
A New Framework for RFID Privacy

Robert H. Deng, Yingjiu Li
SIS, Singapore Management University

Andrew C. Yao
ITCS, Tsinghua University

Moti Yung
Google Inc. and Columbia University

Yunlei Zhao∗

Software School, Fudan University

Abstract

Formal RFID security and privacy frameworks are fun-
damental to the design and analysis of robust RFID sys-
tems. In this paper, we develop a new definitional frame-
work for RFID privacy in a rigorous and precise manner.
Our framework is based on a zero-knowledge (ZK) formu-
lation [7, 5] and incorporates the notions of adaptive com-
pleteness and mutual authentication. We provide meticu-
lous justification of the new framework and contrast it with
existing ones in the literature. In particular, we prove that
our framework is stronger than the ind-privacy model of
[14], which answers an open question posed in [14] for de-
veloping stronger RFID privacy models. Along the way we
also try to clarify certain confusions and rectify several de-
fects in the existing frameworks.

Based on the protocol of [16], we propose an efficient
RFID mutual authentication protocol and analyze its secu-
rity and privacy. The methodology used in our analysis is
of independent interest and can be applied to analyze other
RFID protocols within the new framework.

1 Introduction

Radio Frequency IDentification (RFID) tags are low-cost
electronic devices, from which the stored information can
be collected by an RFID reader efficiently (from tens to
hundreds of tags per second) at a distance (from several
centimeters to several meters) without the line of sight [20].
RFID technology has been widely used in numerous appli-
cations, ranging from manufacturing, logistics, transporta-
tion, warehouse inventory control, supermarket checkout
counters, to many emerging applications [1]. As a key com-
ponent of future ubiquitous computing environment, how-
ever, RFID technology has triggered significant concerns on
its security and privacy as a tag’s information can be read

∗Contact author: ylzhao@fudan.edu.cn

or traced by malicious readers from a distance without its
owner’s awareness [14, 11, 22, 13, 15, 4, 12].

It is critical to investigate formal RFID security and pri-
vacy frameworks that are fundamental to the design and
analysis of robust RFID systems [14, 3, 21, 19, 8, 17, 16,
18]. However, due to high system complexity, it turns out
to be full of subtleties in developing rigorous and precise
RFID system models. By examining the existing RFID sys-
tem models, in this paper we develop a new definitional
framework for RFID security and privacy in a rigorous
and precise manner. Our framework is based on a zero-
knowledge formulation [7, 5], and incorporates the notions
of adaptive completeness and mutual authentication. Com-
pared to existing frameworks, very briefly, our framework
is more reasonable in practice than those of [8, 16], and is
stronger in terms of privacy than those of [14, 3]. Along the
way, we also clarify certain confusions and rectify several
defects in the existing frameworks.

To show how this new framework can be applied, we de-
sign an efficient RFID mutual authentication protocol based
on the RFID protocol of [16] and analyze its security and
privacy. The methodology used in our analysis is of inde-
pendent interest and can be applied to analyze other RFID
protocols within the new framework.

2 Preliminaries

If A(·, ·, ...) is a randomized algorithm, then y ←
A(x1, x2, ...; ρ) means that y is assigned with the unique
output of the algorithm A on inputs x1, x2, ... and coins
ρ, while y←A(x1, x2, ...) is a shorthand for first picking
ρ at random and then setting y ← A(x1, x2, ...; ρ). Let
y ← AO1,...,On(x1, x2, ...) denote that y is assigned with
the output of the algorithm A which takes x1, x2, ... as in-
puts and has oracle accesses to O1, ..., On. If S is a set,
then s ∈R S indicates that s is chosen uniformly at random
from S. If x1, x2, ... are strings, then x1||x2|| · · · denotes
the concatenation of them. If x is a string, then |x| denotes
its bit length in binary code. If S is a set, then |S| denotes

its cardinality (i.e. the number of elements of S). Let Pr[E]
denote the probability that an event E occurs,N denote the
set of all integers, R denote the set of all real numbers.

A function f : N → R is said to be negligible if for
every c > 0 there exits a number m ∈ N such that f(n) <
1

nc holds for all n > m.
Given a security parameter κ, let m(·) and l(·) be

two positive polynomials in κ. We say that {Fk :
{0, 1}m(κ) −→ {0, 1}l(κ)}k∈R{0,1}κ is a pseudorandom
function (PRF) ensemble according to the definition given
by Goldreich, Goldwasser, and Micali [6] (see also ap-
pendix A for detail).

3 Model of RFID Systems

In this section, we first give a formal description of RFID
system setting and adversary. We then define RFID sys-
tems to be “complete” in term of adaptive completeness,
and “sound” in terms of mutual authentication.

3.1 RFID System Setting

Consider an RFID system comprising of a single legiti-
mate reader1 R and a set of ` tags T = {T1, ..., T`}, where
` is a polynomial in a security parameter κ. The reader and
the tags are probabilistic polynomial time (PPT) interac-
tive Turing machines. The RFID system (R, T) is setup by
an procedure, denoted Setup(κ, `). Specifically, on (κ, `),
this setup procedure generates the public system parame-
ter σR, the reader secret-key kR and initial internal state
s1

R (if needed) for the reader R. It may also setup an ini-
tial database DB1 for the reader R to store necessary in-
formation for identifying and authenticating tags. For each
i, 1 ≤ i ≤ `, this procedure generates the public param-
eter ξTi and the initial secret-key k1

Ti
for a tag Ti and sets

the tag’s initial internal state s1
Ti

(typically, s1
Ti

includes the
public parameters σR, ξTi). It may also associate the tag
Ti with its unique ID, as well as other necessary informa-
tion such as tag key and/or tag state information, as a record
in the initial database DB1 of the reader R. Note that ξTi

or/and s1
Ti

can be empty strings.
We use para = (σR, ξ1, · · · , ξ`) to denote the public

system parameters. We assume that in the RFID system,
the reader is secure; in other words, the legitimate reader is
a “black-box” to an adversary.

Every tag Ti, 1 ≤ i ≤ `, exchanges messages with the
reader R through a protocol π(R, Ti). Without loss of gen-
erality, we assume the protocol run of π is always initiated

1It is straightforward to extend the model to include multiple legitimate
readers. Notice that an adversary can use its own readers to interact with
tags.

by the reader R and the protocol π is of 2γ + 1 rounds2 for
some γ ≥ 1. Each protocol run of π is called a session.
We assume each tag interacts with the reader sequentially,
but multiple tags can interact with the reader “concurrently”
(with some anti-collision protocols [23]). To allow and dis-
tinguish concurrent sessions (at the side of the reader R),
we associate each session of protocol π with a unique ses-
sion identifier sid. In practice, sid is typically generated by
the reader when it is invoked to send the first-round mes-
sage. We assume each message from a tag to the reader
always bears the corresponding session-identifier. As each
tag runs sessions subsequently, the session-identifiers are
dropped from messages sent from the reader if no confu-
sion arises.

Each tag Ti, as well as the reader R, uses fresh and in-
dependent random coins (generated on the fly) in each ses-
sion, in case it is an randomized algorithm. We assume
that the random coins used in each session are erased once
the session is completed (whether successfully finished or
aborted). Also, in each session run, the tag may update
its internal state and secret-key, and the reader may update
its internal state and database. We assume that the update
process of new internal state and secret-key by an uncor-
rupted tag automatically overwrites (i.e., erases) its old in-
ternal state and secret-key.

Given a security parameter κ, we assume that each tag Ti

takes part in at most s (sequential) sessions in its life time3

with R, and thus the reader R involves at most s` sessions,
where s is some polynomial in κ. In practice, the value s
can be a fixed constant (e.g., s = 228 [1]).

More precisely, for the j-th session (ordered by the ses-
sion initiation time) where 1 ≤ j ≤ s`, the reader R
takes the input from the system parameters para, its secret-
key kR, current internal state sj

R, database DBj , random
coins ρj

R, and a partial transcript T , where T is either an
empty string (which indicates the starting of a new session)
or a sequence of messages (sid, c1, α1, c2, α2, · · · , cu, αu),
1 ≤ u ≤ γ (which indicates the on-going of session sid).
The reader R outputs the next message cu+1. In the case of
T = (sid, c1, α1, c2, α2, · · · , cγ , αγ), besides sending back
the last-round message cγ+1, the reader R also updates its
internal state to sj+1

R , its database to DBj+1, and stops the
session by additionally outputting a bit, denoted by osid

R .
This last bit output indicates either acceptation (osid

R = 1)
or rejection (osid

R = 0) of the current session.

2For protocols of even 2γ rounds with the last-round message sent by
the tag, we can define, by default, the (2γ + 1)-th round (from the reader
to the tag) to be the output of R that indicates acceptation or rejection of
the protocol run. Also, without loss of generality, we assume R and Ti

exchange some system public parameters in the first two rounds.
3It is assumed that s is large enough so that any tag can never run up

to s sessions in its life time; otherwise, an adversary may distinguish two
tags, thus violate their privacy, by running one tag more than s times while
the other less than s times [14].

2

Without loss of generality, we assume that the j-th ses-
sion run by reader R corresponds to the v-th session run
by tag Ti, where 1 ≤ v ≤ s and 1 ≤ i ≤ `. In
this session, the tag Ti takes the input from the system
parameters para, its current secret-key kv

Ti
, current inter-

nal state sv
Ti

, random coins ρv
Ti

, and a partial transcript
T = (sid, c1, α1, · · · , αu−1, cu), where 1 ≤ u ≤ γ. The
tag Ti outputs the next message (sid, αu), where sid is the
session-identifier of the v-th session run by the tag. In the
case of T = (sid, c1, α1, · · · , cγ , αγ , cγ+1) (i.e., Ti has re-
ceived the last-round message of the session sid), Ti up-
dates its internal state to sv+1

Ti
, its secret-key to be kv+1

Ti
,

and stops the session by additionally outputting a bit, de-
noted by osid

Ti
. This last bit output indicates either accepta-

tion (osid
Ti

= 1) or rejection (osid
Ti

= 0) of the current session
run by Ti.

Note that in the above description, it is assumed that the
reader and tags update their internal states, database, or keys
at the end of each protocol run. In reality, this can be per-
formed at any point of each protocol run. Also, for RFID
protocol π with unidirectional authentication from tag to
reader, the tag may not have a session output. In this case,
the session output osid

Ti
is set to be “0” always.

3.2 Adversary

After an RFID system (R, T) is setup by invoking
the setup procedure Setup(κ, `), we model a probabilis-
tic polynomial-time concurrent man-in-the-middle (CMIM)
adversary A against (R, T), with adaptive tag corruption.
We use m̂ to denote a message sent by adversary A, and m
to denote the actual message sent by reader R or an uncor-
rupted tag. The adversary is given access to the following
oracles:

InitReader(): A invokes the reader R to start a session of
protocol π and generate a session identifier sid as well
as the first-round message c1. Supposing that the new
session is the j-th session run by R, the reader R stores
(sid, c1) into its internal state sj

R, and returns c1 to the
adversary.

SendT(Ti, m̂): Adversary A sends m̂ to Ti
4. After receiv-

ing m̂, Ti works as follows:

• If Ti currently does not run any existing ses-
sion, Ti initiates a new session with the session-
identifier sid set to m̂, treats m̂ as the first-round
message of the new session, and returns back the
second-round message (sid, α1).

4For simplicity, we abuse the notation Ti to denote any virtual identity
of a tag in T (not the tag’s real identity) labeled by A when A selects the
tag from T .

• If Ti is currently running an incomplete session
with session-identifier sid = ĉ, and is waiting
for the u-th message from R, where u ≥ 2, Ti

works as follows: If 2 ≤ u ≤ γ, it treats m̂ as the
u-th message from the reader and returns back
the next round message (sid, αu). If u = γ + 1
(i.e., Ti is waiting for the last-round message of
the session sid), Ti returns back its output osid

Ti
to

the adversary, and (internally) updates its internal
state to be sv+1

Ti
, assuming that the session sid is

the v-th session run by Ti, where 1 ≤ v ≤ s,.

SendR(ŝid, α̂): Adversary A sends (ŝid, α̂) to the reader
R. After receiving (ŝid, α̂), R checks from its internal
state whether it is running a session of session identi-
fier sid = ŝid, and works as follows:

• If R is currently running an incomplete session
with sid = ŝid and is waiting for the u-th mes-
sage from a tag, where 1 ≤ u ≤ γ, R acts as
follows: If u < γ, it treats α̂ as the u-th mes-
sage from the tag, and returns back the next round
message cu+1 to A. If u = γ, it returns back the
last-round message cγ+1 and the output osid

R to
A, and internally updates its internal state to be
sj+1

R and the database to be DBj+1, assuming
that the session sid corresponds to the j-th ses-
sion run by R.

• In all other cases, R returns back a special sym-
bol ⊥ (indicating invalid query).

Corrupt(Ti): Adversary A obtains the secret-key and in-
ternal state information (as well as the random coins)
currently held by Ti. Once a tag Ti is corrupted, all its
actions are controlled and performed by the adversary
A.

Let O1, O2, O3 and O4 denote the above oracles, respec-
tively. These oracles fully capture the capability of any PPT
CMIM adversary with adaptive tag corruption.5 For pre-
sentation simplicity, we denote by O the set of the four or-
acles {O1, O2, O3, O4} specified above. An adversary is a
(t, n1, n2, n3, n4)-adversary, if it works in time t and makes
oracle queries to Oµ without exceeding nµ times, where
1 ≤ µ ≤ 4. We treat each oracle call as a unit operation,
and thus for a t-time adversary it holds that Σ4

µ=1nµ ≤ t.
We denote by AO(R, T , para) a PPT algorithm A that,

on input of some system public parameters para, concur-
rently interacts with R and the tags in T via the four oracles
O1, O2, O3, O4 specified above, where (R, T) is setup by
the procedure Setup(κ, `).

5Here, for simpler definitional complexity, we assume all tags are al-
ways within the attack scope of adversary. In practice, some tags may be
in or out from the attack scope of adversary at different time [21].

3

Note that in our formulation, the output bits of protocol
participants (which indicate authentication success or fail-
ure) are publicly accessible to the adversary. The reason is
that, in reality, such outputs can be publicly observed from
the behaviors of protocol participants during/after the pro-
tocol run or can be learnt by some other side-channel infor-
mation.

3.3 Adaptive Completeness and Mutual
Authentication

We now define an RFID system to be complete in terms
of protocol adaptive completeness, and sound in terms of
protocol mutual authentication. We first define the concept
of adaptive completeness. Roughly speaking, the adaptive
completeness property of an RFID protocol π means that,
after any potential (particularly, desynchronizing) attacks
by the PPT CMIM adversary A, if the reader R completes
its j-th session and an uncorrupted tag Ti completes its v-th
session such that these two sessions are of identical session-
identifier sid and identical round messages, then with over-
whelming probability the reader R successfully identifies Ti

(i.e., osid
R = 1), and with overwhelming probability the tag

Ti also identifies the reader (i.e., osid
Ti

= 1) if the protocol π
is of mutual authentication.

Definition 3.1 (adaptive completeness) For an RFID sys-
tem (R, T) setup by Setup(κ, `), denote by

(sid, csid
1 , αsid

1 , · · · , αsid
γ , csid

γ+1, o
sid
R , osid

Ti
) ← π(R, Ti)

the running of a session with identifier sid of the protocol
π between R and an uncorrupted tag Ti ∈ T . Suppose that
the session sid corresponds to the v-th session at the side
of Ti and the j-th session at the side of R, where 1 ≤ v ≤ s
and 1 ≤ j ≤ s`. Consider the case that the two sessions
are of the same round messages, and that all the exchanged
messages in these two (matching) sessions are all honestly
generated by R and Ti respectively. Denote by E the event
that osid

R = 0 holds (or osid
Ti

= 0 holds if the protocol π
is of mutual authentication) or R identifies a different tag
Ti′ 6= Ti in its j-th session.

A PPT CMIM adversary A (t, ε, n1, n2, n3, n4)-breaks
the adaptive completeness of the RFID system against the
uncorrupted Ti, if the probability that event E occurs
with probability at least ε and A is a (t, n1, n2, n3, n4)-
adversary. The probability is taken over the coins used by
Setup(κ, `), the coins of A, the coins used by R (up to fin-
ishing the j-th session), and the coins used by Ti (up to
finishing the v-th session).

An RFID system (R, T) is of adaptive completeness, if
for all sufficiently large κ and for any uncorrupted tag Ti,
there exists no adversary A that can (t, ε, n1, n2, n3, n4)-
breaks the adaptive completeness against Ti, for any (t, ε),
where t is polynomial in κ and ε is non-negligible in κ.

Note that the above definition captures any adversarial
desynchronizing attacks by A, the adaptive evolution of in-
ternal state and secret-key of Ti, and the adaptive evolution
of the internal state, secret-key, and database of R.

Next, we define mutual authentication of RFID proto-
cols. Roughly speaking, for an RFID protocol π of the
RFID system (R, T), authentication from reader to tag
(resp., from tag to reader) means that an CMIM adversary
A cannot impersonate the reader R (resp., an uncorrupted
tag Ti ∈ T) to an uncorrupted tag Ti ∈ T (resp., reader R),
unless A honestly relays messages actually generated and
sent by R and the uncorrupted tag Ti. Before we define mu-
tual authentication for RFID protocols, we first clarify the
notion of matching sessions.

Definition 3.2 (matching sessions) Denote by
(sid, csid

1 , αsid
1 , · · · , αsid

γ , csid
γ+1) the transcript of ex-

changed round messages (except the session outputs) of a
successfully completed session sid of the protocol π run
by a tag Ti, where 1 ≤ i ≤ `. This session has a matching
session at the side of the reader R, if R ever successfully
completed a session of the identical session transcript.

Denote by (sid′, csid′
1 , αsid′

1 , · · · , αsid′
γ , csid′

γ+1) the tran-
script of exchanged round messages (except the session out-
puts) of a successfully completed session sid′ run by R.
This session has a matching session at the side of some tag
Ti, where 1 ≤ i ≤ `, if either of the following conditions
holds:

• Ti ever completed, whether successfully finished or
aborted, a session of the identical transcript prefix
(sid′, csid′

1 , αsid′
1 , · · · , αsid′

γ);

• Or, Ti is now running a session with partial tran-
script (sid′, csid′

1 , αsid′
1 , · · · , αsid′

γ) and is waiting for
the last-round message of the session sid′.

For a successfully completed session run by a tag
Ti, its matching session is defined to be the success-
fully completed session with the identical session tran-
script at the side of R. However, for a successfully com-
pleted session run by the reader R with the session tran-
script (sid′, csid′

1 , αsid′
1 , · · · , αsid′

γ , csid′
γ+1), its matching ses-

sion can be any session at the side of an uncorrupted tag Ti:
(1) a successfully finished session of the identical session
transcript; (2) a completed but aborted session of the ses-
sion transcript (sid′, csid′

1 , αsid′
1 , · · · , αsid′

γ , ĉsid′
γ+1), where

ĉsid′
γ+1 6= csid′

γ+1; (3) an incomplete ongoing session with par-
tial transcript (sid′, csid′

1 , αsid′
1 , · · · , αsid′

γ). This treatment
is to take into account the following “cutting-last-message”
attack: a CMIM adversary A relays the messages being ex-
changed by R and an uncorrupted tag Ti for a protocol run
of π until receiving the last-round message csid′

γ+1 from R;
after this, A sends an arbitrary message ĉsid′

γ+1(6= csid′
γ+1) to

4

Ti (which typically causes Ti to abort the session), or, just
drops the session at the side of Ti without sending Ti the
last-round message. Such “cutting-last-message” attacks
are unpreventable.

Experiment Expauth
A [κ, `]

1. run Setup(κ, `) to setup the reader R and a
set of tags T ; denote by para the public system
parameters;

2. trans ← AO(R, T , para).

Figure 1. Authentication Experiment

Figure 1 shows the authentication experiment
Expauth

A [κ, `]. A CMIM adversary A interacts with
R and tags in T via the four oracles in O; At the end
of the experiment, A outputs the transcript, trans, of a
session. Denote by E1 the event that trans corresponds to
the transcript of a successfully completed session run by
R in which R successfully identifies an uncorrupted tag
Ti, but this session has no matching session at the side of
the uncorrupted tag Ti. Denote by E2 the event that trans
corresponds to the transcript of a successfully completed
session run by some uncorrupted tag Ti ∈ T , and this
session has no matching session at the side of R.

Definition 3.3 (authentication) On a security parameter
κ, an adversary A (ε, t, n1, n2, n3, n4)-breaks the authen-
tication of an RFID system (R, T) against the reader R
(resp., an uncorrupted tag Ti ∈ T) if the probability
that event E1 (resp., E2) occurs is at least ε and A is a
(t, n1, n2, n3, n4)-adversary.

The RFID system (R, T) is of tag-to-reader authenti-
cation (resp., reader-to-tag authentication), if for all suf-
ficiently large κ there exists no adversary A that can
(ε, t, n1, n2, n3, n4)-break the authentication of (R, T)
against the reader R (resp., any uncorrupted tag Ti ∈ T),
for any (t, ε), where t is polynomial in κ and ε is non-
negligible in κ.

An RFID system is of mutual authentication, if it is of
both tag-to-reader authentication and reader-to-tag authen-
tication.

4 Zero-Knowledge Based RFID Privacy

In this section, we present a zero-knowledge based def-
initional framework for RFID privacy. To make our defini-
tion formal, we need to clarify the notion of blind access to
tags and the notion of clean tags.

Let AO(R, T̂ , I(Tg), aux) be a PPT algorithm A that,
on input aux ∈ {0, 1}∗ (typically, aux includes the system
parameters or some historical state information of A), con-
currently interacts with R and a set of tags T̂ via the four

oracles O = {O1, O2, O3, O4}. We say that A has blind
access to a challenge tag Tg 6∈ T̂ if A interacts with Tg via
a special interface I. Specifically, I is a PPT algorithm that
runs Tg internally, and interacts with A externally. To send
a message ĉ to Tg, A sends to I a special O2 oracle query
of the form SendT(challenge, ĉ); after receiving this spe-
cial O2 query, I invokes Tg with SendT(Tg, ĉ), and returns
back to A the output by Tg. From the viewpoint of A, it
does not know which tag it is interacting with. It is also
required that A interacts with Tg via O2 queries only.

Next, we define the notion of clean tags. A tag Ti is
called clean, if it is not corrupted (i.e., the adversary has not
made any O4 query to Ti), and is not currently running an
incomplete session with the reader (i.e., the last session of
the tag has been either finished or aborted). In other words,
a clean tag is an uncorrupted tag that is currently at the sta-
tus of waiting for the first-round message from the reader to
start a new session.

Experiment Expzkp
A [κ, `]

1. run Setup(κ, `) to setup the reader R and a
set of tags T ; denote by para the system public
parameters;

2. {C, st} ← AO1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,
Tiδ
} ⊆ T is a set of clean tags, 0 ≤ δ ≤ `;

3. g ∈R {1, · · · , δ}, set Tg = Tig and T̂ = (T − C);
4. viewA ← AO2 (R, T̂ , I(Tg), st);
5. output (g, viewA).

Figure 2. zk-privacy experiment: real world

Now, we are ready to give a formal definition of zero-
knowledge based RFID privacy (zk-privacy, for short). Fig-
ure 2 illustrates the real world of the zk-privacy experi-
ment, Expzkp

A [κ,`] (Expzkp
A , for simplicity), in which a PPT

CMIM adversary A is comprised of a pair of algorithms
(A1,A2) and runs in two stages. In the first stage, algo-
rithm A1 is concurrently interacting with R and all the tags
in T via the four oracles in O, and is required to output a
set C of clean tags at the end of the first stage, where C ⊆ T
consists of δ clean tags, denoted as {Ti1 , · · · , Tiδ

}. The al-
gorithm A1 also outputs a state information st, which will
be transmitted to algorithm A2. Between the first stage and
the second stage, a challenge tag, denoted as Tg, is taken
uniformly at random from C. Note that if δ = 0, then no
challenge tag is selected, and A is reduced to A1 in this ex-
periment. In the second stage, on input st, A2 concurrently
interacts with the reader R and the tags in T̂ = T − C via
the four oracles in O, and additionally has blind access to
Tg. Note that A cannot corrupt any tag (particularly Tg)
in C, and A does not have access to tags in C − {Tg} in
the second stage. Finally, A2 outputs its view, denoted by
viewA, at the end of the second stage. Specifically, viewA

5

is defined to include the system public parameters para, the
random coins used by A, ρA, and the (ordered) list of all
oracle answers to the queries made by A in the experiment
Expzkp

A . Note that viewA does not explicitly include the
oracle queries made by A and A’s output at the first stage,
as all these values are implicitly determined by the system
public parameter para, A’s coins and all oracle answers to
A’s queries. The output of experiment Expzkp

A is defined
to be (g, viewA). Denote by (g, viewA(κ, `)) the random
variable describing the output of experiment Expzkp

A [κ, `].

Experiment Expzkp
S [κ, `]

1. run Setup(κ, `) to setup the reader R and a
set of tags T ; denote by para the system public
parameters;

2. {C, st} ← SO1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,
Tiδ
} ⊆ T is a set of clean tags, 0 ≤ δ ≤ `;

3. g ∈R {1, · · · , δ}, and set T̂ = T − C;
4. sview ← SO2 (R, T̂ , st), where sview particularly

includes all oracle answers to queries made by S;
5. output (g, sview).

Figure 3. zk-privacy experiment: simulated
world

Figure 3 illustrates the simulated world of zk-privacy ex-
periment, Expzkp

S [κ,`] (Expzkp
S , for simplicity), in which

a PPT simulator S is comprised of a pair of algorithms
(S1,S2) and runs in two stages. In the first stage, algo-
rithm S1 concurrently interacts with R and all the tags in T
via the four oracles in O, and outputs a set, denoted C, of
clean tags, where |C| = δ and 0 ≤ δ ≤ `. It also outputs a
state information st, which will be transmitted to algorithm
S2. Between the two stages, a value g is taken uniformly
at random from {1, · · · , |C|} (which is unknown to S). In
the second stage of S , on input st, S2 concurrently interacts
with the reader R and the tags in T̂ = T − C, and outputs
a simulated view, denoted sview, at the end of the second
stage. We require that all oracle answers to the queries made
by S (in both the first stage and the second stage) in the ex-
periment Expzkp

S are included in sview. The output of the
experiment Expzkp

S is defined to be (g, sview). Denote by
(g, sview(κ, `)) the random variable describing the output
of the experiment Expzkp

S [κ,`].
Informally, an RFID protocol π is of zk-privacy, if for

any PPT CMIM adversary A there exists a polynomial-
time simulator S such that for all sufficiently large κ
and any ` which is polynomial in κ, the distributions of
(g, viewA(κ, `)) and (g, sview(κ, `)) are indistinguishable.
In other words, what can be derived by interacting with the
challenge tag Tg in the second-stage of A can actually be
derived by A itself without interacting with Tg . In this

sense, the interaction betweenA2 and Tg leaks “zero knowl-
edge” to the adversaryA. For this reason, our RFID privacy
notion is named zk-privacy.

Definition 4.1 (zk-privacy) An RFID protocol π is of com-
putational (resp., statistical) zk-privacy, if for any PPT
CMIM adversary A there exists a polynomial-time simula-
tor S such that for all sufficiently large κ and any ` which is
polynomials in κ (i.e., ` = poly(κ), where poly(·) is some
positive polynomial), the following ensembles are computa-
tionally (resp., statistically) indistinguishable:

• {g, viewA(κ, `)}κ∈N,`∈poly(κ)

• {g, sview(κ, `)}κ∈N,`∈poly(κ)

In other words, for any polynomial-time (resp., any
computational power unlimited) distinguisher algorithm
D, it holds that |Pr[D(κ, `, g, viewA(κ, `)) = 1] −
Pr[D(κ, `, g, sview(κ, `)) = 1]| = ε, where ε is negligi-
ble in k. The probability is taken over the random coins
used by Setup(κ, `), the random coins used by A, S , the
reader R and all (uncorrupted) tags, the choice of g, and
the coins used by the distinguisher algorithm D.

We now extend our definition to forward zk-privacy
and backward zk-privacy. Denote by (kf

Tg
, sf
Tg

) (resp.,
(k1
Tg

, s1
Tg

)) the final (resp., initial) secret-key and internal
state of Tg at the end of (resp., beginning) of the experi-
ment Expzkp

A . An RFID protocol π is of forward (resp.,
backward) zk-privacy, if for any PPT CMIM adversary A
there exists a polynomial-time simulator S such that for all
sufficiently large κ and any ` = poly(κ), the following dis-
tributions are indistinguishable:

{kf
Tg

, sf
Tg

(resp., k1
Tg

, s1
Tg

), g, viewA(κ, `)}

{kf
Tg

, sf
Tg

(resp., k1
Tg

, s1
Tg

), g, sview(κ, `)}
For forward/backward zk-privacy, it is required that the
challenge tag Tg should remain clean at the end of exper-
iment Expzkp

A . Note that the adversary is allowed to corrupt
the challenge tag after the end of experiment Expzkp

A .

4.1 Discussions

Why allow A1 to output an arbitrary set C of tags, and limit
A2 to blind access to a challenge tag chosen randomly from
C? The definition of zk-privacy implies that the adversary
A cannot distinguish any challenge tag Tg from any set C
of tags; otherwise, A can figure out the identity of Tg in C
from its view viewA, while this tag’s identity cannot be de-
rived from any simulator’s view sview (a formal proof of
this in case of |C| = 2 is provided in Section 5.2). If C is
removed from the definition of zk-privacy, it is possible for

6

the adversary to distinguish any two tags under its attack,
even if each of the tags can be perfectly simulated by a sim-
ulator. A special case is that each tag has an upper-bound of
sessions in its life time so that an adversary can distinguish
any two tags by setting one tag to be run out of sessions in
the learning stage [14]. In addition, we do not restrict C to
two tags so as to take into account the case that any number
of tags may be correlated.
Why limit A1 to output of clean tags? If A1 is allowed to
output “unclean tags,”A2 can trivially violate the privacy of
the tags selected by A1. Consider that A1 selects two tags
that are waiting for different round message (e.g., one tag is
clean and the other is not), then A2 can trivially distinguish
them by forwarding to Tg different round messages.
Why allow S to have access to oracles in O? Suppose that
S simulates a tag from scratch andA (run by S as a subrou-
tine) requests to corrupt the tag in the middle of the simula-
tion. Without oracle access, it is difficult or even impossible
for S to continue its simulation for the tag and keep it con-
sistent with its previous simulation for the same tag.
Why limit sview to include all oracle answers to queries
made by S? This is to restrict S not to access the oracles in
O more than A does. The indistinguishability between the
simulated view sview and the real view viewA of adver-
saryA in zk-privacy implies that for any (t, n1, n2, n3, n4)-
adversary A, with overwhelming probability, S cannot
query O1, O2, O3, O4 more than n1, n2, n3, n4 times, re-
spectively.
Why require Tg to remain clean at the end of Expzkp

A for
forward/backward privacy? In general, forward/backward
privacy cannot be achieved if the adversary is allowed to
corrupt the challenge tag before the end of its sessions in
Expzkp

A (i.e., the tag is not clean at the moment of cor-
ruption); otherwise, the adversary is able to derive certain
protocol messages from the tag’s internal state, secret-key,
random coins, and the partial session transcript.
More on backward privacy. In general, backward privacy
means that even ifA learns the internal state and secret-key
of a tag for the v-th session, it still cannot distinguish the
run of (v + 1)-th session run by this tag from a simulated
session run. Without loss of generality, we assume that the
internal state and secret-key known to A are the initial ones
(i.e., k1

Tg
and s1

Tg
).

For most RFID protocols in practice, the internal state
and the secret-key of any tag at any time t can be determined
by the tag’s initial state, initial secret-key, and the session
transcript related to the tag up to time t. In such a case, the
indistinguishability between the simulated view sview of S
and the real view viewA ofA, relies upon the random coins
used by Tg in experiment Expzkp

A . These random coins are
not disclosed to A since the random coins used by an un-
corrupted tag in any session are erased once the session is
completed, and the challenge tag Tg is required to be clean

at the end of Expzkp
A .

On some special cases in zk-privacy experiments. One
special case is that in the experiment Expzkp

A , A1 outputs
C = T . In this case, the simulator S2 does not have oracle
access to any tag. The zk-privacy is analogue to auxiliary-
input zero-knowledge [5], where the view of A1/S1 corre-
sponds to the auxiliary input. Another special case is that
A1 outputs only a single tag in C, and all other tags can be
corrupted byA1 andA2. In this case, the forward/backward
zk-privacy implies that both adversary A and simulator S
have access to certain secret information of all tags.

5 Comparison with Existing RFID Security
and Privacy Frameworks

In this section, we compare our RFID security and pri-
vacy framework, including adaptive completeness, mutual
authentication, and zk-privacy, with typical existing frame-
works. We argue that our framework is more reasonable in
practice than some frameworks, and it is stronger in terms
of privacy than at least one of the existing frameworks. We
also clarify some subtleties and confusions in the existing
frameworks.

5.1 Comparison with Model in [21, 19]

Vaudenay and Paise proposed a very flexible and com-
prehensive framework for RFID security and privacy in
[21, 19]. In this framework , the adversary is categorized
into the following classes:

• Weak adversary, which cannot corrupt any tags.

• Forward adversary, which can corrupt tags under the
limitation that once the adversary corrupts a tag, it can
do nothing subsequently except for corrupting more
tags.

• Destructive adversary, which can do anything after a
tag corruption, but under the limitation that the adver-
sary cannot reuse a tag after corrupting it. Specifically,
once a tag is corrupted it will be virtually destroyed.
In particular, a destructive adversary cannot observe or
interact with a corrupted tag nor can the adversary im-
personate a corrupted tag to the reader.

• Strong adversary, which has no limitations on corrupt-
ing tags, and can do anything at its wish.

For each category of adversary defined above, it is also
defined a narrow variant, where a narrow adversary cannot
access the outputs of the players (i.e., reader and tags) for
any protocol run.

Suppose that C is one of the adversary categories. In-
formally, an RFID protocol is called C-private if for any

7

adversary A ∈ C, there exists a simulator S such that A
cannot distinguish its interactions with the actual RFID sys-
tem or with the simulator (the reader is referred to [21, 19]
for formal definitions).

The major differences between our framework and this
model are summarized below:

• In [21, 19], the simulator is not required to handle tag
corruption queries by the adversary. In other words,
the simulator works only for those adversaries which
do not make tag corruption queries. It is not clear how
such simulator acts upon tag corruption queries made
by an adversary. Suppose that S simulates a tag from
scratch and A (typically run by S as a subroutine) re-
quests to corrupt the tag in the middle of simulation
(possibly in the middle of a session run). Without ac-
cess to tag corruption queries, it is difficult or even im-
possible for S to continue its simulation for the tag and
keep it consistent with its previous simulation for the
same tag.

• The adversary considered in our framework essentially
corresponds to strong adversary in [21, 19], with the
difference in that the adversary cannot corrupt any
tag in set C before the end of zk-privacy experiment
Expzkp

A . In comparison, the model in [21, 19] poses no
restriction on tag corruption (though it is not clear how
the simulator handles such adversaries), which implies
that an adversary can corrupt any tag at any time (pos-
sibly in the middle of session). However, in such case,
forward/backward privacy may not be achievable if the
challenge tag is corrupted in the middle of session; this
is the reason why we require that the challenge tag Tg

must remain clean at the moment of corruption. In-
deed, there are some confusions in [21, 19].

• The matching session concept defined in [21, 19] is
restrict to identical session transcript, without clarify-
ing some subtleties such as the “last-round-message at-
tacks” for defining authentication from tag to reader.

• The notion of adaptive completeness is not defined in
[21, 19]. The completeness notion in [21, 19] is de-
fined for honest protocol execution only, with no ad-
versarial desynchronizing attacks being taken into ac-
count.

5.2 Comparison with Model in [14]

The RFID privacy model proposed in [14] describes the
indistinguishability between any two tags by an adversary.
We refer to this privacy notion as “ind-privacy.” We shall
prove that zk-privacy is stronger than a revised version of
ind-privacy after some subtleties are clarified.

Experiment Expind
A [κ, `, n1, n2, n3, n4]

1. run Setup(κ, `) to setup the reader R and a
set of tags T ; denote by para the system public
parameters;

2. {Ti, Tj , st} ← AO1 (R, T , para); //learning stage
3. set T̂ = T − {Ti, Tj};
4. b ∈R {0, 1};
5. if b = 0 then Tg = Ti, else Tg = Tj ;
6. b′ ← AO2 (R, T̂ , I(Tg), st); //guess stage
7. the experiment outputs 1 if b′ = b, 0 otherwise.

Figure 4. Ind-Privacy Experiment

Figure 4 illustrates the ind-privacy experiment
Expind

A [κ, `, n1, n2, n3, n4] (Expind
A , for simplicity) in

terms of the notion defined in this paper. In Expind
A , an

adversary A is comprised of a pair of algorithms (A1,A2)
and runs in two stages. Throughout the experiment, the
adversary A is allowed to launch O1, O2, O3 and O4 oracle
queries without exceeding n1, n2, n3 and n4 overall calls,
respectively. The experiment proceeds as follows. At first,
the experiment runs Setup(κ, `) to setup an RFID system
(R, T). Then, in the learning stage, algorithmA1 outputs a
piece of state information st and a pair of uncorrupted tags
{Ti, Tj} to which it has not made Corrupt queries. Next,
the experiment selects a random bit b and sets the challenge
tag Tg = Ti if b = 0, and Tg = Tj otherwise. Finally, in the
guess stage, algorithm A2 is asked to guess the random bit
b by outputting a bit b′. During the second stage, A2 can
interact with R and the tags in T̂ = T − {Ti, Tj}, and can
blindly access (but cannot corrupt) the challenge tag Tg via
the interface I6.

Definition 5.1 (ind-privacy) The advantage of adversary
A, denoted Advind

A (κ, `, n1, n2, n3, n4), in the experiment
Expind

A [κ, `, n1, n2, n3, n4] is defined to be :

|Pr[Expind
A [κ, `, n1, n2, n3, n4] = 1]− 1

2
|.

An adversary A (ε, t, n1, n2, n3, n4)-breaks the ind-
privacy of the RFID system (R, T) if the advantage
Advind

A (k, `, n1, n2, n3, n4) of A in the experiment Expind
A

is at least ε and the running time of A is at most t.
An RFID system (R, T) is said to be of ind-privacy,

if there exists no adversary who can (ε, t, n1, n2, n3, n4)-
break the RFID system for some non-negligible ε and some
polynomials t, n1, n2, n3, n4 (all of them are in κ).

On some subtleties in ind-privacy. In the original definition
of ind-privacy, it is not explicitly specified that the two tags

6In [14], it is stated that A2 is still allowed to access the challenge tag
Tg but cannot corrupt Tg , without formally formulating the interface entity
I as within our framework.

8

output by A1 must be clean tags. In the definition of for-
ward ind-privacy [14], it is not precisely specified the time
point of tag corruption and the actions of adversary after tag
corruption.
On relationship between ind-privacy and zk-privacy. It was
mentioned in [14] that an important area for future research
is to study stronger RFID privacy notions. Our proposed no-
tion, zk-privacy, is indeed stronger than ind-privacy (specif-
ically, a variant of ind-privacy with clean tags being explic-
itly required for the output of A1).

Proposition 5.1 zk-privacy is stronger than ind-privacy.

proof. We prove that if an RFID system (R, T) is not of
ind-privacy, then it is also not of zk-privacy. To prove this,
we show that if there exists an adversary A = (A1,A2)
which can (ε, t, n1, n2, n3, n4)-break the ind-privacy of the
RFID system (R, T), then we can construct another PPT
adversary A′ such that no PPT simulator exists for A′.

In the experiment Expzkp
A′ , let A′ run A and do whatever

A does. In particular, A′ and A are of the same parameters
(t, n1, n2, n3, n4). SinceA run byA′ always outputs a pair
of clean tags at the end of its first stage, Expzkp

A′ outputs
(g, viewA′), where g ∈ {0, 1} is a random bit, and viewA′
implicitly determines the output of A (i.e., the guess bit b′

in the experiment Expind
A). In other words, the guess bit

b′ can be computed out from viewA′ in polynomial-time.
As we assume A (ε, t, n1, n2, n3, n4)-breaks ind-privacy, it
holds that b′ = g for the output of Expzkp

A′ with probability
at least 1

2 + ε. However, the simulated view sview in the
output of the experiment Expzkp

S is independent of g (re-
call that the random value g is unknown to the simulator
S). Therefore, for the guess bit b′ implied by sview (which
can be computed out from sview in polynomial-time), it al-
ways holds that Pr[b′ = g] = 1

2 . This shows that for the
above A′ and for any polynomial-time simulator, there ex-
ists a polynomial-time distinguisher that can distinguish the
output of Expzkp

A and that of Expzkp
S with non-negligible

probability at least ε. ¤

5.3 Comparison with Models in [8, 16]

The RFID privacy notion given in [8, 16] is formulated
based on the unpredictability of protocol output. We refer
to this privacy notion as “unp-privacy.” The unp-privacy is
formulated with respect to RFID protocols with a 3-round
canonical form, denoted as π = (c, r, f), where c, r, f stand
for the first, second, and third round message, respectively.
Note that our framework, as well as models in [14, 21, 19]),
are not confined to this protocol structure.

The unp-privacy notion formulated in [8, 16] essentially
says that the second-round message sent from a tag must

be pseudorandom (i.e., indistinguishable from a truly ran-
dom string). We observe that this requirement has cer-
tain limitations. First, given any unp-private RFID proto-
col π = (c, r, f) between a reader and a tag, we can mod-
ify the protocol to π′ = (c, r||1, f), where “||” denotes the
string concatenation operation. That is, the modified proto-
col π′ is identical to π except that in the second-round the
tag additionally concatenates a bit ‘1’ to r. This modified
RFID-protocol π′ is not of unp-privacy, as the second-round
message r||1 is clearly not pseudorandom. However, intu-
itively, the tags’ privacy should be preserved since the same
bit ‘1’ is appended to all second-round messages for all tags.
Notice that when RFID-protocols are implemented in prac-
tice, the messages being exchanged between reader and tags
normally bear some non-random information such as ver-
sion number of RFID standard. Another limitation is that
the unp-privacy may exclude the use of public-key encryp-
tion in RFID-protocols, as public-key generated ciphertexts
are typically not pseudorandom.

Another point is that the adversaries considered in the
definition of unp-privacy [8, 16] is not allowed to access
protocol outputs. Therefore, such adversaries are narrow
ones as defined in [21, 19]. Informally, the unp-privacy ex-
periment works as follows. Given a first-round message
c (which could be generated by the adversary A), the ex-
periment selects a value r which could be either the actual
second-round message generated by an uncorrupted tag in
response to c or just a random value in a certain domain;
then the experiment presents the value r to A. The unp-
privacy means that A cannot determine in which case the
value r is. Note that if A have access to protocol outputs,
it can simply distinguish between the two cases of r. What
A needs to do is to forward r to the reader R as the sec-
ond round message. If r is generated by an uncorrupted tag
(and the value c was generated by the reader in a match-
ing session), the reader will always output “accept.” On the
other hand, if r is just a random value, with overwhelming
probability R will reject the message due to authentication
soundness from tag to reader.

In summary, we argue that zk-privacy is more reason-
able than unp-privacy in practice. It allows for more gen-
eral protocol structure, more powerful adversary, and non-
pseudorandom protocol messages.

5.4 Comparison with Traditional Formu-
lation of Zero-Knowledge

The notion of zk-privacy is defined based on the tradi-
tional zero-knowledge formulation [7, 5] with the following
differences. First, in zk-privacy, the simulator S is allowed
to have access to oracles in O (where the actions of these
oracles may depend upon some secret values such as secret-
keys and internal states), while traditional zk-simulator is a

9

polynomial-time algorithm without oracle access to play-
ers of secret values. Second, the zk-privacy is formulated
against a structured adversary A which is divided into two
phases, while the traditional zk is formulated against any
polynomial-time adversary. Third, in zk-privacy, the ran-
dom challenge g is unknown to A, but is presented to
the distinguisher, which renders extra power to the distin-
guisher; in comparison, in the traditional zero-knowledge
formulation, the distinguisher and the adversary essentially
have the same power and advantage. Lastly, for forward
(resp., backward) zk-privacy, the final (resp., initial) secret-
key and internal state of the challenge tag Tg are disclosed
to A, while for the traditional zero-knowledge formulation,
no secret values of the knowledge prover are assumed to be
leaked to the adversary.

6 An RFID Protocol within Our Framework

In this section, we present a modified and refined ver-
sion of the RFID protocol proposed in [16] and show that it
is of adaptive completeness, mutual authentication, and zk-
privacy within our framework. The operation of the RFID
protocol between the reader R and a tag Ti is shown in Fig-
ure 5.
Protocol. Let Fk: {0, 1}2κ → {0, 1}2κ be a pre-specified
keyed PRF and F 0

k (resp., F 1
k) the κ-bit prefix (resp., suffix)

of the output of Fk, where κ is the system security parame-
ter. In practice, the PRF can be implemented based on some
lightweight stream or block ciphers [10, 2, 9].

When a tag Ti with identity ID registers to the reader
R, it is assigned a secret-key k ∈R {0, 1}κ, a counter
ctr of length lctr with initial value 1. R pre-computes
an initial index I = F 0

k (1||pad1) for the tag, where
pad1 ∈ {0, 1}2κ−lctr is a fixed padding, and stores the tuple
(I, k, ctr, ID) into its database.

At the start of a new protocol session, R sends a chal-
lenge string c ∈R {0, 1}κ to Ti, which also serves as the
session identifier. To simplify the presentation, the session
identifier as well as the corresponding verification of the
identifier by protocol players are implicitly implied and will
not be explicitly mentioned in the following.

Upon receiving c from R, Ti computes I =
F 0

k (ctr||pad1), (r0, r1) = Fk(c||I) (where r0 = F 0
k (c||I)

and r1 = F 0
k (c||I)), and rT = r0 ⊕ (ctr||pad2). Ti

sends (I, rT) to R and then updates its counter ctr =
ctr + 1, where pad2 ∈ {0, 1}κ−lctr is another predeter-
mined padding string.

After receiving (I, rT) from Ti, R searches its database
to find a tuple indexed by I:

• If R finds such a tuple, say (I, k, ctr′, ID), it com-
putes (r0, r1) = Fk(c||I), and checks whether
ctr′||pad2 = r0 ⊕ rT : If yes, R accepts Ti by out-
putting “1”, sends rR = r1 to the tag, updates the

tuple (I, k, ctr′, ID) with ctr′ = ctr′ + 1 and I =
F 0

k (ctr′||pad1); If not, R searches for the next tuple
including I (to avoid potential collision of index I , i.e.,
two different tuples are of the same index I). We re-
mark that in practice, when no adversary exists (partic-
ularly no desynchronization occurs), with overwhelm-
ing probability there exists just one tuple of index I in
reader’s database and R will succeed with this tuple
without performing subsequent actions.

• If no tuple is found to have an index I (which indi-
cates counter desynchronization between R and Ti),
for each tuple (I ′, k, ctr′, ID) in its database, R com-
putes (r0, r1) = Fk(c||I) and ctr||pad2 = r0 ⊕ rT ,
and checks whether I = F 0

k (ctr||pad1): If yes (which
indicates ctr is the correct counter value at Ti), R ac-
cepts Ti, outputs “1”, sends back rR = r1 as the third
message, and updates the tuple (I ′, k, ctr′, ID) with
ctr′ = ctr + 1 and I ′ = F 0

k (ctr′||pad1). In the that
case R fails with all the tuples in its database, it rejects
the tag and outputs “0”.

Upon receiving rR, Ti checks whether rR = r1: If yes,
Ti accepts the reader and outputs “1”; otherwise it rejects
the reader and outputs “0”.

In comparison with the protocol proposed in [16], the
above protocol adds mutual authentication (and is logically
more precise), and we can formally prove that it is of adap-
tive completeness, mutual authentication, and zk-privacy
within the new framework. Analysis of completeness and
authentication was not conducted in [16], and as we shall
see, the zk-privacy analysis of the protocol depicted in Fig-
ure 5 is much more complicated than the unp-privacy anal-
ysis in [16]. We suggest that the methodology used in our
analysis is of independent interest, which can be applied to
analyze other RFID protocols (particularly those based on
PRFs) within our new framework.

Theorem 1 Assuming Fk is a pseudorandom function, the
protocol depicted in Figure 5 is of adaptive completeness,
mutual authentication and zk-privacy.

The complete proof of the theorem is given in Appendix
B. Below we provide a high level analysis of its zk-privacy
property.

According to the zk-privacy formulation presented in
Section 4, for any PPT adversary A = (A1,A2) the sim-
ulator S = (S1,S2) works as follows: In the first stage
of S , S1 perfectly mimics A1 by running A1 as a sub-
routine and with oracle access to the four oracles in O =
{O1, O2, O3, O4}).

After the challenge tag Tg is specified (taken randomly
from the clean tag set C output by A1), in the second stage
of S , S2 runs A2 as a subroutine and concurrently interacts

10

Reader R
{(I, k, ctr, ID)}

Tag Ti

(k, ctr)
c−−−−−−−−−−−−−−−→

I||rT←−−−−−−−−−−−−−−−

rR−−−−−−−−−−−−−−−→

I = F 0
k (ctr||pad1)

(r0, r1) = Fk(c||I)
rT = r0 ⊕ (ctr||pad2)
ctr = ctr + 1

If rR = r1 then accept the reader
Else reject

If find a tuple (I, k, ctr′, ID), then
compute (r0, r1) = Fk(c||I)
If ctr′||pad2 = r0 ⊕ rT , then

accept the tag, send back rR = r1

update ctr′ = ctr′ + 1 and I = F 0
k (ctr′||pad1)

Else If ∃(I ′, k, ctr′, ID) such that ctr||pad2 = F 0
k (c||I)⊕ rT and F 0

k (ctr||pad1) = I , then
accept the tag, send back rR = F 1

k (c||I)
update ctr′ = ctr + 1 and I ′ = F 0

k (ctr′||pad1)
Else reject

Figure 5. RFID Protocol with Mutual Authentication and zk-Privacy

with the reader R and the tags in T̂ = T − C. For all or-
acle queries made by A2 directed to tags in T̂ = T − C,
S2 makes the same oracle queries, and relays back oracle
answers to A2. But, for oracle queries made by A2 di-
rected to the reader R and to the challenge tag Tg (blindly
accessed by A2), S2 works as follows: (Recall that, the or-
acle queries made by A2 to the challenge tag is of the form
SendT(challenge, ·).)

1. On oracle query InitReader(), S2 makes the same or-
acle query to R, and gets back a random string c ∈
{0, 1}κ from R. Then, S2 relays back c to A2.

2. On oracle query SendT(challenge, ĉ), where the
challenge tag Tg (simulated by S2) currently does not
run any session, S2 opens a session for Tg with ĉ as
the first-round message (that also serves as the session-
identifier of this new session); Then, S2 randomly se-
lects I, rT ∈R {0, 1}κ, and sends back I||rT to A2 as
the second-round message.

3. On oracle query SendR(ĉ, Î||r̂T), S2 works as fol-
lows:

Case-3.1. If Î||r̂T was sent by the challenge tag
Tg (simulated by S2) in a session of session-
identifier ĉ, S2 simulates the responses of the
reader R according to the following two cases.

Case-3.1.1 If R is running an incomplete ses-
sion of session-identifier ĉ (i.e., ĉ was sent
by R upon an InitReader query and R is

waiting for the second-round message), S2

just returns back a random string rR ∈R

{0, 1}κ to A2, and outputs “1” indicating
“accept”.

Case-3.1.2. Otherwise, S2 simply returns back a
special symbol “⊥” indicating invalid query.

Case-3.2. In all other cases, S2 makes the same ora-
cle query SendR(ĉ, Î||r̂T) to the reader R, and
relays back the answer from R to A2.

4. On oracle query SendT(challenge, r̂R), where the
challenge tag Tg (simulated by S2) currently runs a
session of partial session-transcript (ĉ, I||rT) and is
waiting for the third-round message, S2 works as fol-
lows:

Case-4.1. If there exists a matching session of the
same session transcript (ĉ, I||rT , r̂R) at the side
of R (where r̂R may be simulated by S2 as in the
above Case-3.1), S2 outputs “1” indicating “ac-
cept”;

Case-4.2. Otherwise, S2 simply outputs “0” indicat-
ing “reject”.

5. Output of S2: Finally, whenever A2 stops, S2 also
stops and outputs the simulated view sview as spec-
ified in the zk-privacy definition, which particularly
consists of all oracle answers (including ones provided
by the real oracles in O and ones simulated by S2) to
queries made by A.

11

It is easy to see that S works in polynomial-time. We in-
vestigate the differences between the simulated view sview
output by S and the real view viewA of A:

Difference-1: In Case-4.1 (resp., Case-4.2) S2 always out-
puts “accept” (resp., “reject”), while the actual chal-
lenge tag Tg may output “reject” in Case-4.1 (resp.,
“accept” in Case-4.2) in the experiment Expzkp

A .

Difference-2: On oracle query SendT(challenge, ĉ) or in
Case-3.1 upon the oracle query SendR(ĉ, Î||r̂T), S2

always returns back truly random strings, while the ac-
tual players (i.e., the challenge tag Tg and the reader
R) provide pseudorandom strings in the experiment
Expzkp

A , by invoking the PRF Fk where k is the secret-
key of the challenge tag Tg.

Intuitively, Difference-1 can occur only with negligible
probability, by the properties of adaptive completeness and
mutual authentication. The subsequent analysis argues that
the properties of adaptive completeness and mutual authen-
tication indeed hold under the simulation of S in Expzkp

S .
Intuitively, Difference-2 should not constitute distin-

guishable gap between sview and viewA, due to the pseu-
dorandomness of Fk. But, the technical difficulty and sub-
tlety here is that: the difference between pseudorandom-
ness and real randomness only occurs in the second stages
of both Expzkp

A and Expzkp
S , and the first stages of both

Expzkp
A and Expzkp

S are w.r.t. the pseudorandom function
Fk. In other words, to distinguish the PRF Fk from a truly
random one in the second stage, the distinguisher has al-
ready accessed Fk for polynomially many times in the first
stage. In general, the definition of PRF says nothing on the
pseudorandomness in the second stage. To overcome this
technical difficulty, we build a list of hybrid experiments.

In the first hybrid experiment, a polynomial-time algo-
rithm Ŝ runs A as a subroutine and has oracle access to the
PRF Fk or a truly random function H . Ŝ first randomly
guesses the challenge tag Tg (by taking g uniformly at ran-
dom from {1, · · · , `}), and then setups the RFID system
(R, T) except for the challenge-tag Tg. Note that Ŝ can
perfectly handle all oracle queries made by A to the reader
R and all tags in T − {Tg}. For oracle queries directed to
Tg , Ŝ mimics Tg with the aid of its oracle, i.e, the PRF Fk or
a truly random function H . Denote by the view of A under
the run of Ŝ with oracle access to Fk (resp., H) as viewŜFk

A
(resp., viewŜH

A). By the pseudorandomness of Fk, we have
that viewŜFk

A and viewŜH

A are indistinguishable. Next, sup-
pose Ŝ successfully guesses the challenge tag Tg (that oc-
curs with probability 1

`), viewŜFk

A is identical to viewA.
In particular, in this case, the properties of adaptive com-
pleteness and mutual authentication hold in viewŜFk

A and
thus also in viewŜH

A (as viewŜFk

A and viewŜH

A are indistin-
guishable). Thus, to show the indistinguishability between

viewA and sview, it is reduced to show the indistinguisha-
bility between viewŜH

A (in case Ŝ successfully guesses the
challenge tag Tg) and sview.

In the second hybrid experiment, we consider another
polynomial-time algorithm S′ that mimics Ŝ, with oracle
access to Fk or a truly random function H , but with the
following modifications: in the second stage of this hybrid
experiment, S′ essentially mimics the original zk-privacy
simulator S. Denote by the view of A under the run of
S′ with oracle access to Fk (resp., H) as viewS′Fk

A (resp.,
viewS′H

A). By the pseudorandomness of Fk, viewS′Fk

A and
viewS′H

A are indistinguishable. We can show that viewS′H
A

and viewŜH

A are also indistinguishable, and that viewS′Fk

A
and sview are also indistinguishable (conditioned on S′

successfully guesses the challenge tag Tg), which particu-
larly implies that the properties of adaptive completeness
and mutual authentication hold also in sview. This estab-
lishes the indistinguishability between sview and viewA.

7 Conclusion and Future Work

In this paper, we proposed a new zero-knowledge based
framework for RFID system privacy which incorporates the
notions of adaptive completeness and mutual authentica-
tion. The framework captures various security and privacy
requirements in practical RFID systems and does not suffer
from the limitations of the existing RFID privacy models
in the literature. We formally proved that our framework
is stronger than the ind-privacy model of [14] and there-
fore answered an open question posed in [14] for develop-
ing stronger RFID privacy models. We further presented a
modified version of the RFID protocol in [16] and showed
the protocol is of adaptive completeness, mutual authenti-
cation and zk-privacy.

One of our future research directions is to analyze ex-
isting RFID protocols and design new protocols within the
new framework presented in this paper.

Since our framework is formulated w.r.t. the basic sce-
nario of a RFID system consisting of a single uncompro-
mised reader and multiple tags, where tags identify them-
selves to the reader individually and independently. A fu-
ture research direction is to extend our RFID privacy frame-
work to more sophisticated and practical scenarios which
allow compromising of readers, tag group authentication,
and tan ownership transfer.

References

[1] C. Berbain, O. Billet, J. Etrog and H. Gilbert. An
Efficient Forward Private RFID Protocol. In Confer-
ence on Computer and Communications Security –
CCS’09.

12

[2] C. de Canniere and B. Preneel. Trivium. In M.
Robshaw and O. Billet, editors, New Stream Cipher
Designs: The eSTREAM Finalists, volume 4986 of
LNCS, pages 244-266. Springer-Verlag, 2008.

[3] I. Damgård and M. Ostergaard. RFID Security: Trade-
offs between Security and Efficiency. In Topics in
Cryptology–CT-RSA 2008, volume 4964 of Lecture
Notes in Computer Science, pages 318–332, 2008.

[4] S. Garfinkel, A. Juels, and R. Pappu. RFID Privacy:
An Overview of Problems and Proposed Solutions.
IEEE Security and Privacy, 3(3):34–43, 2005.

[5] O. Goldreich. The Foundations of Cryptography, vol-
ume I, Basic Tools. Cambridge University Press,
2001.

[6] O. Goldreich, S. Goldwasser, and S. Micali. How to
construct random functions. J. ACM, 33(4):792–807,
1986.

[7] S. Goldwasser, S. Micali and C. Rackoff. The Knowl-
edge Complexity of Interactive Proof-Systems In
ACM Symposium on Theory of Computing, pages 291-
304, 1985.

[8] J. Ha, S. Moon, J. Zhou, and J. Ha. A new formal
proof model for RFID location privacy. In European
Symposium on Research in Computer Security (ES-
ORICS) 2008, volume 5283 of Lecture Notes in Com-
puter Science.

[9] M. Hell, T. Johansson, and W. Meier. The Grain
Family of Stream Ciphers. In M. Robshaw and O.
Billet, editors, New Stream Cipher Designs: The eS-
TREAM Finalists, volume 4986 of LNCS, pages 179-
190. Springer-Verlag, 2008.

[10] International Standard ISO/IEC 9798 Informa-
tion technology−Security techniques−Entity
authentication−Part 5: Mechanisms using Zero-
Knowledge Techniques.

[11] Nicholas J. Hopper and Manuel Blum. Secure human
identification protocols. In ASIACRYPT, pages 52–66,
2001.

[12] A. Juels. RFID Security and Privacy: A Research Sur-
vey. IEEE Journal on Selected Areas in Communica-
tions, 24(2):381–394, 2006.

[13] A. Juels, R. L. Rivest, and M. Szydlo. The blocker tag:
Selective blocking of RFID tags for consumer privacy.
In 8th ACM Conference on Computer and Communi-
cations Security – ACM CCS, pages 103–111. ACM
Press, 2003.

[14] A. Juels and S. Weis. Defining Strong Privacy for
RFID. In International Conference on Pervasive Com-
puting and Communications – PerCom 2007.

[15] Ari Juels and Stephen A. Weis. Authenticating perva-
sive devices with human protocols. In CRYPTO, pages
293–308, 2005.

[16] C. Ma, Y. Li, R. Deng, and T. Li. RFID Privacy: Re-
lation Between Two Notions, Minimal Condition, and
Efficient Construction. In Conference on Computer
and Communications Security – ACM CCS, 2009.

[17] C. Yu Ng, W. Susilo, Y. Mu, and R. Safavi-Naini.
RFID privacy models revisited. In European Sympo-
sium on Research in Computer Security (ESORICS)
2008, volume 5283 of Lecture Notes in Computer Sci-
ence.

[18] C. Yu Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. New
Privacy Results on Synchronized RFID Authentica-
tion Protocols against Tag Tracing. In European Sym-
posium on Research in Computer Security (ESORICS)
2009, pages 321-336, volume 5786 of Lecture Notes
in Computer Science.

[19] R.L.Paise and S. Vaudenay. Muthal Authentication in
RFID: Security and Privacy. In AsiaCCS 2008, pages
292-299.

[20] A. Shamir. SQUASH: A New MAC with Provable Se-
curity Properties for Highly Constrained Devices Such
as RFID Tags. FSE 2008, LNCS 5086, pages 144-157,
2008.

[21] S. Vaudenay. On Privacy Models for RFID. In Ad-
vances in Cryptology - Asiacrypt 2007.

[22] S. Weis, S. Sarma, R. Rivest, and D. Engels. Security
and Privacy Aspects of Low-Cost Radio Frequency
Identification Systems. In International Conference
on Security in Pervasive Computing – SPC 2003.

[23] 860 MHz - 930 MHz Class 1 Radio Frequency Identi-
fication Tag Radio Frequency and Logical Communi-
cation Interface Specification Candidate Recommen-
dation Version 1.0.1, Auto-ID Center, 2002.

A Pseudorandom Functions

In this section, we review the definition of pseudorandom
functions [6]. On a security parameter κ, let m(·) and l(·)
be two positive polynomials in κ. We say that

{Fk : {0, 1}m(κ) −→ {0, 1}l(κ)}k∈R{0,1}κ

is a PRF ensemble if the following two conditions hold:

13

1. Efficient evaluation: There exists a polynomial-time
algorithm that on input k and x ∈ {0, 1}m(κ) returns
Fk(x).

2. Pseudorandomness: A PPT oracle machine A (t, ε)-
breaks the PRF ensemble, if

|Pr[AFκ(κ) = 1]− Pr[AHκ(κ) = 1]| ≥ ε

where Fκ is a random variable uniformly distributed
over the multi-set {Fk}k∈R{0,1}κ , Hκ is uniformly dis-
tributed among all functions mapping m(κ)-bit-long
strings to l(κ)-bit-long strings, and the running time of
A is at most t (here each oracle query accounts for one
unit operation).

The PRF ensemble is (t, ε)-pseudorandom, if for all
sufficiently large κ there exists no algorithm A that can
(t, ε)-break the PRF ensemble. The PRF ensemble is
pseudorandom, if for all sufficiently large κ’s there ex-
ists no algorithm A that can (t, ε)-break the PRF en-
semble, for any t that is polynomial in κ and any ε that
is non-negligible in κ.

B Proof Details of Theorem 1

We provide the formal proof for Theorem 1 below.

B.1 Adaptive Completeness

Denote by (c, I||rT , rR, oc
R, oc

Ti
) the transcript of a ses-

sion between the reader R and an uncorrupted tag Ti. Sup-
pose the session corresponds to the v-th session of Ti and
the j-th session of R, where 1 ≤ v ≤ s and 1 ≤ j ≤ s`.
That is, after any potential (particularly, desynchronizing)
attacks by a PPT CMIM adversary A, finally R completes
its j-th session and Ti completes its v-th session such that
these two sessions are of identical protocol transcript. Let
ID, k and ctri be the identity, secret-key and counter value
of Ti. Let I = F 0

k (ctri||pad1). We consider the probability
that the event E (defined in Definition 3.1) occurs.

Firstly, note that as R sent the third-round message, we
have oc

R = 1. Secondly, we consider the probability that R
identified a different tag Ti′(6= Ti) of identity ID′(6= ID)
in its j-th session. This event occurs only in one of the
following two cases:

Case-1. There exists a tuple (I, k′, ctr′, ID′) in the
database of R, where ID′ 6= ID, such that
ctr′||pad2 = r′0⊕ rT and (r′0, rR) = Fk′(c||I), where
I = F 0

k′(ctr
′||pad1) was pre-computed by R.

Case-2. There exists a tuple (I ′, k′, ctr′, ID′) in the
database of R, where ID′ 6= ID, such that
ctr||pad2 = F 0

k′(c||I)⊕ rT and I = F 0
k′(ctr||pad1).

As ID 6= ID′ and the random secret keys for different
tags are independent, it follows that Pr[k = k′] = 2−κ

in both two cases. Further note that both cases imply
that there exists a tuple in the database of R that has a
counter value, denoted ctri′ (i.e., ctr′ or ctr), such that
I = F 0

k (ctri||pad1) = F 0
k′(ctri′ ||pad1). We consider the

event that there exists an i′, 1 ≤ i′ 6= i ≤ `, such that
I = F 0

k (ctri||pad1) = F 0
k′(ctri′ ||pad1), where k (resp.,

k′) is the secret-key of Ti (resp., Ti′ of identity ID′), and
observe the following:

• There exists an i′, 1 ≤ i′ 6= i ≤ `, such that k′ = k,
which happens with probability (`− 1)2−κ;

• Suppose for all i′, 1 ≤ i′ 6= i ≤ `, k′ 6= k and Fk is
a truly random function, we have that the probability
that there exists an i′, 1 ≤ i′ 6= i ≤ `, such that I =
F 0

k (ctri||pad1) = F 0
k′(ctri′ ||pad1) is also (`− 1)2−κ.

Due to the pseudorandomness of the underlying PRF
Fk, by straightforward calculation, we have that the
probability that there exists an i′, 1 ≤ i′ 6= i ≤ `,
such that I = F 0

k (ctri||pad1) = F 0
k′(ctri′ ||pad1) and

k 6= k′, is at most (`−1)2−κ+ε, where ε is a negligible
quantity in κ.

Putting all together, we conclude that the probability that
Case-1 or Case-2 occurs is at most ε̂ = 2(` − 1)2−κ + ε,
which is still negligible in κ.

Also note that conditioned on R correctly identifies Ti in
its j-th session, the third-round message rR will be F 1

k (c||I)
upon which Ti will output “accept” (i.e., oc

Ti
= 1). We

conclude that the event E occurs with probability at most ε̂,
which is negligible in κ.

B.2 Mutual Authentication

Assuming there is a CMIM adversary A that breaks
the tag-to-reader (resp., reader-to-tag) authentication of the
RFID protocol depicted in Figure 5, we show how to con-
struct another algorithm A′ that breaks the pseudorandom-
ness of the underlying PRF.
A′ has oracle access to a PRF Fk or a truly random func-

tion H : {0, 1}2κ → {0, 1}2κ, where k ∈R {0, 1}κ is a
random seed, and works as follows:

1. Run Setup(κ, `) to setup an RFID system (R, T).

2. Randomly take i ∈R {1, · · · , `}. That is, A′ ran-
domly guesses the target tag Ti, with respect to which
the event E1 defined for tag-to-reader authentication
(resp., E2 defined for reader-to-tag authentication) oc-
curs.

3. Corrupt all tags in T other than Ti. Note that, by this,
A′ can perfectly mimic all the actions of the tags in

14

T − {Ti}. Moreover, A′ gets and maintains all the
records of the database DB of the reader R except the
record corresponding to Ti.

4. Run A and perfectly answer all oracle queries (made
by A) directed to tags in T − {Ti}, and handle oracle
queries directed to R and Ti as follows (in particular,
A′ runs a counter ctr for simulating Ti that is initial-
ized to 1):

(a) On query InitReader(), initiate a new session
and return back a random string c ∈R {0, 1}κ.
Here, c also serves as the session identifier.

(b) On query SendT(Ti, ĉ) where ĉ ∈ {0, 1}κ and
Ti (simulated byA′) is waiting for the first-round
message of a new session, initiate a new session
with ĉ as the session identifier, query its oracle
(i.e., Fk or H) with ctr||pad1 to get I and then
query its oracle with ĉ||I to get (r0, r1), compute
rT = r0⊕ ctr||pad2, keep r1 for this incomplete
session, return (I, rT) (as the second-round mes-
sage) and update ctr = ctr + 1.

(c) On query SendR(ĉ, (Î , r̂T)) (where ĉ is sup-
posed to be a session identifier), first check
whether it is keeping a session (simulated for R)
of the session identifier ĉ and is waiting for the
second-round message: If not, return a special
symbol “⊥” indicating an invalid query; if yes
(which means that ĉ is some random string ever
sent byA′ as the first-round message), mimic the
actions of R as follows: Any computation involv-
ing records of tags in T − {Ti} in the database
DB (actually maintained by A′) is performed
by A′ itself, and the computation involving the
database record of Ti is performed by A′ with
the aid of its oracle. Note that A′ actually does
not necessarily know the actual identities of the
tags in T to simulate R in this case.

(d) On query SendT(Ti, r̂R) where r̂R ∈ {0, 1}κ

and Ti (simulated by A′) is currently running an
incomplete session of session-identifier ĉ and is
waiting for the third-round message, retrieve the
value r1 (generated when generating the second-
round message of the session ĉ) and check
whether r̂R = r1: If yes, complete the session
ĉ and return “accept”; otherwise, complete the
session and return “reject”.

(e) On query Corrupt(Ti) (i.e.,A tries to corrupt Ti),
stop and output “failure”.

5. If A′ did not output “failure” in the above step (e) due
to request by A to corrupt Ti, stop whenever A stops,
and then output “1” if the event E1 (resp., E2) defined
in Definition 3.3 occurs.

We first note that the running time of A′, denoted t′, is
polynomially related to that of A. Furthermore, suppose
the oracle accessed by A′ is the PRF Fk and A′ did not
stop and output “failure” at step (e) due to corruption query
of Ti, the view of A in its real attack and the view of A
under the simulation of A′ are identical. As A′ uniformly
selects the uncorrupted tag Ti and the view ofA is indepen-
dent of the choice of i whenA′ gets oracle access to Fk, we
have that: supposeA (ε, t, n1, n2, n3, n4)-breaks the tag-to-
reader (resp., reader-to-tag) authentication and A′ gets ora-
cle access to the PRF Fk, with probability `−1ε the event E1

(resp., E2) occurs (under the simulation ofA′) w.r.t. the un-
corrupted tag Ti (selected by A′), on which A′ will output
“1”.

Recall that the event E1 is defined as A successfully fin-
ishes a session with the reader R of the session transcript
(c, I||rT , rR), in which R identifiedA as some uncorrupted
tag Ti, but no matching session exists at the side of the tag
Ti. That is, no session of transcript prefix (c, I||rT) was
ever run or is now running by Ti, where I = F 0

k (ctr||pad1)
and rT = F 0

k (c||I) ⊕ (ctr||pad2) for some counter value
ctr. The event E2 is defined as A successfully finishes a
session with an uncorrupted tag Ti of the session transcript
(c, I||rT , rR), in which Ti outputs “accept”, but no match-
ing session of the identical session transcript exists at the
side of the reader R.

Now, we consider the probability that A′ outputs “1”
when having oracle access to a truly random function H ,
i.e., the probability that the event E1 (resp., E2) occurs w.r.t.
Ti under the simulation ofA′ with oracle access to the truly
random function H .

We first consider the probability the event E1 occurs
w.r.t. Ti under the simulation of A′ with oracle access
to H . Recall that, in this case, I = H0(ctr||pad1) and
rT = H0(c||I) ⊕ (ctr||pad2) for some ctr, where H0

(resp., H1) stands for the κ-bit prefix (resp., suffix) of the
output of H .

• There exists no session of partial session transcript
(c, I||r′T) at the side of Ti (in the simulation of A′),
where r′T = H0(c||I) ⊕ (ctr′||pad2) for any counter
value ctr′. That is, Ti did not ever compute the value
H(c||I) before the event E1 occurs. In this case, the
view of A under the simulation of A′ is independent
of rT = H0(c||I) ⊕ (ctr||pad2) that is a truly ran-
dom string in {0, 1}κ. Thus, the event E1 occurs w.r.t.
Ti with probability at most n32−κ, where n3 is the
upper-bound on the number of O2 (i.e., SendR) or-
acle queries made by A.

• For each session of partial session transcript (c, I||r′T)
at the side of Ti (in the simulation of A′), where
r′T = H0(c||I)⊕(ctr′||pad2) and I = H0(ctr′||pad1)
for some counter value ctr′, we observe that: (1) As

15

we assume no matching session exists at the side of Ti,
it must be that r′T 6= rT = H0(c||I) ⊕ (ctr||pad2)
and thus ctr′ 6= ctr; (2) But, the fact that I =
H0(ctr||pad1) = H0(ctr′||pad1) means that such a
session exists with probability 2−κ. As we assume
each tag involves at most s sessions, where s ≤ n2

and n2 is the upper-bound of O2 oracle queries made
by A, we conclude that the probability that there ex-
ists a session of partial session transcript (c, I||r′T)
at the side of Ti (in the simulation of A′), where
r′T = H0(c||I)⊕(ctr′||pad2) and I = H0(ctr′||pad1)
for some counter value ctr′, is at most s · 2−κ.

Putting all together, we have the probability that event
E1 occurs w.r.t. Ti under the simulation of A′ when oracle
accessing a truly random function, on whichA′ outputs “1”,
is at most (n3 + s)2−κ ≤ (n3 + n2)2−κ.

Now, we consider the probability that event E2 occurs
w.r.t. Ti under the simulation of A′ with oracle access to
H . Recall that, in this case, the event E2 w.r.t. Ti is defined
as A successfully finishes a session with the uncorrupted
tag Ti of the session transcript (c, I||rT , rR), in which Ti

outputs “accept”, but no matching session of the identical
session transcript exists at the side of the reader R, where
I = H0(ctr||pad1), rT = H0(c||I) ⊕ (ctr||pad2) and
rR = H1(c||I). We investigate several cases:

• R (simulated by A′) did not send rR = H1(c||I)
(before the event E2 occurs). In this case, the view
of A (under the simulation of A′) is independent of
rR = H1(c||I) that is a random string in {0, 1}κ.
Thus, the probability that event E2 occurs w.r.t. Ti is
at most s · 2−κ, where s(≤ n2) is the upper-bound on
the number of sessions involving Ti.

• For each session run by R in which R sends rR =
H1(c||I) to Ti, we observe that this session is of ses-
sion transcript (c, I||r′T , rR)), where r′T = H0(c||I)⊕
(ctr′||pad2) and I = H0(ctr′||pad1) for some counter
value ctr′. As we assume no matching session ex-
ists at the side of R, we get r′T = H0(c||r) ⊕
(ctr′||pad2) 6= rT = H0(c||r)⊕(ctr||pad2), and thus
ctr′ 6= ctr. However, as Pr[I = H0(ctr||pad1) =
H0(ctr′||pad1)|ctr′ 6= ctr] = 2−κ, this session hap-
pens with probability 2−κ. As A makes at most n3

SendR (i.e., O3) queries, the probability that there
exists a session at the side of R in which R sends
H1(c||r) is at most n3 · 2−κ.

Putting all together, we have that the probability E2 oc-
curs w.r.t. Ti under the simulation of A′ when oracle ac-
cessing a truly random function, on which A′ outputs “1”,
is also at most (s + n3)2−κ ≤ (n2 + n3)2−κ.

Recall that, suppose A (ε, t, n1, n2, n3, n4)-breaks the
tag-to-reader authentication, we have shown thatA′ outputs

“1” with probability at least `−1ε when oracle accessing the
PRF Fk. Denote by ε1 = |`−1ε − (s + n3)2−κ|. Suppose
A (ε, t, n1, n2, n3, n4)-breaks the tag-to-reader or reader-
to-tag authentication, we conclude thatA′ can (t′, ε1)-break
the pseudorandomness of the underlying PRF, where t′ is
polynomially related to t. As we assume the underlying
PRF is secure, i.e., ε1 is negligible for any t′ that is poly-
nomial in κ, we have that ε must also be negligible for any
t-time adversary A where t is polynomial in κ. This estab-
lishes both the tag-to-reader and the reader-to-tag authenti-
cation of the protocol depicted in Figure 5.

B.3 ZK-Privacy

According to the zk-privacy formulation presented in
Section 4, after an RFID system (R, T) is setup by
Setup(κ, `), for any PPT adversary A = (A1,A2) the
simulator S = (S1,S2) works as follows. In the first
stage of S , S1 runs A1 as a subroutine, and concurrently
interacts with R and all the tags in T (via the four or-
acles in O = {O1, O2, O3, O4}). For all oracle queries
made by A1, S1 makes the same oracle queries, and relays
back the oracle answers to A1. Finally, S1 outputs what-
ever A1 outputs at the end of the first stage, say (C, st),
where C = {Ti1 , Ti2 , · · · , Tiδ

} ⊆ T is a set of clean tags,
0 ≤ δ ≤ `, and st is some state information to be transmit-
ted to the second stage. As for any adversaryAwho outputs
an empty set C of clean tags (i.e., no challenge tag will be
chosen), the view of A can be trivially perfectly simulated
by the simulator with oracle access to all the tags and the
reader R. In the following analysis, we focus on the case
that |C| ≥ 1, i.e., 1 ≤ δ ≤ `.

Then, a value g is selected uniformly at random from
{1, · · · , δ}, which specifies the challenge tag Tg = Tig . In
the second stage of S , S2 runs A2(st) as a subroutine and
concurrently interacts with R and the tags in T̂ = T − C.
For all oracle queries made by A2 directed to tags in T̂ =
T − C, S2 makes the same oracle queries, and relays back
oracle answers to A2. However, for oracle queries made by
A2 directed to R and to Tg = Tig (blindly accessed byA2),
S2 works as follows:

1. On oracle query InitReader() made by A2, make the
same oracle query to R, get back a random string c ∈
{0, 1}κ from R and relay c back to A2.

2. On oracle query SendT(challenge, ĉ), where the
challenge tag Tg (simulated by S2) currently does not
run any session (which means ĉ will be treated as
the first-round message), open a session for Tg with
ĉ as the first-round message (that also serves as the
session-identifier of this new session), randomly select
I, rT ∈R {0, 1}κ, and send back I||rT to A2 as the
second-round message.

16

3. On oracle query SendR(ĉ, Î||r̂T), work as follows:

Case-3.1. If Î||r̂T was sent by Tg (simulated by
S2) in a session of session-identifier ĉ (i.e.,
the first-round message), S2 simulates the re-
sponses of R according to the following two
cases. Note that S2 does not make the oracle
query SendR(ĉ, Î||r̂T) to R. As Î and r̂T are
truly random strings, if S2 makes the same oracle
query SendR(ĉ, Î||r̂T) to R, with overwhelming
probability R will abort this session and outputs
“0” indicating “reject”.

Case-3.1.1 If R is running an incomplete ses-
sion of session-identifier ĉ (i.e., ĉ was sent
by R upon an InitReader query and R is
waiting for the second-round message), S2

just returns back a random string rR ∈R

{0, 1}κ to A2, and outputs “1” indicating
“accept”.

Case-3.1.2. Otherwise, S2 simply returns back a
special symbol “⊥” indicating invalid query.

Case-3.2. In all other cases, S2 makes the same oracle
query SendR(ĉ, Î||r̂T) to R, and relays back the
answer from R to A2.

4. On oracle query SendT(challenge, r̂R), where the
challenge tag Tg (simulated by S2) currently runs a
session of partial session-transcript (ĉ, I||rT) and is
waiting for the third-round message, work as follows:

Case-4.1. If there exists a matching session of the
same session transcript (ĉ, I||rT , r̂R) at the side
of R (where r̂R may be simulated by S2 as in the
above Case-3.1), S2 outputs “1” indicating “ac-
cept”;

Case-4.2. Otherwise, S2 simply outputs “0” indicat-
ing “reject”.

5. Output of S2: Finally, stop whenever A2 stops, and
output the simulated view, denoted sview(κ, `), which
consists of the system public parameters para (output
by Setup(κ, `)), the random coins used byA (actually
set by S), all oracle answers (including ones provided
by the real protocol participants and ones simulated by
S2) to queries made byA. Recall that the output of the
experiment Expzkp

S [κ,`] is defined as (g, sview(κ, `)).

It is clear that if A works in polynomial-time, S
works also in polynomial-time. For all sufficiently large
κ, any ` (that is polynomial in κ), any PPT adversary
A, and any polynomial-time distinguisher D, denote by
pS = Pr[D(κ, `, g, sview(κ, `)) = 1] and by pA =
Pr[D(κ, `, g, viewA(κ, `)) = 1]. Below, we show that

|pS − pA| is negligible, which establishes the zk-privacy
property.

For any (κ, `) and any PPT adversary A = (A1,A2),
we first consider a mental experiment Expprf

Ŝ
(κ, `) w.r.t. a

PPT algorithm Ŝ. Ŝ has oracle access to a PRF Fk or a
truly random function H : {0, 1}2κ → {0, 1}2κ, and works
as follows:

Step-1. Select i ∈R {1, · · · , `} uniformly at random.

Step-2. Setup ` − 1 tags, denoted as T ′ =
{T1, · · · , Ti−1, Ti+1, · · · , T`}, with secret-
keys k1, · · · , ki−1, ki+1, · · · , k` and counters
ctr1, · · · , ctri−1, ctri+1, · · · , ctr` respectively,
where each secret-key is a random string of length
κ and each counter is initialized to “1”; maintain a
counter ctri to simulate Ti with the aid of its oracle
(i.e., Fk or H); setup and maintain all the database
records (of the reader R) w.r.t. the tags in T ′.

Step-3. Run A1 as a subroutine, and answer the oracle
queries made by A1 as follows:

• For oracle queries directed to tags in T ′, Ŝ com-
putes and gives the answers by itself. Note that Ŝ
can perfectly simulate the actions of tags in T ′.

• For oracle queries directed to the tag Ti, Ŝ mim-
ics the actions of Ti, and provides the oracle an-
swer, with the aid of its oracle.

• For any oracle query directed to the reader R,
Ŝ works as follows: If the oracle query is Ini-
tReader(), Ŝ simply returns back a random
string c ∈R {0, 1}κ. If the oracle query is
SendR(ĉ, Î||r̂T), Ŝ mimics the actions of R
with the following modifications: the computa-
tion involving database records w.r.t. tags in T ′
is performed by Ŝ itself; the computation involv-
ing the record w.r.t. Ti is performed by Ŝ with
the aid of its oracle.

Step-4. When A1 stops and outputs (st, C), where C =
{Ti1 , · · · , Tiδ

} is a set of clean tags, 1 ≤ δ ≤ `, se-
lect g ∈R {1, · · · , δ} uniformly at random. If the
challenge-tag Tg(= Tig) 6= Ti, stop and output “⊥”
indicating “failure”; otherwise (i.e., Tg = Ti), proceed
to the next step.

Step-5. In case Tg = Ti, run A2(st) as a subroutine and
mimic the actions of S2, but with the following modi-
fications: (Recall that Ti is just the challenge tag Tg in
this case.)

• For oracle queries made by A2 to tags in T̂ =
T − C, Ŝ computes and gives the answers by it-
self. Note that Ŝ can perfectly simulate the ac-
tions of tags in T ′ ⊇ T̂ .

17

• For oracle queries directed to the challenge tag
Tg = Ti of the form SendT(challenge, ·), Ŝ
provides the answer, mimics the actions of Ti,
with the aid of its oracle.

• For oracle queries directed to R, Ŝ works in the
same way as in its first stage.

• Output of Ŝ: Whenever A2 stops, Ŝ also stops
and then gets a view, denoted viewŜ

A(κ, `), which
consists of the system public parameters para
(generated by Ŝ itself), the random coins used by
A (actually set by Ŝ), all oracle answers (pro-
vided by Ŝ itself to queries made by A). Fi-
nally, Ŝ runs the assumed distinguisher D on in-
puts (κ, `, g, viewŜ

A(κ, `)), and outputs whatever
D(κ, `, g, viewŜ

A(κ, `)) outputs.

Denote by pFk

Ŝ
(resp., pH

Ŝ
) the probability that Ŝ outputs

“1”, with oracle access to Fk (resp., H). Note that Ŝ out-
putting “1” implies Tg = Ti (as otherwise Ŝ will output “⊥”
indicating failure). By the pseudorandomness of Fk, we get
that for some quantity εŜ that is negligible in κ, it holds that
(for sufficiently large κ):

|pFk

Ŝ
− pH

Ŝ
| = εŜ (1)

Note also that the real view of A, i.e., viewA, and the
view of A under the simulation of Ŝ in the experiment
Expprf

Ŝ
(κ, `), i.e., viewŜ

A, are identical conditioned on Ŝ

gets oracle access to the PRF Fk and Ŝ did not output “⊥”
at Step-4 (i.e., Tg = Ti). In particular, the view (particu-
larly, the output of C) of A1 is independent of the choices
of i in this case, and thus Pr[Ti = Tg] = 1

` , and we have:

pFk

Ŝ
=

1
`
pA (2)

The above analysis also implies that the adaptive com-
pleteness and mutual authentication properties hold too in
the experiment Expprf

Ŝ
(κ, `), whether Ŝ gets oracle access

to the PRF Fk or a truly random function H; Otherwise,
the pseudorandomness property of the underlying PRF Fk

will be violated.
Now, we consider another experiment Expprf

S′ (κ, `), in
which a PPT algorithm S′, with oracle access to the PRF
Fk or a truly random function H , mimics the actions of Ŝ
until Step-5 in the experiment Expprf

Ŝ
(κ, `), but with the

following modifications at Step-5 (recall that Step-5 is for
case of Tg = Ti):

D1. For any oracle query directed to the challenge tag
Tg = Ti of the form SendT(challenge, ĉ), Ŝ mim-
ics the actions of the simulator S and returns back
I, rT ∈R {0, 1}κ, where I, rT are taken randomly by
S′ itself.

D2. For any oracle query directed to R of the form
SendR(ĉ, Î||r̂T), S′ works as follows:

Case-D2.1 In Case-3.1 (of the simulation of S), S′

just mimics the actions of the simulator S .

Case-D2.2 In Case-3.2 (of the simulation of S), S′

simulates the actions of R as follows:

Case-D.2.2.1. The computation involving
database records w.r.t. tags in T ′ is per-
formed by S′ itself (just as Ŝ does), which
perfectly mimics the actions of the reader R
in this case.

Case-D.2.2.2. But, the computation involving
the record w.r.t. Ti is just ignored by S′.

D3. For any oracle query directed to Tg = Ti of the form
SendT(challenge, r̂R), S′ just mimics the actions of
the simulator S (in Case-4.1 and Case-4.2 of the sim-
ulation of S).

Note that S′ only queries its oracle (i.e., Fk or H) in
its first-stage of simulation (in dealing with A1), but never
queries its oracle in the second-stage of the simulation (in
dealing with A2).

Denote by pFk

S′ (resp., pH
S′) the probability that S′ outputs

“1”, with oracle access to Fk (resp., H) in the experiment
Expprf

S′ . By the pseudorandomness of Fk, we get that for
some quantity εS′ that is negligible in κ and for sufficiently
large κ:

|pFk

S′ − pH
S′ | = εS′ (3)

Now, we investigate the differences between the view of
A under the simulation of S and the view of A under the
simulation of S′, conditioned on S′ gets oracle access to
the PRF Fk and S′ does not output “⊥” at Step-4 (i.e.,
Tg = Ti). The only difference is that in Case-D.2.2.2 above,
the computation involving the record w.r.t. Ti = Tg is al-
ways ignored by S′; but in the simulation of S this compu-
tation is performed by the reader R. The observation here
is Case-D.2.2 (that corresponds to Case-3.2 of the simu-
lation of S) means that, when A2 makes the oracle query
SendR(ĉ, Î||r̂T), Tg = Ti did not run or is running a ses-
sion of the (partial) session transcript (ĉ, Î||r̂T). Just ana-
logue to the analysis of tag-to-reader authentication (pre-
sented in Section B.2), it is straightforward to calculate that
the probability the reader R successfully identifies Ti in
Case-3.2 of the simulation of S is negligible. Under this
observation and by noting that the view of A1 is indepen-
dent of the choice of i when S′ gets oracle access to Fk (and
thus Pr[Tg = Ti] = 1

`), we have that for some quantity εS

that is negligible in κ, it holds that (for sufficiently large κ):

pFk

S′ =
1
`
pS + εS (4)

18

Now, we investigate the differences between the view of
A under the simulation of Ŝ and that under the simulation
of S′, when both Ŝ and S′ get access to a truly random
function H . We have the following observations:

• In Case-D.1 (resp., Case-D2.1), S′ always returns back
random and independent I, rT (resp., rR). As Ti al-
ways generates I with the updated counter value, the
value I returned back by Ŝ in Case-D.1, with the aid
of the truly random function H , is also always uni-
formly distributed over {0, 1}κ and is independent of
what previously sent by Ŝ. But the value rT (resp., rR)
returned back by Ŝ in Case-D.1 (resp., Case-D.2.1),
with the aid of the truly random function H , might not
be independent of the values previously sent by Ŝ, for
the following reasons: (1) In case I is equal to some
I-values previously sent by Ŝ, the value H(c||I) =
(r0, r1) (that determines rT = r0 ⊕ ctr||pad2 and
rR = r1) can be previously defined. Note that the ad-
versary A can use the same ĉ for all sessions with the
tags. This event occurs with probability at most s·2−κ,
where s is the upper-bound of sessions involved by Ti;
(2) For Case-D.2.1, upon the request SendR(ĉ, Î||r̂T)
where Î||r̂T was sent by Tg = Ti (simulated by Ŝ) in
session ĉ, the reader R (simulated by Ŝ) may identify
a tag Ti′ 6= Ti, and thus the value rR returned by Ŝ
may be F 1

k′(ĉ||I) (rather than an independent and ran-
dom string in {0, 1}κ), where k′ is the secret-key of
Ti′ . But, as the adaptive completeness property holds
in the experiment Expprf

Ŝ
(κ, `), this event occurs also

with negligible probability.

• By the mutual authentication (specifically, the tag-to-
reader authentication in this case) of the experiment
Expprf

Ŝ
(κ, `), the difference caused by Case-D.2.2.2 in

Expprf
S′ (κ, `) occurs also with negligible probability.

• In Case-D.3 in Expprf
S′ (κ, `) (that corresponds to Case-

4.1 and Case-4.2 of the simulation of S) , Tg = Ti

(simulated by S′) always outputs “accept” (resp., “re-
ject”) in Case-4.1 when existing matching session at
the side of R (resp., Case-4.2 when existing no match-
ing session at R). But, in the simulation of Ŝ in
Expprf

Ŝ
(κ, `), with oracle access to a truly random

function H , Tg = Ti may output “reject” in Case-4.1
(resp., “accept” in Case-4.2).

We first observe that, by the mutual authentication
(specifically, the reader-to-tag authentication in this
case) of the experiment Expprf

Ŝ
(κ, `), the probability

that Tg = Ti simulated by Ŝ, with oracle access to the
truly random function H , outputs “accept” in Case-4.2
is negligible.

Next, note that Tg = Ti (simulated by Ŝ in
Expprf

Ŝ
(κ, `)) outputs “reject” in Case-4.1, only if the

reader R (simulated by Ŝ) identified a tag Ti′ 6= Ti

upon the query SendR(ĉ, I||rT), where I||rT was
sent by Ti in the session ĉ. But, by the adaptive com-
pleteness of the experiment Expprf

Ŝ
(κ, `), this event

occurs also with negligible probability.

From the above analysis, we have that for some quantity
εH that is negligible in κ, it holds (for sufficiently large κ):

|pH
S′ − pH

Ŝ
| = εH (5)

Combining all the equations (1), (2), (3), (4), (5), we
have |pFk

Ŝ
− pH

Ŝ
| = |`−1pA− pH

Ŝ
| = |`−1pA− pH

S′ ± εH | =
|`−1pA− pFk

S′ ± εS′ ± εH | = |`−1pA− `−1pS ± εS ± εS′ ±
εH | = εŜ . From this equation, we conclude that |pA − pS |
must be negligible, which then establishes the zk-privacy
property of the protocol depicted in Figure 5.

19

