B,B̄ ≤ ν2. Invoke B̄ on input SN using random coin viewẼA, and obtain output

(µ1, . . . , µN ) from B̄. Output (Ψ1, Ψ2, X, µ1, . . . , µN ).

Note that according to the algorithm CollRes, ζ = accept implies that the verification is passed and Ψ2 =
(
Ψ1
θX

)β
(the first equality test in equation (11)). We have

ζ = accept ∧ Ψ2 6=
∏
i∈[N ]

(vβi )µi ⇒ Ψ2 =
(
Ψ1

θX

)β
∧ Ψ2 6=

∏
i∈[N ]

(vβi )µi

Hence, by applying Proposition 1, we have

AdvLem 6
A,Ā = Pr

ζ = accept ∧ Ψ2 6=
∏
i∈[N ]

(vβi )µi


≤AdvLem 5

B,B̄ = Pr

Ψ2 =
(
Ψ1

θX

)β
∧ Ψ2 6=

∏
i∈[N ]

(vβi )µi

 ≤ ν2.

ut

F A valid proof should be generated from points within intersection D ∩ R

Theorem 7 Suppose Assumption 1 and Assumption 2 hold, and FE scheme constructed in Figure 1 is weak-IND-sID-
CPA secure. For any PPT algorithm A, there exists PPT algorithm Ā, such that both AdvLem 6

A,Ā and AdvThm 7
A,Ā are

negligible, where the advantage AdvThm 7
A,Ā of A against Ā w.r.t. scheme Ẽ = (KGen,DEnc,CollRes) is defined as

AdvThm 7
A,Ā (1κ) def= 1− Pr


(ζ,X, Ψ2, view

Ẽ
A,D,R)← ExpẼA(1κ);

({µi : i ∈ [N ]})← Ā(viewẼA) :

ζ = accept ∧ Ψ2 =
∏
i∈[N ]

(
vβi

)µi
⇒ ∀xi ∈ D ∩R{, µi = 0

 ,
where vβi is the second component of tag ti for data point xi ∈ D (See Step 2 of DEnc in Figure 2).

Proof (of Theorem 7).

The idea of proof. For any PPT algorithm A, applying Lemma 6, let Ā be the PPT algorithm such that AdvLem 6
A,Ā

is negligible. Using proof of contradiction, assume that AdvThm 7
A,Ā is non-negligible (Hypothesis!). Based on A and

Ā, we construct a PPT algorithm B, such that B breaks weak-IND-sID-CPA security of FE scheme in Figure 1 with
non-negligible advantage

Advweak-IND-sID-CPA
FE,B ≥ 1

4dN
AdvThm 7

A,Ā − 1
4
ν1.

where ν1 is as in Assumption 1 and Advweak-IND-sID-CPA
FE,B is defined in Section 5 The contradiction implies that our

hypothesis is wrong, and thus Theorem 7 is proved.

weak-IND-sID-CPA adversary B against FE scheme Let Ẽ = (KGen,DEnc,CollRes). We construct the adversary

B, which simulates the experiment ExpẼA by invoking the adversary A, where B takes the role of Alice and A takes the
role of Bob. Note that B makes only one delegation key query.

11 Since A is invoked with the same random coin recovered from viewẼA, its behaviors become deterministic.



weak-IND-sID-CPA adversary B against FE scheme

Commit : Initialize A’s status viewA. Invoke adversary A(viewA), and A chooses a set D = {x1, . . . ,xN} of N d-dimensional
points in [Z]d. B chooses i∗ ∈ [N ] at random, and sends xi∗ to the challenger C as the target identity.

Setup : The challenger C runs the setup algorithm f Setup and gives A the resulting system parameters pk = (p,G, G̃, e, Ω),
keeping the secret key sk = (pk, params,master-key, τ ) to itself.

Challenge : C chooses two plaintexts Msg0,Msg1 at random from the message space Z∗p, and a random bit b ∈ {0, 1}. C sets
the challenge ciphertext to CT = f Enc(Msgb,xi∗ , sk), and sends (CT, f1(Msg0), f1(Msg1)) to B.

Learning Phase : B (playing the role of Alice) interacts with A (playing the role of Bob) to simulate the experiment ExpẼA. B
proceeds as below.
KGen : Choose β, γ at random from Z∗p , and θ at random from G̃. Let (pk, sk) be the key pair generated by the challenger

C. Generate pk by removing Ω from pk, i.e. pk = (p,G, G̃, e). Output (pk, sk) Note: B knows pk, but not sk.
DEnc :

1. Choose N random elements W1, . . . ,WN from Z∗p and N random elements v1, . . . , vN from G̃.

2. For each i ∈ [N ] except i = i∗, generate a tag ti = (θvi, v
β
i , f1(Wi)) ∈ G̃. Note: With Ω, B can evaluate function

fρ(·).
3. For each i ∈ [N ] except i = i∗, generate ciphertext CTi:

– Issue an encryption query (Wi,xi) to the challenger C and get reply CT′i.
– Apply the homomorphic property of the functional encryption scheme to attach vγi to the ciphertext: CTi ←

Mult(CT′i, v
γ
i , pk).

4. Define the tag ti∗ and ciphertext CTi∗ based on the challenge message (CT, f1(Msg0), f1(Msg1)): Set ti∗ =
(θvi∗ , v

β
i∗ , f1(Msg0)) and CTi∗ ← Mult(CT, vγi∗ , pk).

5. Send (D,T = {ti : i ∈ [N ]},C = {CTi : i ∈ [N ]}, pk) to A (Bob).
A in Learning Phase : A issues queries R1,R2, . . .. For each of such queries, B simulates Alice in CollRes as below.

Step A1: B makes a corresponding anonymous delegation key query (Ri) to the challenger C, and sends the reply
message δi to A (Bob).

Step A2: Do nothing. Note: (1) According to our scheme and formulation, the accept/reject decision is always hidden
from A. So there is no need to do verification here. (2) B does not know the function key ρi for the delegation key
δi, so is not able to perform all verifications in step A2 of CollRes.

A in Challenge Phase : A issues a query with range R: If xi∗ 6∈ R, B simulates Alice in CollRes as below.
Step A1: B chooses a random element ρ ∈ Z∗p and makes a corresponding delegation key query (R, ρ) to the challenger
C, and sends the reply message δ to A (Bob).

Step A2: Receive response (ζ,X, Ψ2) for count query R associated with challenge message δ) from A. Perform all
verifications as in Step A2 of CollRes. Note: In this case B does know the function key ρ for the delegation key δ
and secret values β, γ, so is able to perform all verifications in step A2 of CollRes.

Otherwise, if xi∗ ∈ R then B abort and outputs a random bit b′ ∈ {0, 1} (Denote this event as E1).
Guess : B outputs a guess bit b′ as below.

1. Invoke the extractor Ā(viewA) for A and get output {µi : i ∈ [N ]}.
2. If ζ = accept, Ψ2 =

∏
i∈[N ]

(
vβi
)µi

and µi∗ 6= 0, then output b′ = 0 (Denote this event as E2).

3. Otherwise, output a random bit b′ ∈ {0, 1} (Denote this event as E3).

Note that all three events E1, E2 and E3 are mutually exclusive, and only E2 is the success case, and both of E1

and E3 correspond to failure.

Pr[b = b′] = Pr [E1 ∨E3] Pr [b = b′|E1 ∨E3] + Pr [b = b′,E2]

= (1− Pr [E2])× 1
2

+ Pr [b = b′,E2]

=
1
2

+ Pr [b = b′,E2]− 1
2
Pr [E2] (22)

Therefore,

AdvIND-sID-CPA
FE,B =

∣∣∣∣Pr [b = b′,E2]− 1
2
Pr [E2]

∣∣∣∣ (23)

≥

∣∣∣∣∣
∣∣∣∣12Pr [b = b′,E2 | b = 0]− 1

4
Pr [E2 | b = 0]

∣∣∣∣− ∣∣∣∣12Pr [b = b′,E2 | b = 1]− 1
4
Pr [E2 | b = 1]

∣∣∣∣
∣∣∣∣∣ (24)



Advweak-IND-sID-CPA
FE,B conditional on b = 0.

In case of b = 0, the forged tag ti∗ and ciphertext CTi∗ are valid and consistent, and identical to those generated by
DEnc. The simulated experiment ExpB̃A by B is identical to a real one, to the view of A (even if A is computationally
unbounded).

Recall that by the hypothesis, A is a Type II adversary but not a Type III adversary. That is, ζ = accept and

Ψ2 =
∏
i∈[N ]

(
vβi

)µi
with o.h.p, and there exists xi ∈ D ∩R{, such that µi 6= 0 with non-negligible probability. We

denote with E4 the event that ζ = accept and Ψ2 =
∏
i∈[N ]

(
vβi

)µi
, and there exists xi ∈ D ∩R{, such that µi 6= 0.

Pr[E4 | b = 0] = Pr

ζ = accept ∧ Ψ2 =
∏
i∈[N ]

(
vβi

)µi
∧ ∃xi ∈ D ∩R{, µi 6= 0 | b = 0

 = AdvThm 7
A,Ā

Denote with E5 the event that i∗ ∈ S# = {i ∈ [N ] : xi ∈ D ∩R{, µi 6= 0}. In the case of b = 0, the event E2 is
equivalent to conjunctions of three events: ¬E1, E4, and E5, i.e. E2 ≡ ¬E1 ∧ E4 ∧ E5. Since the conjunctions of E4

and E5 implies that xi∗ 6∈ R and ξ ∈ [d] is independently and randomly chosen, we have

Pr [¬E1 | E4 ∧E5 ∧ b = 0] = Pr [xi∗ [ξ] 6∈ Aξ | E4 ∧E5 ∧ b = 0] ≥ 1
d
.

Therefore,

Pr [E2 | b = 0] = Pr [¬E1 ∧E4 ∧E5 | b = 0] = Pr [¬E1 | E4 ∧E5 ∧ b = 0] Pr [E4 ∧E5 | b = 0]

≥ 1
d
Pr [E4 | b = 0] Pr [E5 | E4, b = 0]

=
1
d
AdvThm 7

A,Ā · 1
|S#|

≥ 1
dN

AdvThm 7
A,Ā ( Event E4 implies that S# 6= ∅)

According to the construction of B, if b = 0 and event E2 occurs, the algorithm B will output b′ = 0. That is,
Pr [b = b′|E2, b = 0] = 1.

Hence, conditional on b = 0, the advantage of B is

AdvIND-sID-CPA
FE,B |b=0 =

∣∣∣∣Pr [E2 | b = 0] (Pr [b = b′ | E2, b = 0]− 1
2

)
∣∣∣∣ ≥ 1

2dN
AdvThm 7

A,Ā . (25)

Advweak-IND-sID-CPA
FE,B conditional on b = 1.

Next we show that Pr[E2 | b = 1] is negligible under Computational Diffie Hellman (CDH) assumption.

Claim F.01 There exists a PPT algorithm which solves Computational Diffie Hellman problem with probability equal
to Pr[E2 | b = 1].

Proof (of Claim F.01). The proof idea is: Given input (v, vγ , u), we choose a random number R, and simulate the
scheme Ẽ = (KGen, DEnc, CollRes) by embedding (u,R) into the tag/ciphertext for the target index i∗ and embedding
(v, vγ) into tag/ciphertext for the other index, . If b = 1 and event E2 occurs, we try to compute uγ with the help of
adversary A.

Algorithm D: Break Computational Diffie Hellman problem

1. Input is (v, va, u) ∈ G̃3, where the unknown exponent a is uniformly randomly distributed over Z∗p. The goal is to output
ua.

2. Simulate the scheme Ẽ = (KGen,DEnc,CollRes):
KGen: The same as in Figure 2, except that let γ be the unknown value a: γ ← a.
DEnc: (a) Choose N random elements W1, . . . ,WN from Z∗p. Choose i∗ ∈ [N ] at random.

(b) For each i ∈ [N ] except i∗:
i. choose zi ∈ Z∗p at random and compute vi = vzi and vγi = (vγ)zi = (va)zi ;

ii. generate a tag ti = (vi, v
β
i , f1(Wi)) ∈ G̃3;

iii. generate a ciphertext CTi as in Figure 2.
(c) For i∗:



i. generate a tag ti∗ = (vi∗ , v
β
i∗ , f1(Wi∗)) where vi∗ = u;

ii. generate a ciphertext CTi∗ = Mult(CT′, R, pk), where CT′ ← f Enc(Wi∗ , xi∗ , sk) and R is a random element

in G̃.
(d) Send all tags and ciphertexts and pk to Bob as in Figure 2.

CollRes: The same as in Figure 2, except that do not perform the verifications in step A2 of CollRes.
Note: Since γ is unknown, some verifications can not be done.

3. Invoke the adversary A and simulate the experiment ExpẼA using the above simulated scheme Ẽ .
Let (X,Ψ1, Ψ2, Ψ3, Ψ4) denote the reply returned by adversary A on the challenging query range R and ρ be the corresponding
random nonce. Note: When the adversary A is in challenging phase, the verification cannot be done, since γ = a is unknown.

4. Let viewA be the view of A after the experiment. Invoke the extractor Ā w.r.t. A, and obtain output: {µi : i ∈ [N ]} ←
Ā(viewA).

5. Compute φ as below and output φµ
−1
i∗ :

φ← Ψ4

Ψρ3 ·
∏i 6=i∗
i∈[N ]

(vγi )µi

Denote the experiment ExpẼA simulated by D as ExpD; denote the experiment ExpẼA simulated by B in the case of
b = 1 as ExpB. Both simulated experiments ExpD and ExpB are identical, to the view of adversary A (even if A is
computationally unbounded):

– In both simulated experiments, for each i ∈ [N ] except i∗, the tag ti and ciphertext CTi are consistent and identical
as those generated by the algorithm DEnc in Figure 2.

– In both simulated experiments, the ciphertext CTi∗ is independent on the tag ti∗ :
• In ExpD, ti∗ = (vi∗ , v

β
i∗ , f1(Wi∗)) and ciphertext CTi∗ = Mult(CT′, R, pk), where CT′ ← f Enc(Wi∗ , xi∗ , sk)

and R is a random element in G̃. That is, the ciphertext CTi∗ is randomized due to the independent randomness
R in the execution of Mult.

• In ExpB, ti∗ = (vi∗ , v
β
i∗ , f1(Msg0)) and CTi∗ ← Mult(CT, vγi∗ , pk), where CT ← f Enc(Msg1, xi∗ , sk) is the

ciphertext of Msg1, and Msg0, Msg1 are two independent random elements in Z∗p. That is, the ciphertext CTi∗
is randomized12 due to the independent randomness Msg1 in the execution of f Enc.

– In both simulated experiments, for any range query R, A receives the same (identically distributed) reply as in
CollRes in Figure 2.

We remark that the differences in the capabilities of verifications in the two simulated experiments, are invisible to A,
since all accept/reject decisions are completely hidden from A.

Suppose b = 1 and event E2 occurs13, that is, ζ = accept and Ψ2 =
∏
i∈[N ]

(
vβi

)µi
and µi∗ 6= 0. It is easy to show

that
φ = vγµi∗i∗ ; φµ

−1
i∗ = vγi∗ = uγ = ua.

Hence, the above algorithm D solve the CDH problem with probability

Pr[E2 | b = 1] Pr[φµ
−1
i∗ = ua | E2, b = 1] = Pr[E2 | b = 1].

ut

Therefore, under CDH assumption, Pr[E2 | b = 1] ≤ ν1, where ν1(·) is some negligible function. As a result, conditional
on b = 1, the advantage of B in breaking the FE scheme is

Advweak-IND-sID-CPA
FE,B |b=1 =

∣∣∣∣Pr [E2 | b = 1] (Pr [b = b′ | E2, b = 1]− 1
2

)
∣∣∣∣ ≤ 1

2
ν1. (26)

Advweak-IND-sID-CPA
FE,B ≥

∣∣∣∣12Advweak-IND-sID-CPA
FE,B |b=0 −

1
2
Advweak-IND-sID-CPA

FE,B |b=1

∣∣∣∣ ≥ 1
4dN

AdvThm 7
A,Ā − 1

4
ν1.

ut
12 One can verify that randomization in Mult is equivalent to randomization in f Enc, by checking the constructions of Mult and

f Enc and the underlying BBG HIBE scheme. Note that public key params of the underlying BBG HIBE scheme and Wi’s
(Random numbers as in Step 1 of DEnc in Figure 2) are unknown to the adversary A.

13 Note that the algorithm D cannot tell whether E2 occurs or not, since D does not know γ thus cannot perform some
verifications. D simply guesses that event E2 does occur, and this guess will be correct with probability Pr[E2|b = 1]



G A valid proof should be generated by processing each point within intersection
D ∩ R for exactly once

Theorem 8 Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is IND-sID-CPA secure. For
any PPT algorithm A, there exists a PPT adversary Ā, such that all of AdvLem 6

A,Ā , AdvThm 7
A,Ā , and AdvThm 8

A,Ā are
negligible, where the advantage AdvThm 8

A,Ā of A against Ā w.r.t. scheme E = (KGen,DEnc,ProVer) is defined as

AdvThm 8
A,Ā (1κ) def= 1− Pr

 (ζ,X,∆, viewEA,D,R)← ExpEA(1κ);
({µi : i ∈ [N ]})← Ā(viewEA) :

ζ = accept ⇒
(
∆ =

∏
i∈[N ]

(
vβi

)µi
∧ ∀i ∈ [N ], µi = 1

)
 ,

where vβi is the second component of tag ti for data point xi ∈ D (See Step 2 of DEnc in Figure 2).

Proof (of Theorem 8).

Idea of proof. For any PPT algorithmA, applying Theorem 7, let Ā be the PPT algorithm, such that AdvLem 6
A,Ā ≤ ε5 and

AdvThm 7
A,Ā ≤ ε6 for some negligible functions ε5(·) and ε6(·). Using proof of contradiction, assume that AdvThm 8

A,Ā ≥ ε7
for some non-negligible function ε7(·). We construct a PPT algorithm B based on A and Ā, such that B breaks Discrete
Log Problem with non-negligible advantage ε7 − (2d+ 1)(ε5 + ε6).

Denote with E1 the event that ζ = accept
∧
∆ 6=

∏
i∈[N ]

(
vβi

)µi
, and with E2 the event that ζ = accept

∧
∆ =∏

i∈[N ]

(
vβi

)µi
∧ ∃j ∈ [N ], µj 6= 1. We can split the probability AdvThm 8

A,Ā into two parts,

AdvThm 8
A,Ā = Pr

 (ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ);
({µi : i ∈ [N ]})← Ā(viewEA) :

ζ = accept
∧

∆ 6=
∏
i∈[N ]

(
vβi

)µi
+ Pr


(ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ);
({µi : i ∈ [N ]})← Ā(viewEA) :

ζ = accept
∧

∆ =
∏
i∈[N ]

(
vβi

)µi
∧ ∃j ∈ [N ], µj 6= 1


= Pr[E1] + Pr[E2].

Part I: Pr[E1] ≤ (2d+ 1)
(
AdvLem 6

A,Ā + AdvThm 7
A,Ā

)
. Suppose that: (1) The challenging query range is R. (2) Alice

partitions R{ into 2d rectangular ranges R1, . . . ,R2d and sets R0 = R. (3) For 0 ≤ ` ≤ 2d, denote with (ζ`, X`, Ψ
(`)
2 )

the reply returned by adversary A in the execution of CollRes on range R`. (4) Denote with (ζ,X,∆) the output of
Alice in the execution of ProVer. (5) Recall that Alice keeps the value ∆ =

∏
i∈[N ] v

β
i .

According to the construction in Figure 2 (i.e. Step 3 of ProVer), we have ∧
`∈[0,2d]

ζ` = accept

 ∧ ∆ =
∏

`∈[0,2d]

Ψ
(`)
2 ⇔ ζ = accept (Denoted as statement A) (27)

In additional to statement A, let us define statement A` and B` as below:

A`: ζ` = accept ⇒ Ψ
(`)
2 =

∏
i∈[N ] v

βµi
i , 0 ≤ ` ≤ 2d.

B`: ζ` = accept ∧ Ψ (`)
2 =

∏
i∈[N ] v

βµi
i ⇒ ∀xi ∈ D ∩R{, µi = 0, 0 ≤ ` ≤ 2d.

The conjunctions of statements A, A`’s (0 ≤ ` ≤ 2d), and B`’s (0 ≤ ` ≤ 2d), directly imply that

ζ = accept ⇒ ∆ =
∏

xi∈D∩
(⋃

0≤`≤2d
R`

) vβµii =
∏

xi∈D

vβµii . (28)



Applying Proposition 1 and Proposition 2 in Appendix B, we have

Pr

[
ζ = accept⇒ ∆ =

∏
xi∈D

vβµii

]
≥ Pr [A ∧A0 ∧ . . . ∧A2d ∧B0 ∧ . . . ∧B2d]

≥ 1− Pr[¬A]−
2d∑
`=0

Pr [¬A`]−
2d∑
`=0

Pr [¬B`]

≥ 1− 0−
2d∑
`=0

AdvLem 6
A,Ā −

2d∑
`=0

AdvThm 7
A,Ā

= 1− (2d+ 1)
(
AdvLem 6

A,Ā + AdvThm 7
A,Ā

)
.

Therefore,

Pr[E1] = 1− Pr

[
ζ = accept⇒ ∆ =

∏
xi∈D

vβµii

]
≤ (2d+ 1)

(
AdvLem 6

A,Ā + AdvThm 7
A,Ā

)
.

Part II: Break Discrete Log Problem. Applying the result in Part I, we have Pr[E2] = AdvThm 8
A,Ā − Pr[E1] ≥

AdvThm 8
A,Ā −(2d+1)

(
AdvLem 6

A,Ā + AdvThm 7
A,Ā

)
. We construct the following algorithm to break the Discrete Log Problem.

DLP Adversary B

1. The input is (v, va) ∈ G̃2. The goal is to find a ∈ Zp.
2. Invoke scheme E = (KGen,DEnc,ProVer) with f2 defined as above, with the following modification:

– In DEnc, for each i ∈ [N ], choose yi, zi ∈ Zp at random and set vi = (va)yi · vzi ∈ G̃.
Note: B has full information of private key.

3. Simulate the experiment ExpEA, by invoking the adversary A (playing the role Bob) to interact with Alice in E . Then invoke
Ā(viewEA) to obtain {µi : i ∈ [N ]}.

4. With probability equal to Pr[E2], it holds that ζ = accept
∧

∆ =
∏
i∈[N ]

(
vβi
)µi ∧ ∃j ∈ [N ], µj 6= 1.

5. According to our scheme in Figure 2 (Step 4 of DEnc), ∆ =
∏
i∈[N ]

vβi . So a univariable equation in the unknown variable

a of order 1 in group Zp can be formed by substituting vj = vayj+zj . Solve this equation and get a root a∗. Output a∗.

The PPT algorithm B constructed as above breaks DLP with probability Pr[E2]. Therefore, under Computational
Diffie Hellman Assumption 1, DLP is infeasible and thus Pr[E2] has to be negligible.

Combining results in Part I and II, we have

AdvThm 8
A,Ā ≤ (2d+ 1)

(
AdvLem 6

A,Ā + AdvThm 7
A,Ā

)
+ AdvDLP

B .

ut

H Proof of Main Theorem 3

Theorem 3 (Main Theorem) Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is IND-
sID-CPA secure. Then the RC protocol E = (KGen,DEnc,ProVer) constructed in Figure 2 is PRC w.r.t. function F (·, ·)
as defined in Section 4.1, under Definition 2. Namely, E is correct and sound w.r.t. function F .

Proof (of Theorem 3). The correctness is straightforward once we have Lemma 1. Here we save the details and focus
on the soundness part.

Suppose E is not sound, i.e. there exists a PPT algorithm A, with non-negligible advantage ε6 against E :

AdvEA = Pr

[
(ζ,X,Ψ , viewEA,D,R)← ExpEA(1κ);

ζ = accept
∧

X 6= F (D,R) (mod p)

]
≥ ε6.

Applying Theorem 8, let Ā be the extractor for A such that all of AdvLem 6
A,Ā , AdvThm 7

A,Ā , and AdvThm 8
A,Ā are negligible.



We intend to construct a PPT algorithm B based on A to break Assumption 1 (Computational Diffie-Hellman
Problem), and argue that B succeeds with probability about ε6, with the help of Ā, under Assumption 1, Assumption 2,
and the assumption that BBG [2] HIBE is IND-sID-CPA secure. The contradiction will imply that such adversary A
does not exist and the constructed scheme E is sound.

Adversary B against Computational Diffie-Hellman Problem

1. The input is (u, uβ , vβ) ∈ G̃. The goal is to find v.

2. Choose a random number R1 from G̃. Then R1 = vθ for some unknown θ ∈ G̃.
3. For 1 ≤ j ≤ m, choose zj at random from Z∗p and set uj ← uzj and compute uβj =

(
uβ
)zj

. Let Wm = ({uj , uβj : j ∈ [m]}).
4. Convert (Wm, R1, R2 = vβ) to Sm+1 = {(θvi, vβi )}mi=0 in the same way as in construction of algorithm A1 in the proof of

Lemma 5 in Appendix E.1.
5. From Sm+1, simulate the scheme E just as adversary B in the proof of Lemma 6 in Appendix E.2.
6. Invoke the adversary A and simulate the experiment ExpEA. Let (X, Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4) be the reply returned by adversary A on

challenging query range R in the execution of CollRes.
7. Simulate the experiment ExpEA honestly (just using the algorithm Eval instead of adversary A) and get query result Y =
|D ∩R| and proof (Ψ1, Ψ2, Ψ3, Ψ4).

8. Let Z be the inverse of (X − Y ) modulo p and compute θ′ =
(
Ψ̄1
Ψ1

)Z
.

Note: (1) Y = F (D,R). (2) If A succeeds, then X 6= F (D,R) (mod p). Recall the definition of function F : D× R → Zp
in Section 4.1.

9. Output R1
θ′ .

Note that as in proof of Lemma 6, the simulated scheme E is identical to a real one from the view of adversary A.
For the constructed adversary B, we make the following claim:

Claim H.02 Suppose Assumption 1 and Assumption 2 hold, and BBG [2] HIBE scheme is IND-sID-CPA secure. If A

succeeds, it holds with o.h.p. (i.e. with probability (1− negl)) that
(
Ψ̄1
θX

)β
= Ψ̄2 = Ψ2 =

(
Ψ1
θY

)β
.

Proof (of Claim H.02). If A succeeds, then its output (X, Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4) will pass all verifications in the scheme E
(Step A2 of CollRes and Step 3 in ProVer in Figure 2). So we have(

Ψ̄1

θX

)β
= Ψ̄2, ζ = accept. (29)

where ζ ∈ {accept, reject} denotes the corresponding decision (a part of output of ProVer) regarding A’s reply on
the challenging query.

Let (µ1, . . . , µN ) be the output of extractor Ā. Under Assumption 1, Assumption 2 and the assumption that BBG [2]
HIBE scheme is IND-sID-CPA secure, by applying Lemma 6, Theorem 7 and Theorem 8, the following implications
hold with o.h.p.,

ζ = accept ⇒

∆ =
∏
i∈[N ]

(
vβi

)µi
∧ ∀i ∈ [N ], µi = 1

 ;

ζ = accept ⇒ Ψ̄2 =
∏

xi∈D∩R

(
vβi

)µi
.

Hence, conditional on A succeeds, with o.h.p. we have

Ψ̄2 =
∏

xi∈D∩R

(
vβi

)µi
=

∏
xi∈D∩R

vβi . (30)

The output (X,Ψ1, Ψ2, Ψ3, Ψ4) returned by an honest Bob also passes all verifications (Since the scheme E is correct).(
Ψ1

θY

)β
= Ψ2, where Ψ2 =

∏
xi∈D∩R

vβi is computed following the scheme. (31)

Combing equations (29)(30)(31), Claim H.02 can be implied directly:(
Ψ̄1

θX

)β
= Ψ̄2 = Ψ2 =

(
Ψ1

θY

)β
.

ut



From Claim H.02, it is straightforward that

Pr

[
R1

θ′
= v

]
= Pr [θ′ = θ] ≥ Pr [A succeeds] (1− negl) ≥ ε6(1− negl),

where negl(·) is some negligible function. Therefore, the constructed algorithm B breaks Assumption 1 with non-
negligible probability ε6(1−negl). The contradiction implies that our hypothesis is wrong: such adversary A does not
exist. Thus, the constructed scheme E is sound and Theorem 3 is proved. ut
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