
Message Recovery and Pseudo-Preimage Attacks
on the Compression Function of Hamsi-256

Çağdaş Çalık1 and Meltem Sönmez Turan2

1 Institute of Applied Mathematics, Middle East Technical University, Turkey
ccalik@metu.edu.tr

2 Computer Security Division, National Institute of Standards and Technology, USA
meltem.turan@nist.gov

Abstract. Hamsi is one of the second round candidates of the SHA-3
competition. In this study, we present non-random differential proper-
ties for the compression function of the hash function Hamsi-256. Based
on these properties, we first demonstrate a distinguishing attack that
requires a few evaluations of the compression function and extend the
distinguisher to 5 rounds with complexity 283. Then, we present a mes-
sage recovery attack with complexity of 210.48 compression function eval-
uations. Also, we present a pseudo-preimage attack for the compression
function with complexity 2254.25. The pseudo-preimage attack on the
compression function is easily converted to a pseudo second preimage
attack on Hamsi-256 hash function with the same complexity.
Keywords: Hash functions, SHA-3 competition, cryptanalysis, preim-
age attacks

1 Introduction

Hash functions are fundamental components of many cryptographic applications
such as digital signatures, random number generation, integrity protection, e-
cash etc. Due to the recent attacks against commonly used hash functions [1–4],
National Institute of Standards and Technology (NIST) announced the SHA-3
hash function competition to select a new cryptographic hash function to be
used as the new standard [5]. In November 2008, NIST received 64 submissions,
among these, 51 candidates are considered to meet the minimum submission
requirements. In July 2009, NIST announced 14 second round candidates.

Hamsi family of hash functions [6] is one of the second round candidates
of the SHA-3 competition, designed by Özgül Küçük. Hamsi is based on the
Concatenate-Permute-Truncate design strategy and it supports four output sizes;
224, 256, 384 and 512 with two instances Hamsi-256 and Hamsi-512.

According to the first public analysis of Hamsi made by Aumasson [7], the
compression function of Hamsi-256 does not behave as a pseudo-random function
due to its low algebraic degree. Nikolic [8] found 25-bit pseudo near collisions
for the compression function of Hamsi-256 for fixed message blocks. Wang et al.
[9] improved the attack and practically showed 23-bit pseudo near collisions for
the compression function of Hamsi-256.

In this paper, we study the differential properties of Hamsi-256 and observe
some non-random differential properties in its compression function. Using these
properties, we first present a very efficient distinguisher for the compression func-
tion of Hamsi-256, and extend the distinguisher to 5 rounds with complexity 283.
Then, we use the differential properties to recover a message block used in the
compression function with a complexity of 210.48 compression function evalua-
tions. Also, we present a pseudo-preimage attack for the compression function
with complexity 2254.25 that can trivially be converted to a pseudo second preim-
age attack to the full hash function with same complexity. The attacks and ob-
servations presented in this paper do not affect the security of Hamsi in terms
of collision, preimage and second preimage attacks.

The paper is organized as follows. In Sect. 2, we give a brief description
of the compression function of Hamsi-256. In Sect. 3, differential properties of
the s-box, L transformation and the compression function are given. Sect. 4
includes the distinguishers for the compression function, whereas Sect. 5 includes
a message recovery algorithm for the compression function. In Sect. 6 the pseudo-
preimage attack for the compression function and its extension as a pseudo
second preimage attack to the hash function are described. In Sect. 7, the security
of Hamsi-512 against the techniques described in this paper is discussed. Finally,
we conclude in Sect. 8.

2 Description of the Compression Function of Hamsi-256

In this section, we give a brief overview of the compression function of Hamsi-
256. For other versions, the reader may refer to the specification of Hamsi [6].
The notation used in the paper is given below.

Notation
F4 Finite Field with 4 elements
⊕ Exclusive Or (XOR)
� Left shift
≪ Left rotation
(n,m, d) Code with length n, dimension m and minimum distance d
C Compression function
H(i) ith chaining value
hi ith bit of the chaining value
M (i) ith message block (32-bit)
Mi ith bit of the message block
mi ith bit of the expanded message
ax Hexadecimal representation of the number a

The compression function C of Hamsi-256 inputs a 32-bit message block
M (i) and a 256-bit chaining value H(i−1) and outputs a 256-bit chaining value

H(i). The function acts on a state of 512 bits, which can be considered as both
a 4x4 matrix of 32-bit words and 128 columns each consisting of 4 bits. The
compression function is a three round transformation consisting of the following
transformations. Addition of Constants, Substitution and Diffusion are consid-
ered as a round.

Message Expansion and Initialization of the State. 32-bit message
block is expanded to 256 bits using a linear code (128,16,70) over F4. Then, the
expanded message and the chaining value, each of being eight 32-bit words is
loaded to the state of Hamsi-256 as given in Fig. 1.

Addition of Constants. The state is XOR’ed with predefined constants
and a round counter.

Substitution. Each of the 128 columns of the state goes through a 4x4
s-box.

Diffusion. A linear transformation L, which inputs four 32-bit words, and
outputs four 32-bit words is applied to the four independent diagonals of the
state.

Truncation and Feed Forward. The second and fourth row of the state
is dropped and the initial CV is feed-forwarded to the truncated state.

m0 . . .m31 m32 . . .m63 c0 . . . c31 c32 . . . c63

c64 . . . c95 c96 . . . c127 m64 . . .m95 m96 . . .m127

m128 . . .m159 m160 . . .m191 c128 . . . c159 c160 . . . c191

c192 . . . c223 c224 . . . c255 m192 . . .m223 m224 . . .m255

Fig. 1. Initial state of the compression function of Hamsi-256

After the initialization of the state from expanded message and chaining
value, each column of the state holds two bits from the message expansion and
two bits from the chaining value. For the first 64 columns, message bits are in first
and third position and chaining value bits are in second and fourth position. For
the last 64 columns, message bits are in second and fourth position and chaining
value bits are in first and third position (See Fig. 1). When we talk about a
column we mean a 4-bit value, for example the first column of the state consists
of the bits m0, c64,m128 and c192. When we talk about the chaining value or
message bits in a column we mean a 2-bit value.

3 Differential Properties of Hamsi-256

In this section, we explore the differential properties of the compression function
of Hamsi-256. We first analyze Substitution and Diffusion transformations in
terms of differences and then present some non-randomness properties of the
whole compression function.

3.1 Differential Properties of the Hamsi s-box

The nonlinearity in Hamsi compression function is obtained by a 4 × 4 s-box,
which is originally used in the block cipher Serpent. The s-box is defined as

S = {8,6,7,9,3,C,A,F,D,1,E,4,0,B,5,2}.

The difference distribution table of the s-box is given in the Table 1. Following
two properties of the s-box enable us to guess the output difference in the least
significant bit which corresponds to the bit in the first row of the state.

Table 1. Difference distribution table of the Hamsi s-box.

δi/δj 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 0 2 0 0 2 2 2 0 4 2
2 0 0 0 4 0 4 0 0 0 4 0 0 0 0 0 4
3 0 4 2 0 0 0 2 0 0 2 0 0 2 0 2 2
4 0 0 0 0 0 0 4 0 0 0 4 4 0 4 0 0
5 0 4 0 2 2 2 2 0 2 0 0 0 2 0 0 0
6 0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2
7 0 0 0 0 4 2 0 2 0 0 2 2 2 0 0 2
8 0 0 0 2 0 2 0 4 0 2 0 0 0 4 0 2
9 0 0 0 2 0 0 0 2 4 2 2 2 2 0 0 0
a 0 0 2 0 2 0 4 0 2 0 4 0 0 0 2 0
b 0 4 0 0 2 0 2 0 2 2 0 0 2 0 0 2
c 0 0 2 0 2 0 0 0 2 0 0 4 0 4 2 0
d 0 4 2 2 0 2 2 0 0 0 0 0 2 0 2 0
e 0 0 2 0 2 0 0 4 2 0 0 0 0 4 2 0
f 0 0 4 2 0 0 0 2 0 2 2 2 2 0 0 0

Property 1. Let ax be the input difference. Then, according to Table 1, the
output difference can take on following values {2x, 4x, 6x, 8x, ax, ex}, in all of
which the least significant bit is 0. It means that whenever the second and
fourth input bit is complemented simultaneously, the first output bit remains
the same with probability 1.

Property 2. Let the input difference be 2x or 8x. Then, the output differ-
ence can take one of the following values {3x, 5x, 7x, 9x, dx, fx}, in all of which
the least significant bit is 1, i.e. whenever second or fourth bit of the input is
complemented, the first output bit changes with probability 1.

3.2 Differential Properties of L

The diffusion in Hamsi is obtained by the linear transformation L : {0, 1}128 →
{0, 1}128. L inputs four 32-bit words a, b, c, d and outputs four 32-bit words using

the following transformation;

a := a≪ 13

c := c≪ 3

b := b⊕ a⊕ c
d := d⊕ c⊕ (a� 3)

b := b≪ 1

d := d≪ 7

a := a⊕ b⊕ d
c := c⊕ d⊕ (b� 7)

a := a≪ 5

c := c≪ 22

Following two properties show that the diffusion property of L is limited.

Property 3. Let the Hamming weight of the input difference be 1, then the
Hamming weight of the output difference is between 2 and 7. This means that
in the Diffusion transformation, each bit in the state affects at most 7 bits.

Property 4. Let the input difference has the form (0, δb, 0, 0), then the output
difference is of the form (?, ?, ?, 0). Similarly, (0, 0, 0, δd)→ (?, 0, ?, ?).

3.3 Differential Properties of the Compression Function

In this part, we study the differential properties of the compression function of
Hamsi-256, which inputs 32-bit message and 256-bit chaining value and outputs
256-bit chaining value.

Although the input difference can be given to the message, chaining value or
both, for the following property of the message expansion, we consider only the
differences in the chaining value.

Due to the (128,16,70) linear code used in the expansion of the message in
Hamsi-256, whenever δ 6= 0 difference is given to the message, at least 70 of the
128 columns of the state changes, which means number of active s-boxes is at
least 70. Therefore, it is not easy to control the difference given to the message
block.

Controlling the effect of input difference given to the chaining value is easier,
since each bit of chaining value is mapped to a single state bit (See Fig. 1). In
the rest of the section, we consider the effect of differences given to the input
chaining value on the output chaining value, for fixed messages.

As mentioned before, each column of the initial state contains two chaining
value bits. If we want to give a difference to a column, this can be done in three
ways depending on the chaining value bit positions in the column: for the first
64 columns the difference can be 2x,8x or ax, and for the last 64 columns the

difference can be 1x,4x or 5x. When the message bits in a column are fixed, input
is restricted to four possible values, and an input difference divides these four
values into two classes of pairs, i.e., for a particular value of message bits and
a chaining value difference in a column we can observe two output differences.
Moreover, since we can control the chaining value bits we have the ability to
choose the input values so that a difference of our choice among the two possible
differences occurs at the output. The list of output differences for all possible
chaining value differences and message bits is given in Table 2. Consider for
example the first entry of the table where message bits in a column are zero
and input difference is 2x. From the table we see that the output differences can
be fx or 3x. Actually, when message bits are set to zero, a column may have
values 0x,2x,8x and ax. And a difference of 2x induces the input pairs (0x,2x)
and (8x,ax). The first pair gives the output difference fx, and the second pair
gives the output difference 3x. We can choose one of the two possible input pairs
depending on how we want the difference to continue.

Table 2. List of possible output differences for each column difference and mes-
sage value

Difference in Column 0-63 Difference in Column 64-127

Message Bits 2x 8x ax 1x 4x 5x

0x fx,3x 5x,9x 6x,ax ex,fx bx,ax 4x,5x

1x fx,5x 7x,dx 2x,8x ex,5x dx,6x 8x,3x

2x 9x,5x 3x,fx 6x,ax cx,bx dx,ax 6x,1x

3x 3x,9x 7x,dx ex,4x ax,7x bx,6x cx,1x

Here, we aim to find a set of output bits that are not affected by a given input
difference to the chaining value with probability 1. We do this by marking the
state bits that can be affected at any step of the round transformations. After
three rounds, if there are unmarked bits in the state, we will be certain that these
bits will not get affected by the initial difference given to the state. Clearly, we
start with all zero state, set the initial difference and use the following procedures
for determining which bits of the state may get affected by the Substitution and
Diffusion transformations after three rounds.

Substitution. If any of the bits in a column are affected we mark the whole
column as affected, i.e. we set the value of the column to fx. There is one excep-
tion to this rule. In the first Substitution operation we have just one differential
path in hand and we know the exact value of the difference, so we can apply the
truncated differential property, namely if the difference in a column is ax, after
the Substitution operation the least significant bit of output difference will be
zero because of Property 1. So we set the new value of the column as ex in this
case. We cannot apply this rule for the second and third Substitution operations
because if a column has the value ax, this means that the second and fourth bit
may be affected with some non-zero probability, but we cannot be sure whether
this value is 2x, 8x or ax.

Diffusion. For each bit of the state we precompute a set of state indices
which affects this bit of the state. This operation requires negligible amount
of computation and memory. For example, the first bit of the state is affected
by the state bits {18, 19, 28, 166, 329, 335, 492} in the Diffusion operation. (More
specifically, since Diffusion is a linear operation the first bit will be set to modulo
2 sum of these bits). If any of these bits were affected we mark the first bit as
affected by Diffusion operation. Otherwise, we mark the first state bit as zero,
meaning that it is certain that this bit cannot have a difference because none of
the bits it depends on is affected at that point. We repeat this operation for all
512 bits of the state.

In Fig. 2, we present an example where δ = ax is given to the 7th column
of the state, i.e. the 71st and 199th bit of the chaining value is complemented.
Then, we examine how δ propagates through the state bits in each step of the
round using the technique mentioned above and find out that 228th and 230th
bits of the new chaining value will not be affected by this difference.

We have verified the result by randomly selecting 220 chaining values and
message blocks. After giving a δ difference to the chaining values, the output
differences for each bit is calculated. Fig. 3 shows the number of times the output
difference is equal to 1 out of 220 trials. The points lying outside the upper and
lower limits shows a bias of minimum 0.25. It is clear from the figure that the
differences obtained in bits 228 and 230 are equal to zero for all trials.

For a fixed value of message bits in a column, we can use Table 2 in order to
trace the effect of a CV difference. As seen from the table, a fixed message value
and a CV difference can produce exactly two output differences. We trace each of
these output differences (starting from the Diffusion operation) independently to
find the unaffected bits for that difference. Combining these two data we can find
if there are any output bits which are not affected by any of the initial differences.
Putting restriction on message bits allow us to observe more unaffected bits at
the output. This is due to the differential propagation in the first Substitution
operation. For example, let the difference 5x be given to a column. If there is
no restriction on the message bits, from Table 2 we can see that seven output
differences {1x, 3x, 4x, 5x, 6x, 8x, cx} are possible, affecting all four output bits.
However, considering the case where message bits are set to zero for instance, the
possible output differences are 4x and 5x, affecting only two out of four output
bits.

Another factor that affects the number of unaffected bits is the weight of
the initial difference in a column. Among the three possible differences that can
be given to a column (2 having weight 1 and 1 having weight 2) it turns out
that the difference having weight 2 produces a higher number of unaffected bits.
This is because of the fact that differences with weight 1 will lead to an output
difference of weight at least 2, whereas an input difference of weight 2 can lead
to an output difference of weight 1, which causes less diffusion in the second step
of the round.

Table 3 gives a list of input differences having weight 1 that do not affect some
of the output bits, with the condition that the message bits in the corresponding

Truncate and Feed Forward

00000000 00000000 00000000 00000000

01000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

01000000 00000000 00000000 00000000

Round 1 Substitute

Round 1 Diffuse

Round 2 Substitute
R

ou
n
d

2
D

iff
u
se

Round 3 Substitute

Round 3 Diffuse

00000000 00000000 00000000 00000000

01000000 00000000 00000000 00000000

01000000 00000000 00000000 00000000

01000000 00000000 00000000 00000000

00000000 00000010 00000082 40000000

02000000 00000000 00000000 10000000

01020000 00000000 00000000 00000000

80000000 00000004 00000000 00200000

83020000 00000014 00000082 50200000

83020000 00000014 00000082 50200000

83020000 00000014 00000082 50200000

83020000 00000014 00000082 50200000

08771d1a 60f028b1 2e19419f c58be9a0

06041549 800028e8 02050105 b0608008

831e5403 68008abd 0e0415ff f0e2e020

8b000141 49000a0c 00285100 10438828

8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8

8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8

8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8

8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8

ffffffff ffffffff ffffffff ffffffff

fffebfff f7f7ffff 7efffbff ffffdfff

ffffffff ffffffff ffffffff f5ffffff

fffeffd7 fff77eff defbfff7 fdf7fcfe

ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff f5ffffff

Fig. 2. Propagation of affected bits for the initial difference ax given to the 7th
column

column are fixed. As an example, whenever 78th bit of the chaining value is
complemented, we see that 78th and 150th bits of the output chaining value are
not changed, given the message bits in this column are both 1. Each entry in
the table requires the message bits of the column to be fixed. The number of
messages that satisfy all of these 16 conditions on 8 columns is 232−16 = 216.

Table 4 gives a list of the input differences having weight 2 which leads to
unaffected output bits. Unlike weight 1 differences, we do not need any conditions
on message bits here. If we also fix the message bits, we can observe up to 62
unaffacted output bits.

Remark. Although we used the term unaffacted bits for the output bits that
do not change with probability 1, it may be the case that some of these bits
change with probability 1. This occurs if the initial difference is XOR’ed to an
unaffected bit position by the Feed Forward operation. For example, according
to Table 3, the difference in 78th CV bit does not affect 78th and 150th output
bits. Actually, while 150th bit will not change with probability 1, 78th output
bit will change with probability 1 because of the Feed Forward. We do not make
a distinction between these two cases as they both enable us to guess an output
bit with certain probability and have no effect on our attack.

0 50 100 150 200 250

200 000

400 000

600 000

800 000

1 ´ 106

Fig. 3. The number of changes in output chaining value bits after 2-bit difference
given to bits 71 and 199

Table 3. List of unaffected output bits for one bit input difference and the
condition on message bits

Column CV bit Unaffected output bits Condition

14 78 78,150 m14 = 1,m142 = 1

15 79 79,151 m15 = 1,m143 = 1

46 110 110, 182 m46 = 1,m174 = 1

47 111 111, 183 m47 = 1,m175 = 1

78 130 14, 214 m78 = 0,m206 = 0

79 131 15, 215 m79 = 0,m207 = 0

110 184 46, 246 m110 = 0,m138 = 0

111 185 47, 247 m111 = 0,m139 = 0

4 Distinguishing the Compression Function

Using the differential properties given in Table 4, the compression function of
Hamsi-256 can be distinguished from a random function. As an example, consider
the difference given to column 0. Let the message block M be chosen randomly.
Then, for any randomly chosen input chaining value H, the 165th and 201st bit
of

C(H,M)⊕ C(H + δ64 + δ192,M)

is 0 with probability 1, where δi corresponds to the ith bit difference. The ex-
periment can be repeated as many times, say k, to decrease the false alarm
probability to 2−2k.

Distinguisher for the compression function can also be found for higher num-
ber of rounds. We start with a low weight difference in the state and trace this
difference forward and backward direction in order to find a differential char-
acteristic with the highest probability. The best characteristic we have found is

00000000 00000000 800802c0 02800204

00080010 00010308 00000000 00000000

00000000 00000000 80080280 02800204

00080010 00010308 00000000 00000000

Round 1 Substitute

Round 1 Diffuse

Round 5 Diffuse

Truncate +
Feed Forward

00000000 00000000 00000000 02800000

00080010 00000300 00000000 00000000

00000000 00010008 00000040 00000000

00000000 00000000 800802c0 00000204

00000000 00000000 00000000 00000200

00000000 00000200 00000000 00000000

00000000 00000200 00000040 00000000

00000000 00000000 00000040 00000200

807a13c0 48e9a50f 8c380550 a64f47cb

82bf24c4 5a00801e 3e42b98d 00154e3d

00000000 00000020 00000000 80000000

00000000 00000000 00000001 00000000

00000000 10000000 00000000 20000000

00000000 00000000 00000040 00000000

00721100 4a69a70b 8c300540 a64e44c3

19105087 334108d1 2e4a0928 a8c88020

02b72644 5880821a 3e4ab99d 00144d35

74104000 ac88000a 8e202aa3 32021859

p = 2−43

p = 1

p = 1

p = 1

Round 2 Substitute

Round 2 Diffuse

00000000 00000000 00000000 00000000

00000000 00000200 00000000 00000000

00000000 00000000 00000040 00000000

00000000 00000000 00000000 00000200

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 80000000 00000000

00000000 00000000 00000000 00000000

p = 2−8

p = 1

Round 3 Substitutep = 2−2

Round 4 Substitute

Round 4 Diffuse

00000000 00000000 00000041 00000000

00000000 10000020 00000040 20000800

00000000 00000000 00000000 00000000

00000000 10000020 00000001 20000800

00800a04 00001000 130c010c 00001000

00000000 20000040 00000080 40105000

020a2a04 20000000 04000108 00000010

00000000 20801008 00000080 00040010

p = 1

Round 5 Substitutep = 2−58

00000a04 20800048 00000108 40145010

028a2000 20800048 170c0084 40144010

028a2000 20800008 170c0084 00040000

00800000 00001000 130c0004 00000010

p = 2−15

00000000 00000000 00000000 00000000

00000000 00000000 80000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 80000000 00000000

Fig. 4. Differential characteristic for the 5 round distinguisher

Table 4. List of unaffected bits of the output CV given two bit difference to the
chaining value in each column

Column CV bits Unaffected bits Column CV bits Unaffected bits

0 64,192 165, 201 32 96,224 197, 233

1 65,193 166 33 97,225 198

2 66,194 167 34 98,226 199

3 67,195 168 35 99,227 200

4 68,196 169 36 100,228 201

6 70,198 227 38 102,230 131

7 71,199 228, 230 39 103,231 132, 134

8 72,200 229 40 104,232 133

9 73,201 131, 230 41 105,233 134, 163

10 74,202 132, 231 42 106,234 135, 164

11 75,203 133, 232 43 107,235 136, 165

12 76,204 134, 233 44 108,236 137, 166

13 77,205 135 45 109,237 167

14 78,206 136 46 110,238 168

15 79,207 137 47 111,239 169

26 90,218 195 58 122,250 227

27 91,219 196 59 123,251 228

28 92,220 197 60 124,252 229

29 93,221 198 61 125,253 230

30 94,222 163, 199 62 126,254 195, 231

31 95,223 164, 200 63 127,255 196, 232

shown in Fig. 4. The initial difference which lead to this characteristic is 1-bit
difference given to the beginning of the third round. By searching all possible
differences in backward direction we could go two rounds and obtained the initial
difference for the characteristic. Similarly, we traced the difference in the third
round in forward direction for three rounds. In total, we obtained a 5 round
characteristic with probability 2−126.

The first substitution layer in the differential characteristic of the distin-
guisher involves 15 active columns. By choosing an appropriate message block
we can guarantee the transition of all the differentials for free. In this case, the
complexity of the distinguisher is 283.

5 Message Recovery Using Differential Properties

Based on the observations presented in the previous section, we can mount a
message recovery attack on the compression function of Hamsi-256. This can be
done by querying the compression function with chaining values of our choice
for a very few number of times, whereas for a random compression function with
32-bit message input, we would have to query about 232 evaluations. In this
setting we assume that the message is secret and we can only obtain compression

function outputs produced by this secret message and a chaining value of our
choice.

Table 5. List of unaffected output bits given the differences ax and 2x to the
18th column

Column Difference Message bits Unaffected output bits

18 ax 0x 26 109 131 140 154 232

1 3 10 12 26 30 36 39 49 82 84 109 131
18 ax 1x 133 134 140 148 154 156 169 196 210

212 232 235 239

18 ax 2x 26 109 131 140 154 232

18 ax 3x 113 169 198 241

18 2x 0x 192

18 2x 1x,2x,3x -

The main observation which enables us to make this attack is that actual
values of the message bits in a column of the state affects the differential propa-
gation and hence for some particular chaining value difference given to a column
of the state, the unaffected bits after the evaluation of the compression func-
tion enables us deduce information on the message bits contained initially in the
column.

Before explaining the message recovery process, we have to decide which
columns we have to deal with. Since each column of the state contains two ex-
panded message bits, and message expansion is a linear operation, it is sufficient
to recover message bits from any 16 columns of the state with the condition that
the equations of the recovered bits are linearly independent so that we have 32
linearly independent linear equations in 32 unknowns, which can be solved easily
and will give us the 32-bit message block. However if we examine the expanded
message equations a little carefully, we will see that the expanded message bits
from 16th to 31th columns of the state contain exactly the original message
bits. More specifically, 16th column contains M0 and M1, 17th column contains
M2 and M3, and continuing like this the 31st column contains M30 and M31.
Therefore we will focus on these columns and after recovering the message bits
in these columns, we will not need to solve a system of linear equations.

Table 5 gives the list of unaffected output bits for all message bit values and
two possible chaining value differences that can be given to 18th column of the
state. We emphasize that this list of unaffected bits occur with probability 1,
i.e., if the difference in 18th column is ax and the message bits in this column
are initially zero, then probability of 26th bit of output chaining value being
changed is zero.

If we evaluate two chaining values CV1 and CV2 having difference ax in 18th
column and check whether 1st bits of the the corresponding output chaining
values CV3 and CV4 match, we can learn whether message bit values in this
column were initially 1x or not. If 1st bits of CV3 and CV4 do not match then

we can be sure that the message bits in the 18th column is not equal to 1x,
because a message value of 1x in the 18th column guarantees that a difference of
ax will have no effect on the 1st bit of the output chaining value. Of course there
is a probability that 1st bits of CV3 and CV4 being equal even if the message bits
were not equal to 1x. In order to minimize the probability of falsely determining
whether an output bit changes with a given difference, we can repeat this process
a couple of times and then decide whether it changes or not. If we decide that
the message bits in this column were 1x then we are done. Otherwise we have to
do the same experiment but this time checking the 198th bits of chaining values
in order to decide whether message bits were 3x. If we also decide that 3x is not
the case then we have two remaining possibilities left, namely 0x and 2x, also
giving us the information that the least significant bit -message bit in the first
row- is zero. We can decide whether the message bits were 0x or 2x by giving
this time the difference 2x to the 18th column and check the 192th bit of the
output chaining values.

The same procedure goes for all the columns from 18 to 29, giving us 24 out
of 32 message bits. For columns 16,17,30 and 31, if message bits are not 1x or
3x, we cannot check whether message bits are equal to 0x or 2x. However even
with this information, as stated in the previous paragraph we obtain the least
significant message bits and recover a total number of 28 bits. The remaining 4
bits can be found by checking the 16 possible combinations. Table 5 gives the
list of output chaining values to check in order to recover the message bits of the
corresponding columns. A column is firstly checked for the message value of 1x,
and then for 3x using the indices listed in the first two columns of the table. If
it is the case that message bits are not equal to these values then the final check
is done using indices in the third column of the table in order to decide if the
message bits were 0x or 2x.

In the best case, the complexity of the attack is 16.k where k is the number
of trials needed to decide whether an output bit changes or not. We have imple-
mented the attack and observed that k = 24 is sufficient. In the worst case, we
have to make 3 checks per column except for the first and last two columns where
we can do at most 2 checks, giving us a total of 12×3+4×2 = 44 checks. Hence,
adding the possible cost of recovering 4 remaining bits and the fact that checking
whether a bit changes requires two evaluations of the compression function, the
total complexity is upper bounded by 2 × 44 × 24 + 24 ≈ 210.48 compression
function evaluations.

6 Pseudo-preimages for the Compression Function of
Hamsi-256

In this section, we will show that finding preimages for the compression function
of Hamsi-256 can be done with less effort than exhaustive search by using the
properties mentioned in Sect. 3.

Table 6. List of chaining value bit indices used for message recovery

Column m = 1x m = 3x m = 2x

16 1 196 -

17 0 197 -

18 1 198 192

19 2 199 163

20 0 200 164

21 1 201 165

22 2 243 166

23 3 244 167

24 4 245 168

25 5 147 169

26 6 148 168

27 7 149 169

28 8 150 168

29 9 151 169

30 10 152 -

31 11 153 -

For a random compression function, given any chaining value H∗, it should
be ’hard’ to compute a previous chaining value H and a message block M such
that C(H,M) = H∗, which is finding a preimage of the compression function.

A naive method to find a preimage H for a given H∗ might be to evaluate
all possible H’s under a fixed message M and check whether any of them yields
H∗. This method cannot be considered as a valid attack because it requires 2256

evaluations (for the case of Hamsi-256) in the worst case. Here, we will present
a way to reduce this complexity based on the truncated differential properties
of the compression function explained in Sect. 3.

According to Table 3, if a bit of the input chaining value with index in

I = {78, 79, 110, 111, 130, 131, 184, 185}

is complemented, then exactly two bits of the output chaining value are not
affected. For example, complementing 78th bit of the input chaining value does
not affect 78th and 150th bit of the output chaining value. For a randomly
chosen H and M , if 78th (resp. 150th) bit of C(H,M) is not equal to the 78th
(resp. 150th) bit of H∗, then it is for sure that C(H + δ78,M) 6= H∗. Therefore,
with probability 1/4, it is not necessary to evaluate H + δ78 (resp. H + δ150).
By comparing the values of unaffected output bits of C(H,M) and H∗ we can
decide whether we need to complement any of the bits in I. If we do not need
to complement one of the bits and evaluate the compression function this will
be an advantage for us.

Although there are eight bit positions in I that lead to unaffected output bits,
we will explain the attack for the general case and then pick the best value that
gives the lowest attack complexity. Let k be the number of bit positions when

complemented results in two unaffected output bits and let N(α) be the set com-
posed of vectors produced by complementing each bit of α, called 1-neighbour
vectors of α. We select a subset S of vectors from F k2 so that the vectors in S
together with 1-neighbour vectors of each vector in S covers F k2 . In other words,
each vector in F k2 is either in S or can be produced by complementing one bit
of a vector in S. Let β be an element of F 256−k

2 so that α||β = H will form a
chaining value. For a fixed value of β, there are 2k possible values for α. We will
however only evaluate the C(H,M) for the values of α ∈ S. Having evaluated
these values we will check whether we need to complement each bit of α and
evaluate C or not. The expected number of evaluations we will make is calcu-
lated as follows: For all the vectors in F k2 , we calculate the probability that the
vector is going to be evaluated. The vectors in S will definitely be evaluated. The
remaining vectors will be evaluated with a probability inversely proportional to
the number of vectors they are 1-neighbour to the vectors in S, i.e., if a vector
is 1-neighbour of only one vector of S then it is going to be evaluated with a
probability of 2−2, which is the probability that the unaffected output bits of
C(H,M) and H∗ being the same. Generally speaking, if a vector is 1-neighbour
of t vectors of S then it will be evaluated with a probability of 2−2t. The ex-
pected number of evaluations therefore will be the sum of the probabilities of
each vector being evaluated.

Figure 5 demonstrates an example for k = 4, where the vectors are shown in
binary form. The set S = {0000, 0111, 1001, 1110} consists of four elements and
1-neighbours of each element of S is also depicted in the figure. It can be easily
verified that S and 1-neighbours of S cover F 4

2 . Table 7 gives the probabilities
of evaluating each vector according to Fig. 5. In the table, covered by column
indicates the number of vectors in S covering that vector. A dash in the same
column means that the vector is in S and will be evaluated certainly. As an
example, the vector (0001) is covered by two vectors from S (0000 and 1001),
therefore it is going to be evaluated with probability 2−4. The expected number
of evaluations for k = 4 case is 4 × 1 + 8 × 2−2 + 4 × 2−4 = 6.25 ≈ 22.64. This
means instead of going through all the 24 possible values, we need to evaluate
22.64 values.

Table 7. The probability of evaluating each vector and the number of times
they are covered

Vector Covered by Probability Vector Covered by Probability

0000 - 1 1000 2 2−4

0001 2 2−4 1001 - 1

0010 1 2−2 1010 1 2−2

0011 1 2−2 1011 1 2−4

0100 1 2−2 1100 1 2−2

0101 1 2−2 1101 1 2−2

0110 2 2−4 1110 - 1

0111 - 1 1111 2 2−4

0000

1000 0100 0010 0001

0111

1111 0011 0101 0110

1001

0001 1101 1011 1000

1110

0110 1010 1100 1111

Fig. 5. An example selection of S for k = 4

We define gain as the ratio of all the vectors to the vectors we expect to

evaluate. For k = 4, the gain is 24

22.64 = 21.36. Table 8 lists the number of vectors
in S and the gain for all values of k up to 8. The set S for each k in the table
is computed by a simple algorithm and seems to be close to optimal. Discussion
of how the set S can be formed so that higher gains can be achieved is out
of the scope of this study. It can be seen from the table that highest gain is
achived for k = 6 as 21.75. Since we are performing this operation for all values
of β ∈ F 256−k

2 , the total complexity of the attack becomes 2256−624.25 = 2254.25.
That is, by using the unaffected bits, instead of trying all 2256 chaining values,
we need to evaluate 2254.25 chaining values to find a pseudo-preimage. We can
choose any 6 bit positions out of 8 to apply the attack, since each of them causes
exactly two unaffected bits.

Table 8. The effect of size of S on the complexity gain

k Size of S Expected number Gain
evaluations

2 21 21.09 20.91

3 21 21.81 21.19

4 22 22.64 21.36

5 23 23.60 21.40

6 24 24.25 21.75

7 24 25.46 21.54

8 25 26.36 21.64

Success Probability Whenever we fix the value of the message block to M ,
the compression function CM (H(i−1)) = H(i) should behave like a random func-
tion. The expected size of the range is about 1 − e−1 = 0.63 of the domain

size, i.e. on the average H(i) can take 0.63× 2256 different values. Similarly, let
H∗ be a 256-bit random value. Then, for any M , there exists a H, such that
CM (H) = H∗ with probability 0.63. This is the success rate for one instance
of the attack. If the attack does not yield a preimage, it can be repeated using
another message block. In this case the complexity increases by a factor of 2 and
becomes 2.2254.25 = 2255.25 while the success probability increases to 0.8646. The
attack can be repeated for maximum three times with complexity 2255.83 and
success rate 0.9502. It should be noted that the success rate of the generic attack
for this scenario is 63% with complexity of 2256.

6.1 Pseudo Second Preimages for Hamsi-256

The pseudo-preimage attack for the compression function can be extended to a
pseudo second preimage attack for the full Hamsi-256. LetM = M (0)||M (1)|| . . . ||M (l)

be the padded message and H be the hash of the message using Hamsi-256. First,
we calculate H(1) = C(M (0), H(0)), where H(0) is the original initial chaining
value. Secondly, with complexity 2254.25, we invert H(1) to find another message
block M ′ and H

′(1) such that H(1) = C(M ′, H
′(0)). Then, we obtain two mes-

sages M (0)||M (1)|| . . . ||M (l) and M ′||M (1)|| . . . ||M (l) whose hash value is same
starting from the chaining values H(0) and H

′(0), respectively.

7 Extension of the Attacks to Hamsi-512

Hamsi-512 has a similar compression function, consisting of six rounds. The
state size of Hamsi-512 is twice the state size of Hamsi-256 (there are 256 4-bit
columns), substitution layer and the linear function L is the same. The main
difference is the number of times L is applied to the state. In Hamsi-256, L is
used 4 times per round, whereas in Hamsi-512 L is used 12 times per round,
providing more diffusion.

We analyzed the effect of 1-bit and 2-bit differences on output chaining values
for varying number of rounds just as we did for Hamsi-256. The experiments
show that unaffected bits can be observed up to two rounds of the compression
function. For three rounds, there are some biased bits. The compression function
appears random starting from the fourth round. Although these are preliminary
results and can be improved, the properties we have used in mounting attacks
to the compression function of Hamsi-256 in this paper does not seem to exist
in the compression function of Hamsi-512.

8 Discussion and Conclusion

In this study, we analyzed the compression function of Hamsi, one of the 14
second round candidates of the SHA-3 competition.

We first evaluated the compression function in terms of its differential prop-
erties and presented some non-random differentials with high probabilities. We

showed that these differentials can be used to distinguish the compression func-
tion of Hamsi from a random function using a few evaluations of the compression
function. Then, we extend the distinguisher for 5 rounds with complexity 283.

We also presented a message recovery attack with a complexity of 210.48

compression function evaluations. For the random compression function, the
complexity of message recovery should be 232, since message block size is 32-
bits.

Finally, we presented a pseudo-preimage attack for the compression function
with complexity 2254.25. We showed that the pseudo-preimage attack on the
compression function can be converted to a pseudo second-preimage attack on
Hamsi-256 with the same complexity. The attacks and observations presented
in this paper do not affect the security of Hamsi in terms of collision, preimage
and second preimage attacks.

Acknowledgment

Çağdaş Çalık was partially supported by TUBITAK under grant no. 108T679.
The authors would like to thank John Kelsey for his helpful comments and
suggestions.

References

1. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions
for hash functions MD4, MD5, HAVAL–128 and RIPEMD, 2004. URL:
http://eprint.iacr.org/2004/199/.

2. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In CRYPTO
’98: Proceedings of the 18th Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 56–71, London, UK, 1998. Springer-Verlag.

3. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Cramer [10], pages 19–35.

4. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and reduced SHA-1. In Cramer [10], pages
36–57.

5. National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family. Federal Register, 27(212):62212–62220, 2007. Available at:
http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

6. Özgül Küçük. The hash function Hamsi. Submission to NIST, 2008.

7. Jean-Philippe Aumasson. On the Pseudorandomness of Hamsi. NIST mailing list
(local link), 2009.

8. Ivica Nikolic. Near Collisions for the Compression Function of Hamsi-256.
CRYPTO rump session, 2009.

9. Meiqin Wang, Xiaoyun Wang, Keting Jia, and Wei Wang. New Pseudo-Near-
Collision Attack on Reduced-Round of Hamsi-256. Cryptology ePrint Archive,
Report 2009/484, 2009.

10. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science. Springer, 2005.

