
Differential Fault Analysis on SMS4
Using a Single Fault

Ruilin Li1, Bing Sun1, Chao Li1,2, and JianXiong You1

1Department of Mathematics and System Science, Science College, National
University of Defense Technology, Changsha, 410073, China

securitylrl@gmail.com
2State Key Laboratory of Information Security, Institute of Software,

Chinese Academy of Sciences, Beijing, 100190, China

Abstract. Differential Fault Analysis (DFA) attack is a powerful crypt-
analytic technique that could be used to retrieve the secret key by ex-
ploiting computational errors in the encryption (decryption) procedure.
In the present paper, we propose a new DFA attack on SMS4 using a
single fault. We show that if a random byte fault is induced into either
the second, third, or forth word register at the input of the 28-th round,
the 128-bit master key could be recovered with an exhaustive search of
22.11 bits on average. The proposed attack makes use of the character-
istic of the cipher’s structure, the speciality of the diffusion layer, and
the differential property of the S-box. Furthermore, it can be tailored to
any block cipher employing a similar structure and an SPN-style round
function as that of SMS4.
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1 Introduction

Fault attacks are where an adversary tries to derive the secret key by accidental
or intentional injecting faults in a cryptographic device during its computation
of an algorithm. The idea of fault attack was introduced by Boneh, Demillo,
and Lipton [3] from Bellcore in 1996. They exploited errors injected during the
encryption process and showed that a single faulty encryption could break a
CRT-RSA based signature cryptosystem. Later on, such kind of attack was ex-
tended by Biham and Shamir to DES-like secret key cryptosystems together
with the technique of differential cryptanalysis [5] and referred as Differential
Fault Analysis (DFA) [4]. Since then, DFA attack has applied to many other
block ciphers, such as AES [7, 10, 13, 21, 23], ARIA [19], IDEA [8], Camellia[32],
CLEFIA [9, 28], etc.

When applying fault attacks, it is usually assumed that the adversary has
physical access to the tamper-proof device under attack and that he could induce
faults by some special equipments. There are lots of methods for fault injection
[1, 2, 6, 25], such as changing the power supply voltage or the frequency of the
external clock, varying the environmental temperature, and exposing the circuits
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of the device to intense lights or lasers. Most of these methods could induce faults
at byte level, due to the 8-bit size of a register for most current cryptographic
security modules (e.g. smart cards).

Generally speaking, most DFA attacks against block ciphers target the last
few rounds, i.e. they exploit computational errors in the last few rounds to ex-
tract the secret key. However, in 2003, Hemme showed the possibility of breaking
DES with injected faults in the early rounds [14]. And recently, Rivain demon-
strates the feasibility of recovering DES key even when faults are injected in
the middle rounds [24]. These significant results again confirm that fault attack
is really a terrible threat for many real life cryptosystems and it may be not
sufficient to protect only the last few rounds of a cipher against fault attacks

SMS4 is the underlying block cipher used in the WAPI standard, which is
the Chinese national standard for securing Wireless LANs. The detail of SMS4
was made public in 2006 by the Chinese government [26] and its English version
was translated by Diffie and Ledin [11] at the end of 2008. After its publication,
there are many traditional cryptanalytic works evaluating its security including
differential attack [30, 31], linear attack [12], integral attack [16], algebraic attack
[15], rectangle attack [20, 27, 30] and impossible differential attack [20, 27]. Be-
sides traditional cryptanalysis, several authors mounted DFA attacks on SMS4
(see e.g. [17, 18, 29]).

In the present paper, we propose a new DFA attack on SMS4 using a single
fault. We generalize the attack described by Takahashi et al. in [28] and consider
a more realistic fault model. The main idea is based on the observation of the
special characteristic of the cipher’s structure and its round function. We show
that if a random byte fault is induced into either the second, third or forth
word register at the input of the 28-th round, the 128-bit master key could
be derived with an exhaustive search of 22.11 bits on average. Moreover, by
using the concept of differential distribution table of the S-box, the efficiency of
the proposed attack could be greatly improved, which has been verified by our
computer simulations.

This paper is organized as follows: a brief description of SMS4 is described in
Section 2, some useful properties of the components of SMS4 related to our fault
attack is proofed in Section 3. Fault model and attack procedure are proposed
in Section 4. Section 5 includes some simulation results of our fault attack on
SMS4. Finally, Section 6 concludes this paper.

2 Description of SMS4 Algorithm

2.1 Notation

The following notations are used throughout this paper.

– F2 denotes the finite field with elements 0 and 1.
– F8

2 denotes the set of 8-bit bytes.
– F32

2 denotes the set of 32-bit words.
– Given a word U ∈ F32

2 , U ≪ n denotes left rotation of U by n bits.
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– Any word U ∈ F32
2 can be divided into four bytes (u0, u1, u2, u3), where

ui ∈ F8
2, i = 0, 1, 2, 3.

2.2 Encryption and Decryption

SMS4 is a 128-bit block cipher with 128-bit key length. It iterates a simple
round function 32 times. The encryption and decryption of SMS4 share the same
procedure except that the round sub-keys for decryption are used in the reverse
order. The overall structure of SMS4 is depicted in Fig.1 and the encryption
procedure is described below.

1. The 128-bit plaintext is divided into four 32-bit words (X0, X1, X2, X3).
2. For i = 0 to 31, the words are updated according to the following rule:

(Xi, Xi+1, Xi+2, Xi+3) 7→ (Xi+1, Xi+2, Xi+3, Xi+4)
Xi+4 = Xi ⊕ F (Xi+1 ⊕Xi+2 ⊕Xi+3, RKi)

where F : F32
2 × F32

2 → F32
2 is the round function and RKi is the round-key.

3. The ciphertext is obtained through the following switch transform R,

(Y0, Y1, Y2, Y3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32) .

F

Xi+4Xi+3Xi+2Xi+1

RKi
Xi+1 Xi+2 Xi+3Xi

Fig. 1. The overall structure of SMS4
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Fig. 2. The round function of SMS4

The round function of SMS4, as depicted in Fig. 2, is composed of three
parts: the round-key addition layer σ, the substitution layer τ and the diffusion
layer L, which are described as follows:

– The round-key addition σ : F32
2 × F32

2 → F32
2 is simply XORed the input A

with a round key K, i.e.

σ(A,K) = σ
K

(A) = A⊕K = (a0 ⊕ k0, a1 ⊕ k1, a2 ⊕ k2, a3 ⊕ k3) .
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– The nonlinear transformation τ : F32
2 → F32

2 applies four S-boxes in parallel.
Let B be the output of τ , and S : F8

2 → F8
2 be an 8× 8 S-box, then

B = τ(A⊕K) ⇔ (b0, b1, b2, b3) = (S(a0⊕k0), S(a1⊕k1), S(a2⊕k2), S(a3⊕k3)) .

– The linear transformation L : F32
2 → F32

2 is defined as follow

C = L(B) = B ⊕ (B ≪ 2)⊕ (B ≪ 10)⊕ (B ≪ 18)⊕ (B ≪ 24) ,

where C is the output of L, B is the input of L as well as the output of τ .

2.3 Key Schedule

SMS4 only supports 128-bit key and its key schedule is similar to the encryption
function. A 128-bit master key is passed to the key schedule to generate 32 words
in total for round keys.

Given the system parameter FK = (FK0, FK1, FK2, FK3), and the fixed
parameters CK = (CK0, CK1, . . . , CK31), both FKi, i = 0, 1, 2, 3, and CKj ,
j = 0, 1, . . . 31, are some constant words which can be found in [26].

Let the master key be MK = (MK0,MK1,MK2,MK3), then the generation
of the round keys (RK0, RK1, . . . , RK31) can be described as follows:

1. (K0,K1,K2,K3) = (MK0⊕FK0,MK1⊕FK1,MK2⊕FK2,MK3⊕FK3) .
2. For i = 0, 1, . . . , 31,

RKi = Ki+4 = Ki ⊕ L′ ◦ τ (Ki+1 ⊕Ki+2 ⊕Ki+3 ⊕ CKi) ,

where the non-linear transformation function τ(·) is the same as that of the
encryption function and the linear transformation of L′(·) is defined by L′(B) =
B ⊕ (B ≪ 13)⊕ (B ≪ 23).

The procedure of the round key generation indicates that the master key can
be easily retrieved from any four consecutive round keys.

3 Some Properties of the Components of SMS4

In this section, several properties of the components of SMS4 are studied, which
are related to our fault attack. Their proofs can be found in Appendix A.

Definition 1. (Differential distribution table) Let S : F8
2 → F8

2 be an 8×8 S-box
and let #Ω represent the cardinality of the set Ω. Given α, β ∈ F8

2, let

INS(α, β) = {x ∈ F8
2 : S(x)⊕ S(x⊕ α) = β},

NS(α, β) = #{x ∈ F8
2 : S(x)⊕ S(x⊕ α) = β},

then the differential distribution table of S(·) is defined by the table that is com-
posed of all possible (α, β,NS(α, β)). The row (column) of the table corresponds
to α (β), and its entry is NS(α, β).
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Proposition 1. For the S-box of SMS4, given any input difference α 6= 0,
there exist 127 possible output differences, of which 1 output difference satisfies
NS(α, β) = 4, and each of the other 126 output differences satisfies NS(α, β) = 2.

From Definition 1 and Proposition 1, we can apply differential attack to the
S-box of SMS4 in the following model.

Differential Attack Model of the S-box. Given an 8× 8 S-box S(·), let the
encryption function be y = S(x ⊕ k), where x is the input, k is the encryption
key, and y is the output. Assume an adversary could get an input pair as (x, x∗),
however, he only knows the output difference β = y⊕y∗ = S(x⊕k)⊕S(x∗⊕k).
How can he derive the encryption key k or the key candidates from the triplet
(x, x∗, β)?

One can refer Appendix B for the detail of the differential attack on an S-box.
The key point is using the concept of differential distribution table, by which one
triplet (x, x∗, β) could greatly decreases the key candidates from 28 to at most
4 (the case for the S-box of SMS4).

In fact, the triplet (x, x∗, β) corresponds to the following equation

S(x⊕ k)⊕ S(x∗ ⊕ k) = β, with k the indeterminate ,

and
x⊕ INS(x⊕ x∗, β) = {x⊕ z : z ∈ INS(x⊕ x∗, β)}

is just the solution of the above equation, thus also the candidate set for the
right key.

Remark 1. To obtain the key candidates in the differential attack model of the
S-box, it is natural that one can try each possible value gk ∈ F8

2, then verifies
whether or not S(x⊕gk)⊕S(x∗⊕gk) = β. This brute-force attack would lead to
29 table-lookups. However, if the set INS(α, β), with all possible (α, β), is stored
in a table in advance, a more efficient attack could be applied by using only one
table-lookup as described in Appendix B.

Remark 2. Sometimes, when an adversary faces the above differential attack
model of the S-box, the two inputs (x, x∗) as well as their output difference
β are not necessary the exact values, since the triplet (x, x∗, β), or part of it,
may be obtained through a key guess on some known (exact) values, thus such
triplet should be treated as a random one. In other words, if (x, x∗, β) is obtained
through the right key guess, then it always leads to the set x ⊕ INS(x ⊕ x∗, β)
containing the right key. However, if (x, x∗, β) is obtained through a wrong key
guess, it would lead to some other candidate key set, which does not necessarily
contain the right key. Even in some special cases, the random triplet (x, x∗, β)
results in an empty candidate key set which indicates a wrong key guess.

As discussed above, the following situation should be considered: given a
random triplet (x, x∗, β), what’s the property of the solution for the equation
S(x⊕ k)⊕S(x∗⊕ k) = β? The following proposition answers such question and
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it describes the average cardinality of the candidate key set if the equation has
any solution.

Proposition 2. Let S(·) be the S-box of SMS4, (x, x∗, β) be a random triplet
in F8

2, then the following results hold:

(1) NS(x⊕ x∗, β) > 0 is satisfied with probability 0.4942, or in other words, the
equation S(x⊕ k)⊕ S(x∗ ⊕ k) = β has solutions with probability 0.4942.

(2) If NS(x ⊕ x∗, β) > 0, then the expectation of NS(x ⊕ x∗, β) is 2.0236. That
is to say, if S(x ⊕ k) ⊕ S(x∗ ⊕ k) = β has any solution, the expectation of
the number of solutions is 2.0236.

Next, we present some properties with the linear transformation in the diffu-
sion layer. We mainly discuss the differential brunch number and the inversion
expression of the linear transformation L.

Definition 2. (Differential branch number) Let L : F32
2 → F32

2 be a linear trans-
formation, W (·) denotes the byte weight function, that is the number of non-zero
bytes, then the differential branch number of L is defined by

B(L) = min
a∈ F322 , a6=0

(W (a) + W (L(a))) .

Differential branch number is a good concept for measuring the diffusion
effect of a transformation. By computer program, we know that the differential
branch number of L in SMS4 is 5, which ensures that input difference with one
non-zero byte will lead to output difference with four non-zero bytes. Moreover,
if B(L) = 5, by Def. 2, one can easily proof that B(L−1) = 5, where L−1 denotes
the inversion of L, whose expression is deduced by the following proposition.

Proposition 3. The inversion of the linear transformation L(·) of SMS4 has
the following expression:

L−1(C) = C ⊕ (C ≪ 2)⊕ (C ≪ 4)⊕ (C ≪ 8)⊕ (C ≪ 12)⊕ (C ≪ 14)
⊕ (C ≪ 16)⊕ (C ≪ 18)⊕ (C ≪ 22)⊕ (C ≪ 24)⊕ (C ≪ 30) .

By the expression of L−1, the differential attack on the S-box can be easily
extended to the round function F (A,K) = L ◦ τ ◦ σ

K
(A), since from the output

difference of F , one can easily deduce the output difference of τ , thus he can
apply differential attack to each S-box independently.

4 Proposed DFA Attack on SMS4

In this section, we firstly summarize previous fault attacks on SMS4, then pro-
pose our fault attack, including the fault model, main idea, attack procedure
and complexity analysis.
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4.1 Previous DFA Attacks on SMS4

There are three DFA attacks on SMS4 reported in the literature and we sum-
marized them as follows:

The first fault attack on SMS4 was proposed in [29]. By using the byte-
oriented model, the 128-bit key could be recovered with 32 faults ideally. The
deficiency of such attack is that it can only recover the same round key when
injecting faults in some round. Moreover, at least two faults are needed to deduce
one byte of the round key in their attack model, thus decreasing the efficiency
of fault injections.

An improved fault attack on SMS4 was presented in [17]. By injecting one
random byte fault into some word at the input of the 29-th and 27-th round,
respectively, the authors claimed that the 128-bit key could be derived efficiently.
This improved attack is mainly based on the maximum diffusion property of the
linear transform.

Another kind of fault attack [18] on SMS4 is based on injecting faults into
the key schedule of SMS4. After carefully studying the property of the round
key generation, the authors proofed that 8 or 32 faults are needed to retrieve
the master key according to different fault injection points.

4.2 Fault Model and Main Idea

Our proposed fault attack adopts the byte-oriented model, more precisely, it uses
the following realistic assumptions:

– The adversary can obtain a pair of correct and faulty ciphertexts both cor-
responding to the same plaintext and the unknown key.

– The adversary knows the area of the fault injection, e.g. he could inject a
random byte fault into the first, second, third or forth word at the input of
the 28-th round.

– The adversary does not know either the location of the byte in the word or
the value of the fault.

All previous fault attacks on SMS4 are based on the differential attack on
the S-box as described in Appendix B, thus by injecting sufficient faults, the
last four round keys could be uniquely retrieved. The main idea of our proposed
attack, however, is only to deduce the candidates for the last four round keys,
then a brute-force attack is needed to find the right one. The attack procedure
is briefly described as follow:

– Randomly choose a plaintext, obtain the correct ciphertext.
– For the same plaintext, inject a random byte fault into either the second,

third or forth word at the input of the 28-th round, and obtain the faulty
ciphertext.

– According to the cipher’s structure, apply the basic attack of the round func-
tion, as will be described later, to the 32-nd, 31-st, 30-th, and 29-th round
in sequence, obtain the last four round-key candidates.

– Apply brute-force attack on these candidates to retrieve the master key.
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4.3 Attack Procedure

In this subsection, we describe the detailed procedure of the proposed fault
attack on SMS4. Without loss of generality, assume a random byte fault occurs
at the forth word of the 28-th round (Faults occur at the second or third word
are similar to analyze). As shown in Fig.3, this new attack applies differential
attack to the last 4 rounds of SMS4, and can reduce the key space from 2128 to
222.11 on average, thus an exhaustive search is feasible.

We firstly introduce the following notations:

– Ai = (ai,0, ai,1, ai,2, ai,3) denotes the input of the round function F in the
i-th round, Bi = (bi,0, bi,1, bi,2, bi,3) and Ci = (ci,0, ci,1, ci,2, ci,3) denote the
output of the non-linear function τ(·) and linear function L(·) in the i-th
round, respectively, where each ai, bi, ci ∈ F8

2, i = 1, 2, . . . , 32.
– For any word of the correct intermediate state, say W , W ∗ denotes the coun-

terpart of the faulty intermediate state, and ∆W denotes their difference,
i.e. ∆W = W ⊕W ∗.

– For any word U = (u0, u1, u2, u3) ∈ F32
2 , (U)i denotes the i-th byte of U , i.e.

(U)i = ui.
– 〈RKi, RKi−1, . . . , RKj〉 denotes the candidate set for round-keys RKi, RKi−1,

. . ., RKj , where 0 ≤ j ≤ i ≤ 31.

Basic Attack of the Round Function1. Given the round function of SMS4
as F (A,K) = L ◦ τ ◦ σ

K
(A), assume the adversary obtains a 32-bit triplet

(A,A∗,∆C), where (A,A∗) is the input pair for F and ∆C is the the output
difference. Both (A,A∗) and ∆C can be either the known values (exact) or
guessed values (obtained from other round key candidate). The following basic
attack of the round function could be applied to retrieve the round-key candidate
set 〈K〉 and meanwhile reduce the size of possible values of the other round key
candidates, by which this triplet is obtained.

1. Compute ∆B = L−1(∆C).
2. For i = 0, 1, 2, 3, calculate

(a) ai = (A)i, a∗i = (A∗)i, ∆bi = (∆B)i ;
(b) 〈ki〉 = ai ⊕ INS(ai ⊕ a∗i ,∆bi) ;

3. If for each i ∈ {0, 1, 2, 3}, 〈ki〉 6= ∅, then the round key candidate set must
be 〈K〉 = 〈k0〉‖〈k1〉‖〈k2〉‖〈k3〉 , { gk0‖gk1‖gk2‖gk3 : gki ∈ 〈ki〉 }, with ‖ the
concatenation.

4. If there exists some i ∈ {0, 1, 2, 3}, such that 〈ki〉 = ∅, then this triplet
(A,A∗,∆C) indicates no key candidates, i.e. the round-key candidate set
〈K〉 = ∅. Meanwhile, this also implies that the guessed key (other round key
candidate), by which this triplet (A,A∗,∆C) is obtained, is incorrect.

According to Proposition 2, given a 32-bit random triplet (A,A∗,∆C) for
the round function F , the following results hold:
1 The idea of this basic attack of the round function is the same as described in

[28]. Note that the concept of differential distribution table of the S-box is used to
significantly reduce the time complexity of the attack.
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– The above attack will output a non-empty round-key candidate set 〈K〉 with
probability 0.49424 ≈ (

2−1.107
)4 = 2−4.068. This implies that the size of the

guessed keys (other round key candidates), by which this triplet is obtained,
could be reduced about 2−4.068.

– If there exists any round-key candidate, the expectation value of 〈K〉 is
2.02364 ≈ (

21.017
)4 = 24.068.

Now the detailed attack procedure is described in the following three steps:

Step 1. Obtain the correct and faulty ciphertext. Randomly choose a
plaintext X = (X0, X1, X2, X3), and obtain the correct ciphertext Y = (Y1,
Y2, Y3, Y4) under the unknown encryption key MK. Assume the round keys
generated by MK is RKi, where i = 0, 1, . . . , 31. For the same plaintext and the
unknown key, inject a random byte fault into the forth word at the input of the
28-th round, obtain the fault ciphertext Y ∗ = (Y ∗

1 , Y ∗
2 , Y ∗

3 , Y ∗
4 ).

Step 2. Deduce 〈RK31,RK30,RK29,RK28〉. Due to the switch transforma-
tion, (X32, X33, X34, X35) = (Y3, Y2, Y1, Y0) and (X∗

32, X∗
33, X∗

34, X∗
35)=(Y ∗

3 , Y ∗
2 ,

Y ∗
1 , Y ∗

0 ), thus both the correct and faulty output of the 32-nd round are known.
For this output pair, by using the technique of differential attack, obtain the
round-key candidates for the 32-nd, 31-st, 30-th and 29-th round.

Let Ψ = {(δ, 0, 0, 0), (0, δ, 0, 0), (0, 0, δ, 0), (0, 0, 0, δ) : 0 6= δ ∈ F8
2} be the

set that contains all possible values of random byte faults that occurs in ∆X30

at the input of the 28-th round, thus #Ψ = 255× 4 = 1020.
Since a random byte fault is induced into X30 at the input of the 28-th round,

we have

∆X27 = ∆X28 = ∆X29 = 0, and ∆X30 ∈ Ψ.

Thus, the input difference of the 28-th round function is

∆A28 = ∆X28 ⊕∆X29 ⊕∆X30 = ∆X30 ∈ Ψ,

after passing through the substitution layer,

∆B28 ∈ Ψ.

By the cipher’s structure,

∆X31 = ∆X27 ⊕∆C28 = ∆C28 = L(∆B28) .

According the above analysis, we have the following results:

– ∆X30 ∈ Ψ, thus there are at most 1020 possible values for ∆X30.
– ∆X31 = L(∆B31), ∆B31 ∈ Ψ, thus there are at most 1020 possible values

for ∆X31.

Now we can describe Step 2 in the following four consecutive sub-steps.
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Step 2.1 Deduce 〈RK31〉. Consider the 32-nd round, the correct as well as
the faulty input of the round function F can be calculated as:

A32 = X32 ⊕X33 ⊕X34,

and A∗32 = X∗
32 ⊕X∗

33 ⊕X∗
34.

Meanwhile, the output difference of F is

∆C32 = ∆X31 ⊕∆X35.

Use all possible triplets (A32, A
∗
32,∆C32) to apply the basic attack on the 32-nd

round function, obtain the candidate set 〈RK31〉.

Step 2.2 Deduce 〈RK31, RK30〉. For each gk31 ∈ 〈RK31〉, “decrypt” the
ciphertext pair by one round and obtain:

X31 = X35 ⊕ F (X32 ⊕X33 ⊕X34, gk31), X
∗
31 = X∗

35 ⊕ F (X∗
32 ⊕X∗

33 ⊕X∗
34, gk31),

Consider the 31-st round, calculate 2 :

A31 = X31 ⊕X32 ⊕X33,

A∗31 = X∗
31 ⊕X∗

32 ⊕X∗
33,

and ∆C31 = ∆X30 ⊕∆X34.

Use all possible triplets (A31, A
∗
31,∆C31) to apply the basic attack on the 31-st

round function, obtain the candidate set 〈RK31, RK30〉.

Step 2.3 Deduce 〈RK31,RK30,RK29〉. For each (gk31, gk30) ∈ 〈RK31, RK30〉,
“decrypt” the ciphertext pair by two rounds and obtain:

X31 = X35 ⊕ F (X32 ⊕X33 ⊕X34, gk31), X∗
31 = X∗

35 ⊕ F (X∗
32 ⊕X∗

33 ⊕X∗
34, gk31),

X30 = X34 ⊕ F (X31 ⊕X32 ⊕X33, gk30), X∗
30 = X∗

34 ⊕ F (X∗
31 ⊕X∗

32 ⊕X∗
33, gk30),

Consider the 30-th round, calculate :

A30 = X30 ⊕X31 ⊕X32,

A∗30 = X∗
30 ⊕X∗

31 ⊕X∗
32,

and ∆C30 = ∆X29 ⊕∆X33 = ∆X33.

Apply the basic attack on the 30-th round function via (A30, A
∗
30,∆C30), obtain

the candidate set 〈RK31, RK30, RK29〉.
2 Both X31 and X∗

31 (thus A31 and A∗31) are guessed values and they are not necessary
the correct and faulty words unless the guessed round-key gk31 is RK31, the same
case also exists for some other intermediate states in the following sub-steps.
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Step 2.4 Deduce 〈RK31,RK30,RK29, RK28〉. For each (gk31, gk30, gk29) ∈
〈RK31, RK30, RK29〉, “decrypt” the ciphertext pair by three rounds and obtain:

X31 = X35 ⊕ F (X32 ⊕X33 ⊕X34, gk31), X∗
31 = X∗

35 ⊕ F (X∗
32 ⊕X∗

33 ⊕X∗
34, gk31),

X30 = X34 ⊕ F (X31 ⊕X32 ⊕X33, gk30), X∗
30 = X∗

34 ⊕ F (X∗
31 ⊕X∗

32 ⊕X∗
33, gk30),

X29 = X33 ⊕ F (X30 ⊕X31 ⊕X32, gk29), X∗
29 = X∗

33 ⊕ F (X∗
30 ⊕X∗

31 ⊕X∗
32, gk29),

Consider the 29-th round, calculate :

A29 = X29 ⊕X30 ⊕X31,

A∗29 = X∗
29 ⊕X∗

30 ⊕X∗
31,

and ∆C29 = ∆X28 ⊕∆X32.

Apply the basic attack on the 29-th round function via (A29, A
∗
29,∆C29), obtain

the candidate set 〈RK31, RK30, RK29, RK28〉.

Step 3. Retrieve the master key MK. According to the key schedule, we
use each possible 4-word round key candidate after Step 2 to decrypt the right
ciphertext Y , then check whether the plaintext is X. Through a brute-force
attack, there will be only one 4-word round-key candidate surviving the filtration,
in which case, the master key MK can be easily deduced via key schedule (If
not the case, try another plaintext/ciphertext pair to verify).

4.4 Complexity Analysis

As described in Section 4.3, to recover the encryption key MK, a brute-force
attack is needed, thus we have to evaluate the expected value of the size of the
round key candidate set 〈RK31, RK30, RK29, RK28〉 derived from Step 2.

Expected value of #〈RK31〉 after step 2.1. Consider the triplet (A32, A∗32,
∆C32) for the 32-nd round function, since ∆B28 ∈ Ψ, ∆X31 = L(∆B28), and
∆C32 = ∆X31 ⊕∆X35, we have

∆B32 = L−1 (∆C32) = L−1(∆X31)⊕ L−1(∆X35) = ∆B28 ⊕ L−1(∆X35).

Calculate L−1(∆X35) = L−1(X35⊕X∗
35) , (d0, d1, d2, d3), where d0, d1, d2, d3 ∈

F8
2, and all of them are known. Let 0 6= γ ∈ F8

2, thus ∆B32 must be one of the
following 4 kinds of differences (in total there are 1020 possible values):

(γ ⊕ d0, d1, d2, d3) (1)
( d0, γ ⊕ d1, d2, d3) (2)
( d0, d1, γ ⊕ d2, d3) (3)
( d0, d1, d2, γ ⊕ d3) (4)

Let (∆a32,0,∆a32,1,∆a32,2,∆a32,3) = ((∆A32)0 , (∆A32)1 , (∆A32)2 , (∆A32)3),
then for each 0 ≤ i ≤ 3, one check whether or not NS(∆a32,i, di) > 0. According
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to the above analysis, at lest three of (d0, d1, d2, d3) satisfy NS(∆a32,i, di) > 0.
Without loss of generality, assume

NS(∆32,0, d0) > 0,NS(∆32,1, d1) > 0,NS(∆32,2, d2) > 0,

so next, the adversary checks whether or not NS(∆32,3, d3) > 0:

– If NS(∆a32,3, d3) = 0, then differences corresponding to (1)(2)(3) should be
discarded, which implies that the number of possible values of ∆B32 is 255
and that the exact position of the fault is the forth byte of X30. In this
situation, the basic attack of the 32-nd round will return (2.0236)3 × 28 =
211.051 round-key candidates on overage.

– If NS(∆32,3, d3) > 0, then the number of possible values of ∆B32 is 1020.
Thus the basic attack of the 32-nd round will return (2.0236)3 × (28 −
2.0236)× 4 = 213.039 round-key candidates on overage.

Now by Proposition 2, we can conclude that the expected value of #〈RK31〉
after Step 2.1 is 0.4942× 213.039 + (1− 0.4942)× 211.051 ≈ 212.353.

Expected value of #〈RK31,RK30〉 after step 2.2. For each candidate key
gk31 ∈ 〈RK31〉, we obtain the guessed triplet (∆A31,∆A∗31,∆C31) to apply the
basic attack of the 31-st round function. This would decrease the size of the
possible round-key candidates for the 32-nd round, the detailed analysis is as
follow:

By ∆C31 = ∆X30 ⊕∆X34, we have

∆B31 = L−1(∆C31) = L−1(∆X30)⊕ L−1(∆X34).

Since ∆X34 is known, so is L−1(∆X34). Moreover, ∆X30 ∈ Ψ indicates that
L−1(∆X30) has four non-zero bytes. Now according to the value of #〈RK31〉,
we can analyze this situation in the following two cases:

– If #〈RK31〉 = 211.051, then the number of possible values of ∆X30 is 255,
thus the expected value of #〈RK31, RK30〉 after this step is 211.051×2−4.068×
24.068 × 255 = 219.045.

– If #〈RK31〉 = 213.039, then the number of possible values of ∆X30 is 1020,
thus the expected value of #〈RK31, RK30〉 after this step is 213.039×2−4.068×
24.068 × 1020 = 223.033.

In total, we conclude that the expected value of #〈RK31, RK30〉 after this step
is 0.4942× 223.033 + (1− 0.4942)× 219.045 ≈ 222.11.

Expected value of #〈RK31,RK30,RK29〉 after step 2.3. As discussed in
Step 2.3, the expected value of #〈RK31, RK30, RK31〉 after this step is 0.4942×
223.033 × 2−4.068 × 24.068 + (1− 0.4942)× 219.045 × 2−4.068 × 24.068 ≈ 222.11.

Expected value of #〈RK31,RK30,RK29,RK28〉 after step 2.4. As dis-
cussed in Step 2.4, the expected value of #〈RK31, RK30, RK29, RK28〉 after this
step is 0.4942×223.033×2−4.068×24.068×2−4.068×24.068+(1−0.4942)×219.045×
2−4.068 × 24.068 × 2−4.068 × 24.068 ≈ 222.11.
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5 Simulation Results

We implement our proposed DFA attack on SMS4 in C++ code and execute it
on a PC with Intel Pentium 1.80 GHz processor. Our simulation experiment is
based on 1000 samples and the plaintext as well as the master key in each attack
are randomly generated. The distributions of exhaustive search bits after each
sub-steps in step 2 are depicted in Fig.4.

Our experimental result indicates that the average bit space for brute-force
search after each sub-steps in step 2 is well agreed with the previous theoretical
predications.
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Fig. 4. Exhaustive search bits after each sub-steps in step 2

6 Conclusion

In this paper, we present a new DFA attack on SMS4 using a single fault. We
show that if a random byte fault is injected into either the second, third or
forth word at the input of the 28-th round, the 128-bit master key could be
retrieved by applying an exhaustive search of 22.11 bits on average. Table 1
lists our work compared with previous fault attacks on SMS4 and Table 2 is
the comparison of detailed fault injection points with different attack scenarios.
These results indicate that SMS4 can be broken easily using fault based method,
thus cryptographic devices supporting SMS4 should be carefully protected.
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Table 1. Comparison with existing fault attacks

Fault Model Fault Injection No. of Fault No. of Faulty Brute-force Ref.
Region Injection Points Encryptions Attack

Disturb 1 byte Data process 4 32 – [29]
Disturb 1 byte Data process 2 2 – [17]
Disturb 1 byte Key schedule 4 32 – [18]
Disturb 1 byte Key schedule 4 8 – [18]
Disturb 1 byte Data process 1 1 222.11 Sect. 4

Table 2. Comparison with existing fault attacks by fault locations

32-nd 31-st 30-th 29-th 28-th 27-th Ref.

X32, X33, X34 X31, X32, X33 X30, X31, X32 X29, X30, X31 – – [29]
– – – X28, X29 – X26, X27 [17]

K32, K33, K34 K31, K32, K33 K30, K31, K32 K29, K30, K31 – – [18]
K31 K30 K29 K28 – – [18]
– – – – X28, X29, X30 – Sect. 4

It should be pointed out that our proposed fault attack can be extended
to a more generalized case. Any block cipher that employs a similar structure
and an SPN-style round function as that of SMS4 could be suffered from our
attack. Assume such block cipher contains n sub-blocks with n ≥ 2 (n = 2
corresponds to Feistel structure), by injecting a random byte fault into either
the second, third, . . . , or (n − 1)-th word at the input of the last (n + 1)-th
round, the expected number of round-key candidates for the last n rounds could
be significantly reduced. Even if the linear transformation of the round function
is not optimal (i.e. the differential branch number of the linear transformation
does not achieve the maximum), these round keys could be uniquely determined
via a very small quantity of extra fault injections.
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A Proofs of the Propositions in Sect. 3

A.1 Proof of Proposition 1

According to [16], the S-box of SMS4 is affine equivalent to the patched multi-
plicative inverse over GF (28), say I(·), thus the differential property of S(·) is
the same as that of I(·).

By Proposition 6 of [22], for any given 0 6= α ∈ GF (28),

NI(α, β) =

{
0 or 2 if β 6= α−1

4 if β = α−1

Moreover, if β 6= α−1, then NS(α, β) = 2 iff Tr
(
(αβ)−1

)
= 0. Here Tr(·) denotes

the trace map of F28 over F2. Since the trace map is a balanced function, the
number of β such that Tr

(
(αβ)−1

)
= 0 is 128. Excluding β = 0 and β = α−1,

we conclude that there are 126 possible β satisfying NS(α, β) = 2. ut

A.2 Proof of Proposition 2

(1) If x = x∗, then the equation has 256 solutions; if x 6= x∗, let α = x ⊕ x∗,
by Proposition 1, the possible values of ∆ such that NS(α, β) > 0 is 127 and in
this case the equation will have solutions. Thus the equation has solutions with
probability

256 + 256× 255× 127
28 × 28 × 28

≈ 0.4942.
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(2) From the result of (1) and the differential distribution table of S, when the
equation S(x⊕ k)⊕S(x∗⊕ k) = β has solutions, the expectation of the number
of solutions can be calculated as follow

256× 256 + 256× 255× (126× 2 + 1× 4)
256 + 256× 255× 127

≈ 2.0236.

ut

A.3 Proof of Proposition 3

Let F2[x] denote the polynomial ring over F2. Consider F2[x]/(x32 ⊕ 1) as the
residue class of the ring F2[x] modulo the ideal (x32 ⊕ 1). For each

B = (B31, B30, . . . , B1, B0) ∈ F32
2 ,

there exists a corresponding element

B(x) = B31x
31 ⊕B30x

30 ⊕ . . .⊕B1x⊕B0 ∈ F2[x]/(x32 ⊕ 1),

i.e. a polynomial with degree no more than 32 and vice versa.
Since B ≪ i is equivalent to B(x)·xi (mod x32⊕1), by the definition of L(·),

let l(x) = 1⊕ x2 ⊕ x10 ⊕ x18 ⊕ x24, then we can build the following relationship
between L(·) and L(·):

L : F32
2 → F32

2 ⇔ L : F2[x]/(x32 ⊕ 1)
l l

B 7→ L(B) ⇔ B(x) 7→ L(B(x)) = B(x) · l(x) (mod x32 ⊕ 1)

Notice that x = 1 is not the solution of the equation l(x) = 0, which implies
that x⊕ 1 - l(x). Since x32 ⊕ 1 = (x⊕ 1)32, we have gcd(l(x), x32 ⊕ 1) = 1. Thus
there exists l−1(x) ∈ F2[x]/(x32 ⊕ 1), such that

l(x) · l−1(x) ≡ 1 (mod x32 ⊕ 1).

By the extended Euclid algorithm,

l−1(x) = 1⊕ x2 ⊕ x4 ⊕ x8 ⊕ x12 ⊕ x14 ⊕ x16 ⊕ x18 ⊕ x22 ⊕ x24 ⊕ x30.

From the relationship between the L(·) and L(·), the concrete expression of
L−1(·) can be easily deduced as follow

L−1(C) = C ⊕ (C ≪ 2)⊕ (C ≪ 4)⊕ (C ≪ 8)⊕ (C ≪ 12)⊕ (C ≪ 14)
⊕ (C ≪ 16)⊕ (C ≪ 18)⊕ (C ≪ 22)⊕ (C ≪ 24)⊕ (C ≪ 30),

which ends the proof. ut
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B Differential Attack on an S-box

In this appendix, we describe how to apply differential attack on an 8 × 8 S-
box S(·) from a triplet (x, x∗, β), where β = S(x⊕ k)⊕ S(x∗ ⊕ k) and k is the
encryption key. One can also refer [5] for the detail of differential attack on the
S-box of DES.
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Fig. 5. Differential attack on the S-box

Let α = x⊕ x∗, β = y ⊕ y∗, since z ⊕ z∗ = (x⊕ k)⊕ (x∗ ⊕ k) = x⊕ x∗ = α,
then S(x⊕ k)⊕ S(x∗ ⊕ k) = β ⇔ S(z)⊕ S(z ⊕ α) = β, with z = x⊕ k, thus if
the adversary firstly store the set INS(α, β), with all possible (α, β), in advance,
he could do the following attack procedure:

1. Set Ω = F8
2.

2. According to the differential distribution table of the S-box,

x⊕ k = z ∈ INS(α, β) .

Thus, the right key k must be in

x⊕ INS(α, β) = {x⊕ z : z ∈ INS(α, β)} .

Set Ω = Ω ∩ (x⊕ INS(α, β)), go to step 3.
3. If #Ω = 1, then the right key k is uniquely deduced. Otherwise, obtain

another triplet (x, x∗, β), and go to step 2.

Notice that, the number of triplets (x, x∗, β) that are needed to uniquely
determine the encryption key k is significantly related to the differential dis-
tribution table of the S-box. If only one triplet (x, x∗, β) can be obtained, the
adversary only gets the key candidate set x⊕ INS(x⊕ x∗, β). If another triplet
could be obtained, however, its input difference is the same as the fore triplet,
then these two triplets could not retrieve the unique key all the same. In other
words, in this case, at least two key candidates will be left.


