
Credential Authenticated Identification and Key Exchange

Jan Camenisch∗ Nathalie Casati∗ Thomas Gross∗ Victor Shoup†

February 2, 2010

Abstract

Secure two-party authentication and key exchange are fundamental problems. Traditionally,
the parties authenticate each other by means of their identities, using a public-key infrastucture
(PKI). However, this is not always feasible or desirable: an appropriate PKI may not be available,
or the parties may want to remain anonymous, and not reveal their identities.

To address these needs, we introduce the notions of credential-authenticated identification
(CAID) and key exchange (CAKE), where the compatibility of the parties’ credentials is the
criteria for authentication, rather than the parties’ identities relative to some PKI. We formalize
CAID and CAKE in the universal composability (UC) framework, with natural ideal functional-
ities, and we give practical, modularly designed protocol realizations. We prove all our protocols
UC-secure in the adaptive corruption model with erasures, assuming a common reference string
(CRS). The proofs are based on standard cryptographic assumptions and do not rely on random
oracles.

CAKE includes password-authenticated key exchange (PAKE) as a special case, and we
present two new PAKE protocols. The first one is interesting in that it is uses completly
different techniques than known practical PAKE protocols, and also achieves UC-security in the
adaptive corruption model with erasures; the second one is the first practical PAKE protocol
that provides a meaningful form of resilience against server compromise without relying on
random oracles.

1 Introduction

Secure two-party authentication and key exchange are fundamental problems. Traditionally, the
parties authenticate each other by means of their identities, using a public-key infrastucture (PKI).
However, this is not always feasible or desirable: an appropriate PKI may not be available, or the
parties may want to remain anonymous, and not reveal their identities.

To address these needs, we introduce the notion of credential-authenticated identification
(CAID) and key exchange key exchange (CAKE), where the compatibility of the parties’ credentials
is the criteria for authentication, rather than the parties’ identities relative to some PKI.

We assume that prior to the protocol, the parties agree upon a policy, which specifies the types
of credentials they each should hold, along with additional constraints that each credential should
satisfy, and (possibly) relationships that should hold between the two credentials. The protocol
should then determine whether or not the two parties have credentials that satisfy the policy, and
in the CAKE case, should generate a session key, which could then be used to implement a secure
communication session between the two parties. In any case, neither party should learn anything
else about the other party’s credentials, other than whether or not they satisfied the policy.
∗IBM Zurich Research Lab
†New York University; work done while visiting IBM Zurich Research Lab; supported by NSF grant CNS-0716690

1

For example, Alice and Bob may agree on a policy that says that Alice should hold an electronic
ID card that says her age is at least 18, and that Bob should hold a valid electronic library card. If
Alice then inputs an appropriate ID card and Bob inputs an appropriate library card, the protocol
should succeed, and, in the CAKE case, both parties should obtain a session key. However, if, say,
Alice tries to run the protocol without an appropriate ID card, the protocol should fail; moreover,
Alice should not learn anything at all about Bob’s input; in particular, Alice should not even be
able to tell whether Bob had a library card or not.

As mentioned above, we may even consider policies that require that certain relationships hold
between the two credentials. For example, Alice and Bob may agree upon a policy that says that
they both should have national ID cards, and that they should live in the same state.

Both of the two previous examples illustrate that the CAKE problem is closely related to the
“secret handshake” problem. In the latter problem, two parties wish to determine if they belong
to the same group, so that neither party’s status as a group member is revealed to the other,
unless both parties belong to the same group. There are many papers on secret handshakes (see
[JKT08] for a recent paper, and the references therein). The system setup assumptions and security
requirements vary significantly among the papers in the secret handshakes literature, and so we do
not attempt a formal comparison of CAKE with secret handshakes. Nevertheless, the two problems
share a common motivation, and to the extent that one can view owning a credential as belonging
to a group, the two problems are very similar.

We also observe that the CAKE problem essentially includes the PAKE (password-authenticated
key exchange) problem as a special case: the credentials are just passwords, and the policy says
that the two passwords must be equal.

Our Contributions

So that our results are as general as possible, we work in the Universal Composability (UC) frame-
work [Can05]. We give natural ideal functionalities for CAID and CAKE, and give efficient, mod-
ularly designed protocols that realize these functionalities. If the underlying credential system is
practical and comes equipped with practical proof-of-ownership protocols (such as the IDEMIX
system [CL01]), and if the policies are not too complex, the resulting CAKE protocols are fairly
practical. In addition, if the credential system provides extra features such as traceability or revoca-
bility, or other mechanisms that mitigate against unwanted “credential sharing”, then our protocols
inherit these features as well.

All of our protocols are proved UC-secure in the adaptive corruption model, assuming parties
can effectively erase internal data. Our protocols require a common reference string (CRS), but
otherwise make use of standard cryptographic assumptions, and do not rely on random oracles.

As mentioned above, CAKE includes PAKE, and we also obtain two new practical PAKE
protocols. The first is a practical PAKE protocol that is secure in the adaptive corruption model
(with erasures); this is not the first such protocol (this was achieved recently by [ACP09], using
completely different techniques). The second PAKE protocol is a simple variant of the first, but
provides security against server compromise: the protocol is an asymmetric protocol run between
a client, who knows the password, and a server, who only stores a function of the password; if the
server is compromised, it is still hard to recover the password. Our new protocol is the first fairly
practical PAKE protocol (UC-secure or otherwise) that is secure against server compromise and
that does not rely on random oracles. Previous practical PAKE protocols that provide security
against server compromise (such as [GMR06]) all relied on random oracles (and also were analyzed
only in the static corruption model).

2

Outline of the paper

In §2, we provide some background on the UC framework; in addition, we provide some recom-
mendations for improving some of the low-level mechanics of the UC framework, to address some
minor problems with the existing formulation in [Can05] that were uncovered in the course of this
work. In any case, our results can be understood independently of these recommendations.

In §3, we introduce ideal functionalities for strong CAID and CAKE. These ideal functionalities
are stronger than we want, as they can only be realized by protocols that use authenticated channels.
Nevertheless, they serve as a useful building block. We also discuss there the types of policies that
will be of interest to us here, as we want to restrict our attention to policies that are useful and
that admit practical protocols.

In §4, we show how a protocol that realizes the strong CAID or CAKE functionalities can be
easily and efficiently transformed into a protocol that realizes the CAID and CAKE functionality.
The resulting protocol does not rely on authenticated channels. To this end, we utilize the idea of
“split functionalities”, introduced in [BCL+05]. Although the idea of using split functionalities for
nonstandard authentication mechanisms was briefly mentioned in [BCL+05], it was not pursued
there, and no new types of authentication protocols were presented. In this section, we review the
basic notions introduced in [BCL+05], adjusting the definitions and results slightly to better meet
our needs, and give some new constructions, as well.

In §5 we review definitions of UC zero knowledge (UCZK), and provide some new definitions
that will be useful to us. UCZK will be a critical building block in the design of our CAID/CAKE
protocols. In this section, we discuss a general language of statements we will want to be able to
prove, as well as practical implementations of UCZK protocols for proving such statements. In
a companion paper, we plan on fleshing out the details of this general framework, but it should
be clear, based on these discussions, that there are, in fact, practical UCZK protocols for all the
statements we need to prove in our CAID/CAKE protocols.

In §6, we present practical strong CAID/CAKE protocols for some fairly general policies of
interest, and prove their security in the UC-framework, assuming secure channels. Using the split
functionalities ideal in §4, these protocols can be transformed into practical CAID/CAKE protocols,
which do not assume secure channels.

In §7, we present practical strong CAID/CAKE protocols for the equality relation and an
interesting relation related to discrete logarithms. The former gives rise to our first new PAKE
protocol, while the latter gives rise to our second new PAKE protocol (which provides resilience
against server compromise).

Finally, in §8, we present strong CAID/CAKE protocols that are similar to those in §6, which
are more efficient, but work for a more specialized (but still interesting) class of policies.

2 Some UC background

Our corruption model is always adaptive corruptions with erasures. We believe that allowing adap-
tive corruptions is important — there are known examples of protocols that are secure with respect
to static corruptions, but trivially insecure if adaptive corruptions are allowed. Allowing erasures
is a bit of a compromise: on the one hand, properly implementing secure erasures is difficult —
but not impossible; on the other hand, if erasures are not allowed, then it becomes very difficult to
obtain truly practical protocols, leading to results that are of theoretical interest only.

To streamline the descriptions of ideal functionalities, we assume the following convention in
any two-party ideal functionality:

3

• the adversary may at any time tell the ideal functionality to abort the protocol for one of the
parties — the ideal functionality sends the special message abort to that party, and does not
communicate any further with that party.

In an actual protocol, an abort output would be generated when a “time out” or “error”
condition was detected; the aborting party will also erase all internal data, and all future incoming
messages will be ignored. While not essential for modeling security, it does allow us to distinguish
between detectable and undetectable unfairness in protocols.

We clarify here a number of issues regarding terminology and notation in the UC framework. By
a party we always mean an interactive Turing machine (ITM). A party P is addressed by party ID
(PID) and session ID (SID). So if P has PID Ppid and SID Psid, then the PID/SID pair (Ppid, Psid)
uniquely identifies the party: no two parties in the system may have the same PID/SID pair.

The convention is that the participants of any single protocol instance share the same SID, and
conversely, if two parties share the same SID, then they are regarded as participants in the same
protocol.

There are no semantics associated with PIDs, other than their role to distinguish participants
in a protocol instance. Some authors (sometimes implicitly) tend to use the term “party” to refer
to all ITMs that share a PID. We shall not do this: as stated above, for us, a party is always just
a single ITM.

In describing protocols and ideal functionalities, we generally omit SIDs in messages — these
can always be assumed to be implicitly defined.

2.1 Notions of security

We recall some basic security notions from [Can05], with some extensions in [CR03] and [BCL+05].
We will not be too formal here.

We say that a protocol Π realizes a protocol Π∗, if for every adversary A, there exists an
adversary (i.e., simulator) A∗, such that for every environment Z, Z cannot distinguish an attack
of A on Π from an attack of A∗ on Π∗. Here, Z is allowed to interact directly with the adversary
and (via subroutine input/output) with parties (running the code for Π or Π∗) that share the same
SID.

If we like, we can remove the restriction that parties must share the same SID, which effectively
allows Z to interact with multiple, concurrently running instances of a single protocol in the above
experiment. With this relaxation, we say that Π multi-realizes Π∗. If these multiple instances of
Π access a common instance of a setup functionality G, then we say that Π multi-realizes Π∗ with
joint access to G. In applications, G is typically a common reference string (CRS).

The UC Theorem [Can05] implies that if Π realizes Π∗, then Π multi-realizes Π∗. However, if
Π makes use of a setup functionality G, then it does not necessarily follow that Π multi-realizes Π∗

with joint access to G: one typically has to analyze the multiple-instance experiment directly.
In the above definitions, if Π∗ is the ideal protocol associated with an ideal functionality F ,

then we simply say that Π (multi-)realizes F (with joint access to G).
We also have some simple transitivity properties: if Π1 realizes Π2, and Π2 realizes Π3, then

Π1 realizes Π3; also, if Π1 multi-realizes Π2 with joint access to G, and Π2 realizes Π3, then Π1

multi-realizes Π3 with joint access to G.
A protocol Π may itself make use of an ideal functionality F ′ as a subroutine (where an instance

of Π may make use of multiple, independent instances of F ′). In this case, we call Π an F ′-hybrid
protocol. We may modify Π by instantiating each instance of F ′ with an instance of a protocol Π′,
and we denote the modified version of Π by Π[F ′/Π′]. The UC Theorem implies that if Π′ realizes

4

F ′, then Π[F ′/Π′] realizes Π. Also, if Π′ multi-realizes F ′ with joint access to G, then Π[F ′/Π′]
multi-realizes Π with joint access to G.

This last statement is essentially a reformulation of a special case of the JUC Theorem [CR03],
but in a form that is more convenient to apply. The JUC Theorem requires a protocol that
realizes the multi-session extension of an ideal functionality, where subsession IDs (SSIDs) play
the role of SIDs. The problem is that the multi-session functionality is too strong: since an SSID
is just an ordinary input, a protocol that realizes the multi-session functionality must keep track
of all SSIDs ever uses, in order to detect possible re-use. While one could potentially define a
weaker form of multi-session functionality, the notion of multi-realization (introduced, somewhat
informally, in [BCL+05], and which can be easily be expressed in the Generalized UC (GUC)
framework [CDPW07]) seems a more elegant and direct way of joint access to a CRS or similar
setup functionality.

2.2 Conventions regarding SIDs

We shall assume that an SID is structured as a pathname:

name0/name1/ · · · /namek.

These pathnames reflect the subroutine call stack: when an honest party invokes an instance of
subprotocol as a separate party, the new party has the same PID of the invoking party, and the SID
is extended on the right by one element. Furthermore, we shall assume for two-party protocols, the
rightmost element namek, called the basename, has the form

ext :Ppid :Qpid : data,

where ext is a “local name” used to ensure unique basenames, Ppid and Qpid are the PIDs of the
participants P and Q, and data represents shared public parameters. The ordering of these PIDs
can be important in protocols where the two participants play different roles.

These conventions streamline and clarify a number of things. In application of the UC Theorem,
we will be interested exclusively in protocols that act as subroutines: they are explicitly invoked
by a single caller, who provides all inputs, and who receives all outputs.

The main points here are:

• a subroutine is explicitly invoked by the caller;

• the callee implicitly knows where to write its output.

We can (and will) design protocols that deviate from this simple subroutine structure, although
the UC Theorem will not directly apply in these cases.

With these restrictions, it also is convenient to make some restrictions on ideal functionalities:
we shall assume that an ideal functionality only delivers an output to a party that has previously
supplied the ideal functionality with an input.

2.3 Party creation and corruption

Many papers often make the implicit assumption that parties are corrupted PID-wise: if P is
corrupted, then any party with the same PID as P is also considered corrupted.1 This assumption is

1In fact, the term “party” seems to be used in a number of inconsistent and confusing ways in the literature — as
stated above, we use the term “party” as a synonym for ITM.

5

somewhat problematic, as it may require ideal functionalities to be aware of global state information.
Indeed, there does not appear to be a careful formulation of this assumption anywhere in the
literature. However, one typically has to impose some constraint on allowable corruption patterns.

Related to the problem of corrupting parties is the problem of allowing the adversary to create
parties. Some rules must also be imposed here. Formally speaking, there is no real reason why the
adversary needs to actually create any parties at all, with one very important exception: in the UC
framework, ideal functionalities communicate directly with “dummy parties” (really, “stubs”), and
the PIDs and SIDs of these dummy parties typically play an important role in formulating security
properties (such as in an ideal functionality authenticated channels).

We propose a simple set of rules for party creation and corruption. These rules are more
restrictive than those in [Can05]; however, as discussed below, we believe that without some kind of
additional restrictions, there are some rather serious problems; we also argue that these restrictions
are reasonable in many settings.2

Before getting into the rules, recall that there are three basic types of messages in a UC exe-
cution experiment: input, output, and network communication messages. Also, let us define some
terminology, based on the SID conventions introduced in §2.2. We say that party P ′ is a child of a
party P if the PIDs of P and P ′ are the same, and the SID of P ′ extends the SID of P on the right
by a single component. As usual, we define the descendent relation as the transitive closure of the
child relation. Finally, we say that the adversary, environment, and ideal functionalities (but not
the dummy parties that access them) are special parties; all other parties are ordinary.

Mechanics of creating or corrupting a party. A party P creates another party P ′ when P sends
an input message to P ′, and P ′ does not already exist. Whenever is sends an input message, P
supplies the PID/SID of P ′, as well as the name or description of the program to be run by P ′,
should P ′ not already exist. If P creates P ′ in this way, then only P is allowed to pass inputs to
and receive outputs from P ′. Also, when delivering an output, P ′ does not need to specify the
identity of P — this is implicitly defined.

This is the only way a party can be created, with the following exceptions: the environment
and adversary are created at the start of execution; in addition, ideal functionalities (but not the
dummy parties that access them) are created by other means (see below). Otherwise, our rules
(unlike those of [Can05]) do not allow the implicit creation of parties by sending them network
communication or subroutine output messages.

An ordinary party is corrupted if it receives as an input a special corrupt message. The
semantics of party corruption are discussed below.

Restrictions on passing inputs. Since party creation and corruption is done by sending inputs, we
impose some syntactic restrictions on who is allowed to send inputs to whom.

Input Rule 1. The environment is allowed to pass inputs to ordinary parties, as long as none of
these parties is a descendent of any other. These parties are all running the same programs, and
in the single-instance UC experiment, they must have the same SID.

Input Rule 2. An ordinary party P may pass an input to an ordinary party P ′, provided P ′ is
a child of P .

Input Rule 3. No other inputs may be passed between parties.
With these rules, the subroutine-calling relationship corresponds precisely to the syntactically

defined child relationship, with exceptions made for the environment.
2Our new rules amount to a change in the “control function” in the language of [Can05].

6

Corruption behavior. The semantics of party corruption do not have to be built into the framework,
but we propose here a simple set of rules that should be sufficient for most settings.

Recall that an ordinary party is corrupted when it receives the special input corrupt (special
parties are never considered to be corrupt). The party may be either a “dummy” party (which
accesses an ideal functionality) or a “real” party. A “dummy” party simply forwards the corrupt
message to the ideal functionality (which presumably tells the adversary that the party is corrupt,
along with other optional information).3 A “real” party sends a message to the adversary, informing
the adversary that he is now corrupt, and giving the adversary the contents of its current internal
state.4 In either case, the corrupted party becomes a simple shell that is completely under the
adversary’s control: all incoming messages (inputs, incoming network communication, subroutine
outputs) are forwarded to the adversary, and the adversary may direct the party to send outgoing
messages (outputs, outgoing network communication, subroutine inputs) on its behalf; other than
these actions, the corrupted party does nothing else.

Ideal functionalities. With the restrictions presented above, we need special rules for creating and
accessing ideal functionalities. With the flexibility of the original rules in the UC framework, there
was no need for this.

Ideal functionalities are accessed by dummy parties or by the adversary (but not by the envi-
ronment). If an ideal functionality F is used as a subroutine, then we require that each instance
of F share the same SID of the dummy parties that access it. If F is used as a setup functionality
that is jointly accessed by different protocol instances, this requirement is dropped.

In either case, some mechanism is required to allow instances of F to be created dynamically
by either dummy parties or the adversary, but in such a way that these instances are guaranteed
to be running the correct program for F . To this end, we assume a mechanism to create an ITM
running a given program so that the program name is securely encoded as part of the PID of the
ITM. With such a mechanism, an instance of F will always have the appropriate program name
securely encoded in its PID.

Discussion. In the current formulation of the basic UC framework in [Can05], not enough restric-
tions are placed on the creation of parties by the adversary, rendering it difficult to reason about
the security of protocols.

For example, consider a protocol that relies on authenticated channels, that is, an Fauth-hybrid
protocol (see [Can05, p. 60] for the definition of Fauth). Such a protocol actually accesses Fauth

via dummy parties, and Fauth does nothing more than verify that the PID and SID of the dummy
sending party are correct. The real sending party gives its message to the dummy sending party,
which is transmitted to the dummy receiving party via Fauth, and finally delivered to the real
receiving party. If, however, the adversary can create or corrupt a party with the PID and SID
that should belong to the dummy sending party, then Fauth provides no real guarantees at all.5 To
be useful, there must be a way for the real receiving party to infer that if the real sending party is
honest, then the dummy sending party is honest and under control of the real sending party. One
could attempt to modify Fauth, so that it checked the name and/or the code of the real sending
party, but the problem would just re-assert itself in higher-level ideal functionalities (such as zero
knowledge).

3In the erasure model, we assume that if a party has previously aborted, then no optional information is sent to
the adversary.

4In the erasure model, we assume that when a party aborts, all internal state is erased.
5Indeed, it seems that this example illustrates that technically speaking, all current theorems that purport to

prove the security of protocol that use authenticated channels are false.

7

While the above criticism may seem rather trivial, we believe that, in fact, the basic UC frame-
work is missing a mechanism for enforcing essential trust assumptions, which we can characterize
as follows. Suppose P and Q are peers in some protocol, and that P uses a subroutine P ′ and Q
uses a subroutine Q′, where P ′ and Q′ are peers in some subprotocol. Certainly, if P is honest,
and P creates P ′, then it should be the case that P ′ initially runs the code that P chooses. This
is indeed enforced in the current formulation of the basic UC framework. However, that is not
enough. We really need additional restrictions — like those given here — that guarantee that only
P can create P ′, and that as long as P remains honest, then so does P ′.

Are these conventions too restrictive? We do not believe so.
One consequence of these conventions is that a party may be a subroutine of exactly one other

party. In the original UC formulation, no such restriction is made. However, from the point of
view of applying the UC Theorem (which is the main point of defining the framework in the first
place), one might as well make this restriction: the reason is that without this restriction, the a
“subroutine respecting” hypothesis will not be satisfied.

However, there are other types of composition where this restriction may not be convenient.
As an example, consider the JUC Theorem [CR03]. In some situations, one can use the multi-
realization with joint access formulation stated above in §2.1, and avoid the issue completely.
However, if one really wants to use the JUC Theorem as it is stated, the problem is also avoided
with a simple change in perspective. The JUC Theorem states that if Π is an F ′-hybrid protocol that
realizes F , and Π̂′ realizes the multi-session extension F̂ ′ of F ′, then Π[[F ′/Π̂′]] realizes F . Here,
Π[[F ′/Π̂′]] represents a special composition operator, which translates calls to F ′ in an instance of
Π with calls to a common instance of Π̂′ with SIDs translated to SSIDs. Now, these calls to F ′
may not be made by the original instance of Π, but rather by various subroutines, and the resulting
calls to Π̂′ in Π[[F ′/Π̂′]] would violate our single-caller restriction. The solution is simply to view
an instance Π[[F ′/Π̂′]] as a single monolithic party, which internally runs a “virtual OS” in which
the subroutines of this party actually run — calls to F ′ are intercepted by the “virtual OS”, and
replaced by appropriate calls to Π̂′. It is easy to see that the JUC Theorem still holds, and we
are still able to adhere to our restrictions, both in the “physical world” in which the instances of
Π[[F ′/Π̂′]] execute, but also in the “virtual world” in which instances of Π and its subroutines the
subroutines execute. Moreover, we are still able to benefit from the UC Theorem, using it to prove
that the hybrid protocol Π realizes F in a modular way.

We will use this “virtual OS” idea again later, in §4.6.
In addition, one should bear in mind that our naming conventions are simply tools to make the

UC Theorem work, and that PIDs and SIDs are artificial names that do not have to correspond
to real-world network addresses or protocol stacks. For example, a client may try to run a certain
protocol with a server. Almost certainly, the protocol stacks of client and server will not look
the same; however, the client and server could, for example, exchange nonces and then launch a
protocol instance whose SID is “rooted” at a pathname formed by concatenating the two nonces;
any subprotocols then extend the pathnames by means of some simple naming convention.

Some further benefits. A benefit of our restrictions is that it simplifies the management of SIDs.
A basic requirement of the UC framework is that every party is uniquely named by its PID and
SID. Without restrictions such as those proposed here, this is hard to enforce locally. However, with
our restrictions, this becomes easy: a protocol designer just has to ensure that no two subprotocol
instances invoked (i.e., created) by it have the same basename.

A further benefit is that with our restrictions, the “subroutine respecting” hypothesis of the
UC Theorem is automatically satisfied.

8

2.4 System parameters

A common reference string, or CRS, is sometimes very useful. Sometimes, however, a different, but
related notion is useful: a system parameter.

Like a CRS, a system parameter is assumed to be generated by a trusted party, but unlike a
system parameter, a CRS is visible to all parties, including the environment. A nice way to model
this is using some elements of the GUC framework.6

In designing a protocol that realizes some ideal functionality, a system parameter is a much
better type of setup functionality than a CRS, as the security properties of protocols that use a
CRS are not always so clear (e.g., “deniability” — see discussion in [CDPW07]). These problems
do not arise with system parameters. Moreover, if a protocol Π realizes an ideal functionality F
using a system parameter, then it is easy to see that Π multi-realizes F as well — there is no need
to separately analyze a multi-instance experiment.

A system parameter can also be used to parameterize an ideal functionality — a CRS cannot
be used for this purpose, as that would conflate specification and implementation.

We can distinguish between two types of system parameters: public coin and private coin. In
a public-coin system parameter, even the random bits used to generate the system parameter are
visible to the environment (but no one else). In a private-coin system parameter, the random bits
used to generate the system parameter remain hidden from all parties. We will later see applications
of both types.

2.5 Authenticated channels

We present here an ideal functionality for an authenticated channel. We have tuned this function-
ality to adhere to our conventions. This ideal functionality is called Fach.

For an SID is of the form sid := parent/ext :Ppid :Qpid : , where P is the sender and Q is the
receiver, and for an adversary A, the ideal functionality Fach runs as follows:

1. Wait for both:

(a) an input message (send, x) from P ; then send (send, x) to A;

(b) an input message ready from Q; then send ready to A.

2. Wait for the message deliver from A; then send the output message (deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is allowed to change the value
of x (at any time before Step 2).

NOTES:

1. Like the corresponding functionality in [Can05], this one allows delivery of a single message
per session. Multiple sessions should be used to send multiple messages. Alternatively, one
could also define a multi-message functionality.

2. Unlike the corresponding functionality in [Can05], the receiver here must explicitly initialize
the channel before receiving a message. This conforms to our conventions stated above. In

6While we will occasionally use some elements of the GUC framework in this paper, we do not claim that any of the
protocols we present are fully GUC secure: to achieve this would require a setup functionality, such as an augmented
CRS (ACRS), which to realize would require some form of authentication mechanism that we are unwilling to assume
in our setting (we are trying to build authentication mechanisms).

9

[Can05], the sender can essentially spontaneously create a party on the receiving end just
by sending it a message. While in some settings such behavior may be convenient or even
necessary, it does not seem like a good idea to make this the default behavior. Such behavior
makes denial-of-service attacks much easier, since the receiving side may be forced to start
executing arbitrarily complex protocols (not just the communication protocol, but protocols
“up the stack” which may be triggered by it) that are entirely unrelated to any computation
it actually wants to perform.

3. Suppose the SID of the ideal functionality is path/to/foo/bar. This means that on the send-
ing side, the party that actually produces the message to be delivered (the producer) has SID
path/to/foo, and on the receiving side, the party that actually consumes the message (the
consumer) also has SID path/to/foo. On the sending side, the producer passes its input to a
dummy party with SID path/to/foo/bar, which in turn passes this to the ideal functionality,
which also has SID path/to/foo/bar. On the receiving side, the ideal functionality passes
the received message to a dummy party with SID path/to/foo/bar, which in turn passes
this as an output to the consumer. By our conventions and assumptions, if the producer is
not corrupt, then the message received by the consumer was actually sent by the producer.

2.6 Secure channels

Secure channels provide both authentication and secrecy. We present a ideal functionality that is
tuned to adhere to our conventions, and to our adaptive corruptions with erasures assumption.

For an SID is of the form sid := parent/ext :Ppid :Qpid : , where P is the sender and Q is the
receiver, and for an adversary A, the ideal functionality for secure channels runs as follows:

1. Wait for both:

(a) an input message (send, x) from P ; then send the message send to A;

(b) an input message ready from Q; then send the message ready to A.

2. Wait for the message lock from A.

3. Wait for both:

(a) a message done from A; then send the output message done to P .

(b) a message deliver from A; then send the output message (deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given x and is allowed to
change the value of x (at any time before Step 2).

NOTES:

1. As above, this functionality only allows a single message per session to be transmitted.

2. A message can only be delivered to a receiver who has initialized the channel.

3. If Q is corrupted between Steps 2 and 3b, then A is allowed to obtain x by sending a deliver
message to the ideal functionality, obtaining the response (deliver, x), which is available to
A, since Q is now under A’s control.

10

Variable length messages. We have left out one important detail in describing our secure
channels functionality, namely, variable length messages. The above functionality is suitable for
applications where all messages are bounded by some fixed length; however, if message lengths may
vary greatly, one may want a more flexible functionality. There are a couple of different possible
design choices.

Variation 1. One is to modify Step 1a, so that the message (send, len(x)) is sent to the adversary,
where len(x) is the length of x. This choice reflects the fact that unless all messages are padded
out to a maximum length, some information about the message length will invariably be leaked to
the adversary.

While simple and convenient, the problem with this approach is that an implementation may
require an extra round of interaction for each message delivered.

Variation 2. To address this inefficiency, we may modify the original ideal functionality in the
following way:

1. Wait for both:

(a) an input message (send, x) from P ; then send the message (send, len(x)) to A;

(b) an input message (ready,maxlen) from Q; then send the message (ready,maxlen) to A.

2. Wait for the message lock from A; verify that len(x) ≤ maxlen; if not, halt.

3. Wait for both:

(a) a message done from A; then send the output message done to P .

(b) a message deliver from A; then send the output message (deliver, x) to Q.

The corruption rule remains the same.
We call this ideal functionality Fsch.
Here, the receiver specifies the maximum length message he is prepared to accept. This func-

tionality reflects the fact that most of the time, the receiver knows the general “size and shape” of
the message it is expecting, and so no additional interaction is required. In the cases where this
information is not known in advance, the sender can transmit the length information to the receiver
ahead of time on an authenticated channel. In fact, this implementation realizes Variation 1 above
(at essentially the same cost).

3 Ideal functionalities for strong CAID and CAKE

In this section, we present ideal functionalities for strong CAID and CAKE. These ideal function-
alities are stronger than we want, as they can only be realized by protocols that use authenticated
channels. However, in the next section, we discuss how to we can very easily modify such protocols
to obtain protocols that realize the desired CAID/CAKE functionalities (which will be defined in
terms of strong CAID/CAKE).

We start with strong CAID.
At a high level, the ideal functionality for strong CAID, denoted F∗caid, works as follows. We

have two parties, P and Q. P and Q agree (somehow) on a binary relation R, which consists of a
set of pairs (s, t). Then P and Q submit values to the ideal functionality: P submits a value s and
Q a value t. The ideal functionality then checks if (s, t) ∈ R; if so, it sends P and Q the value 1,
and otherwise the value 0. The relation R represents the “policy”, discussed in §1.

11

The above description is lacking in details: some essential, and others not. We now describe
some detailed variants of the above general idea.

We assume that party P has PID Ppid and SID Psid. Likewise, we assume that party Q has
PID Qpid and SID Qsid.

3.1 Ideal Functionality F∗caid

We assume that the SIDs of the two parties are of the form parent/ext :Ppid :Qpid : 〈R 〉, where
〈R 〉 is a description of the relation R. In principle, any efficiently computable family of relations
is allowable, but specific realizations may implement only relations from some specific family of
relations. It will convenient to assume that the special symbol ⊥ has the following semantics: for
all s, t, neither (⊥, t) nor (s,⊥) are in R.

An instance of F∗caid with SID parent/ext :Ppid :Qpid : 〈R 〉 runs as follows.

1. Wait for both:

(a) an input message (left-input, s) from P ; then send left-input to A;

(b) an input message (right-input, t) from Q; then send right-input to A.

2. Wait for a message lock from A; then set

res :=

{
1 if (s, t) ∈ R;
0 if (s, t) /∈ R.

3. Wait for both:

(a) a message deliver-left from A; then send the output message (return, res) to P ;

(b) a message deliver-right from A, then send the output message (return, res) to Q.

Corruption rules:

• If P (resp., Q) is corrupted between Steps 1a (resp., 1b) and 2, then A is given s (resp.,
t), and is allowed to change the value of s (resp., t) at any time before Step 2.

• If P (resp., Q) is corrupted between Steps 2 and Steps 3a (resp., 3b), then A is given s
(resp., t).

Note that the inclusion of Ppid, Qpid in the SID serves to break symmetry, and establish P as
the “left” party and Q as the “right” party.

The above ideal functionality captures the inherent “unfairness” in any such protocol: if one
party is corrupt, they may learn that the relation holds, while the other may not. However, such
unfairness is at least detectable: since we do not conflate abort with a result of 0, if any party is
being treated unfairly, this will at least be detected by an abort message.

One could consider a weaker notion of security, in which 0 and abort were represented by the
same value. While this may allow for more efficient protocols, such protocols may allow “unde-
tectable unfairness”. With our present formulation, a result of abort may indicate an unfair run
of the protocol (or it may just indicate that there are network problems).

12

3.2 Ideal Functionality F∗pcaid

The functionality F∗caid does not provide as much privacy as one might like; in particular, if P and
Q are honest, then A still learns the relation R.7

To prevent this from happening, we would like to allow P and Q to agree in advance on a
description 〈R 〉 of a relation R, by some unspecified means, and then supply 〈R 〉 as a private,
shared input. Unfortunately, in the UC framework, there is no convenient way to directly express
the notion of a “private shared input”. However, we can achieve a similar effect by having one
party send 〈R 〉 to the other party (over a secure channel); the second party can either accept the
first party’s proposal, or not.

For our new functionality, F∗pcaid (for strong private CAID), the SID is of the form
parent/ext :Ppid :Qpid : . Note that 〈R 〉 is no longer a part of the SID.

An instance of F∗pcaid with SID parent/ext :Ppid :Qpid : runs as follows:

0.1 Wait for both:

(a) an input message (send-relation, 〈R 〉) from P ; then send the message
(send-relation, `(〈R 〉)) to A;

(b) an input message ready from Q; then send the message ready to A.

0.2 Wait for the message lock-relation from A.

0.3 Wait for a message deliver-relation from A; then send the output message
(deliver-relation, 〈R 〉) to Q.

Steps 1–3 are as in F∗caid, using the relation R described by 〈R 〉. In addition to the corruption
rules for F∗caid, we have:

Additional corruption rules:

• If P is corrupted between Steps 0.1a and 0.2, then A is given 〈R 〉 and is allowed to
change the value of 〈R 〉 at any time before Step 0.2.
• If P (resp., Q) is corrupted between Steps 0.2 (resp., 0.3) and 3a (resp., 3b), then A is

given 〈R 〉.

In the above, the function ` is an “information leakage” function that is used to model the fact
that in some circumstances, some information about the general “size and shape” of 〈R 〉 will be
revealed to an eavesdropping adversary.

3.3 From authentication to key exchange

Both F∗caid and F∗pcaid may be extended to provide key exchange in addition to authentication
modifying Step 2 as follows:

2. Wait for a message (lock,Kadv) from A; then set

res :=

{
(1,K) if (s, t) ∈ R,
0 if (s, t) /∈ R,

where the key K is determined as follows:
7PIDs and SIDs are considered public information. Recall that we assume that SIDs are transmitted implicitly as

a part of every message. For extra privacy, “real world” users should choose unlinkable pseudonyms as their PIDs,
and (to the extent possible) use some type of mechanism to prevent traffic analysis.

13

• if either P or Q are currently corrupted, set K := Kadv;

• otherwise, generate K at random (according to some prescribed distribution).

Corruption rules are unchanged. We call the resulting functionalities F∗cake and F∗pcake, respec-
tively.

3.4 Some relations of interest

One type of relation that is of particular interest is a simple product relation, where R = S × T .
For example, we may have S = {s : (x, s) ∈ E}, for a given x and a fixed relation E. Here, s

might be an “anonymous credential” issued by some authority whose public key is x; the relation
E would assert that s is a valid credential relative to x, possibly satisfying some other constraints
as well.

A well-known example of an anonymous credential system of this type is the IDEMIX system
[CL01]. This system comes with efficient zero-knowledge protocols for proofs of possession of
credentials that we will be able to exploit. IDEMIX may also be equipped with mechanisms for
identity escrow, revocation, etc., which automatically enhances the functionality of any strong
CAID/CAKE protocol.

Similarly, we may have T = {t : (y, t) ∈ F}, for a given y and fixed relation F . In this case the
description 〈R 〉 of R is the pair (x, y).

Two generalizations of potential interest are as follows.
First, suppose we have binary relations R1, . . . , Rn. We can define their vectored union as the

binary relation

R = {((s1, . . . , sn), (t1, . . . , tn)) : (sj , tj) ∈ Rj for some i = 1 . . n}.

For example, each relation Rj may represent a pair of “compatible” credentials, and the protocol
should succeed if the two parties hold one such pair between them. Or more simply, the two parties
may agree on a list of “clubs”, and then determine if there is any one club to which they both
belong.

Second, we might consider the intersection of a product relation with a partial equality relation:

{(s, t) : σ(s) = τ(t)},

where σ and τ are appropriate functions. Such relations can usefully model the “secret handshake”
scenario, where σ(s) and τ(t) perhaps represent “group names”. A special case of this, of course,
is the equality relation. A CAKE protocol for equality is essentially a PAKE protocol — this is
discussed in §7.

One might even combine the above, considering vectored unions of such intersections.
The reason for singling out these types of relations is that they are of potential practical interest,

and admit efficient protocols.

4 Bootstrapping an authentication protocol

We shall presently give efficient protocols that realize strong CAID/CAKE functionalities for various
relations of interest. All of these protocols work assuming secure channels. Of course, this is not
interesting by itself, since we really want to use these protocols to establish secure channels in a
setting without any existing authentication mechanism.

14

Without at least authenticated channels, it is impossible to realize strong CAID/CAKE. The
solution is to weaken the notion of security, using the idea of “split functionalities”, introduced in
[BCL+05]. Our definitions of the CAID/CAKE functionalities are simply the split versions of the
strong CAID/CAKE functionalities.

Although the idea of using split functionalities for nonstandard authentication mechanisms was
briefly mentioned in [BCL+05], it was not pursued there, and no new types of authentication proto-
cols were presented. In this section, we review the basic notions introduced in [BCL+05], adjusting
the definitions and results slightly to better meet our needs, and give some new constructions, as
well.

4.1 Details: split functionalities

We give a slight reformulation of the definitions and results in [BCL+05]: we focus on the two-party
case, and we also make a few small syntactic changes that will allow us to apply the results in a
more convenient way.

The basic idea is the same as in [BCL+05]. If F is a two-party ideal functionality involving two
parties, P and Q, then the “split functionality” sF works roughly as follows. Before any computa-
tion begins, the adversary partitions the set {P,Q} into authentication sets: in the two-party case,
the authentication sets are either {P} and {Q}, or the single authentication set {P,Q}. The parties
within an authentication set access a common instance of F , while parties in different authentica-
tion sets access independent instances of F . This is achieved by “mangling” SIDs appropriately:
each authentication set is assigned a unique “channel ID” chid , which is used to “mangle” the SIDs
of the instances of F . Thus, the most damage an adversary can do is to make P and Q run two
independent instances of F .

As we shall see, one can transform any protocol Π that realizes F , where Π relies on authen-
ticated and/or secure channels, into a protocol sΠ that realizes sF , where sΠ relies on neither
authenticated nor secure channels. Moreover, sΠ is almost as efficient as Π. This result was first
proved in [BCL+05]; however, we give a more efficient transformation — based on Diffie-Hellman
key exchange — that is better suited to the two-party case.

Our CAID/CAKE functionalities are simply defined as the split versions of the strong
CAID/CAKE functionalities: sF∗caid, sF∗cake, sF∗pcaid, and sF∗pcake. Protocols for these function-
alities may be obtained by applying the split transformation to the protocols for the corresponding
strong functionalities.

4.2 General split functionalities

Now we give the general split functionality in more detail. Let F be an ideal functionality for a two
party protocol. As in §2.2, we assume that the SID for F is of the form parent/ext :Ppid :Qpid : data,
and that F never generates an output for a party before receiving an input from that party.8

The split functionality sF has an SID s := parent/ext :Ppid :Qpid : data of the same form as F ,
and for an adversary A runs as follows.

• Upon receiving a message init from a party X ∈ {P,Q}: record (init, Xpid), send
(init, Xpid) to A.

• Upon receiving a message (authorize, Xpid,H, chid) from A, such that

8[BCL+05] are a bit fuzzy on this point — take a look at Step 3 of the Computation part of their sF functionality
. . . what happens if Pi has not been initialized?

15

1. Xpid is the PID of some X ∈ {P,Q};
2. {Xpid} ⊆ H ⊆ {Ppid, Qpid};
3. (init, Xpid) has been recorded;

4. no tuple (authorize, Xpid, . . .) has been recorded; and,

5. if a tuple (authorize, X ′pid,H′, chid ′) has been recorded, then either (a) H′ = H and
chid ′ = chid or (b) H′ ∩H = ∅ and chid ′ 6= chid

do the following:

1. if no tuple of the form (authorize, ·,H, chid) has already been recorded, then initialize
a “virtual” instance of F with SID

sidH := chid/sid ;

we denote this instance FH and define chidH := chid ; in addition, for each Y ∈ {P,Q},
if Ypid /∈ H or Y is corrupt, then notify FH that the party with PID Ypid and SID sidH
is corrupt, and forward to A the response of FH to this notification;

2. record the tuple (authorize, Xpid,H, chid);

3. send the output message (authorize, chid) to X.

• Upon receiving a message (input, v) from X ∈ {P,Q}, such that a tuple
(authorize, Xpid,H, chid) has been recorded: send the message v to FH, as if coming as
an input from the party with PID Xpid and SID sidH.

• Upon receiving a message (input, Xpid,H, v) from A, such that

1. Xpid is the PID of some X ∈ {P,Q};
2. a (uniquely determined) instance FH with Xpid ∈ H has been initialized; and,

3. Xpid /∈ H,

send the message v to FH, as if coming as an input from the party with PID Xpid and SID
sidH.

• Whenever an instance FH delivers an output v to a party with PID Xpid, where Xpid is
the PID of some X ∈ {P,Q}, do the following: if Xpid ∈ H, then send the output message
(output, v) to X, else send the output message (output, Xpid, v) to A.

• Upon receiving notification that a party X ∈ {P,Q} is corrupted, such that a (uniquely
determined) instance FH with Xpid ∈ H has been initialized: notify FH that the party with
PID Xpid and SID sidH is corrupted, and forward to A the response of FH to this notification.

We have a slightly different formulation of split functionalities than in [BCL+05], but the
differences are mainly syntactic — our method of mangling the SIDs fits nicely in to our set of
conventions on SIDs. In addition, in [BCL+05], a party is allowed to send an input as long as its
authentication set is defined, whereas we require that a party wait for its explicit authorization
notification before proceeding. This seems to avoid some potential confusion.

16

4.3 A multi-session secure channels functionality

The next goal is to present a “multi-session extension” of our ideal functionality for secure channels.
One approach would be to use the definition in [CR03]. However, a direct application of that
definition would be unworkable, for two reasons: first, it would require that any implementation
keep track of all subsession IDs that were ever used; second, the multi-session extension applies to
all possible parties, whereas, we can really only deal with the same two parties in all subsessions.
So for these reasons, we present our own multi-session extension, which we denote Fmsc. It is quite
tedious, and not very enlightening. Note that in addition to secure channels, it also provides for
channels that only provide authentication. Also, for secure channels, the ideal functionality is based
on the ideal functionality Fsch in §2.6 that deals with variable length messages.

For an SID sid := parent/ext :Ppid :Qpid : , we define a valid subsession ID to be a tuple of the
form (tag, Ppid, Qpid) or (tag, Qpid, Ppid), where tag is an arbitrary bit string. For an adversary A,
the ideal functionality Fmsc then runs as follows:

Init: Initialize a counter cnt to 0, and sets Ready, Send, Done, Deliver, AuthReady, and AuthSend
to ∅.

• Upon receiving an input message (ready, tag, Xpid, Ypid,maxlen) from a party Y ∈ {P,Q},
such that (tag, Xpid, Ypid) is a valid subsession ID and Ypid is the PID of Y , do the following:
(1) increment cnt, (2) add the tuple (cnt, tag, Xpid, Ypid,maxlen) to Ready, and (3) send the
message (ready, tag, Xpid, Ypid,maxlen) to A.

• Upon receiving an input message (send, tag, Xpid, Ypid, v) from a party X ∈ {P,Q}, such
that (tag, Xpid, Ypid) is a valid subsession ID and Xpid is the PID of X, do the following: (1)
increment cnt, (2) add the tuple (cnt, tag, Xpid, Ypid, v) to Send, and (3) send the message
(send, tag, Xpid, Ypid, len(v)) to A.

• Upon receiving a message (lock, i, j) from A such that for some tag, Xpid, Ypid, v,maxlen,
the set Send contains the tuple (i, tag, Xpid, Ypid, v), the set Ready contains the tuple
(j, tag, Xpid, Ypid,maxlen), and len(v) ≤ maxlen, do the following:

1. remove the tuple (i, tag, Xpid, Ypid, v) from Send;
2. remove the tuple (j, tag, Xpid, Ypid,maxlen) from Ready;
3. add the tuple (i, tag, Xpid, Ypid, v) to both Done and Deliver.

• Upon receiving a message (done, i) from A such that for some tag, Xpid, Ypid, v, the set Done
contains the tuple (i, tag, Xpid, Ypid, v), do the following:

1. remove the tuple (i, tag, Xpid, Ypid, v) from Done;
2. if X ∈ {P,Q} is the party whose PID is Xpid, send the message (done, tag) to X.

• Upon receiving a message (deliver, i) from A such that for some tag, Xpid, Ypid, v, the set
Deliver contains the tuple (i, tag, Xpid, Ypid, v), do the following:

1. remove the tuple (i, tag, Xpid, Ypid, v) from Deliver;
2. if Y ∈ {P,Q} is the party whose PID is Ypid, send the message (deliver, tag, v) to Y .

• Upon receiving an input message (auth-ready, tag, Xpid, Ypid) from a party Y ∈ {P,Q}, such
that (tag, Xpid, Ypid) is a valid subsession ID and Ypid is the PID of Y , do the following: (1)
increment cnt, (2) add the tuple (cnt, tag, Xpid, Ypid) to AuthReady, and (3) send the message
(auth-ready, tag, Xpid, Ypid) to A.

17

• Upon receiving an input message (auth-send, tag, Xpid, Ypid, v) from a party X ∈ {P,Q},
such that (tag, Xpid, Ypid) is a valid subsession ID and Xpid is the PID of X, do the following:
(1) increment cnt, (2) add the tuple (cnt, tag, Xpid, Ypid, v) to AuthSend, and (3) send the
message (auth-send, tag, Xpid, Ypid, v) to A.

• Upon receiving a message (auth-deliver, i, j) from A such that for some tag, Xpid, Ypid, v,
the set AuthSend contains the tuple (i, tag, Xpid, Ypid, v) and the set AuthReady contains the
tuple (j, tag, Xpid, Ypid), do the following:

1. remove the tuple (i, tag, Xpid, Ypid, v) from AuthSend;

2. remove the tuple (j, tag, Xpid, Ypid) from AuthReady;

3. if Y ∈ {P,Q} is the party with PID Ypid, send the output message (auth-deliver, tag, v)
to Y .

• Upon receiving a corruption notice for X ∈ {P,Q}, then if Xpid is the PID of X, for each
tuple in Send of the form (i, tag, Xpid, Ypid, v), A is given this tuple.

NOTES:

1. The adversary is free to effectively change the messages that are in transit when a sender is
corrupted — this is done by simply adding the modified messages to the Send and AuthSend
sets, and ignoring the originals.

4.4 Split key exchange

We now discuss a simple, low-level primitive: split key exchange. Let K be a key set. The ideal
functionality Fske (parameterized by K) has an SID of the form parent/ext :Ppid :Qpid : , and for
an adversary A, runs as follows:

• Upon receiving a message init from a party X ∈ {P,Q}: record (init, Xpid), send
(init, Xpid) to A.

• Upon receiving a message (authorize, Xpid,H, chid ,K) from A, such that

1. Xpid is the PID of some X ∈ {P,Q},
2. {Xpid} ⊆ H ⊆ {Ppid, Qpid},
3. K ∈ K,

4. (init, Xpid) has been recorded,

5. no tuple (authorize, Xpid, . . .) has been recorded, and

6. if a tuple (authorize, X ′pid,H′, chid ′,K ′) has been recorded, then either (a) H′ = H and
chid ′ = chid or (b) H′ ∩H = ∅ and chid ′ 6= chid,

do the following:

1. record the tuple (authorize, Xpid,H, chid ,K);

2. if KH is not yet defined, then define it as follows:

– if H = {Xpid}, then KH ← K, else KH ←R K;

3. send the output message (key, chid ,KH) to X.

18

We now present a simple protocol, Πske, that realizes the functionality Fske, under the decisional
Diffie-Hellman (DDH) assumption. Assume a group G of prime order q generated by g ∈ G where
the DDH holds. The description of G, q, and g is viewed here as a system parameter. We also
assume a PRG that maps a random w ∈ G to a pair of keys (K,Kauth) ∈ K × Kauth, where Kauth

is some large set.
For two parties P and Q with SID sid := parent/ext :Ppid :Qpid : , protocol Πske runs as follows.

The roles played by P and Q are asymmetric. The protocol for P runs as follows:

1. P waits for an input init; then it computes x←R Zq, u← gx, and sends u to Q.

2. P waits for v ∈ G from Q; then it computes w ← vx, derives keys K,Kauth from w using the
PRG, sets chid ← 〈u, v 〉, sends the key Kauth to Q (after erasing all internal state other than
chid and K).

3. P waits for a continuation signal, and then outputs and outputs (key, chid ,K) (after erasing
all internal state).

Note that in the UC framework, a party is allowed to only send one message at a time; therefore,
P first sends a message to Q (via the adversary, of course), and then waits for a continuation signal
(provided by the adversary) before delivering its own output.

The protocol for Q runs as follows:

1. Q waits for an input init; then it then does nothing, except to notify the network (i.e.,
adversary) that it is ready.

2. Q waits for u ∈ G from P ; then it computes y ←R Zq, v ← gy, w ← uy, derives keys K,Kauth

from w, erases y, w, sets chid ← 〈u, v 〉, and sends v to P .

3. Q waits forK ′auth ∈ Kauth from P ; then it tests ifKauth = K ′auth; if so, it outputs (key, chid ,K)
(after erasing all internal state).

Theorem 1 Assuming the DDH for G, an appropriate PRG, and assuming the set Kauth is large,
protocol Πske realizes the ideal functionality Fske.

Proof. Our main task is to design a simulator A∗, given an adversary A. The basic structure of A∗

is that it interacts with the ideal functionality Fske, and runs an instance of A internally.

Init: Initialize a boolean variable safe← false.

P1: When A∗ receives the message (init, Ppid) from Fske, where P is currently honest and Step P1
of the simulation has not already been executed, A∗ computes x←R Zq, u← gx, and gives u
to A as if it were a message from P to Q.

P2: When A requests that a message v′ ∈ G be delivered to P , where P is currently honest and
Step P1, but not Step P2, of the simulation has already been executed, A∗ does the following:

• if Step Q2 of the simulation has been executed, and u = u′ and v = v′ (i.e., P and Q
have had “matching conversations”), and Q is currently honest, then:

– set safe← true;
– choose a random value K̂auth ∈ Kauth and give this to A, as if it were a message

from P to Q.

19

else:

– derive keys K,Kauth from (v′)x using the PRG
– give Kauth to A, as if it were a message from P to Q.

P3: When A delivers a continuation signal to P , where P is currently honest and Steps P1 and
P2, but not Step P3, of the simulation have already been executed, A∗ does the following:

• if safe then:

– send the message (authorize, Ppid, {Ppid, Qpid}, 〈u, v 〉,Kdef) to Fske, where Kdef ∈
K is some default key value (its value is not important);

else:

– send the message (authorize, Ppid, {Ppid}, 〈u, v′ 〉,K) to Fske, where K is as com-
puted in Step P2.

Q1: When A∗ receives the message (init, Qpid) from Fske, whereQ is currently honest and Step Q1
of the simulation has not already been executed, A∗ informs A that Q is ready.

Q2: When A requests that a message u′ ∈ G be delivered to Q, where Q is currently honest
and Step Q1, but not Step Q2, of the simulation has already been executed, A∗ computes
y ←R Zq, v ← gy, and gives v to A as if it were a message from Q to P .

Q3: When A requests that a message K ′auth be delivered to Q, where Q is currently honest and
Steps Q1 and Q2, but not Step Q3, of the simulation have been executed, do the following:

• if safe then:

– verify that K ′auth matches the random value of K̂auth generated in Step P5 of the
simulation; if so, send the message (authorize, Qpid, {Ppid, Qpid}, 〈u, v 〉,Kdef) to
Fske;

else:

– derive keys K,Kauth from (u′)y using the PRG
– if K ′auth = Kauth then
∗ send the message (authorize, Qpid, {Qpid}, 〈u′, v 〉,K) to Fske.

Pc: Upon receiving a corruption notice for P :

• if the corruption occurs between the execution of Steps P1 and P2 of the simulation,
then A∗ gives the message x to A, representing the internal state of P ;

• if the corruption occurs between the execution of Steps P2 and P3 of the simulation, then
A∗ gives to A the value K, representing the internal state of P , computed as follows:

– if safe then:
∗ send the message (authorize, Ppid, {Ppid, Qpid}, 〈u, v 〉,Kdef) to Fske, obtaining

the response (key, chid , K̂) (which is intended for P , but who is now under the
control of A∗);
∗ K := K̂;

else:
∗ K := K, where K is as computed in Step P2 of the simulation.

Qc: Upon receiving a corruption notice for Q:

20

• if the corruption occurs between the execution of Steps Q2 and Q3 of the simulation,
then A∗ gives to A the value (K,Kauth), representing the internal state of Q, computed
as follows:

– if safe then:
∗ send the message (authorize, Qpid, {Ppid, Qpid}, 〈u, v 〉,Kdef) to Fske, obtaining

the response (key, chid , K̂) (which is intended for Q, but who is now under the
control of A∗);
∗ set K := K̂;
∗ set Kauth := K̂auth, where K̂auth is as computed in Step P2 of the simulation;

else:
∗ derive (K,Kauth) from (u′)y using the PRG.

That completes the description of A∗. We now argue that A∗ is a good simulator.
First, we claim that with overwhelming probability, the “authorize” messages that A∗ sends to

Fske are “consistent”, in the sense that either both parties are assigned singleton authentication
sets with distinct channel IDs, or both parties are assigned doubleton authentication sets with the
same channel ID.

Observe that by the logic of A∗, if P and Q are assigned doubleton authentication sets, then
their channel IDs are both equal to 〈u, v 〉.

Now consider a particular execution of A∗ in which both parties are assigned the same channel
ID. We want to show that with overwhelming probability, both are assigned doubleton authentica-
tion sets. By the logic of A∗, the common channel ID must be 〈u, v 〉. Now consider what happened
when Step P2 was executed.

• Unless a very unlikely event occurred, we may assume that Step Q2 of the simulation has
been executed, and u = u′ and v = v′.

• Further, we claim that unless a very unlikely event occurred, Q has not been authorized yet:
suppose to the contrary that it were; this would mean that Step Q3 was already executed,
and at that earlier time, A was able to guess the key Kauth derived from gxy; but this is a
very unlikely event, under the DDH and PRG assumptions, and the assumption that Kauth

is large.

• Since Q has not yet been authorized, but eventually will become authorized, it follows that
Q is not currently corrupt and Step Q3 has not yet been executed.

It follows that in Step P2, unless a very unlikely event has occurred, A∗ will set safe← true; later,
when Step P3 (or possibly Step Pc) is eventually executed, A∗ will find safe = true, and so assign
P a doubleton authentication set. Similarly, when Step Q3 (or possibly Step Qc) is eventually
executed, A∗ will find safe = true, and so assign Q a doubleton authentication set.

That proves the claim that the authorization messages are consistent. The other thing that one
has to show is that the substitution of the real keys K,Kauth by random keys is indistinguishable.
This follows easily from the DDH and PRG assumptions. The one subtlety to highlight is the fact
that this substitution on Q’s side only occurs when P has already erased x — this ensures that
if P is corrupted after Q outputs the random substitutions, both x and y have been erased, as
otherwise, the simulator would be “caught in the act”. �

21

4.5 Realizing split multi-session secure channels

Our goal now is to realize the split version sFmsc of the multi-session secure channels functionality
Fmsc presented in §4.3. This will be done with an Fske-hybrid protocol Πsmsc, where Fske is the
split key exchange functionality discussed in §4.4.

At a high-level, Πsmsc, works as follows:

1. Wait for an input message init; then send the message init to Fske.

2. Wait for a message (key, chid ,K) from Fske; then:

(a) derive subkeys required to implement bidirectional secure channels, erasing the key K;
these channels will be implemented using a variant of Beaver and Haber’s technique
[BH92], as roughly described below;

(b) generate the output message (authorize, chid).

3. Now use the keys derived in the previous step to process the secure channels logic.

More details. We describe at a greater level of detail the logic in implementing the authenticated
and secure channels, using the shared key K. There are really two sets of channels: one from P to
Q, and one from Q to P . The protocol derives from K separate sets of subkeys for each direction,
erasing K, and then processes each direction in the same way, but independently. Thus, we describe
the logic generically in terms of a “sender” and “receiver”.

The implementation of authenticated channels is easy: sender and receiver share a long-term
MAC key, and this is used to authenticate messages.

The implementation of secure channels is a bit more involved. The sender and receiver start
out with shared keys consisting of a long-term MAC key and a PRG seed. From this seed, sender
and receiver generate (in a coordinated way) subsession keys used for individual subsessions, and
update the seed value as they go — for the security proof to work, it is essential that the old seed
values are erased. Each subsession key has a corresponding index, corresponding to its position in
the pseudo-random sequence.

Each time a “ready” input is received by the receiver, the receiver generates a new subsession
key, updates its seed, and sends a “control” message to the sender (authenticated using the long-
term MAC key) that consists of (i) the subsession ID, (ii) the value of maxlen, and (iii) the index of
the subsession key associated with that session. In addition, before sending this control message,
the receiver expands the subsession key, using a PRG, to obtain a one-time pad of length maxlen
and a one-time MAC key, erases the subsession key, and adds a record to a database that consists
of the subsession ID, the subsession key index, and the associated one-time pad and one-time MAC
key.

Each time a sender receives a “send” input, he adds a record to a database of pending data
messages, consisting of the subsession ID and the data message itself. Also, each time the sender
receives a control message from the receiver (with a valid MAC), this control message is added
to a database of control messages. Whenever the sender finds a pending data message that is
consistent with a control message (i.e., the subsession IDs match and the length of the message is
no more than the maxlen value in the control message), the sender does the following: he deletes the
corresponding records from both databases, and expands his seed sufficiently many times to obtain
the subsession key of appropriate index (retaining the intermediate subsession keys for possible
future use); he then expands the subsession key, and uses these one-time keys to encrypt and
MAC the message, erases the message, subsession key and corresponding one-time keys, and sends
a “data” message to the receiver consisting of (i) the subsession key index, (ii) the ciphertext,

22

and (iii) the one-time MAC tag. He also sends a “done” message up the local protocol stack.
An implementation may choose to send the “data” and “done” messages in either order. Upon
receiving this “data” message, the receiver retrieves and deletes the record with matching subsession
key index from its own database, verifies the one-time MAC, decrypts the ciphertext, and sends
the decrypted message up the protocol stack.

Implementation note. Note that while this implementation requires a good deal of bookkeeping, as
well as the additional “control” messages, most of these potential inefficiencies can be avoided in
protocols that run in lock step: neither sender nor receiver will be more than one message ahead
or behind the other, and so the amount of data stored will be minimal; moreover, most “control”
messages can be piggybacked on “data” messages, avoiding extra interaction.

One can prove the following:

Theorem 2 The Fske-hybrid protocol Πsmsc realizes the ideal functionality sFmsc, assuming a se-
cure PRG and secure MAC.

We only sketch the main idea of the proof. When P and Q are assigned to different authen-
tication sets, the protocol essentially provides no security guarantees, so there is not much to say
in that case. The interesting case is when P and Q are assigned to the same authentication set.
In designing a simulator for this case, the “lock” event for a given subsession occurs when the
sender has requested the message to be sent, and the corresponding control message has arrived
at the sender. By using one-time pads in this way, it is easy to simulate adaptive corruptions: the
“data” message is simulated by just sending a random bit string as a ciphertext; if the sender is
subsequently corrupted, all relevant internal state has been erased, and so nothing is leaked; if the
receiver is corrupted while the “data” message is in transit, the simulator asks for the message, and
then computes a simulated one-time pad by XORing the message and the fake ciphertext.

4.6 Realizing general split functionalities

Let F be an arbitrary two-party ideal functionality. Let G be a setup functionality, such as a CRS.
Let Π be an (Fach,Fsch)-hybrid protocol that multi-realizes F with joint access to G (where Fach

is defined in §2.5 and Fsch is defined in §2.6).
Our goal is to use Π to design an sFmsc-hybrid protocol sΠ that multi-realizes sF with joint

access to G. The point is, sΠ does not require secure channels. Moreover, instantiating sFmsc with
Πsmsc, we obtain the a protocol sΠ[sFmsc/Πsmsc] that multi-realizes sF with joint access to G.

At a high level, sΠ works as follows:

1. Wait for an input message init; then send the message init to sFmsc.

2. Wait for a message (authorze, chid) from sFmsc; then do the following:

(a) initialize a “virtual” instance of Π, assigning it a PID and SID that are the same as that
of this protocol instance, except that the SID pathname is prefixed chid ;

(b) generate the output message (authorize, chid).

3. Proceed as follows:

(a) process input requests by passing them to the virtual instance of Π;

(b) pass along outputs of the virtual instance of Π as outputs of this protocol instance;

23

(c) use sFmsc to implement the secure channels used by the virtual instance of Π, translating
the SIDs associated with the various secure channel instances to corresponding subsession
IDs.

Theorem 3 If Π is an (Fach,Fsch)-hybrid protocol that multi-realizes F with joint access to G,
then sΠ is an sFmsc-hybrid protocol that multi-realizes sF with joint access to G.

NOTES:

1. This is essentially the same as the main technical result (Lemma 4.1) of [BCL+05], but with
the following differences:

(a) We assume that Π works with secure channels, while [BCL+05] assumes authenticated
channels. Since secure channels are easily built from authenticated channels (at least
assuming erasures), this makes little difference from a theoretical perspective; however,
from a practical point of view, it seems better to start with secure channels.

(b) The name mangling is somewhat different; although this is mainly just a syntactic dif-
ference, with our specialized naming conventions, our formulation more readily allows
Π to make use of subroutines, whereas with the formulation in [BCL+05], it is not clear
how this is to be done. In fact, since authenticated channels are actually implemented
as subroutines, it is not clear what naming conventions are to be used for the SIDs of
these subroutines in [BCL+05].

(c) The theorem in [BCL+05] essentially says that if Π 2-realizes F with joint access to
G (i.e., multi-realizes with a limit of just 2 instances), then sΠ is an (sFmsc,G)-hybrid
protocol that realizes sF . This is weaker (and much less useful) than the statement of
our theorem, but the proof goes through without any difficulties.

2. The proof idea is fairly natural, even though the details are a bit involved:

(a) Suppose we start with an adversary A that attacks sΠ.

(b) From A, we can naturally derive an adversary Ã that attacks Π.
This attack essentially takes place in the “virtual world”. In this virtual world, there
may well be two parties with the same PID, one of whom is honest and one of whom is
corrupt; however, these two parties will have different SIDs. Because of this, the notion
of PID-wise corruption is not useful in this setting.

(c) From the security property of Π, we obtain an equivalent adversary Ã∗ whose attack on
F in our virtual world is indistinguishable from the attack of Ã on Π.

(d) From Ã∗, we naturally derive an adversary A∗ whose attack on sF is indistinguishable
from the attack of A on sΠ.

3. Our restrictions in §2.3 were in part motivated by the issues raised in points 1b and 2b above.

5 UC zero knowledge

Before getting into strong CAID/CAKE protocols, we need to discuss an essential building block:
practical protocols for UC ZK (zero knowledge).

24

5.1 The basic ideal functionality

Let R be a binary relation, consisting of pairs (x,w): for such a pair, x is called the “statement”
and w is called the “witness”.

The SID for a ZK protocol is of the form parent/ext :Ppid :Qpid : , where P is the prover and Q
the verifier. For an adversary A, an instance of Fzk with such an SID runs as follows:

1. Wait for both:

(a) an input message (send, x, w) from P such that (x,w) ∈ R; then send (send, x) to A;
(b) an input message ready from Q; then send the message ready to A.

2. Wait for the message deliver from A; then send the output message (deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given w, and is allowed to
change the value of (x,w) to any value (x′, w′) ∈ R (at any time before Step 2).

Note the similarity with the authenticated channels functionality Fach in §2.5. All that is
different is that the ideal functionality guarantees that x comes with a corresponding witness.

5.2 An enhanced functionality

For our purposes, we need a slightly stronger form of security, which we call “enhanced” ZK.
The basic idea is that we want to delay revealing the statement x to the verifier until the last
possible moment (this helps prevent the simulator from being “over committed”). In addition,
since we eventually use secure channels, we won’t even reveal x to the adversary if neither prover
nor verifier are corrupted.

Again, let R be a binary relation, consisting of pairs (x,w). Also, let ` : {0, 1}∗ → {0, 1}∗ be
an “information leakage” function. As for ZK, the SID for an enhanced ZK protocol is of the form
parent/ext :Ppid :Qpid : , where P is the prover and Q the verifier.

For an adversary A, an instance of Fezk with SID sid := parent/ext :Ppid :Qpid : runs as follows:

1. Wait for both:

(a) an input message (send, x, w) from P such that (x,w) ∈ R; then send the message
(send, `(x)) to A;

(b) an input message ready from Q; then send ready to A.

2. Wait for the message lock from A.

3. Wait for both:

(a) a message done from A; then send the output message done to P .
(b) a message deliver from A; then send the output message (deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given (x,w) and is allowed
to change the value of (x,w) to any value (x′, w′) ∈ R (at any time before Step 2).

Note the similarity with our secure channels functionality. Here, the functionality is parameter-
ized by the information leakage function `, which is used to model the fact that some information
about x may be leaked to an eavesdropping adversary. Typically, this information will be some
rough information about the “size and shape” of x that ultimately determines the lengths of the
ciphertexts that must be sent in an implementation.

As we will see, realizing Fezk is not really any harder than realizing Fzk.

25

5.3 Parameterized relations

In the above discussion, the relation R was considered to be a fixed relation. However, for many
applications, it is convenient to let R be parameterized by a some system parameter (see §2.4).
To realize the ZK (or extended ZK) functionality, it may be necessary to assume that the system
parameter was generated in a certain way.

For example, a ZK protocol might require that the system parameter contains an RSA modulus
N that is the product of two primes. To realize the ZK ideal functionality, it might not even be
necessary that the factorization of N remain hidden. In such a case, the system parameter might
be profitably viewed as a public-coin system parameter. This means that the environment may
know the factorization of N , which may be useful to model situations where the factorization of N
is used, say, to sign messages in higher-level protocols that use a ZK protocol as a subprotocol.

5.4 Relaxing the requirements: allowing a gap between soundness and zero
knowledge

For some applications (such as IDEMIX “show proofs”), significant efficiency improvements are
possible if one relaxes the requirements a bit. One might insist that witnesses supplied by honest
provers are of a certain form, while allowing a dishonest prover to supply a witness of a more
general form.

For example, perhaps an honest prover is required to supply an integer witness that lies in some
interval — technically, this requirement may be necessary to ensure simulatability for an honest
prover, i.e., zero knowledge. However, perhaps we wish to allow a dishonest prover to supply
an integer witness in a slightly larger interval — technically, this is due to a limitation of the
“knowledge extractor” that could perhaps be overcome, but at a significant cost to the efficiency
of the protocol.

Formally, this relaxation is achieved by modifying the ZK ideal functionality — defining one
relation R for honest provers, and another relation R′ ⊇ R for dishonest provers.

5.5 Practical UC ZK

Practical ZK protocols exist for the types of relations that we will be needed in our strong
CAID/CAKE protocols — indeed, our protocols were designed with such protocols specifically
in mind. In a companion paper, we give a detailed account of the current state of the art for such
protocols. Here, we content ourselves with a brief summary.

We will be proving statements of the form

Kw1 ∈ D1, . . . , wn ∈ Dn : φ(w1, . . . , wn). (1)

Here, we use the symbol “ K” instead of “∃” to indicate that we are proving “knowledge” of a
witness, rather than just its existence. Here, the Di’s are domains which are finite sets of integers
and φ is a predicate — we will presently place restrictions on the form of the domains and the
predicate. A witness for a statement of the form (1) is a tuple (w1, . . . , wn) of integers such that
wi ∈ D∗i for i = 1 . . n and φ(w1, . . . , wn) — here, the each D∗i is a finite set of integers that contains
the domain Di — we discuss this in greater detail below.

More on the predicate. The predicate φ(w1, . . . , wn) is given by a formula that is built up from
“atoms” using arbitrary combinations of ANDs and ORs. Each atom is of the form

k∏
j=1

g
Fj

j = 1,

26

where the gj ’s are elements of an abelian group, and the Fj ’s are integer polynomials in the variables
w1, . . . , wn.

More on groups. Different groups may be used in different atoms. The descriptions of the
groups appearing in the predicate φ will in general be given as system parameters (see 2.4). One
requirement is that the orders of groups contain no small prime factors (where “small” means
less than an implementation-defined parameter, which is typically a 160–256 bit number); this
requirement must be ensured by the trusted party that sets up the system parameters, if it cannot
be verified directly; it is possible to relax this requirement, but we shall not discuss this possibility
here. Another requirement is that encodings of group elements must be efficiently recognizable
(in addition to having efficient algorithms for performing group operations, of course). It is not
required that the discrete logarithm problem in the group is hard; however, if this assumption is
allowed, it can be exploited for efficiency gains.

For our applications, we will mainly be working with two types of groups: groups of known prime
order q, and groups of unknown composite order, which arise in anonymous credential systems such
as IDEMIX. In the original presentation of the IDEMIX system, one works with the group Z∗N ,
or the subgroup of elements with Jacobi symbol 1, where N is the product of two strong primes
(i.e., each prime is twice a prime plus 1). Unfortunately, the order of these groups is divisible by 2,
violating our requirement stated above that group orders have no small prime divisors. Working
with the group (Z∗N)2 is not an option either, as this group is not efficiently recognizable. An
elegant way to fix this problem is to use the group of signed quadratic residues, (Z∗N/{±1})2, which
has no small prime divisors but is efficiently recognizable — this is yet another fruitful application
of signed quadratic residues (see [HK09]). All the IDEMIX protocols are trivially adjusted to work
with this group. Also, note that since a credential-issuing authority will be using the factorization
of N to issue credentials, we formally view N as a public-coins system parameter. This ensures
that our protocols retain their security properties in an environment in which credentials are being
issued, without having to separately analyze the interaction between the credential-issuing protocol
and the ZK protocol.

More on domains. In general, the domain of a variable is a set of integers bounded in absolute
value by a given integer m:

B(m) := {w ∈ Z : −m ≤ w < m}.

If a variable wi is specified to lie in the domain Di = B(m), then an honest prover must supply
w ∈ Di, while a dishonest prover is allowed to supply a witness in the domain D∗i = B(mt), where t
is an implementation-defined parameter. This “gap” between honest provers and dishonest provers
was discussed in §5.4. In typical implementations, t may be a 200–400 bit integer. Of course, if wi
only appears as an exponent of group elements whose orders are known to divide m, then we may
assume that wi is reduced modulo m, and thus take t = 1; in this case, we may simply write Di
and D∗i as Zm.

Implementations. It is known how to construct efficient UC zero-knowledge protocols for these
types of statements, under reasonable assumptions, by

(i) combining known techniques to obtain efficient Σ-protocols,

(ii) converting these Σ-protocols to corresponding Ω-protocols by essentially verifiably encrypting
the witness,

(iii) and converting these Ω-protocols into efficient UC ZK protocols by using an appropriate type
of trapdoor commitment scheme.

27

The techniques for (i) are essentially the (straightforward) generalization of Schnorr proofs [Sch91],
the OR-proof technique [CDS94], and techniques for proving multiplicative relations among com-
mitted values [CS97, FO99]. The techniques for (ii) and (iii) are found in [MY04] — this yields
practical Fach-hybrid protocols that multi-realize Fzk with joint access to a CRS; using the “com-
mitted proofs” idea from Jarecki and Lysyanskaya [JL00], we obtain practical Fsch-hybrid protocols
that multi-realize Fezk with joint access to a CRS.

The computational complexity of these proof systems can be easily related to the arithmetic
circuit complexity of the polynomials that appear in the description of φ: the number of exponenti-
ations is proportional to the sum of the circuit complexities; a more precise running time estimate
depends on the types of groups and domains.

Extensions. We have just defined a simple yet expressive language for practical UC ZK; we
now extend the language in a number of ways. In principle, these extensions do not increase the
expressibility of the language. However, these extensions are make it easier to directly and naturally
express more complex relations, and more importantly, they make it easier for an “optimizing
compiler” to generate much more efficient protocols. The extended language allows atoms that are
predicates of the following type:

• F = 0;

• F ≥ 0;

• F ≡ 0 (mod m);

• gcd(F,m) = 1;

here, F is an integer polynomial in the variables w1, . . . , wn, and m is a positive integer. Note that
the predicate F = 0 can be expressed in the base language by using the additive group Z; the other
three types of predicates are easily expressed using this type of predicate. In the companion paper,
we discuss conditions under which the language may be extended more generally. We also discuss
another extension to the language, which allows some variables to be quantified using ∃ rather
than K. The idea is that witnesses quantified under ∃ are asserted just to exist, rather than to be
explicitly “known” by the prover. Making sense of this formally requires some effort; however, the
effort pays off in that the resulting ZK protocols may be substantially more efficient (as witnesses
quantified under ∃ do not have to encrypted using Paillier encryption, which is quite expensive),
and even those these protocols are not really UCZK, they may still be used in a modular way as
building blocks in larger protocols.

6 Strong CAID/CAKE protocols

6.1 A protocol for vectored unions of product relations

We present here a protocol Π0 for F∗caid that works for a vectored union of product relations (see
§3.4).

We assume the relation is described by values x1, . . . , xk and y1, . . . , yk. Party P has inputs
s1 ∈ S∗1 , . . . , sk ∈ S∗k , and Q has inputs t1 ∈ T ∗1 , . . . , tk ∈ T ∗k . They are trying to determine if

k∨
i=1

[
(xi, si) ∈ Ei ∧ (yi, ti) ∈ Fi

]
,

for fixed relations E1, . . . , Ek and F1, . . . , Fk.

28

We assume that as system parameters, we have a group G of prime order q, and random
generator g. We will need to assume that the computational Diffie-Hellman (CDH) assumption
holds in this group. This protocol also requires some extra machinery, described below.

1a. P computes hL ←R G and sends hL to Q over a secure channel.

1b. Q computes hR ←R G and sends hR to P over a secure channel.

2a. P waits for hR, and then computes:

for i = 1 . . k:
αi ←R Zq, α′i ←R Zq
if (xi, si) ∈ Ei

then ei ← gαi

else ei ← hR/g
α′i

Using Fezk, P proves to Q:

K{si ∈ S∗i , α′i ∈ Zq}ki=1 :
[k∧
i=1

(
(xi, si) ∈ Ei ∨ gα

′
i = hR/ei

)]
;

Note that e1, . . . , ek are delivered to Q via the Fezk functionality after P erases α′1, . . . , α
′
k.

2b. Q waits for hL, and then computes:

for i = 1 . . k:
βi ←R Zq, β′i ←R Zq
if (yi, ti) ∈ Ei

then fi ← gβi

else fi ← hL/g
β′i

Using Fezk, Q proves to P :

K{ti ∈ T ∗i , β′i ∈ Zq}ki=1 :
[k∧
i=1

(
(yi, ti) ∈ Ei ∨ gβ

′
i = hL/fi

)]
;

Note that f1, . . . , fk are delivered to P via the Fezk functionality after Q erases β′1, . . . , β
′
k.

3a. P computes:

for i = 1 . . k:
if (xi, si) ∈ Ei

then ui ← fαi
i

else ui ←R G

3b. Q computes:

for i = 1 . . k:
if (yi, ti) ∈ Ei

then vi ← eβi
i

else vi ←R G

29

4. P and Q run a strong CAID subprotocol to evaluate the predicate

k∨
i=1

(ui = vi),

and output the result of this computation after erasing all local data.

NOTES:

1. The values hL and hR could be replaced by a system parameter h ∈ G.

2. We have reduced our original strong CAID problem to a simpler strong CAID problem in
Step 4. We discuss implementations of Step 4 below.

3. The intuition for the main idea of the protocol runs as follows. Suppose, for example, that P
is honest and Q is corrupt. In Step 2b, Q intuitively proves for each i = 1 . . k, either that it
knows ti such that (yi, ti) ∈ Ei or that it does not know βi; in the latter case, Q will not be
able to predict the value gαiβi when it comes to Step 4.

4. Assuming the Ei’s and Fi’s are relations based on an anonymous credential system like
IDEMIX, then all of the ZK protocols have relatively efficient implementations (see §5.5).

6.2 Security analysis

Our goal now is to show that protocol Π0 realizes F∗caid. Note that Π0 is a hybrid protocol that
uses the following ideal functionalities as subroutines: secure channels (i.e., Fsch), enhanced zero
knowledge (i.e., Fezk) for relations of the form appearing in Steps 2a and 2b of the protocol, and
F∗caid for relations of the form appearing in Step 4 of the protocol.

We need to make use of the CDH assumption. It will be helpful to introduce some notation.
For group elements u = gα and v = gβ in G, where α, β ∈ Zq, let us define [u, v] := gαβ. The CDH
assumption says that for random u, v ∈ G, it is hard to compute [u, v].

Theorem 4 Under the CDH assumption for G, protocol Π0 realizes F∗caid.

Proof. As usual, our goal is as follows: given an adversary A attacking Π0, construct a corresponding
simulator A∗ that attacks F∗caid, so that no environment can distinguish an attack of A from the
an attack of A∗. Moreover, the design of A∗ will follow the usual principle of running an instance
of A internally, and providing to A a simulated execution environment, including all of the ideal
functionalities used as subroutines in Π0.

We are assuming here that A attacks just a single instance of Π0. Because protocol Π0 uses
secure channels and enhanced zero knowledge, in the case where both P and Q are honest, the
simulation is trivial — A∗ just sends and receives various notifications to A, and these notifications
contain no real content; in addition, when A send a lock, deliver-left, or deliver-right
messages for the F∗caid functionality in Step 4, A∗ sends a corresponding message to its own F∗caid

functionality.
The simulation only becomes challenging when one of P and Q becomes corrupt. We only

consider the case Q becomes corrupted first (the case where P is corrupted first is symmetric).
Without loss of generality, we may assume that as soon as Q is corrupted, all of its subroutines
are immediately corrupted as well. In fact, it suffices to consider the case where Q (as well as all
of its subroutines) starts out corrupt: because of the use of secure channels and enhanced zero

30

knowledge, after obtaining Q’s input t1, . . . , tk, the simulator can simply start Q’s execution of
Π0 at the beginning, and run it forward to the point where Q was actually corrupted. Of course,
our simulator has to deal with the possibility that P may be corrupted at any time, and be able
to produce a convincing view of P ’s internal state at that time (and at which point in time, the
simulators task is complete).

Step 1. A∗ follows the protocol, generating hL ∈ G at random, and sending this to Q (i.e., the
real-world Q that is under the control of A).

Step 2. When Q performs his ZK proof, he gives to A∗ witnesses ti, β′i for i = 1 . . k, along with
the values f1, . . . , fk (which are sent directly to P).

Now consider P ’s ZK proof. If P is corrupted before the “lock” step of Fezk, then A∗ obtains
s1, . . . , sk from F∗caid, and computes the internal state of P as in the protocol.

Otherwise, if P is not corrupted before the “lock” step of Fezk, then A∗ computes αi ←R Zq,
ei ← gαi for i = 1 . . k, and delivers to Q the xi’s and ei’s which describe the statement being
proved.

If P is ever corrupted at any later point in time, A∗ obtains s1, . . . , sk, and gives these values
to A. In addition, for i = 1 . . k with (xi, si) ∈ Ei, if (xi, si) /∈ E, then A∗ replaces αi by a random
element of Zq, before sending (α1, . . . , αk) to A. Notice that A∗ does not need to send any of the α′i
values to A: we are exploiting here in an essential way the fact that P erases these values, and the
properties of the Fezk functionality, which does not commit us to the values e1, . . . , ek until after
the values α′1, . . . , α

′
k are erased.

Step 3. This is a local computation, so there is nothing to simulate. However, if P is corrupted
after this step, then A∗ obtains s1, . . . , sk, and in addition to these values, gives α1, . . . , αk and
u1, . . . , uk to A, where the αi’s are computed as above, and the ui’s are computed as follows: if
(xi, si) ∈ E, then ui ← fαi

i , else ui ←R G.
Step 4. After A “locks” in the inputs to the F∗caid subprotocol, the simulator A∗ obtains Q’s

inputs v1, . . . , vk to the subprotocol. Because Q is malicious, these inputs may not be correctly
computed, and so A∗ will adjust the values t1, . . . , tk obtained in Step 2 accordingly. Specifically,
for i = 1 . . k, if (yi, ti) ∈ Fi but vi 6= fαi

i , then A∗ replaces ti with ⊥. Recall that by convention,
(yi,⊥) /∈ Fi. Now A∗ submits the adjusted inputs t1, . . . , tk to the high level F∗caid functionality,
and delivers the result to Q.

That completes the description of A∗. Clearly, A∗ perfectly simulates A’s attack, except for
one possibility — namely, the output of the high-level F∗caid functionality may not agree with the
output of the low-level F∗caid functionality. We argue that this happens with negligible probability,
under the CDH assumption.

Let e1, . . . , ek and α1, . . . , αk be computed as described in Step 2 above. Let v1, . . . , vk and
t1, . . . , tk be computed as described in Step 4 above. Let t′1, . . . , t

′
k denote the original, unadjusted

ti values, as obtained in Step 2. Let u1, . . . , uk be computed as follows: if (xi, si) ∈ E, then
ui ← fαi

i , else ui ←R G. Our goal is to show that with overwhelming probability, for i = 1 . . k,
ui = vi if and only if (xi, si) ∈ Ei and (yi, ti) ∈ Fi.

Fix an index i = 1 . . k.
If (xi, si) ∈ Ei and (yi, ti) ∈ Fi, then by definition, ui = fαi

i = vi.
Now suppose (xi, si) /∈ Ei or (yi, ti) /∈ Fi. We want to show that ui 6= vi with overwhelming

probability. There are two cases to consider.
Case 1. (xi, si) /∈ Ei. In this case, ui is random, and so ui 6= vi with overwhelming probability.
Case 2. (xi, si) ∈ Ei and (yi, ti) /∈ Fi. In this case, ui = fαi

i . There are two subcases.
Case 2a. (yi, t′i) ∈ Fi. In this case, ui 6= vi by definition.
Case 2b. (yi, t′i) /∈ Fi. This is the interesting case. In Step 2, as a part of Q’s ZK proof, we

31

obtained the value β′i, and by definition, gβ
′
i = hL/fi. Also by definition, ui = [ei, fi]. We assume

that A can compute vi such that ui = vi with non-negligible probability, and obtain a contradiction.
Note that

[ei, hL] = [ei, figβ
′
i] = [ei, fi][ei, gβ

′
i] = [ei, fi]e

β′i
i .

The identity
[ei, hL] = [ei, fi]e

β′i
i (2)

is the key identity. If A is able to compute [ei, fi], then we can use A to compute [ei, hL]. Moreover,
in order to compute [ei, hL] in this way, we do not need the value αi. Thus, we can use A to solve a
random instance of the CDH problem with non-negligible probability, which contradicts the CDH
assumption. �

6.3 Implementing Step 4

In the case where k = 1, one can use the equality test protocol in §7. As an alternative to protocol
Π0, in the case where k = 1 one can use the protocol in §8.

In the general case where k ≥ 1, we suggest the following method. Assume we have a UC
protocol for evaluating an arithmetic circuit mod N , where N is a system parameter that is the
product of two large primes. Then to evaluate the boolean expression

k∨
i=1

(ui = vi), (3)

P chooses a0 ∈ ZN at random, and for i = 1 . . k, encodes ui as an element ai of ZN ; similarly, Q
chooses b0 ∈ ZN at random, and for i = 1 . . k, encodes vi as an element bi of ZN . Then P and Q
jointly evaluate in the expression (over ZN)

k∏
i=0

(ai − bi). (4)

If (3) is true, then (4) is zero; if (3) is false, then (4) is a random element of ZN .
Thus, we reduce the original strong CAID problem to a strong CAID problem for a simpler

predicate, namely, expressions of the type (3), and the latter is easily reduced to a simple circuit
evaluation problem modulo N , namely, expressions of the type (4). There are quite practical pro-
tocols for circuit evaluation, which we discuss in detail in a companion paper. The basic idea is
to use known techniques for circuit evaluation based on homomorphic encryption, making use of
a semantically secure variant of Camenisch and Shoup’s encryption scheme [CS03], which has the
advantage that generating public keys is very inexpensive (making security with adaptive corrup-
tions and erasures more practical) and proofs about plaintexts fit very nicely into the framework
for ZK proofs discussed in §5.5. These protocols require O(k) exponentiations, and O(log k) (the
circuit depth) rounds of communication, and O(k) total communication complexity. These same
bounds hold for the overall strong CAID protocol as well.

6.4 Variations

Using a hash. Note that in implementing Step 4, it may be more convenient if protocol Π0

computed the ui’s and vi’s as the hash of group elements. This will work, provided we assume the
DDH, and provided the hash function is sufficiently entropy preserving.

Realizing Fpcaid. To realize F∗pcaid, we simply add the following step before Step 1:

32

0.1a P waits for its input 〈R 〉, and then P sends 〈R 〉 to Q over a secure channel.

0.1b Q waits for the message 〈R 〉 from P , and then outputs 〈R 〉 After receiving the message 〈R 〉
from P , Q outputs 〈R 〉.

0.2 P (resp., Q) waits for the input s (resp., t).

This is a generic transformation that converts any F∗caid protocol to an F∗pcaid protocol.

Adding key exchange. Adding key exchange is simple, especially since we are already assuming
secure channels. We simply add the following step before Step 1:

0.3 P sends K to Q over a secure channel.

In addition, whenever either party would output 1, it instead outputs (1,K).
This is a generic transformation that converts any F∗caid (resp., F∗pcaid) protocol into an F∗cake

(resp., F∗pcake) protocol.

Adding partial equality tests. Suppose that we want to add support for partial equality tests
(see §3.4). The relation we now want to work with is{

((s1, . . . , sk), (t1, . . . , tk)) :
k∨
i=1

[
(xi, si) ∈ Ei ∧ (yi, ti) ∈ Fi ∧ (σi(si) = τi(ti))

]}
,

for appropriate functions σ1, . . . , σk and τ1, . . . , τk. To do this, we need to make use of a variation
of the “commit and prove” functionality introduced in [CLOS02]. More specifically, in Steps 2a
and 2b, P should make commitments to u′i = σi(si) for i = 1 . . k and Q should make commitments
to v′i := τi(ti) for i = 1 . . k, in such a way that both parties are committed to use these same values
in Step 4. Then, in Step 4, the two parties run a strong CAID protocol to evaluate the predicate

k∨
i=1

[
(ui = vi) ∧ (u′i = v′i)

]
. (5)

Evaluation of this predicate can also be reduced to a circuit evaluation problem over ZN . Assuming
ui, vi, u

′
i, v
′
i are encoded as elements of ZN as ai, bi, a′i, b

′
i, P chooses random µi ∈ ZN for i = 0 . . k;

similarly, Q chooses random νi ∈ ZN for i = 0 . . k. Then both parties jointly evaluate

(µ0 − ν0)
k∏
i=1

[
(ai − bi)(µi − νi) + (a′i − b′i)

]
.

Zero means (5) holds, and non-zero means it does not hold.

6.5 From strong CAID/CAKE to CAID/CAKE

We can instantiate protocol Π0 to get a practical Fsch-hybrid protocol Π′0 that multi-realizes F∗caid

(or any of the variations discussed above) with joint access to a CRS — the crucial building block
is Fezk, discussed in §5. Then using the split functionalities techniques in §4, we can turn Π′0 into
a protocol sΠ′0 that multi-realizes sF∗caid with joint access to a CRS. The resulting protocol is a
CAID/CAKE protocol that works without secure channels.

Typically, the purpose of running a CAKE protocol is to use the session key to implement a
secure session. If, in fact, this is the goal, a more straightforward way of achieving it is as follows.
Simply design a Fsch-hybrid protocol that works as follows: first, it runs a strong CAID protocol,
and if that succeeds, the parties continue to communicate, using the secure channels provided by the
Fsch functionality. Now apply the split functionalities techniques in §4 to this protocol, obtaining
a protocol that essentially provides a “credential authenticated secure channel”.

33

7 A protocol for equality testing and a related problem

Here is a simple protocol, Πeq, for equality testing. We assume that a group G of prime order q,
along with a generator g ∈ G, are given as system parameters. We will need to assume the DDH
for G. We assume the inputs to the two parties are encoded as elements of Zq. Again, we use Fezk

as a subprotocol.
The protocol runs as follows, where P has input a ∈ Zq, and Q has input b ∈ Zq:

1. P computes:

h←R G, x1, x2, r ←R Zq
c← gx1hx2 , u1 ← gr, u2 ← hr, e← gacr

and using Fezk proves to Q:

Ka ∈ Zq ∃ r ∈ Zq : gr = u1 ∧ hr = u2 ∧ gacr = e;

note that h, c, u1, u2, e are delivered to Q via the Fezk functionality after erasing r.

2. Q computes:

s←R Z∗q , t←R Zq
ũ1 ← us1g

t, ũ2 ← us2h
t, ẽ← esg−bsct

and using Fezk proves to P :

Kb ∈ Zq ∃ s, t ∈ Zq : us1g
t = ũ1 ∧ us2ht = ũ2 ∧ esg−bsct = ẽ ∧ gcd(s, q) = 1;

note that ũ1, ũ2, ẽ are delivered to P via the Fezk functionality after erasing s, t.

3. P computes:

z ←R Z∗q
d← ẽz(ũ1)−zx1(ũ2)−zx2

and using Fezk proves to Q:

∃x1, x2, z ∈ Zq : gx1hx2 = c ∧ ẽz(ũ1)−zx1(ũ2)−zx2 = d ∧ gcd(z, q) = 1;

here, d is delivered to Q via the Fezk functionality after erasing x1, x2, z.

4. After erasing all local data, both parties output 1 if d = 1, and output 0 otherwise.

NOTES:

1. We are using ∃ as well as Kquantifiers here. This allows for certain optimizations, since
values quantified under ∃ are never explicitly needed in the simulator in the security proof
below. However, in terms of understanding the basic protocol and its security, the reader
may simply treat ∃ the same as K.

2. In Step 1, (h, c) is the public key and (x1, x2) the private key for “Cramer-Shoup Ultra-Lite” —
the semantically secure version of Cramer-Shoup encryption. (u1, u2, e) is an encryption of ga.
We will exploit the fact that this scheme is “receiver non-committing”, as was demonstrated by
Jarecki and Lysyanskaya [JL00]. This property will allow us to simulate adaptive corruptions.

34

3. In Step 2, assuming (u1, u2, e) encrypts ga, then (ũ1, ũ2, ẽ) is a random encryption of gs(a−b).

4. In Step 3, P is decrypting (ũ1, ũ2, ẽ), and raising it to the power z, so that d = gzs(a−b)

5. All of the ZK protocols have practical implementations, as discussed in §5.5.

Theorem 5 Assuming the DDH for G, protocol Πeq realizes functionality F∗caid for the equality
relation.

Proof. Similarly to what was argued in the proof of Theorem 4, it suffices to exhibit a simulator
in the case where P starts out honest and Q starts out corrupt, and the case where P starts out
corrupt and Q starts out honest (unlike in the Theorem 4, the two cases are not symmetric).

Case 1: P honest, Q corrupt. The simulator runs as follows.
Step 1. If P is corrupted before the “lock” step of Fezk, then the simulator obtains P ’s input

a, and computes the internal state of P as in the protocol. Otherwise, the simulator computes

m1 ←R Zq, m2 ←R Zq, w ←R Zq \ {0}, r1 ←R Zq, r2 ←R Zq \ {r1}

and then
h← gw, c← gm1 , u1 ← gr1 , u2 ← gr2 , e← gm2

and delivers h, c, u1, u2, e to Q as in Fezk.
If P is corrupted at any later time, the simulator must reveal the internal state of P , which

consists of a, x1, x2. The value a is obtained from the F∗caid ideal functionality. The values x1, x2

are computed as solutions to the following equation:(
1 w
r1 r2w

)(
x1

x2

)
=
(

m1

m2 − a

)
Step 2. After receiving the values b, s, t, along with ũ1, ũ2, ẽ from Q as a part of Fezk, the

simulator submits the value b to the F∗caid ideal functionality as Q’s input, and then obtains the
output res of F∗caid.

Step 3. If P is corrupted before the “lock” step of Fezk, then the simulator obtains a, x1, x2

as in the corruption handling logic in Step 1, chooses z ∈ Z∗q at random, and reveals the internal
state of P , which consists at this point of (a, x1, x2, z). Otherwise, the simulator computes d ∈ G
as follows: if res = 1, then d ← 1, else d ←R G \ {1}. Finally, the simulator simply waits for the
protocol to finish, and then instructs F∗caid to deliver the output res to P .

That completes the description of the simulator for Case 1. We leave it to the reader to verifier
that the simulation is indistinguishable from a real execution of Πeq, assuming the DDH: the DDH
is used to argue that Step 1 of the simulation is indistinguishable from a real execution; given a
“test tuple” (g, h, u1, u2), where either logg u1 = logh u1 or u1 and u2 are random, we set up the
system parameters with the given g; in Step 1, we take the input a from P , choose x1, x2 at random,
and compute c ← gx1hx2 , e = gaux1

1 u
x2
2 ; then we send h, c, u1, u2, e to Q, revealing x1, x2 if P is

corrupted.

Case 2: P corrupt, Q honest. The simulator runs as follows.
Step 1. After receiving the values a, r along with h, c, u1, u2, e as a part of Fezk, the simulator

submits the value a to the F∗caid ideal functionality as P ’s input, and then obtains the output res
of F∗caid.

Step 2. If Q is corrupted before the “lock” step of Fezk, then the simulator obtains Q’s input
and computes the internal state of Q as in the protocol. Otherwise, the simulator delivers to P

35

the values ũ1, ũ2, ẽ as part of Fezk, which it computes as follows: if res = 1, then (ũ1, ũ2, ẽ) is
computed as a random encryption of 1, else (ũ1, ũ2, ẽ) is computed as a random encryption of a
random element of G \ {1}.

Step 3. The simulator simply waits for the protocol to finish, and then instructs F∗caid to deliver
the output res to Q.

That completes the description of the simulator in Case 2. We leave it to the reader to verify
that the simulation is indistinguishable from a real execution of Πeq (unconditionally). �

Applications. One application of protocol Πeq is in the implementation of Step 4 of protocol Π0

(see §6.3). However, in this situation, the protocol in §8 is more efficient.
Another application is to PAKE protocols. We can efficiently implement Fezk for the necessary

relations using secure channels and a common reference string, and augment the protocol to share
a random key over a secure channel. This gives us a fairly efficient strong CAKE protocol for the
equality relation that uses secure channels. We then derive the split version of the protocol, using a
simple Diffie-Hellman key exchange as in §4, which realizes the CAKE functionality (more precisely,
it multi-realizes the CAKE functionality with joint access to a CRS). As observed in [BCL+05],
a protocol that realizes this functionality in fact realizes the PAKE functionality (as defined in
[CHK+05]). Our particular protocol is probably a bit less efficient than the one in [CHK+05];
however, our protocol has the advantage of being secure against adaptive corruptions (assuming
erasures). A very different PAKE protocol, with a structure similar to that in [CHK+05], that is
secure against adaptive corruptions was recently presented in [ACP09].

7.1 A variation

A variation on the above protocol gives a strong CAID protocol for the relation DL := {(a, ga) :
a ∈ Zq}. That is, it tests if ga = v, where a is the input to P and v is the input to Q. The idea is
to have Q “verifiably encrypt” v.

The protocol, which we call Πdl, runs as follows:

1. P computes:

h←R G, x1, x2, r ←R Zq
c← gx1hx2 , u1 ← gr, u2 ← hr, e← gacr

and using Fezk proves to Q:

Ka ∈ Zq ∃ r ∈ Zq : gr = u1 ∧ hr = u2 ∧ gacr = e;

note that h, c, u1, u2, e are delivered to Q via the Fezk functionality after erasing r.

2. Q computes:

s←R Z∗q , t←R Zq, y ←R Zq
ṽ ← gyv, ũ1 ← us1g

t, ũ2 ← us2h
t, ẽ← esv−sct

and using Fezk proves to P :

Ky ∈ Zq ∃ s, t ∈ Zq : us1g
t = ũ1 ∧ us2ht = ũ2 ∧ esṽ−sgysct = ẽ ∧ gcd(s, q) = 1;

note that ṽ, ũ1, ũ2, ẽ are delivered to P via the Fezk functionality after erasing y, s, t.

3. P computes:

36

z ←R Z∗q
d← ẽz(ũ1)−zx1(ũ2)−zx2

and using Fezk proves to Q:

∃x1, x2, z ∈ Zq : gx1hx2 = c ∧ ẽz(ũ1)−zx1(ũ2)−zx2 = d ∧ gcd(z, q) = 1;

here, d is delivered to Q via the Fezk functionality after erasing x1, x2, z.

4. Both parties output 1 if d = 1, and output 0 otherwise.

NOTES:

• Step 1 is exactly the same as before.

• In Step 2, Q is generating a random encryption of (ga/v)s. Moreover, by giving ṽ and y to
Fezk, Q is effectively giving v to Fezk.

• Step 3 is the same as before, but now d = (ga/v)sz.

Theorem 6 Assuming the DDH for G, protocol Πdl realizes functionality F∗caid for the relation
DL.

Proof. The proof is almost identical to the proof of Theorem 5. The main difference is in the way
simulator works in Step 2: in Case 1, when the simulator receives y, s, t along with ṽ, ũ1, ũ2, ẽ from
Q as part of Fezk, the simulator sets Q’s input to F∗caid to the value v := ṽ/gy; in Case 2, the
simulator generates ṽ ∈ G at random. �

Applications. This protocol, when augmented with a key sharing step over a secure channel, and
“split” as in §4, gives us a practical PAKE protocol that is secure against adaptive corruptions and
server compromise. That is, the client stores the password a, while the server stores ga. If the
password file on the server is compromised, then it will not be easy to an attacker to login to the
server as the client.

Unlike previous protocols, such as in [GMR06], our protocol does not rely on random oracles.
To be fair, the definition of security in [GMR06] is so strong that it probably cannot be achieved
without random oracles: the security definition in [GMR06] requires that in the event of a server
compromise, an attacker must carry out an offline dictionary attack in order to guess the password.
Also, note that the protocol in [GMR06] is proved secure only in the static corruption model.

In a complete PAKE protocol, one would likely set

a := H(pw , clientID , serverID),

where H is a cryptographic hash, pw is the actual password, and clientID and serverID are the
names of the client and server, respectively. If H is entropy preserving, pw is a high-entropy
password, and the discrete logarithm problem in G is hard, then it will be infeasible to login as the
client, even if the server is compromised. Moreover, if H is modeled as a random oracle, and the
discrete logarithm problem in G is hard, then even in the event of a server compromise, an attacker
must still carry out an offline dictionary attack in order to login as the client.

Thus, our new protocol is the first fairly practical PAKE protocol (UC-secure or otherwise)
that is secure against server compromise and does not rely on random oracles; as a bonus, it is also
secure against adaptive corruptions.

37

8 A protocol for product relations

We present here a protocol Π1 for F∗caid that works for a product relation R = S × T . We assume
party P executes the protocol with an input s and Q executes the protocol with input t. Protocol
Π1 is somewhat more efficient than combining protocol Π0 in §6.1 with protocol Πeq in §7.

We assume that the set S is determined by a value x and binary relation E, E so that S =
{s ∈ S∗ : (x, s) ∈ E}. Here, S∗ is a fixed, efficiently recognizable set, and E is a fixed, efficiently
computable relation. Similarly, T is determined by a value y and a binary relation F , so that
T = {t ∈ T ∗ : (y, t) ∈ F}. Thus, S is the set of witnesses for x (according to the relation E) and T
is the set of witnesses for y (according to the relation F). The relation R is described by the pair
(x, y).

Let G be a group of large prime order q. We will assume that the DDH holds in G. Let g be a
random generator for G. We assume that 〈G, q, g 〉 is a system parameter.

Our strong CAID protocol runs as follows. Here, both P and Q take as a common input the
pair (x, y), via the SID; P takes input s and Q takes input t.

1a. P computes hL ←R G and sends hL to Q over a secure channel.

1b. Q computes hR ←R G and sends hR to P over a secure channel.

2a. P waits for hR, and then computes:

for i = 1 . . 3: αi ←R Zq, α′i ←R Zq
if (x, s) ∈ E

then for i = 1 . . 3: ei ← gαi

else for i = 1 . . 3: ei ← hR/g
α′i

Using Fezk, P proves to Q

Kα′1, α
′
2, α3 ∈ Zq, s ∈ S∗ :

[
gα
′
1 = hR/e1 ∧ gα

′
2 = hR/e2

]
∨
[
gα3 = e3 ∧ (x, s) ∈ E

]
;

Note that e1, e2, e3 are delivered to Q via the Fezk functionality after P erases α′1, α
′
2, α3.

2b. Q waits for hL, and then computes:

for i = 1 . . 3: βi ←R Zq, β′i ←R Zq
if (y, t) ∈ F

then for i = 1 . . 3: fi ← gβi

else for i = 1 . . 3: fi ← hL/g
β′i

Using Fezk, Q proves to P

Kβ′1, β
′
2, β3 ∈ Zq, t ∈ S∗ :

[
gβ
′
1 = hL/f1 ∧ gβ

′
2 = hL/f2

]
∨
[
gβ3 = f3 ∧ (y, t) ∈ F

]
;

Note that f1, f2, f3 are delivered to P via the Fezk functionality after Q erases β′1, β
′
2, β3.

3a. P computes:

if (x, s) ∈ E
then ui ← fαi

i for i = 1 . . 2, erase α2

else u1 ←R G

38

Using Fezk, P proves to Q

Kα1, α
′
3 ∈ Zq :

[
gα1 = e1 ∧ fα1

1 = u1

]
∨
[
gα
′
3 = hR/e3

]
;

Note that u1 is delivered to Q via the Fezk functionality after P erases α1.

3b. Q computes:

if (y, t) ∈ F
then vi ← eβi

i for i = 1 . . 2, erase β1

else v2 ←R G

Using Fezk, Q proves to P

Kβ2, β
′
3 ∈ Zq :

[
gβ2 = f2 ∧ eβ2

2 = v2

]
∨
[
gβ
′
3 = hL/f3

]
;

Note that v2 is delivered to P via the Fezk functionality after Q erases β2.

4a. P does the following:

if (x, s) ∈ E
then if u2 = v2 then resL ← 1 else resL ← 0
else resL ← 0

output resL after erasing all local data

4b. Q does the following:

if (y, t) ∈ F
then if u1 = v1 then resR ← 1 else resR ← 0
else resR ← 0

output resR after erasing all local data

The only communication performed here between P and Q is via secure channels and the Fezk

functionality.

Theorem 7 Under the DDH assumption for G, protocol Π1 realizes F∗caid.

Proof. We sketch the workings of the simulator in the case where P starts out honest and Q starts
out corrupt.

In Step 2, if P is corrupted before e1, e2, e3 are delivered, then we simply obtain P ’s input and
generate the internal state as usual; otherwise, the simulator runs using α1, α2, and α′3, where
gα1 = u1, gα2 = e2, and gα

′
3 = hR/e3. These values are all that are necessary to carry out the rest

of the simulation. For example, if P is corrupted between Steps 2a and 3a: then we get to see P ’s
input s; if s ∈ S, then to show the internal state of P , we show α1, α2, and we show a random value
in place of the α′3 we stored; if s /∈ S, we show two random values in place of the values α1, α2 that
we stored, and we show α′3.

In Step 2b, we obtain the values β′1, β
′
2, β3, t from Q. If these values satisfy the second disjunct

in Step 2b, then we provide t as an input to F∗caid on behalf of Q; otherwise, we provide ⊥ as input.
After obtaining the output of F∗caid, we compute u1 as fα1

1 if the output was 1, and otherwise,
choose u1 as a random group element.

39

That completes the description of the simulator. The main idea of the proof that this simulation
is faithful runs as follows.

Suppose the values in Step 2b satisfy the second disjunct in that step. Then Q will be forced
(unless he can break the discrete logarithm problem) to provide values in Step 3b that satisfy the
first disjunct in Step 3b, thus ensuring that v2 is computed correctly. When this happens, one sees
that the simulation is perfectly faithful to the protocol in this case.

Alternatively, suppose the values in Step 2b satisfy the first disjunct in that step but not the
second. In this case, the simulation may not be perfectly faithful when P ’s input satisfies (x, s) ∈ E;
however, using an argument similar to that in the proof of Theorem 4, under the DDH, the random
value of u1 shown to Q in the simulation will be indistinguishable from the correct value; moreover,
under the CDH, the probability that Q could predict the correct value of u2 is negligible, which
ensures that the ideal functionality’s output agrees with the protocol’s output with overwhelming
probability. �

References

[ACP09] M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth projective hashing for condi-
tionally extractable commitments. In Advances in Cryptology–Eurocrypt 2009, pages
671–689, 2009.

[BCL+05] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation without
authentication. In Advances in Cryptology–Crypto 2005, 2005. Full version at http:
//eprint.iacr.org/2007/464.

[BH92] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic
adversaries. In Advances in Cryptology–Eurocrypt ’92, pages 307–323, 1992.

[Can05] R. Canetti. Universally composable security: a new paradigm for cryptographic proto-
cols. Cryptology ePrint Archive, Report 2000/067 (December 14, 2005 version), 2005.
http://eprint.iacr.org.

[CDPW07] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with
global setup. In Theory of Cryptography 2007, 2007. Full version at http://eprint.
iacr.org/2006/432.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In Advances in Cryptology–Crypto ’94, pages
174–187, 1994.

[CHK+05] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology–Eurocrypt 2005, 2005.

[CL01] J. Camenisch and L. Lysyanskaya. Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. In Advances in Cryptology–
Crypto 2001, pages 93–118, 2001.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party
and multi-party secure computation. In 34th Annual ACM Symposium on Theory of
Computing, 2002. Full version at http://eprint.iacr.org/140.

40

[CR03] R. Canetti and T. Rabin. Universal composition with joint state. In Advances in
Cryptology–Crypto 2003, 2003. Full version at http://eprint.iacr.org/2002/047.

[CS97] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In
Advances in Cryptology–Crypto ’97, pages 410–424, 1997.

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Advances in Cryptology–Crypto 2003, pages 126–144, 2003. Full version
at http://eprint.iacr.org/2002/161.

[FO99] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Advances in Cryptology–Crypto ’97, 1999.

[GMR06] C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based key
exchange resilient to server compromise. In Advances in Cryptology–Crypto 2006, 2006.

[HK09] D. Hofheinz and E. Kiltz. The group of signed quadratic residues and applications. In
Advances in Cryptology–Crypto 2009, 2009.

[JKT08] S. Jarecki, J. Kim, and G. Tsudik. Beyond secret handshakes: affiliation-hiding au-
thenticated key agreement. In RSA Conference, Cryptographers Track (CT-RSA 08),
2008.

[JL00] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: introducing
concurrency, removing erasures. In Advances in Cryptology–Eurocrypt 2000, pages
221–242, 2000.

[MY04] P. MacKenzie and K. Yang. On simulation-sound trapdoor commitments. In Advances
in Cryptology–Eurocrypt 2004, 2004. Full version at http://eprint.iacr.org/2003/
252.

[Sch91] C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4:161–174, 1991.

41

