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Abstract. The Diffie-Hellman protocol (DHP) is one of the most studied protocols in cryptography.
Much work has been dedicated to armor the original protocol against active attacks while incurring
a minimal performance overhead relative to the basic (unauthenticated) DHP. This line of work has
resulted in some remarkable protocols, e.g., MQV, where the protocol’s communication cost is identical
to that of the basic DHP and the computation overhead is small. Unfortunately, MQV and similar
2-message “implicitly authenticated” protocols do not achieve full security against active attacks since
they cannot provide forward secrecy (PFS), a major security goal of DHP, against active attackers.

In this paper we investigate the question of whether one can push the limits of authenticated DHPs
even further, namely, to achieve communication complexity as in the original DHP (two messages
with a single group element per message), maintain low computational overhead, and yet achieve
full PFS against active attackers in a provable way. We answer this question in the affirmative by
resorting to an old and elegant key agreement protocol: the Okamoto-Tanaka protocol [32]. We present
a variant of the protocol (denoted mOT) which achieves the above minimal communication, incurs
a computational overhead relative to the basic DHP that is practically negligible, and yet achieves
full provable key agreement security, including PFS, against active attackers. Moreover, due to the
identity-based properties of mOT, even the sending of certificates (typical for authenticated DHPs) can
be avoided in the protocol.

As additional contributions, we apply our analysis to prove the security of a recent multi-domain
extension of the Okamoto-Tanaka protocol by Schridde et al. and show how to adapt mOT to the (non
id-based) certificate-based setting.
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1 Introduction

Since the invention of the Diffie-Hellman protocol (DHP) [13], much work has been dedicated to
armor the protocol against active (“man in the middle”) attacks. Designing authenticated Diffie-
Hellman protocols has proved to be very challenging at the design and analysis level, especially
when trying to optimize performance (both computation and communication). This line of work
has been important not only from the practical point of view but also for understandings what are
the essential limits for providing authentication to the DHP.

In particular, it has been shown that one can obtain an authenticated DH protocol with the
same communication as the basic unauthenticated DHP (at least if one ignores the transmission of
public key certificates); namely, a 2-message exchange where each party sends a single DH value,
and where the two messages can be sent in any order. A prominent example of such protocols is
MQV [26] (and its provably-secure variant HMQV [25]) where the cost of computing a session key
is as in the basic unauthenticated DHP plus half the cost of one exponentiation (i.e., one off-line
exponentiation and 1.5 on-line exponentiations).

Protocols such as the 2-message MQV are “implicitly-authenticated protocols;” that is, the
information transmitted between the parties is computed without access to the parties’ long-term
secrets while the authentication is accomplished via the computation of the session key that involves
the long-term private/public keys of the parties. Unfortunately, implicitly-authenticated protocols,
while offering superb performance, are inherently limited in their security against active attackers.
Indeed, as shown in [25], such protocols can achieve perfect forward secrecy (PFS) against passive
attackers only. Recall that PFS ensures that once a session key derived from a Diffie-Hellman value
is erased from memory, there is no way to recover the session key even by an attacker that gains
access to the long-term authentication keys of the parties after the session is established. PFS is
a major security feature that sets DHPs apart from other key agreement protocols (such as those
based in PK encryption) and is the main reason for the extensive use of DHPs in practice (e.g.,
IPsec and SSH). Adding PFS against active attackers to protocols like MQV requires increased
communication in the form of additional messages and/or explicit signatures.

In this paper we investigate the theoretical and practical question of whether the limits of DHPs
can be pushed further and obtain a protocol with full security against active attackers (including
PFS) while preserving the communication complexity of a basic DHP (two messages with a single
group element per message) and low computational overhead. We answer this question in the
affirmative by departing from implicitly authenticated protocols and resorting to an old and elegant
key agreement protocol: the Okamoto-Tanaka protocol [32]. We present a variant of the protocol
(denoted mOT) which achieves the above minimal communication, incurs a negligible computational
overhead relative to a basic DHP over an RSA group, and yet achieves provable security including
full PFS against active attackers1. Moreover, due to the identity-based properties of mOT, even the
sending and verification of certificates is avoided in the protocol.

1.1 Our Results

An analysis of the original Okamoto-Tanaka protocol shows that it is vulnerable to some forms
of attacks, in particular known-key and malleability attacks. Yet, after introducing some simple
but crucial hashing operations, we obtain a protocol, mOT, for which we present a rigorous proof
of security in the Canetti-Krawczyk (CK) Key-Agreement Protocol model [6]. The security of the

1 There are DH protocols that provide full PFS against active attacks with just two messages, but they require to
send (and process) additional information, e.g. explicit signatures [40] or encrypted challenges [23].
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protocol in this model, including weak PFS (i.e., against passive attacks only), can be proven in
the random oracle model under the standard RSA assumption. For the proof of full PFS against
active attackers (and only for this proof) we resort to non-black-box assumptions in the form of
the “knowledge of exponent” assumptions. We provide more details now.

Modified Okamoto-Tanaka (mOT). Our modified Okamoto-Tanaka protocol, which we denote
by mOT, is described in Figure 1 (for a precise specification see Section 3). We describe the protocol
as an identity-based protocol using a KGC (key generation center) as this setting provides added
performance advantages to the protocol. A certificate-based variant is presented in Section 6. The
differences between mOT and the original Okamoto-Tanaka protocol include the hashing operation
on identities as well as the hashing and squaring operations in the computation of the session key
K. We show that omitting any one of the two hash operations renders the protocol insecure. As for
the squaring operation, we use it in our proofs but we do not know of a specific attack if omitted.

The Modified Okamoto-Tanaka (mOT ) Protocol

Setting: A Key Generation Center (KGC) chooses RSA parameters N = pq (such that p and q are random
safe primes), and exponents d, e, and a random generator g of QRN , the (cyclic) subgroup of quadratic
residues modN .

KGC publishes N, e, g, two hash functions H (with range QRN ) and H ′ (with range of the desired length
of the session key), and distributes to each user U with identity idU a private key SU = H(idU )d mod N .

Key agreement: A and B choose ephemeral private exponents x and y, respectively.

A α = gxSA mod N
- B

β = gySB mod N
�

K̄A = (βe/H(idB))2x mod N K̄B = (αe/H(idA))2y mod N

K̄ = K̄A = K̄B = g2xye mod N

A and B set the session key to K = H ′(K̄, idA, idB , α, β)

Fig. 1. A and B share session key K. See Section 3 for full details.

Security Proof and Full PFS “for free”. We present a rigorous proof of security of the mOT
protocol in the Canetti-Krawczyk (CK) model of authenticated key agreement security specialized
to two-message protocols as in [25]. We consider such a proof to be an essential part of the design of
any protocol, especially given the long history of flawed key agreement protocols, particularly those
that optimize computation and communication. We prove the basic properties of security in the CK
model under the sole RSA assumption (namely, the hardness of inverting RSA on random inputs)
in the random oracle model.2 Also, under the same assumptions, we prove additional security
properties in the extended CK model from [25], namely, resilience to KCI attacks3 and weak PFS.

2 As it can be readily seen, in the mOT protocol the ephemeral Diffie-Hellman values (i.e., any of x, y, gx, gy in
Figure 1) must be guarded as well as the private keys of the parties (this is similar to the requirement in DSA
signatures to prevent the disclosure of the ephemeral randomness value k); therefore, the analysis is carried under
the assumption that gx, gy and long-term private keys are equally protected.

3 Resistance to KCI means that even with the knowledge of Alice’s private key the attacker cannot impersonate an
honest party to Alice (though it can, of course, impersonate Alice to other parties).

2



The security result that sets our protocol and work apart, however, is our proof of full PFS
for mOT, namely, perfect forward secrecy against fully active attackers. The proof of full PFS (and
only this proof) requires two additional “non-black-box” assumptions: one is the well-known KEA1
(knowledge of exponent) assumption [11, 2] related to the hardness of the Diffie-Hellman problem
and the second is similar in spirit but applies to the discrete logarithm problem (see Section 4).
Enjoying full PFS is a major advantage of mOT relative to efficient two-message protocols such as
MQV that can only offer weak PFS. Indeed, in spite of mOT transmitting a single group element
in each of the two messages, it overcomes the inherent PFS limitations of implcitly authenticated
DHPs by involving the sender’s private key in the computation of each protocol’s message. Most
importantly, as we explain below, this full security against active attackers is achieved with zero
communication and negligible computational overhead relative to the basic DHP. We believe this
to be not just a practical feature of mOT but also a significant contribution to the theory of
key agreement protocols showing that armoring the original DHP against active attackers can be
achieved essentially “for free”.

Performance. The cost of mOT remains essentially the same as in the basic (unauthenticated)
DHP: one message per party, that can be sent in any order, with each message containing a single
group element. No additional authentication information needs to be transmitted. Thanks to the
identity-based properties of the protocol, public-key certificates need not be sent or verified. The
only extra operation is one exponentiation to the e-th power, which can be chosen to be 3, and one
squaring; that is, just three modular multiplications in all. However, note that mOT works over
an RSA group and therefore exponentiations are more expensive than over elliptic curves (where
protocols like MQV can be run). Yet, we also note that mOT can be implemented with short
exponents, say 160-bit exponents when the modulus is of size 1024 (or a 224-bit exponent with
a 2048-bit modulus). Our proof of the protocol holds in this case under the common assumption
that in the RSA group the discrete logarithm problem remains hard also for these exponent sizes
(see Section 3.4). In terms of practical efficiency, for moderate security parameters (160-200 bit
exponents) the cost of one on-line exponetiation in mOT is competitive with the 1.5 exponentiations
over elliptic curves required by MQV. For larger security parameters the advantage is fully on the
elliptic curve side though in this case one has to also consider the overhead incurred by certificate
processing in a protocol like MQV (which is costly especially for ECDSA-signed certificates).

Of course, beyond the practical performance considerations, mOT holds a significant security
advantage over 2-message MQV, namely, its full PFS against active attackers. The fact that mOT
can do so well with almost no overhead over the underlying basic Diffie-Hellman protocol, and with
full security against active attacks, is an important theoretical (and conceptual) aspect of our work
pointing to the limits of what is possible in this area.

The Need for a Key Generation Center (KGC). As an identity-based protocol, mOT avoids
the need for certificates (a significant communication and computational advantage). The id-based
setting, however, introduces the need for a KGC that generates and distributes keys to users. This
results in a different trust model than the traditional certification authority (CA) that certifies
public keys but does not generate or know the private keys of parties. Note, however, that in mOT
the private keys are used only for authentication. Thus, while a KGC can impersonate a party, it
cannot learn keys exchanged by that party (we note that the PFS property holds also against a
corrupted KGC!). Note that a regular CA can also impersonate parties at will by issuing certificates
with the user’s name but with a private key known to the CA. Interestingly, as we show below,
mOT can be modified to work also in the traditional CA setting.
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Further contributions (multi-domain and certificate-based extensions). In Section 5 we
extend the above proofs and analysis to a recent extension of the Okamoto-Tanaka protocol pro-
posed by Schridde, Smith and Freisleben [37] that allows the execution of the protocol between
users that belong to different domains, i.e., to different key generation centers (KGC). A user will-
ing to communicate with a peer from another domain needs to obtain the peer’s domain public
parameters but it requires no per-user certificates. In the scheme from [37] (applied to our modified
Okamoto-Tanaka protocol), each KGC chooses its own public parameters exactly as in the mOT
protocol independently of other KGCs. There is no need for coordination between different KGCs
(this is better than other inter-domain schemes in the literature that require the KGCs to share
some common parameters such as a single elliptic curve and generator point). Importantly, in this
extension the protocol between users of the same domain is exactly as in the basic mOT protocol
with the same good performance. When users from two domains interact the protocol is performed
similarly but requires twice as many operations. Multi-domain protocols have important real-world
applications, including multi-domain Internet applications [37, 41] and applications to tactical and
ad-hoc networks.

Finally, in Section 6 we show that the mOT protocol and its extension from [37] can be modified
to work as “traditional” (i.e., not ID-based) key agreement protocol. We have two proposals: the
first uses the mOT protocol (and inherits its outstanding efficiency) with a trusted key generation
center to generate the composite N for all the parties. However, in contrast to the ID-based case,
this center can disappear (in particular, erase all the trapdoor information) immediately after
publishing N ; users choose their own (random) private/public keys based on the public parameters
only. The second proposal uses the protocol from [37] where each party chooses its own modulus
N (leveraging on the multi-domain feature of this protocol) and hence completely dispenses of the
initial trusted key generation center. The resultant protocol transmits twice as many bits as the
id-based mOT but requires only 25% increase in computation.

Related work. Key agreement protocols (KAPs) have played an important role in the development
of identity-based cryptography, with Okamoto [31], Okamoto and Tanaka [32], Gunther [16] being
early examples of id-based cryptography. (Even earlier, the work by Blom [3] on key distribution can
be seen as a precursor of id-based schemes.) With the flourishing of pairings-based cryptography,
many more id-based KAPs have been designed; yet getting them right has been a challenging task.
See the survey by Boyd and Choo [4] and Chen, Cheng, and Smart [8] for good descriptions and
accounts of the main properties of many of these protocols. Even to date it seems that very few
(e.g., [5, 42]) were given full proofs of security (many others were broken or enjoy only a restricted
notion of security, such as partial resistance to known-key attacks). Also in the case of the original
Okamoto-Tanaka protocol one can find several papers [31, 32, 27, 22] with partial or flawed analysis
of the protocol4. In all, the mOT protocol studied here compares very favorably with other id-based
and traditional KAPs in provability and security properties (e.g., PFS) as well as performance-wise.

Multi-domain extensions of id-based KAPs have been proposed in [9, 29] but without full proofs
of security. The multi-domain extension of the mOT protocol that we fully analyze here is from
Schridde et al. [37] which also contains a good discussion of the benefits of multi-domain identity-
based protocols. In general, while interactive authenticated KAPs, especially those authenticated
with signatures, can easily accommodate certificates (which a party can send together with its
signature), avoiding the need for certificates constitutes a significant practical simplification of many
systems. In particular, they provide more convenient solutions for revocation and less management

4 Indeed, given the actual vulnerabilities of the protocol that we uncovered in our analysis of the original Okamoto-
Tanaka protocol, these analyses cannot prove the security of the protocol except in very limited security models.
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burden [41]. The Okamoto-Tanaka example shows that the identity-based setting can sometimes
even improve performance.

Open questions. We believe that the mOT protocol is remarkable for its “minimalism”, providing
full and provable authenticated key-agreement security (including full PFS) with the same com-
munication and minimal computational overhead relative to the underlying unauthenticated DHP.
Yet there are several ways one could hope to improve on this protocol and on our results; achieving
any of these improvements would bring us even closer to the “ultimate” authenticated DHP:
(i) Find a protocol with the same communication/computation/security characteristics as mOT but
which works over arbitrary dlog groups (in particular elliptic curves). In this case, the minimalism
of mOT would translate into optimal practical performance (even a certificate-based protocol with
these properties would be very useful). (ii) Prove the full PFS security of mOT without resorting
to non-black-box assumptions (while we believe that proofs under these assumptions carry a very
strong evidence of security, using more standard assumptions is obviously desirable). (iii) Improve
on mOT by avoiding the vulnerability of the protocol to the exposure of the DH values gx, gy .

Organization. After presenting some technical preliminaries in Section 2, we specify and analyze
the mOT protocol in Section 3. This analysis is based on the Canetti-Krawczyk model of key-
agreement security that is succinctly recalled in Appendix A. Section 4 presents the proof of full
PFS for mOT and the assumptions used in that proof. In Section 5 we present a multi-authority
extension of mOT (based on the work of [37]) and our analysis of the scheme. Finally, in Section 6
we show how to adapt mOT to the traditional certificate-based authentication model.

2 Preliminaries

Let SPRIMES(n) be the set of n-bit long safe primes. Recall that a prime p is safe if p−1
2 is

prime. Let N = pq be the product of two random primes in SPRIMES(n); denote p = 2p′ + 1
and q = 2q′ + 1. Let e be an integer which is relatively prime to φ(N) = 4p′q′.

We say that the RSA Assumption (with exponent e) holds if for any probabilistic polynomial
time adversary A the probability that A on input N, e,R, where R ∈R Z∗

N , outputs x such that
xe = R mod N is negligible in n. The probability of success of A is taken over the random choices
of p, q,R and the coin tosses of A.

Remark (semi-safe primes). For simplicitly, we assume that p = 2p′ +1 and q = 2q′ +1 are safe
primes, namely, p′ and q′ are prime. We can relax this assumption to require that gcd(p′, q′) = 1
and that neither p′ or q′ have a prime factor smaller than 2ℓ for a given security parameter ℓ. With
these assumptions we get that QRN is cyclic and that a random element in QRN is a generator with
overwhelming (1 − 2−ℓ) probability, two properties that we use in our construction and analysis.

Througout the paper we use the following well-known result of Shamir [35]:

Lemma 1. Let N, e, d be RSA parameters and f be an integer relatively prime to e. There is an
efficient procedure that given N, e, f (but not d) and a value (xf )d mod N , for x ∈ Z∗

N , computes
xd mod N .

Proof. Since gcd(e, f) = 1 then one can compute integers a, b such that ae+ bf = 1. Let s = (xf )d,
then s̄ = xasb mod N satisfies s̄e = xae(se)b = xae(xf )b = xae+bf = x, hence xd = s̄ mod N . ⊓⊔

The cyclic group QRN . If N is an RSA modulus product of safe primes, then the subgroup
QRN of quadratic residues in Z∗

N is cyclic of order p′q′. Let g be a random generator of QRN (such
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generator can be found by squaring a random element in Z∗

N (this algorithm yields a generator
with overwhelming probability and the resulting distribution is statistically close to uniform). In
protocols and proofs below we are going to generate random elements in the group generated by g
according to the uniform distribution and with known exponents (i.e., their dlog to the base g). Such
a random element X could be generated by choosing an integer x ∈ [1..p′q′] uniformly at random
and setting X = gx mod N . But this option implies knowledge of the factorization of N (knowing
the value p′q′ is equivalent to factoring N). Parties who do not know the value p′q′ can approximate
the uniform distribution over 〈g〉 as follows: generate x ∈ [1..⌊N/4⌋] and set X = gx mod N . It is
not hard to see (cf. [12]) that if p′ and q′ are of the same size (as required here) then the uniform
distributions over [1..p′q′] and [1..⌊N/4⌋] are statistically close with an exponentially small gap.

Let g be a random generator of QRN and let X = gx mod N and Y = gy mod N two random
elements in QRN . We say that the Computational Diffie-Hellman (CDH) Assumption (for N and
g) holds if for any probabilistic polynomial time adversary A the probability that A on input
N, g,X, Y outputs Z such that Z = gxy mod N is negligible in n. The probability of success of A
is taken over the random choices of p, q, x, y and the coin tosses of A. We know from [38] that the
hardness of factoring N (and therefore the RSA Assumption) implies the CDH Assumption.

3 The Modified Okamoto-Tanaka Protocol

In this section we describe in full detail the modified version of the Okamoto-Tanaka protocol and
provide rationale for the modifications made to the original protocol from [32]. Throughout the
paper we refer to this protocol as the “Modified Okamoto-Tanaka Protocol (mOT)”.

Protocol Setup. A key generation center KGC (for “trusted authority”) chooses an RSA key
(N, e, d), where N is the product of two safe primes p, q. As usual e, d are such that ed = 1 mod
φ(N). The KGC also chooses a random generator g for the subgroup of quadratic residues QRN .
The public key of the KGC is (N, e, g) and its secret key is d.

Two hash functions H,H ′ are public parameter. The first function H outputs elements in the
group generated by g (this can be achieved by setting H to be the square modN of another hash
function with range Z∗

N ). The second hash function H ′ outputs k-bit strings, where k is the length
of the required session key.

Each user in the system has an identity; for convenience we sometimes associate a name to an
identity. For example, Alice will be the name of a party while her identity is denoted idA. We also
denote A = H(idA) and B = H(idB) (thus, A,B are elements in QRN ). When Alice requests her
secret key from the KGC, she receives the value SA = Ad mod N as her secret key (we can think
of this as the KGC’s RSA signature on Alice’s id).

The key agreement. Alice chooses a random integer x from a set S that we specify below. She
then computes X = gx mod N and sends to Bob α = X · SA mod N . Bob chooses a random y in
S, sets Y = gy mod N , and sends to Alice the value β = Y · SB mod N . Alice computes a shared
secret value K̄A = (βe/B)2x mod N while Bob computes it as K̄B = (αe/A)2y mod N . (Alice and
Bob check that the incoming value is in Z∗

N or else they abort the session.)

Notice that the values K̄A, K̄B are equal:

K̄A = Y 2xe · (Se
B/B)2x = Y 2xe(Bed/B)2x = g2xye = ((XSA)e/A)2y = K̄B

Alice and Bob set K̄ as this shared secret value K̄ = K̄A = K̄B = g2xye mod N and set the session
key to K = H ′[K̄, idA, idB , α, β]. Since we want both parties to compute the same session key we
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need to determine an ordering between idA and idB , and between α and β in the input to the hash;
for example, a lexicographic ordering (note that we are not assuming necessarily that there is a
definite role of “initiator” and “responder” in the protocol, and hence we do not use such roles to
determine the ordering of the above values).

Protection of ephemeral values. We specify that the ephemeral Diffie-Hellman values X,Y chosen
by the parties be given the same protection level as the private keys SA, SB (indeed, learning these
ephemeral values is equivalent to learning the private keys). In particular, if these values are stored
in the (less secure) session state they need to be stored encrypted under a (possibly symmetric) key
stored with the private key. (This is analogous to the need for protecting the ephemeral value k in
a DSA signature.) In addition, we specify that in the computation of the session key, the hashing of
the value K̄ be performed in protected memory and only the session key be exported to a session
state or application (learning the shared secret K̄ value opens some attack venues as explained in
Section 3.1).

The exponents set S and performance considerations. The performance cost of the protocol
is dominated by the exponentiation operations; hence the choice of the set S from which ephemeral
exponents are selected is important. A first choice would be to define S as the interval [1..⌊

√
N/2⌋].

In this case, as shown in [15] (following the results in [18]), the two distributions

{gx for x ∈R [1..⌊N/4⌋]} and {gx for x ∈R [1..⌊
√

N/2⌋]}

are computationally indistinguishable under the assumption that factoring N is hard. Therefore,
one can use exponents of length half the modulus without any loss in security. However, performance
can be significantly improved by setting S to be the set of exponents of length κ, where κ is twice
the security parameter (e.g., κ = 224). Indeed in this case, the security of the protocol relies on the
common assumption that discrete log (over Z∗

N ) is hard also when the exponents are of length κ.
Indeed (see Lemma 3.6 in [15]), this assumption implies that the two distributions

{gx for x ∈R [1..⌊N/4⌋]} and {gx for x ∈R [1..2κ]}

are computationally indistinguishable, and hence using the short or long exponents is equivalent.
Therefore, we recommend the protocol to be implemented using short exponents; in particular, we
use this case when discussing the protocol’s performance.

3.1 Rationale for the Modifications of the Original mOT Protocol

In our description of the mOT protocol we introduced a few modifications of the original Okamoto-
Tanaka protocol, namely, the hashing of the identity prior to computing the private keys (i.e., the
hashing in the computation of SA = H(idA)d mod N) and the hashing operation H ′(K̄, idA, idB , α, β)
in the definition of the session key. While the need for the former hash is quite clear (it is some-
what hinted to in [22] and included in the variant of the protocol in [37]), the need for the second
hashing is more subtle. And in fact, the second hash does not appear in [32] and follow-up work
(including [22] and other works that claimed the protocol’s security); they defined the session key
to be the value (βe/B)x mod N = (αe/A)x mod N without the hashing operation. As we see next,
both hashing steps are essential for the security of the protocol and, in particular, for proving its
security. Specifically, we show how the omission of any of these hashing operations renders the
protocol vulnerable to attacks.

The attacks in items 1 and 2 below show the necessity of hashing the ids of the parties while
item 3 and 4 demonstrates an attack based the lack of the hash on the derived key value (as well
as the session identifier).
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1. If the id is not hashed before the computation of the user’s secret key, an attacker can learn
Alice’s private key. The attacker sees Alice’s id idA and sets its own id as party P to idP = idAre

for some random r. It requests its secret key form the KGC and receives SP = (idAre)d mod N =
r · SA mod N , and therefore can learn the value SA = idd

A by dividing r out.

2. If ids are not hashed then an Unknown Key Share (UKS) attack [14] is possible. The attacker
sees Alice’s id idA and sets an id for (adversarial) party P to the random value idP = idAgte mod N
where g and e are the systems parameters and t a random exponent in [1..⌊N/4⌋]. When Alice sends
(idA, α = XSA) to Bob, P replaces it with (idP , π) where π = αgt = XSAgt which is a “correct”
message coming from P on the ephemeral value X (indeed P ’s secret key is SP = SAgt). When Bob
responds with (idB , β = Y SB) this value is simply forwarded unchanged by P to Alice. Now Alice
computes K̄ = (βe/idB)2x = ((Y SB)e/idB)2x = (Y eided

B /idB)2x = Y 2ex = g2xye with peer Bob,
while Bob computes K̄ = (πe/idP )2y = ((XSAgt)e/(idAgte))2y = X2ey = g2xye but with peer P . In
other words, the key is associated by Alice with Bob, while Bob associates it with P . As pointed
out in [14] and many other papers, this UKS attack breaches the authentication of the protocol by
binding a key to the wrong party.

3. If the session key is set to the value K̄ = g2xye mod N without the hash operation, then
the attacker can carry a malleability attack. It first activates Bob in the execution of the pro-
tocol and gets (idB , Y SB) which it transfers to Alice. She responds with (idA,XSA) which the
attacker changes into (idA, gXSA) and sends it to Bob. The session key computed by Bob is
K̄B = ((gXSA)e/idA)2y = g2eyg2xye. Now the adversary breaks into Alice’s session to receive the
key K̄A = g2xye. The adversary can compute the same key K̄B as Bob since K̄B = Y 2eK̄A. Note
that the sessions at Alice and Bob are not matching (their (α, β) messages are different) and hence
the security of the protocol is broken. The basic principle that keys from non-matching sessions
should be computationally independent, namely, one key should leak no information on the other,
is violated.

4. We need to add idA, idB , α, β under the hash together with K̄, otherwise another malleability
attack is possible. Alice sends α = gxSA to Bob, which the adversary intercepts and replaces
with α′ = (αe+1/A) = g(e+1)xSA to Bob. Bob responds with β = gySB and the adversary sends
β′ = (βe+1/B) = g(e+1)ySB to Alice. Consider now the two unmatching sessions (α, β′) and (α′, β):
they have the same shared secret value K̄ = g2xye(e+1) and therefore the same session key, unless
we add the identities and messages to the hash computation.

In addition, we have introduced one more change relative to the original Okamoto-Tanaka
protocol. In Okamoto-Tanaka the key is set to gxye. In our case not only is this value hashed (as
discussed above) but also the computation of the secret shared value K̄ is changed from gxye mod N
to g2xye mod N . We do not know of an explicit attack without this squaring operation but we were
only able to carry the simulation in the proof with this additional squaring.

3.2 Proof of the mOT Protocol

We prove the following theorem showing the basic security of the mOT protocol. In Section 3.3 we
prove further security properties, namely, resistance to KCI and to reflection attacks, and weak PFS.
We defer the proof of full PFS (which requires a more involved proof and additional assumptions)
to Section 4. The assumptions used in Theorem 1 are described in Section 2. The Canetti-Krawczyk
security model, as specialized and extended in [25], on which we prove the protocol is described in
Appendix A.
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Theorem 1. Under the RSA assumption, if we model H,H ′ as random oracles, the mOT protocol
is a secure identity-based key agreement protocol.

Proof. The proof follows a typical simulation/reduction argument: We assume an efficient KA-
attacker M that breaks the security of the mOT protocol (see Appendix A) and use it to build an
algorithm that inverts RSA on random inputs.

We start by noting the following fact about an attacker against mOT: Since the session identifier
(idA, idB , α, β) is hashed together with the shared secret value K̄ to obtain the session key K, we
know that two different sessions necessarily correspond to two different session keys. Moreover,
since the hash function H ′ is modelled as a random oracle then the only way for the attacker to
calculate, identify, or distinguish a session key is by computing the value K̄ and explicitly querying
it from H ′.5

We call the algorithm that we build for inverting RSA a “simulator” (denoted SIM) since it
works by simulating a run of the mOT protocol against the KA-attacker M which is assumed to
win the test-session game with non-negligible probability.

Input to SIM . The input to SIM is a triple (N, e,R) where N, e are chosen with the same RSA
distribution as used in the mOT protocol and R is a random element in Z∗

N . The goal of SIM is
to output Rd mod N where d is such that ed = 1 mod φ(N).

Some conventions: We often omit the notation “modN” when operating in the group Z∗

N . When
saying that we chose a random element u from QRN we mean chosing v ∈R Z∗

N and setting
u = v2 mod N . To choose a value u in Z∗

N with a known “RSA signature” s = ud, we first choose
s and then set u = se. If U = gu,W = gw are elements of QRN we denote with DHg(U,W ) the
value guw, i.e. the result of the Diffie-Hellman transform in base g applied to U,W .

SIM runs a virtual execution of the mOT protocol (consisting of multiple sessions) against
the attacker M, simulating all protocol actions, including the determination of private keys and
responses to queries to the functions H,H ′ made by M. In particular, we allow SIM to “program”
the hash functions H,H ′ (as long as outputs are chosen independently of each other and with
uniform distribution) as is customary when modeling H,H ′ as random oracles.

Identities and keys. Each participant in the protocol has an identity, idP , possibly chosen by M;
we denote P = H(idP ). Of all party identities participating in the protocol, SIM chooses one at
random; we denote it by idB and will refer to this party as Bob. For each participant idP other
than Bob, SIM chooses a random value p ∈R QRN and sets P = H(idP ) = pe. In this way, SIM
also knows the private key of the participant, i.e., SP = P d = p (note that P and SP are elements
of QRN ). For Bob, SIM sets H(idB) = B = R2 mod N , where R is the input to SIM (note that
R2 is random in QRN ).

Chosing a QRN generator. SIM sets the random generator g of QRN to be used in the protocol as
following: it chooses random r̄ ∈R QRN , sets r = r̄e, and g = (rB)e. Note that with these choices
B = gd/r and r̄ = rd; also note that g and B are random in QRN and independent.

Guessed test session. Before starting the simulation of session establishments, SIM chooses at
random a (future) session that it conjectures will be chosen by M as the test session. SIM does
so by guessing the holder of the test session among all the parties in the orchestrated protocol run
(we refer to this party as Alice) and guessing the order number of the session among all of Alice’s

5 Note that if parties A and B have a session where they exchanged messages α (from A to B) and β (from B to
A), and another session where the same messages were exchanged but in the reverse direction, both sessions will
have the same key. However, as long as one of A and B is honest, each session will have at least one fresh message
(except for the negligible probability that two random values in QRN coincide), hence the above cannot happen
even with the attacker’s intervention (who can only choose one message in each session).
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sessions. This allows SIM to know when the guessed session is activated at Alice in the protocol’s
run. In addition, SIM also guesses that the peer to the test session will be Bob (defined above).
We specify that, if at any point in SIM ’s simulation, it is determined from the protocol’s run that
the guessed session is not to be chosen as the real test session by M (e.g., if either Alice or Bob
are corrupted, or another test session is chosen by M, etc.) the simulator aborts. The probability
that the guessed session will actually be chosen by M as the test session is non-negligible (as long
as the simulation of the protocol by SIM is correct).

Session Interactions (non-test sessions). Attacker M can choose to initiate and schedule sessions
between any two participants and can input its own values into the various sessions, either by
utilizing corrupted players or by delivering messages allegedly coming from honest parties. The
simulator SIM needs to act on behalf of honest parties in these interactions. Simulating the actions
of any uncorrupted party other than Bob is simple for SIM , as it knows their private keys and
can choose their ephemeral exponents. Sessions in which Bob is a participant are more problematic
since SIM does not know Bob’s private key SB = Bd. Whenever Bob is activated in a session,
SIM will set the value β = gb/r̄ as the outgoing message from Bob where b ∈R [1..⌊N/4⌋] is
chosen afresh with each activation of Bob and the value r̄ is fixed and defined above. Clearly, β is
distributed uniformly over QRN as in the real runs of mOT. While SIM cannot compute session
keys with such choice of β we will still see that it can answer the attacker’s session-key queries.

Response to party corruption and session key queries (non-test sessions). If at any point M corrupts
a party, SIM provides all information for that party including the private key (which SIM knows).
Note that if the attacker asks to corrupt Bob, SIM aborts since it is a sign that SIM did not guess
correctly the test session. Session-key queries for sessions where one of the messages was generated
by an honest party other than Bob, can be answered by SIM who chooses the ephemeral exponent
for the session. The problematic cases are sessions where Bob is a peer and for which the incoming
message to Bob was chosen by the attacker (rather than by SIM itself), and provided to Bob as
coming from some party idC (we refer to it as Charlie), which may be honest or corrupted, but
different than Bob.6 In this case SIM does not know the ephemeral exponents of either party to
the session so it cannot compute the session key. Instead the simulation proceeds as follows.

The idea is that as long as M does not query the session value K̄ from the random oracle
H ′, then SIM can answer the session key query with a random value. However, if M does know
the value K̄, and it actually queries H ′ on this value, then SIM needs to answer consistently.
Specifically, we are dealing with a session where the peers are Bob and Charlie, whose hashed
identities are B = H(idB) and C = H(idC), respectively, and the exchanged values are γ, chosen by
the attacker, and β chosen by SIM as specified above. Thus, the session key is H ′(K̄, idC , idB , γ, β)
for the appropriately computed K̄. Before answering the session-key query, SIM needs to check
whether an input of the form (Q, idC , idB , γ, β) was queried from H ′ where Q = K̄. If such a query
with Q = K̄ was indeed performed then SIM will answer the session-key query with the existing
value H ′(Q, idC , idB , γ, β). If not, SIM will choose a random value ρ in the range of H ′ and will
return ρ as the value of the session key.

The main question is how will SIM verify whether Q = K̄ for a prior query. The value K̄ can
be represented as DHg(Z

2, βe/B) for Z = γ/SC . By our choice of B = gd/r, β = gb/r̄ and r = r̄e,
we have that βe/B = (gebr̄−e)/(gdr−1) = geb−d and therefore,

K̄ = DHg(Z
2, βe/B) = DHg(Z

2, geb−d) = Z2(eb−d) (1)

6 We assume for the time being that Bob does not run a KA session with itself (thus C 6= B). The case where both
session peers have the same identity is proved in Section 3.3.
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Now, since exponentiation to the e is a permutation over Z∗

N , we have that Q = K̄ if and only if

Qe = K̄e, and by Equation (1) this is the case if and only if Qe = (Z2(eb−d))e = Z2(e2b−1). But this
last computation can be performed by SIM who knows all the involved values, including b that
SIM chose and Z (since Z = γ/SC and SIM knows both γ and SC).7

Simulating the test session. When M activates the session at Alice that SIM chose as its guess for
the test session, SIM acts as follows. Let the identity of Alice be idA and denote A = H(idA). Since
Alice is assumed to be the holder of the test session, it means that it is Alice (or SIM in our case)
who chooses the outgoing message α from the session, not the attacker. SIM sets this message to
the value α = (rB)fSA, where r,B are as described at the begining of the simulation, SA = Ad

is Alice’s private key (which SIM knows) and f is chosen as f = te + 1 for t ∈R [1..⌊N/4⌋].
With this choice, α’s distribution is statistically close to uniform over QRN . Indeed, we have
(rB)te+1 = (gd)te+1 = gdgt with t ∈R [1..⌊N/4⌋] (recall that in the real protocol Alice chooses
α = gxSA with gx also statistically close to uniform distribution over QRN ). It also makes it
independent of other values in the protocol including B and β.

The peer to the test session is Bob (or else SIM aborts) and the incoming message is denoted
by β. This value can be chosen by the attacker (which delivers it to Alice as coming from Bob) or
by Bob itself. In the latter case, β is chosen by SIM as described above for other sessions activated
at Bob. In case M chooses β, it can be any arbitrary value. Below, we make no assumption on
β other than being in Z∗

N . The session key in this case is K = H ′(K̄, idA, idB , α, β) where K̄ is
computed as follows: if X = gx denotes the value α/SA then K̄ = (βe/B)2x. Now, by our choice of
parameters α, g,B, r (in particular, rB = gd), we have that X = α/SA = (rB)f = (gd)f and hence
x = df mod φ(N)/4. Thus,

K̄ = (βe/B)2df (2)

Since SIM cannot compute this value (it does not know the ephemeral exponent of either peer
to the session) we need to show how SIM responds to a test-session query (assuming the guessed
session is indeed chosen by M as the test session). Upon such a query, SIM will check if there
was any query made to H of the form (Q, idA, idB , α, β) and if so, it will check if Q equals the
session value K̄. This is done by checking whether Qe = (βe/B)2f (which involves values known to
SIM). Indeed, note that Q = K̄ if and only if Qe = K̄e (as exponentiation to e is a permutation)
and using Equation (2) we have K̄e = (βe/B)2f . If SIM identifies such a Q, SIM has learned K̄
from which it can compute its target RSA forgery as we explain below. If not, SIM responds to
the session-key query with a random value. From now on, it monitors M’s queries to H to see if a
Q = K̄ is identified, in which case SIM learns the session key and outputs the forgery.

Computing the forgery Rd. The goal of SIM is to compute Rd mod N where R ∈R Z∗

N was given
to SIM as input. We now show that whenever SIM learns the session key corresponding to the
test session (as shown above) it can compute Rd. Indeed, it is easy to see from Equation (2) that
(B2f )d = β2f/K̄, and since SIM chose B = R2 then (R4f )d = β2f/K̄. Using Lemma 1 and the
fact that 4f is relatively prime to e we derive Rd from (R4f )d.

Finally, we note that in order to win the test-session game with non-negligible advantage it must
be that M queries the correct K̄ from H with non-negligible probability, then SIM is guaranteed
to learn K̄, and hence compute Rd, also with non-negligible probability. ⊓⊔

7 We note for future reference, that knowing SC is not strictly necessary for SIM to carry this simulation step.
If SIM does not know SC (as in some other proofs in this paper) it does not know Z either. Instead SIM

will use Ze = γe/C which it does know, and instead of checking Qe = Z2(e2b−1) it will check the equivalent

Qe2

= (Ze)2(e
2b−1).
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3.3 Further Security Properties of the mOT Protocol

Here we prove additional security properties of the mOT protocol that add to the protocol’s appeal
and advantages over other ID-based key agreement protocols (see discussion in the introduction).
We prove these properties under the same assumptions used in Theorem 1.

Resistance to reflection attacks. For simplicity, in Section 3.2 we omitted the case in which
sessions have the same identity at both ends, namely, when Alice and Bob have the same identity.
While this situation may seem of theoretical interest only, it actually arises naturally in practice,
for example when Alice’s home PC establishes a secure channel with her office desktop where both
devices use the same identity, say alice@company.com (hence using also the same private key). An
attack that exploits the fact that the two ends use the same identity is called a reflection attack.

We now prove that the mOT protocol is secure against such attacks by adapting the proof of
Theorem 1 to this case. The simulation proceeds as described in that proof except for the following
two changes.

(i) In simulating responses to session-key queries for sessions where Bob is a peer and the
incoming message γ is chosen by the attacker and delivered to Bob as coming from a party Charlie,
we assumed that SIM knew Charlie’s private key. However, if Charlie and Bob are the same,
then this is not the case anymore since SIM does not know Bob’s private key. Fortunately, as we
remarked in footnote 7, the proof works, with a slight modification, also when SIM does not know
Charlie’s private key, and hence we can use it in the case of Bob = Charlie as well.

(ii) We need to consider the case that in the test session both peers, Alice and Bob, are the same.
However, in the simulation of the test session in Theorem 1 we used the fact that the simulator
SIM knew Alice’s private key when choosing the outgoing message α. When Alice and Bob are
the same, SIM does not know Alice’s private key (as it does not know Bob’s private key). Thus,
we need to slightly change the choice of α in this case. Specifically, we now set α = (rB)f/r̄, and
hence X = α/Bd = (rB)f/(r̄Bd) = (rB)f−d (where the last equality holds since by our choice
of parameters r̄ = rd). Also, since we have rB = gd we get that X = gx = (gd)f−d and then
x = d(f − d) mod φ(N)/4. From here K̄ = (βe/B)2x = (βe/B)2d(f−d), and raising the two sides to
the e-th power we get:

K̄e = (βe/B)2(f−d) = β2(ef−1)B2d/B2f =⇒ (B2)d =
K̄eB2f

β2(ef−1)

which means SIM can compute (R4)d = (B2)d and using Lemma 1, it can also compute the
required forgery Rd.

Weak Forward secrecy. As we will prove in Section 4, the mOT protocol provides full forward
secrecy even against active attackers. However, for that proof we need extra assumptions not re-
quired to prove the basic security of the protocol. So, it may be worth noting that the (much)
weaker property of “weak PFS”, namely, PFS against passive-only attackers can be proven solely
based on RSA as in Theorem 1; actually, the hardness of factoring suffices in this case. Indeed, we
show that weak PFS follows from the CDH (computational Diffie-Hellman) assumption on QRN

which is implied by the hardness of factoring [38]. The goal here is to show that if a session between
uncorrupted parties Alice and Bob completes with messages α, β chosen by these parties (not cho-
sen or modified by the attacker), then even if the attacker learns the private keys of both Alice and
Bob, it will not be able to distinguish the resultant session key from a random value. Of course,
in this case the attacker is not allowed to perform a session-key query against this session (which
models the erasure of session keys after expiration – see Appendix A). Thus, we will be assuming
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that in the test session both messages α, β, exchanged between Alice and Bob, are actually chosen
by the legitimate peers and delivered unchanged by the attacker M. However, this time we will
need to be able to provide the private keys of both parties to M (something we could not do in the
proof of Theorem 1 where the simulator SIM did not know the private key of Bob). The simulation
in this case is thus very different.

The simulator SIM that we build is an algorithm that solves the CDH problem over QRN .
Its input is an RSA modulus N and a generator g of QRN (as in the mOT protocol) as well as a
pair of random elements U = gu, V = gv ∈R QRN . The goal is to compute W = guv. Algorithm
SIM orchestrates a run of the mOT protocol against an (assumed successful) mOT-attacker where
SIM sets the parameters (N, ḡ, e) of the mOT protocol as follows: N is the RSA modulus received
by SIM as input, ḡ = g2e, where g is from SIM ’s input, and e is chosen at random with the
same probability as in the mOT protocol. In addition, SIM chooses the private keys of all parties,
including both Alice and Bob. Thus, whenever, M requests to see the private keys of a party,
including Alice and Bob, SIM has no problem providing them. The simulation of regular sessions
is trivial (avoiding the complications in the proof of Theorem 1 stemming from the fact that in that
case SIM did not know the key of Bob). When the session guessed by SIM as the test session is
activated, SIM embeds the values U = gu and V = gv received as inputs as the values X and Y
used to compute α and β, respectively, in that session. Note that gu = U = X = ḡx = g2ex and
hence u = 2ex mod φ(n)/4; similarly, v = 2ey mod φ(n)/4 where Y = ḡy.

For M to win the test-session game, it must query K̄ from H where

K̄ = ḡ2exy = (g2e)2exy = g(2ex)(2ey) = guv = CDH(U, V ) = W.

Thus, when M performs this query SIM learns K̄ and thus solves the CDH(U, V ) problem. Note
that SIM does not even need to verify which query to H equals W as it can choose one of these
queries at random and have non-negligible probability to choose the correct W .

We conclude by remarking that the forward secrecy property holds also in case of compromise of
the KGC (key generation center) by which the attacker learns the private keys of all parties. That
is, even after the compromise of the KGC, the attacker learns nothing about priorly exchanged
session keys.

Resistance to key compromise impersonation (KCI). This is the property by which an
attacker that knows the private key of Alice cannot impersonate another (uncorrupted) party to
Alice. This property holds in the case of the mOT protocol. To show this property the proof of
Theorem 1 remains unchanged except that now the attacker M can corrupt Alice; but since SIM
already knows Alice’s private key it has no problem furnishing this key to M. (A formal proof uses
the notion of “clean session” from [25] but the details are straightforward.)

3.4 Performance

The mOT protocol, when used with short exponents, is very efficient; in particular more efficient
than any RSA-based key agreement protocol and any authenticated Diffie-Hellman protocol over Z∗

p

for large prime. It is also much more efficient than any of the id-based protocols based on pairings.
Yet, today’s most efficient (certificate-based) key agreement protocols, such as MQV, run over
elliptic curves while mOT runs over RSA composites. How do these protocols compare? In terms
of operations, mOT uses one off-line and one on-line exponentiation per party (both with short
exponents, say 160 or 224 bits). The e-th power computation (with e = 3) in mOT is essentially
negligible. MQV uses the same two exponentiations plus an additional on-line “half exponentiation”
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(i.e., half the number of multiplications compared to a full exponentiation). Thus, the on-line cost
for MQV is 1.5 exponentiations per party compared to 1 in mOT. If in the case of MQV one
uses ECDSA-signed certificates (assuming a full ECC implementation) then MQV may incur an
additional cost of at least one on-line exponentiation for certificate verification (making it a total
of at least 2.5 on-line exponentiations per party compared to 1 exponentiation in mOT). We have
not run precise simulations but extrapolating from performance data (e.g., [10]) one can see that
for moderate security parameters (say 1024-bit RSA) mOT may have a computational advantage
while for larger moduli (say above 2000 bits) the advantage is on the elliptic curve side.

Regarding communication, mOT sends a single group element, say of size 2048. MQV sends a
single group element, say of size 224, plus a certificate. If MQV’s certificate is signed with, say,
RSA-2048 then verification computation is negligible but MQV’s message is larger than mOT’s
(especially that RSA certificates are usually significantly larger than the 2048-bit signature on
them [33]). If instead the certificate is signed with ECDSA then the certificate will be shorter than
RSA’s but the computational complexity of verification increases by at least one exponentiation
as discussed above. Finally, we recall the PFS security advantage of mOT; in MQV this can be
achieved but only at the cost of a third message in the protocol.

4 Proof of the PFS Property of the mOT Protocol

In this section we prove that the Modified Okamoto-Tanaka protocol enjoys full Perfect Forward
Secrecy (PFS) also against active attackers. Remember that weak PFS, against passive attacker
only, was proven already in Section 3.3 as a direct application of the proof of Theorem 1. However,
proving PFS against active attackers turns out to be more difficult. We prove this property here but
for this we need to resort to two additional assumptions (on top of the RSA Assumption required
for the proof of the basic security of the protocol, i.e. Theorem 1). The first assumption is the
well-known “Knowledge of Exponent Assumption” introduced by Damgard [11] (and further used
and studied in [17, 2]). Intuitively, it states that to compute a DH value gxy out of a triple g, gx, gy

one has to necessarily know either x or y. We will refer to this assumption (called KEA1 in [2]) as
KEA-DH.

Knowledge of Exponent Assumption for Diffie-Hellman (KEA-DH). Let G be a cyclic
group, and let g, h be distinct generators of G. The assumption says that for every algorithm M
that on input G, g, h outputs (y, z) where y = gx and z = hx for some integer x, there exists an
algorithm M∗ which outputs x.

A fully formal statement of the assumption can be found in [2]; in particular, it is assumed that
for every set of random coins used by M, if M outputs (y = gx, z = hx) then for the same set of
random coins M∗ outputs x.

Our second assumption is close in spirit to KEA-DH but it applies to the discrete logarithm
problem; we refer to it as KEA-DL. The idea is as follows: Under the discrete log assumption, given
a pair (g,B = gb) (for random b) it is hard to find b. But what if in addition to the pair (g,B = gb)
one is also given a dlog oracle where one can input any value in G other than B, and receive its dlog
to base g. Obviously, one can find b by querying, for example, the value Bg; more generally, one
can query BV where V = Bigj for known i, j, and compute b out of the dlog of BV . The KEA-DL
assumption states that if one is allowed a single query to the oracle then the above strategy is the
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only feasible one. Namely, if an algorithm finds b by querying a single value from the oracle then
there is another algorithm that outputs values i, j as above. More formally8:

Knowledge of Exponent Assumption for Discrete Log (KEA-DL). Consider the following
game between a Challenger, ChallDL, and an adversary M.

1. ChallDL provides M with the description of a cyclic group G, a generator g, and a random
element B = gb in G;

2. M is allowed to query an element V ∈ G;
3. ChallDL responds with the discrete log of BV relative to the base g;
4. M outputs an integer b′; M wins if b = b′.

The KEA-DL assumption states that for every algorithm M that wins the above game, there
exists an algorithm M∗ which outputs integers i, j such that V = Bigj .

In our proof, we need a somewhat stronger variant of KEA-DL specific to the case of dlog over
composite moduli, we refer to this variant as KEA-DL*. It essentially states that the knowledge of
the e-th root of B (for a fixed value e) does not help the attacker to find the dlog of B in the above
game.

Modified Knowledge of Exponent Assumption for Discrete Log (KEA-DL*). Let G be
the subgroup of Quadratic Residues in Z∗

N where N is an RSA modulus. We modify the KEA-DL
assumption to allow M to receive also the e-root of B (where e is an RSA exponent). The modified
assumption is as follows:

1. ChallDL∗ provides M with N, e, g,B = gb where g,B are random quadratic residues in Z∗

N ;
2. M is allowed to query an element V ∈ G;
3. ChallDL∗ responds with the discrete log of BV and the e-root of B;
4. M outputs an integer b′; M wins if b = b′.

The KEA-DL* assumption states that for every algorithm M that wins the above game, there
exists an algorithm M∗ which outputs integers i, j such that V = Bigj .

Theorem 2. Under the RSA, KEA-DH and KEA-DL* assumptions, if we model H,H ′ as ran-
dom oracles, then the mOT protocol enjoys perfect forward secrecy (PFS) (against passive and active
attackers).

Proof. The PFS case differs from the non-PFS case, proven in Theorem 1, in that, after completing
the test session between Alice and Bob, the attacker is given the values SA = Ad and SB = Bd,
i.e., the private keys of the peers to the session. Only after receiving these values, the adversary
needs to distinguish the test key from random.

Recall that due to the fact that the session key is the hash of the resulting secret value K̄ = g2xye,
where the hash is modeled as a random oracle, distinguishing the key is equivalent to finding K̄.
Thus, in the sequel we assume that a successful attacker is one that guesses this value g2xye.

Examining the proof of Theorem 1 we can see that in all the simulations in that proof, the
simulator knows the secret key SA of Alice, and therefore it can provide it to the adversary upon
corruption of Alice (indeed this property is what allowed us to prove resistance to KCI attacks in
Section 3.3). Moreover, as shown in Section 3.3, weak PFS (i.e., against passive attackers) follows
directly from the proof of Theorem 1 and requires no additional assumptions.

8 A fully formal statement of the assumption quantifies over each set of random coins of algorithms M and M∗; the
details are similar to the treatment of the KEA-DL assumption in [2] and are omitted from this extended abstract.
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The difficulty in proving full PFS is the need to provide the attacker M with SB = Bd before
M outputs its guess for the session key. This is very different than the case of Theorem 1 where the
simulator first receives the attacker’s guess and only then it uses this value to compute the forgery
Bd. Still, with some significant changes to the simulation and some added assumptions, we will be
able to prove the theorem by transforming a successful mOT attacker M into an RSA forger F
that inverts RSA on a random input. We show this reduction now.

The RSA Forger F . The forger F is given as input an instance N, e,R ∈R QRN of the RSA
problem and needs to compute Rd mod N with non-negligible probability. F starts by running a
simulation of the mOT protocol against attacker M (which we assume to guess the test session key
with non-negligible probability). For this F sets up the public parameters of mOT as N, e, g where
N, e are from F ’s input and g = he mod N for h chosen by F at random in QRN . As in the proof
of Theorem 1, F generates private keys for all parties except Bob9 by programming the random
oracle H (i.e., for each party idP , F chooses p ∈R QRN and sets H(idP ) = P = pe, and SP = p).

For Bob, F chooses the value B = H(idB) by programming H as follows. It sets a value
U = gu mod N where F chooses u as a random integer in the range [1..⌊N/2⌋] (note that with this
choice of u, the distribution of the value U is statistically close to uniform in QRN – by a similar
argument as in Section 2). Then, it flips an unbiased coin coin, and sets

H(idB) = B =

{

R2 mod N if coin = 0 (where R is part of F ’s input)
U e mod N if coin = 1

Notice that the distribution of B is correct, i.e., (statistically close to) random in QRN and inde-
pendent of other values in the protocol. To simulate all the sessions other than the test session,
F follows the same simulation as in Theorem 1. In other words, we keep the proof of Theorem 1
intact up to the point in that proof titled “Simulating the test session”.

It remains to show how F simulates the test session interaction with M in the PFS case, and
how this simulation results in the computation of Rd. For this we are going to first modify the
attacker M into an attacker M̄ that behaves like M but, in addition, in runs where M guesses
correctly the test session, M̄ will output some additional values that will allow F to complete its
forgery. Thus, F will be running against the modified M̄ rather than against M. We now show how
we transform M into M̄ via several intermediate “games”. We start by presenting a first game that
represents the interaction with a KA-attacker in the test session experiment in the PFS setting.

The PFS Game. The following game represents the test session interaction between a “PFS
challanger”, ChallPFS, and the KA-attacker M where M is allowed to corrupt Bob after the test
session key is complete. In this case, M sends the incoming message β (allegedly coming from Bob)
into the test session held by Alice, and Alice outputs a value α. After these values are set, the
attacker receives Bob’s secret key SB = Bd and M wins the game if it outputs K̄ = g2exy.

PFS Game:

1. ChallPFS sends to M the values N, e, g,B,X.
Here X represents the value α sent by Alice; indeed, since we assume that M can also be given
SA (which F chooses and hence knows) then providing α = X · SA is equivalent to providing
X.

9 Bob is the peer to the test session - as in the previous proof we assume that the simulator successfully guesses the
test session and its peers, an event that happens with non-negligible probability.
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2. The adversary sends a value β which in turn determines a value Y defined as Y = β/Bd.
Note that β, which is chosen by M, may not be an element of QRN , and the same holds
for Y . However, Y 2 mod N is necessarily in QRN and hence generated by g. Defining y =
logg(Y

2 mod N), and thanks to the squaring operation in the computation of the session key
in mOT, we get that the session key g2xye equals Xye.

3. ChallPFS sends Bd.

4. M sends K̄. The adversary, M, wins if K̄ = Xye.

We now show how to transform an atacker M that wins the above PFS game (with non-
negligible probability) into a modified attacker M̄ (with the same probability of success) that F
will use to compute its RSA forgery. We arrive to M̄ from M through a series of adversaries
(M,M∗,M1,M∗

1,M̄) defined in the following games.

The adversary M∗: Note that M, in the above PFS game, can be changed to also output Y 2e

(computed as β2e/B2). So in a winning run on input g,X, attacker M would output K̄ = Xye and
also Y 2e = gye. By invoking the KEA-DH assumption there is another attacker M∗ that behaves
as M but in addition it outputs, in winning runs, ye = logg Y 2e in step 4.

Building Adversary M1 from M∗

ChallDL∗ M1 M∗

N, e, g,B
-

N, e, g, B, X
-

β
�

V = β2e
· B−2

�

Bd, w = logg(BV )
-

Bd

-

ye
�

b = w − ye
�

Fig. 2. Creating a KEA-DL* adversary

The adversary M1: We now use the modified PFS attacker M∗ to build an attacker M1 that
interacts with a challenger ChallDL∗ in a KEA-DL* game. The actions of M1 are described in
Figure 2: M1 uses M∗ as a subroutine (where M1 acts as the PFS challenger with respect to M∗)
and uses responses received from M∗ to answer ChallDL∗ queries. Now, since in a successful run
of M∗ the last value ye output by M∗ satisfies gye = Y 2e = β2e/B2 = V , and the value w output
by ChallDL∗ satisfies w = logg BV = b + ye, then the value b = w − ye answered by M1 is correct

(i.e., gb = B) and M1 wins the KEA-DL* game. In other words, each successful run of M∗ (which
happens with non-negligible probability) induces a successful run of M1 in the KEA-DL* game.

The adversary M∗

1: By the KEA-DL* Assumption, there is an adversary M∗

1 that behaves
exactly as M1 except that together with V it also outputs i, j such that V = Bigj . Replacing M1

with M∗

1 in Figure 2, we get the same flows except that now the values i, j as above are added to
the second flow from M1 to ChallDL∗. We refer to this as the modified game of Figure 2.
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Building PFS Adversary M̄ from M∗

1

ChallPF S M̄

N, e, g,B, X
-

β, i, j
�

Bd

-

ye
�

Fig. 3. A Hybrid PFS Adversary M̄ (values in second flow satisfy β2eB−2 = Bigj)

The hybrid adversary M̄: Using M∗

1 we build an attacker M̄ that interacts in a PFS game as
represented in Figure 3. In the first flow M̄ receives inputs from ChallPFS as in a regular PFS
game. Next M̄ uses these inputs to call M∗

1 in the modified game of Figure 2. In this modified
game, M∗

1 uses these same values as its first flow to M∗. Upon receiving the β response from M∗,
M∗

1 produces the value V = β2eB−2 as well as i, j such that V = Bigj . Then, M̄ sends to ChallPFS

the values β, i, j (note that i, j are not part of the basic PFS game but additional outputs produced
by M̄). In the next flow, M̄ receives from ChallPFS the value Bd as in a PFS game, which M̄ uses
as the third flow from M∗

1 to M∗. Finally, upon receiving the response ye from M∗, M̄ outputs
this same value as its fourth message in the PFS game.

It is important to observe that the flows involving the value w produced by the dlog oracle in
Figure 2 are not used by M̄; this is important since in a real execution of the PFS game – as part
of the interaction with a mOT attacker – there is no such dlog oracle (this only exists as an artifact
of the proof).

We note that in a successful run of M̄, the values β, i, j, ye output by M̄ satisfy the following
equations:

gye = Y 2e = (βe/B)2 mod N (3)

β2eB−2 = V = Bigj mod N (4)

which yield

gye = Bigj mod N (5)

Also note that by virtue of the above sequence of games, if M succeeds with non-negligible proba-
bility then M̄ succeeds in outputting the above values also with non-negligible probability.

Summarizing the above transformations, we showed that the existence of a successful PFS
attacker M implies (via the KEA assumptions) the existence of a second PFS attacker M̄ that in
addition to the normal outputs of M (i.e., β and the session key guess), it also outputs the values
i, j, ye that satisfy the above equations.

Applying the above to the key agreement setting of mOT we get that one can take a KA-attacker
M that successfully breaks the PFS property of mOT and transform it into an equivalent KA-
attacker M̄, that differs from M in that it also outputs the above values i, j, ye during a successful
interaction in the test session experiment. We use this modified KA-attacker M̄ to complete the
description of the forger F .

Back to the RSA Forger F . We have seen before how F simulates a run of mOT against a
KA-attacker M except for the test session interaction. Here we complete the description of this
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part of the simulation and show how F computes its RSA forgery. For this we consider a run of
F (as described so far) against the modified KA-adversary M̄ defined above; that is, M̄ behaves
exactly as M but, in successful runs of M, in addition to β it outputs i, j and in addition to the
guess of the session key it outputs ye.

The way F uses M̄ to generate a forgery depends on two values: whether i output by M̄ is 0
or not, and whether the coin chosen by F (see above) is 0 or 1. We now show these different cases.

Case i = 0. With probability 1/2 we also have that coin = 0 and therefore B = R2 mod N . In this
case, F is running M̄ on g = he, B = R2 and X ∈R QRN . Assuming the run of M̄ is successful and
i = 0, the forger F obtains the value j = ye mod p′q′ in the second message from M̄ in Figure 3
(recall that by (5) we have ye = ib + j mod p′q′). F then uses j to compute Y 2 as follows:

hj = hye = (gd)ye = gy = Y 2 mod N,

and uses Y 2 to compute (R4)d = B2d = (β2/Y 2) mod N . Using Lemma 1 and the fact that 4 and
e are relatively prime F can compute, out of the value (R4)d, the required forgery Rd mod N .

Important: In the above case, F only needs to know j to complete its forgery; therefore it does not
need to complete the third and fourth flows in Figure 3 (that involve Bd) before it can forge.

Case i 6= 0. With probability 1/2 we also have that coin = 1 and therefore B = U e = gue mod N
where, by definition, u is a random integer in the range [1..⌊N/2⌋]. In this case, F knows Bd = U
and hence can complete the full run against M̄ in Figure 3. That is, F runs M̄ sending (g,B,X)
in the first message and U in the third message. F receives from M̄ the values i, j in the second
message and y′ = ye in the last message. F will use i, j, y′ to find two values s and t from which it
will derive (whp) the factorization of N .

Specifically, F sets s = ie and t = y′ − j (these operations are over the integers). It holds
(mod p′q′) that

t = y′ − j = ye − j = ib = ieu = su mod p′q′

where the third equality is from Equation (5) and b = eu mod p′q′ holds by the choice B = U e = gue.

Thus, the integer t − su is a multiple of p′q′ that F can compute as it knows s, t, u. If this
number is non-zero then F factors N (as it is well known, the factorization of N can be found from
such a multiple of p′q′, e.g. [30]). Now, note that there are at least two values of the integer u that
will result in the same element U in QRN (since u ∈R [1..⌊N/2⌋] and ⌊N/2⌋ ≥ 2p′q′). Since M̄
knows U but not the specific u (indeed, from the value U one cannot learn which of the possible
values of u was chosen by F ), the probability that t and s (that are derived from M̄ outputs) result
in t − su being zero is at most 1/2 (at most one of the u’s can satisfy this equation).

In all, we have that if F interacts with a successful run of M (which implies a successful run
of M̄) and i = 0 then with probability 1/2 F correctly computes Rd. If the run of M is successful
and i > 0 then with probability 1/2 F factors N and hence can produce Rd as well. Since M (and
M̄) succeed with non-negligible probability so does F in computing the forgery Rd mod N . ⊓⊔

5 A Multi-Authority Extension of mOT and Its Security

Schridde, Smith and Freisleben [37] show how to extend the Okamoto-Tanaka protocol to the multi-
authority (or multi-domain) case, in which users from two separate and independent key generation
centers (or trusted authorities) can still establish a secret key. The original protocol as proposed
in [37] has the same vulnerabilities as the mOT protocol which arise from the lack of hashing on
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the session key. Our description below incorporates the required modification to ensure the security
and proof of the protocol. We also make a change to improve its efficiency. In the rest of the paper
we will refer to this as the SSF protocol.

Setup Phase. Consider two trusted authorities TA1 and TA2 each set up as in the Okamoto-
Tanaka system. TAi has public parameters (Ni = piqi, ei, gi) and secret key di, s.t. eidi = 1 mod
φ(Ni). A party (say) Alice which belongs to TAi receives her secret key SA = Adi mod Ni where
A = H(idA). We assume that the identities of the parties include a description of the TA they
belong to (e.g. in this case idA would include Ni, ei, gi). In the following, Alice and Bob are two
parties from TA1 and TA2, respectively, and they want to generate a shared key. We assume the
TAi have chosen safe primes in the generation of their moduli, i.e. we assume that pi = 2p′i +1 and
qi = 2q′i + 1 with p′1, p

′

2, q
′

1, q
′

2 all primes. In the following we denote with φi = p′iq
′

i, the order of the
quadratic residue subgroup modulo Ni.

The Key Exchange

Let E = lcm(e1, e2). Both parties compute the following values mod N1N2 using the Chinese
Remainder Theorem:

1. ĝ =

{

g1 mod N1

g2 mod N2

2. Â =

{

AE/e1 mod N1

1 mod N2

3. B̂ =

{

1 mod N1

BE/e2 mod N2

4. Alice and Bob locally (and secretly) compute the following values modN1N2, respectively,

ŜA =

{

SA mod N1

1 mod N2
and ŜB =

{

1 mod N1

SB mod N2

Alice chooses at random an integer x in a set of integers S (to be specified below) computes
X̂ = ĝx mod N1N2 and transmits α̂ = X̂ŜA mod N1N2 to Bob.

Bob similarly chooses at random an integer y in the same set S, computes Ŷ = ĝy mod N1N2

and transmits β̂ = Ŷ ŜB mod N1N2 to Alice.

Alice computes the shared secret value:

K̄A =

(

β̂E

B̂

)2x

=





Ŷ EŜB
E

B̂





2x

= ĝ2xyE





ŜB
E

B̂





2x

= ĝ2xyE mod N1N2

Indeed the value ŜB
E

B̂
is equal to 1 both modN1 (as ŜB = B̂ = 1 mod N1) and modN2 as

ŜB
E

B̂
=

SE
B

BE/e2
=

Bd2e2(E/e2)

BE/e2
=

BE/e2

BE/e2
= 1 mod N2

Alice hashes the secret value together with the ids of the parties and the exchanged messages to
obtain the session key K = H ′[K̄A, idA, idB , α̂, β̂].

Bob computes his key in the symmetric manner, i.e.

K̄B =

(

α̂E

Â

)2y

= ĝ2xyE mod N1N2 and K = H ′

[

K̄B , idA, idB , α̂, β̂
]
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The set S of ephemeral exponents. The choice of the set S follows similar criteria as in the
case of the basic mOT protocol (Section 3). The order of the element ĝ is p′1p

′

2q
′

1q
′

2 which is closely
approximated by ⌊N1N2/16⌋, so by choosing S to be the integers in the interval [1..⌊N1N2/16⌋] one
generates a distribution statistically close to uniform over 〈ĝ〉. This can be improved, as in the case of
the basic mOT protocol and following [18, 15], by choosing the much smaller interval [1..⌊

√
N1N2/4⌋]

which results in a distribution that is computationally indistinguishable from uniform over 〈ĝ〉.
However, also as in the basic mOT case and following [15], if one assumes that over Z∗

N discrete log
is hard for exponents of length κ, then the SSF protocol is secure even if S is chosen as the set of
integers of length κ (typically, one would choose κ to be 160 or 224). We recommend this choice of
S in practice.

Modifications to the original protocol from [37]. As in the case of the mOT protocol of
Section 3, also here modifications to the original protocol from [37] were required in order to
ensure the security of the protocol and its proof. One modification, similar to the mOT case, is the
computation of the session key via hashing the shared value K̄A = K̄B together with the session
information using H ′. This change is mandatory for the same reasons explained in Section 3.1 for
the basic mOT protocol (in particular the malleability attacks described in (3) and (4) can be
carried out as well in this case). We note that the hashing of identities using H, when computing
the secret keys, was already incorporated to the protocol description in [37] and hence that part
did not require modification.

Another change we introduce is to use E as the exponent to compute the session key, while
in [37] the product e1e2 is used. Our choice clearly improves performance, as in general E can be
much smaller than the product.

Finally two more changes were made to the original protocol from [37]: (i) in [37] the value ĝ is
computed as g1 · g2 mod N1N2 while we use the CRT to define ĝ; (ii) the value of the secret value
shared by the parties before hashing is squared, i.e. ĝ2Exy while in [37] is ĝe1e2xy. We are not aware
of any attacks if one does not incorporate these last two modifications, but we were able to devise
a proof only with them.

5.1 Proof of the SSF Protocol

Theorem 3. Under the RSA Assumption, if we model H,H ′ as random oracles, then protocol SSF
is a secure identity-based key agreement protocol.

The proof of the SSF protocol follows the overall structure of the proof of the mOT protocol in
Section 3.2 with a few technical careful modifications.

We build the simulator as an RSA forger SIM that on input an RSA problem N, e,R computes
the value Rd mod N .

SIM orchestrates a run of the SSF protocol. For TA2 the simulator sets N2 = N, e2 = e and
chooses a value g2 in a way we specify below. For TA1 the simulator chooses the parameters N1

(including its factorization), e1 and g1.

With this choice of parameters SIM can compute the secret keys of all parties in TA1. For the
parties in TA2, the simulator chooses a random party Bob with identity idB and sets B = H(idB) =
R2 mod N2. For any party, other than Bob, with identity idP the simulator chooses p ∈R QRN2

and sets H(idP ) = P = pe2 mod N2: this way the simulator knows the secret key SP = p of idP in
TA2.

As in the proof of Theorem 1 the simulator chooses a random quadratic residue r̄ mod N2 and
sets r = r̄e2 mod N2, g2 = (rB)e2 mod N2. If d2 = e−1

2 mod φ(N2) then rB = gd2
2 and r̄ = rd2 .
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The simulator guesses the test session as a random one involving Bob. As in the proof of
Theorem 1 the simulator can perfectly simulate all the sessions that do not involve Bob. We need
to show how to simulate the sessions at Bob.

First we simulate sessions different from the guessed test session. Let Charlie be a party from
TA1 with identity idC (the case in which Charlie is from TA2 can be handled as in the case of
the mOT protocol proof) who opens a session with Bob. If Charlie is uncorrupted, this means that
during the simulation SIM chooses Charlie’s messages – if Charlie sends out γ̂ = ĝzŜC then SIM
chooses z. When SIM chooses the message from Bob, it generates the message, β̂ as a random
element in the group 〈ĝ〉. Note that β̂ = ĝyŜB for some y and ŜB which F does not know, but he
can calculate ĝyE as β̂E/B̂. Thus, if this session key is queried by the attacker, then F can respond
with H ′[(β̂E/B̂)2z, idC , idB , γ̂, β̂] (since it knows z).

A more serious problem with the simulation is with sessions at Bob that were generated by
the attacker by presenting an incoming session message γ̂ to Bob as coming from Charlie but not
generated by SIM . In particular we do not even know if the value γ̂ is in the group generated
by 〈ĝ〉. In this case, how will SIM respond to a session key query for that session? SIM will
proceed as follows: It computes Z = γ̂/ŜC mod N1N2. For Bob’s response the simulator chooses
b1 ∈R [1..⌊N/4⌋0] and b2 ∈R [1..⌊N2/4⌋] and using the Chinese Remainder Theorem sets Bob’s
response β̂ mod N1N2 as

β̂ =

{

β1 = gb1
1 mod N1

β2 = gb2
2 /r̄ mod N2

The shared secret value of this session is then K̄ = DHĝ(Z
2, β̂E/B̂) and the session key will be

K = H ′[K̄, idC , idB , γ̂, β̂]. The simulator therefore checks if for any query by the attacker to the
random oracle H ′ of the form [Q, idC , idB , γ̂, β̂] we have that Q = K̄ (in a way described below).
If such a query is found then SIM answer with whatever answer was provided in the first place,
otherwise it answers at random and then for any future query of the form [Q, idC , idB , γ̂, β̂] it checks
if Q = K̄ for consistency.

We check if Q = K̄ = DHĝ(Z
2, β̂E/B̂) by checking separately modN1 and modN2. Indeed

(recall that B̂ = 1 mod N1 and B̂ = BE/e2 mod N2) Q = DHĝ(Z
2, β̂E/B̂) mod N1N2 if and only

if Q = DHg1(Z
2, gb1E

1 ) mod N1 and Q = DHg2(Z
2, (gb2

2 /r̄)E/BE/e2) mod N2.

The first test modN1 can be easily performed since Q = DHg1(Z
2, gb1E

1 ) mod N1 if and only
if Q = Z2b1E mod N1. The second test modN2 can also be performed as follows: recall that B =
gd2/r = gd2/r̄e2 mod N2, therefore BE/e2 = gd2E/e2/r̄E mod N2, therefore it must hold that

Q = DHg2(Z
2, g

b2E−d2E/e2

2 ) mod N2

which can be verified by checking that (recall that exponentiating to the e2 power is a permuta-
tion modN2) Qe2 = Z2(b2Ee2−E/e2) mod N2 which can be computed by SIM since it has all the
necessary values.

Simulation of the test session. We now consider the simulation for the guessed test-session
between Alice and Bob. We assume Alice is in TA1 (otherwise the proof can be carried out as in
Theorem 1). Here too we have two cases: if the message β̂ has been produced by the adversary
(who sends it to Alice as if coming from Bob) or by Bob itself (in which case SIM produces it
during the simulation). Either case we assume β̂ to be an arbitrary element modN1N2.
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Recall that SIM knows the secret key SA for Alice. Thus SIM can choose the element α̂ =
X̂ŜA mod N1N2 in the test session by choosing X̂ using the Chinese Remainder Theorem as

X̂ =

{

ga1
1 mod N1

(rB)f = gd2f mod N2

where f = te2 + 1 for t ∈R [1..⌊N2/4⌋]. As in the proof of Theorem 1 the value α̂ follows a
distribution which is statistically close to the one of the real protocol, and is independent of all the
other values.

First we note that the shared secret value of this session modN2 is equal to

K̄ =

[

β̂E

BE/e2

]2d2f

mod N2

Assuming that SIM can find K̄ we have (recall that B = R2 mod N2)

(R4fE/e2)d2 =
β̂2fE/e2

K̄

and using Lemma 1 we get the value Rd2 mod N2 as desired (notice indeed that 4fE/e2 is relatively
prime to e2).

To find K̄ we observe that if the adversary wins the test session game, i.e. distinguishes the
real test session K = H ′[K̄, idA, idB , α̂, β̂] from a random one, then it must have queried the
random oracle H ′ on [K̄, idA, idB , α̂, β̂]. One possibility is to choose a random query of the form
[Q, idA, idB , α̂, β̂] and set Q = K̄ (this will be correct with non-negligible probability).

But we can do better, indeed the correct query can be recognized by SIM since among all
queries of the form [Q, idA, idB , α̂, β̂], for the correct one it holds that

Qe2 =

[

β̂E

BE/e2

]2f

mod N2

and

Q =

[

β̂E

BE/e2

]2a1

mod N1

6 Adaptation of the mOT Protocol to the Certificate-based Setting

In this section we outline an adapttion of the mOT and SSF protocols to the non-ID-based settings,
i.e., the traditional setting in which each user chooses a pair of public/secret keys and has it certified
by a certification authority. As we pointed out in the Introduction, the outstanding efficiency of
the mOT protocol makes it an attractive candidate for key agreement also in this setting.

A proposal based on the mOT protocol This proposal requires a trusted key generation center
(KGC) to properly set up a common modulus N for all the users as well as a public exponent
e and a generator g. Once these parameters are chosen and published, the KGC can erase any
sensitive information (i.e., the factorization of N and private exponent d) and self-destroy. Indeed,
users are able to choose their own (random) private/public key pairs by themselves just using the
public parameters (this is reminiscent of the Fiat-Shamir and Guillou-Quisquater schemes). Thus,
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this scheme puts significantly weaker trust on the KGC compared to ID-based trusted authorities
which have to maintain the master secret key for the entire life of the system in order to give secret
keys to new users.10 The details are described below.

Set-up Phase: A trusted KGC computes N as the product of two safe primes, i.e. N = (2p′ +
1)(2q′ + 1) with p′, q′ primes. It also chooses an element g of order p′q′ and an integer e relatively
prime to φ(N). It publishes N, e, g, safely erases the factors of N and self-destroys (stops operation)

User Key Generation. On input N, e, g the user Alice chooses a random number r ∈ Z∗

N and sets
the secret key SA = r2 mod N and its public key A = Se

A mod N . The public key A is certified in
the usual manner by a CA.

Key Agreement. Users Alice and Bob, with public keys A,B and secret keys SA, SB respectively
run the mOT protocol (using the public keys instead of the identities, and possibly exchanging
public-key certificates). Computation and communication costs are exactly as in the id-based mOT
protocol.

A KGC-free proposal based on SSF We can use the SSF protocol to completely remove the need
for a trusted set-up of the system (no KGC required, just a regular CA to issue PK certificates).
The idea is to have each party choose its own modulus (which eliminates the trusted KGC role),
and then leverage on the multi-domain feature of the SSF protocol. Here are the details.

User Key Generation. Alice chooses an RSA modulus NA as the product of two safe primes, i.e.
NA = (2p′A + 1)(2q′A + 1) with p′A, q′A primes. It also chooses an element gA of order p′Aq′A and
an integer eA relatively prime to φ(NA). Finally it chooses a random number rA ∈ Z∗

N and sets
SA = r2

A mod NA and A = Se
A mod NA. The public key is [NA, gA, eA, A] (certified in the usual

manner by a CA after receiving proof by Alice that she knows the secret value rA) and the secret
key is SA.

Key Agreement. Users Alice and Bob, with public keys [NA, gA, eA, A], [NB , gB , eB , B] and secret
keys SA, SB respectively run the SSF protocol using NA, gA, eA and NB, gB , eB as the parameters
of the two TA’s, and A,B as the identities.

Performance. Since Alice chooses her own modulus NA = pAqA (and hence she knows pA, qA), she
can perform the computations modulo NANB via the Chinese Remainder Theorem on the values
pA, qA, NB . This results in a mere 25% increase in the computation cost relative to the basic mOT
protocol but requires twice as many bits.
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A Security Model for Key Agreement Protocols

The security analysis in this work is based on the Canetti-Krawczyk security model for key-
agreement protocols [6, 7]. Here we present an abridged description of the CK model adopted
from [25] where the model is specialized to the case of 2-message protocols and is extended to
account for KCI resistance and weak perfect forward secrecy (properties not included in the basic
CK model). A slight adaptation of the model for the identity-based setting is also described.

Throughout the paper, whenever we refer to a key agreement protocol as secure we mean secure
in the sense of the Canetti-Krawczyk model as described here. The reader familiar with this model
can skip this section. For full details consult [6].

A key-agreement (KA) protocol is run in a network of interconnected parties, which can be
activated to run an instance of the protocol called a session. Within a session a party can be
activated to initiate the session (the initiator) or to respond (the responder) to an incoming message.
As a result of these activations, and according to the specification of the protocol, the party creates
and maintains a session state, generates outgoing messages, and eventually completes the session
by outputting a session key and erasing the session state. A session may also be aborted without
generating a session key. A KA session is associated with its holder (the party at which the session
exists), a peer (the party with which the session key is intended to be established), and a session
identifier. We will simplify the presentation here by making two assumptions (consistent with the
model of [6]): (i) the activation of a session at a party always specifies the name of the intended
peer; and (ii) the session identifier is a quadruple (Alice,Bob,Out, In) where Alice is the identity
of the holder of the session, Bob the identity of its peer, Out and In are the outgoing and incoming
messages (resp) at the holder. In particular, in the case of the mOT protocol, a session identifier will
have the form (Alice,Bob, α, β). If Alice holds a session (Alice,Bob, α, β) and Bob holds a session
(Bob,Alice, β, α) (for same values α, β) then we say that the two sessions are matching. Matching
sessions play a fundamental role in the definition of security.

Note on notation: For ease of presentation we use the names Alice and Bob as identities of parties in
the system. When convenient, however, we will denote these identities by idA and idB , respectively.
Similarly, we will use SA and SB to denote the private keys of these parties.

In the Identity Based (IB) setting, there is an additional entity called the the Key Generation
Center (KGC) that is responsible for generating public and private master parameters from which
users’ private keys are derived. Each user A (or Alice) has a unique identity idA and it receives
from the KGC a private key SA. Parties running a key agreement in this setting need to know
the identity of their peers and the public parameters of the TA. There is no need for public key
certificates as the identities themselves (or a publicly computable value derived from the identity,
for example via hashing) function as public keys.

Attacker Model. The attacker is modeled to capture realistic attack capabilities in open networks,
including the control of communication links and the access to some of the secret information used
or generated in the protocol. The basic principle is that since security breaches happen in practice
(e.g., via break-ins, mishandling of information, insider attacks, cryptanalysis), a well-designed
protocol needs to confine the damage of such breaches to a minimum.
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The attacker is an active “man-in-the-middle” adversary with full control of the communication
links between parties. It can intercept and modify messages sent over these links, delay or prevent
their delivery, inject its own messages, interleave messages from different sessions, etc. (Formally,
it is the attacker to whom parties hand their outgoing messages for delivery.) The attacker also
schedules all session activations. In addition, in order to model potential disclosure of secret in-
formation, the attacker is allowed access to secret information via session exposure attacks (a.k.a.
known-key attacks) of three types: state-reveal queries, session-key queries, and party corruption.
A state-reveal query is directed at a single session while still incomplete (i.e., before outputting the
session key) and its result is that the attacker learns the session state for that particular session
(which may include session-specific information but not long-term secrets). A session-key query can
be performed against an individual session after completion and the result is that the attacker
learns the corresponding session-key. Finally, party corruption means that the attacker learns all
information in the memory of that party (including the long-term private key of the party as well
all session states and session keys stored at the party); in addition, from the moment a party is
corrupted all its actions may be controlled by the attacker. Indeed, note that the knowledge of the
private key allows the attacker to impersonate the party at will.

Sessions against which any one of the above attacks is performed (including sessions compro-
mised via party corruption) are called exposed. In addition, a session is also called exposed if
its matching session has been exposed (since matching sessions output the same session key, the
compromise of one inevitably implies the compromise of the other).

The security of session keys is captured via the inability of the attacker to distinguish between
the real session key of an unexposed session and a random value. More precisely, the attacker is
allowed to choose a test session among the complete and unexposed sessions in the protocol. In
this case, the attacker receives a value v which is chosen as follows: a random bit b is tossed, if
b = 0 then v is the real value of the session key, otherwise v is a random value chosen under the
same distribution of session-keys produced by the protocol but independent of the value of the
real session key. After receiving v the attacker may continue with the regular actions against the
protocol; at the end of its run it outputs a bit b′. The attacker succeeds in its distinguishing attack
if (1) the test session is not exposed, and (2) the probability that b = b′ is significantly larger than
1/2.

Definition 1. [6] A polynomial-time attacker with the above capabilities is called a KA-attacker. A
key-agreement protocol π is called secure if for all KA-attackers running against π it holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol π under the attacker
then except for a negligible probability, the session key output in these sessions is the same.

2. The attacker succeeds (in its test-session distinguishing attack) with probability not more that
1/2 plus a negligible fraction.

This definition captures the essential security properties of a KA protocol; in particular, [6]
show that a KA protocol that is secure in the above sense is sufficient for the most important
application of KA protocols, namely, the establishment of secure communication channels between
two parties.

Additional properties: PFS and KCI. A very important property of key-agreement protocols
not captured in the above definition is forward secrecy namely, the assurance that once a session
key is erased from its holders memory then the key cannot be learned by the attacker even if the
parties are subsequently corrupted. Formally, this is captured in [6] via the notion of session-key
expiration (which represents the erasure of a session key from memory). A key-agreement protocol
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is said to be secure with perfect forward secrecy if the above definition holds even when the attacker
is allowed to corrupt a peer to the test session after the test-session key expired at that peer. Note
that this definition of PFS assumes an active attacker (as all the rest of the security model), that is,
the forward security of the session key holds even for sessions (established between honest parties)
where the attacker had an active role such as providing part of the messages in the session. A
weaker version of this property, referred to as weak PFS (and formalized in [25]), only guarantees
forward security for sessions established without active intervention of the attacker.

Yet another security property desirable for key-agreement protocols is their resistance to key-
compromise impersonation (KCI) attacks. In this setting the attacker compromises Alice and learns
her secret key. This knowledge clearly enables the attacker to impersonate Alice to others. Yet if
this knowledge allows the attacker to impersonate other, uncorrupted parties, to Alice then we say
that this is a KCI attack. We refer the reader to [25], for a formal treatment of this notion. We
show our protocols to be resistant to this attack.

Extension to the identity-based setting. In our model each party has a unique identity that
can be chosen by the attacker (even for honest parties). The only restriction is that different parties
are given different identities. This models the fact that while we do not put any restrictions on the
form of an identity we do assume that the KGC checks the validity of registered identities and
that valid identities are all different. Very importantly, in the IB setting we allow the attacker to
corrupt the KGC and find its master secrets. The meaning of this action is equivalent to corrupting
all parties. However, even in this case it is important to provide security for past session keys. In
other words, we are interested to preserve perfect forward secrecy (PFS), described above, even in
the case of KGC corruption. This crucial security property is often referred to in the IB literature
as KGC-FS (Key Generation Center – Forward Security). One of our important contributions is to
show that the mOT protocol does enjoy KGC-FS.

Note on the mOT protocol and state-reveal queries. The mOT protocol analyzed in this
paper is not resistant to the disclosure of the ephemeral Diffie-Hellman values or the unhashed
session key. Therefore, when defining the protocol we will explicitly specify that these values be
protected (e.g., via local encryption) with the same security as the long-term private key. (This
is similar to the level of protection required by the DSA signature for its ephemeral exponent k.)
At a formal level, this means that the attacker does not benefit from state-reveal queries; it can
only learn the ephemeral values via full party corruption (as is the case with other key-agreement
security models such as the Bellare-Rogaway model).
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