
Type-II Optimal Polynomial Bases

Daniel J. Bernstein1 and Tanja Lange2

1 Department of Computer Science (MC 152)
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org

Abstract. In the 1990s and early 2000s several papers investigated the relative merits of
polynomial-basis and normal-basis computations for F2n . Even for particularly squaring-friendly
applications, such as implementations of Koblitz curves, normal bases fell behind in performance
unless a type-I normal basis existed for F2n .

In 2007 Shokrollahi proposed a new method of multiplying in a type-II normal basis. Shokrol-
lahi’s method efficiently transforms the normal-basis multiplication into a single multiplication
of two size-(n+ 1) polynomials.

This paper speeds up Shokrollahi’s method in several ways. It first presents a simpler algorithm
that uses only size-n polynomials. It then explains how to reduce the transformation cost by
dynamically switching to a ‘type-II optimal polynomial basis’ and by using a new reduction
strategy for multiplications that produce output in type-II polynomial basis.

As an illustration of its improvements, this paper explains in detail how the multiplication over-
head in Shokrollahi’s original method has been reduced by a factor of 1.4 in a major cryptanalytic
computation, the ongoing attack on the ECC2K-130 Certicom challenge. The resulting overhead
is also considerably smaller than the overhead in a traditional low-weight-polynomial-basis ap-
proach. This is the first state-of-the-art binary-elliptic-curve computation in which type-II bases
have been shown to outperform traditional low-weight polynomial bases.

Keywords: Optimal normal basis, ONB, polynomial basis, transformation, elliptic-curve cryp-
tography.

1 Introduction

If n+ 1 is prime and 2 has order n modulo n+ 1 then the field F2n = F2[ζ]/(ζn + · · ·+ ζ + 1)
has a “type-I optimal normal basis” ζ, ζ2, ζ4, It has been known for many years that
this basis allows not only fast repeated squarings but also surprisingly fast multiplications,
costing only M(n) + 2n − 2 bit operations where M(n) is the minimum cost of multiply-
ing n-coefficient polynomials. The idea is to permute the basis into ζ, ζ2, ζ3, . . . , ζn, and to
decompose multiplication into the following operations:

• M(n) bit operations: multiply the polynomials f1ζ + · · · + fnζ
n and g1ζ + · · · + gnζ

n in
F2[ζ].

• n−2 bit operations: eliminate the coefficients of ζn+2, . . . , ζ2n using the identities ζn+2 = ζ,
. . . , ζ2n = ζn−1; this requires additions to the existing coefficients of ζ2, . . . , ζn−1.

• n bit operations: eliminate the coefficient of ζn+1 using the identity ζn+1 = ζ+ζ2+· · ·+ζn.
* Permanent ID of this document: 90995f3542ee40458366015df5f2b9de. Date of this document: 2010.02.09.

This work has been supported in part by the European Commission through the ICT Programme under
Contract ICT–2007–216676 ECRYPT-II and in part by the National Science Foundation under grant ITR–
0716498.

2 Daniel J. Bernstein and Tanja Lange

An alternative introduced in [IT89] is to use a redundant representation, specifically coeffi-
cients of 1, ζ, . . . , ζn, with arithmetic modulo ζn+1 +1. Multiplication then costs M(n+1)+n
bit operations; this is worse than M(n) + 2n− 2 for small n, but since M(n) is subquadratic
it becomes better for large n.

However, most integers n do not have type-I optimal normal bases. In particular, an
odd prime n cannot have a type-I optimal normal basis. This poses severe problems for
cryptographic applications that, for security reasons, prohibit composite values of n.

The conventional wisdom for many years was that type-I normal bases were a unique
exception. For all other normal bases the best multiplication methods in the literature were
quite slow, asymptotically at least twice the cost of multiplication in traditional low-weight
polynomial bases (trinomial bases and pentanomial bases). Normal bases were competitive
only in extreme situations: applications where n was very small; applications having many
repeated squarings and very few multiplications; and applications that imposed extremely
small hardware-area requirements, effectively punishing polynomial bases by prohibiting fast-
multiplication techniques.

The picture changed a few years ago when Shokrollahi introduced a new multiplier using
only M(n) +O(n log2 n) operations for a “type-II optimal normal basis” of F2n . See Shokrol-
lahi’s thesis [Sho07, Chapter 4] and the subsequent WAIFI 2007 publication [vzGSS07] by von
zur Gathen, Shokrollahi, and Shokrollahi. This new multiplier makes type-II normal bases
competitive with traditional low-weight polynomial bases for a much wider variety of appli-
cations. The overhead term O(n log2 n) is not quite as small as the O(n) cost of low-weight
polynomial reduction, but this difference is quite often outweighed by the benefit of fast
repeated squarings.

In this paper we reduce the overhead in Shokrollahi’s method in several ways. The overall
reduction depends on the pattern of desired squarings and multiplications but can be as much
as a factor of 2. We give a real-world example in which the overhead is reduced by more than
a factor of 1.4.

1.1. Model of computation. All of the algorithms in this paper are straight-line (branchless)
sequences of bit operations. The “bit operations” allowed are two-input XORs (addition in
F2) and two-input ANDs (multiplication in F2). We measure algorithm cost by counting the
number of bit operations, as in [Sho07], [Ber09a], etc.

Optimizing bit operations is not the same as optimizing hardware area: a very small circuit
can carry out many bit operations if the operations to be performed are sufficiently regular.
Optimizing bit operations is also not the same as optimizing hardware latency. However,
optimizing bit operations is very close to optimizing the throughput of pipelined hardware.
We predict that the speedups discussed in this paper will turn out to be useful in applications
that need to maximize the number of F2n operations that can be carried out per second for
a given chip area.

This work began as part of a larger project described in [BBB+09] to solve a cryptanalytic
challenge, the Certicom “ECC2K-130” challenge [Cer97]. One of the surprises in [BBB+09]
is that type-II bases save time for the ECC2K-130 computation on various software plat-
forms, solidly outperforming low-weight (in this case pentanomial) polynomial bases. At the
time of this writing, the latest version of [BBB+09] reports the speed of software that uses
Shokrollahi’s approach together with the improvements described in Section 3 of this paper;
the latest software incorporates additional improvements described in subsequent sections of
this paper.

Type-II Optimal Polynomial Bases 3

Optimizing bit operations is often believed to be even farther from optimizing software
than it is from optimizing hardware. However, [Ber09a] recently set new software speed records
for public-key cryptography by exploiting a synergy between “bitsliced” data structures,
bit-operation-optimized polynomial-multiplication techniques, and the 128-bit vector oper-
ations available on common CPUs; [BBB+09] extended this synergy to include type-II bases.
We are now investigating the constructive use of the same techniques for fast Koblitz-curve
cryptography — of course, at much larger sizes than ECC2K-130!

1.2. Outline of the paper. Section 2 reviews Shokrollahi’s algorithm for type-II normal-
basis multiplication. Section 3 presents a streamlined algorithm for type-II normal-basis mul-
tiplication. The streamlined algorithm uses approximately M(n)+2n log2(n/2) bit operations.
More precisely, if n = 2n0 + 2n1 + · · · with n0 > n1 > · · · , then the streamlined algorithm
uses M(n) +

∑
i(2

ni(2ni − 2 + 4i) + 3) bit operations.
Section 4 presents an algorithm to multiply in a “type-II polynomial basis” using ap-

proximately M(n) + n log2 n bit operations. The overhead n log2 n saves almost half of the
previous overhead 2n log2(n/2); about 0.5n log2(n/4) is saved by a new reduction method,
and about 0.5n log2(n/4) is saved by a simple exercise in caching. Repeated squaring in a
“type-II polynomial basis” is not as fast as repeated squaring in a normal basis but is still
much faster than repeated squaring in a traditional polynomial basis.

We further reduce the total overhead of multiplications and repeated squarings by dy-
namically mixing a type-II polynomial basis P with a type-II normal basis N . In applications
that contain only occasional multiplications, this mixture is tantamount to working purely
in N , as in Section 3. In applications that contain only occasional repeated squarings, this
mixture is tantamount to working purely in P . However, in many applications the mixture is
better than any pure method. Section 5 uses ECC2K-130 as an illustrative example of this
paper’s overall improvements.

2 Review of the Original Shokrollahi Approach

In this section we review the normal-basis multiplier from [Sho07, Section 4] for the special
case of binary fields F2n .

In a nutshell the main achievement of [Sho07] is a map S between a normal-basis represen-
tation and a special polynomial-basis representation, taking Θ(n log2 n) bit operations instead
of the usual Θ(n2). The multiplication in normal basis can be performed as S−1(S(a1)·S(a2)):
first use S on a1 and a2 to map to polynomial-basis representation, where efficient algorithms
for polynomial multiplication can be used, and finally map the result back to normal basis
representation.

The irreducible polynomial for this special polynomial basis is usually rather dense. To
avoid reduction modulo this polynomial, Shokrollahi defines a double-length map that takes
an unreduced polynomial product back to normal basis. The reduction is done on the normal-
basis side, where it is simple addition of length-n vectors.

Before giving the details we review the construction of a type-II normal basis for F2n and
establish notations P,N used throughout the paper. For more information on type-II normal
bases, see Mullin et al. [MOVW89].

2.1. Type-II normal bases. For the rest of the paper we assume that n is a positive integer,
that 2n+ 1 is prime, and that either (1) the order of 2 modulo 2n+ 1 is 2n or (2) the order of
2 modulo 2n+ 1 is n and 2n+ 1 ≡ 3 (mod 4). In the latter case 2 generates the subgroup of

4 Daniel J. Bernstein and Tanja Lange

squares modulo 2n+ 1. The congruence 2n+ 1 ≡ 3 (mod 4) implies that −1 is not a square,
so −1 is not a power of 2.

The conditions on n imply that 22n ≡ 1 (mod 2n + 1) and so there exists an element
ζ ∈ F22n that is a primitive (2n+ 1)st root of unity. Now 2n ≡ ±1 (mod 2n+ 1), since 2 has
order 2n or n, so ζ2n ∈

{
ζ, ζ−1

}
. Define c = ζ + ζ−1. Then c2

n
= ζ2n

+ ζ−2n
= ζ + ζ−1 = c,

so c ∈ F2n .
The elements c, c2, c2

2
, c2

3
, . . . , c2

n−1
are distinct. Indeed, any repetition would (after some

square roots) imply an equation of the form c2
i

= c with i ∈ {1, 2, . . . , n− 1}, i.e., (ζ+ζ−1)2
i

=
ζ + ζ−1, i.e., ζ2i

+ ζ−2i
+ ζ + ζ−1 = 0. This equation factors as (ζ2i

+ ζ)(1 + ζ−2i−1) = 0,
so ζ2i

= ζ or ζ2i+1 = 1, so 2i ≡ ±1 (mod 2n + 1). This implies 22i ≡ 1 (mod 2n + 1) which
contradicts that the order of 2 is 2n modulo (2n + 1). If the order of 2 is n and 2n + 1 ≡ 3
(mod 4) then −1 is not a power of 2 contradicting 2i ≡ −1 (mod 2n + 1) while 2i ≡ 1
(mod 2n+ 1) contradicts that the order is n.

Each power c2
i

can be written as ζj + ζ−j for the unique j ∈ {1, 2, . . . , n} with 2i ≡ ±j
(mod 2n+ 1), since c2

i
= (ζ + ζ−1)2

i
= ζ2i

+ ζ−2i
= ζj + ζ−j . Therefore (c, c2, c2

2
, . . . , c2

n−1
)

is a permutation of (ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζn + ζ−n).
If a vector (e1, e2, . . . , en) ∈ Fn

2 satisfies e1(ζ+ζ−1)+e2(ζ2 +ζ−2)+ · · ·+en(ζn +ζ−n) = 0
then e1(ζ + ζ2n) + e2(ζ2 + ζ2n−1) + · · ·+ en(ζn + ζn+1) = 0, so ζ is a root of the polynomial
p = e1(1 + z2n−1) + · · · + en(zn−1 + zn) ∈ F2[z] of degree at most 2n − 1. Exchanging ζ
and ζ−1 shows that ζ−1 is also a root of p. If 2 has order 2n then the cyclotomic polynomial
Φ2n+1 is irreducible in F2[z], so Φ2n+1 divides p. If 2 has order n and 2n + 1 ≡ 3 (mod 4)
then Φ2n+1 factors into the coprime irreducible polynomials (z− ζ)(z− ζ2) · · · (z− ζ2n−1

) and
(z−ζ−1)(z−ζ−2) · · · (z−ζ−2n−1

); each of these polynomials divides p, so again Φ2n+1 divides
p. Since deg(Φ2n+1) = 2n this implies p = 0 so (e1, e2, . . . , en) = 0.

Summary: (ζ+ζ−1, ζ2+ζ−2, ζ3+ζ−3, . . . , ζn+ζ−n) is a basis of F2n , and (c, c2, c2
2
, . . . , c2

n−1
)

is a normal basis of F2n . This normal basis is called a “type-II optimal normal basis”, and the
permutation (ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζn + ζ−n) is called a “permuted type-II optimal
normal basis”.

2.2. The functions N and P . We denote by N(x) the representation of x ∈ F2n with
respect to the permuted normal basis (ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζn + ζ−n). In other
words, the vector N(x) = (N(x)1, . . . , N(x)n) ∈ Fn

2 satisfies
∑

iN(x)i(ζi + ζ−i) = x.
We denote by P (x) the representation of x ∈ F2n with respect to the polynomial ba-

sis (c, c2, c3, . . . , cn). In other words, the vector P (x) = (P (x)1, . . . , P (x)n) ∈ Fn
2 satisfies∑

i P (x)i(ζ + ζ−1)i = x. Note that this is not exactly a conventional polynomial basis: the
corresponding polynomials have degree ≤ n and constant term zero.

2.3. Shokrollahi’s transformation. Shokrollahi extends the normal basis to the redundant
generating set N = (1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζn + ζ−n) and extends the polynomial
basis to the redundant generating set P = (1, (ζ + ζ−1), (ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ +
ζ−1)n−1, (ζ+ζ−1)n). Shokrollahi recursively defines a transformation Sk from (1, ζ+ζ−1, ζ2 +
ζ−2, ζ3 + ζ−3, . . . , ζk−1 + ζ1−k) to (1, (ζ + ζ−1), (ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ + ζ−1)k−1, and
in particular defines a transformation Sn+1 from N to P.

We first describe S−1
8 and then generalize. The central observation is that if

f0+f1

(
ζ + ζ−1

)
+f2

(
ζ + ζ−1

)2+f3

(
ζ + ζ−1

)3 = g0+g1
(
ζ + ζ−1

)
+g2

(
ζ2 + ζ−2

)
+g3

(
ζ3 + ζ−3

)
and

f4+f5

(
ζ + ζ−1

)
+f6

(
ζ + ζ−1

)2+f7

(
ζ + ζ−1

)3 = g4+g5
(
ζ + ζ−1

)
+g6

(
ζ2 + ζ−2

)
+g7

(
ζ3 + ζ−3

)

Type-II Optimal Polynomial Bases 5

then

f0 + f1

(
ζ + ζ−1

)
+ f2

(
ζ + ζ−1

)2 + f3

(
ζ + ζ−1

)3
+ f4

(
ζ + ζ−1

)4 + f5

(
ζ + ζ−1

)5 + f6

(
ζ + ζ−1

)6 + f7

(
ζ + ζ−1

)7
= g0 + (g1 + g7)

(
ζ + ζ−1

)
+ (g2 + g6)

(
ζ2 + ζ−2

)
+ (g3 + g5)

(
ζ3 + ζ−3

)
+ g4

(
ζ4 + ζ−4

)
+ g5

(
ζ5 + ζ−5

)
+ g6

(
ζ6 + ζ−6

)
+ g7

(
ζ7 + ζ−7

)
.

Converting from coefficients of 1, ζ+ ζ−1, (ζ+ ζ−1)2, . . . , (ζ+ ζ−1)7 to coefficients of 1, ζ+
ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ7 + ζ−7 can thus be done with two half-size conversions and three
additions of bits: first convert f0, f1, f2, f3 to g0, g1, g2, g3; separately convert f4, f5, f6, f7 to
g4, g5, g6, g7; and then add g7 to g1, g6 to g2, and g5 to g3. The inverse, converting from
coefficients of 1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ7 + ζ−7 to coefficients of 1, ζ + ζ−1, (ζ +
ζ−1)2, . . . , (ζ + ζ−1)7, has exactly the same cost. These conversions are extremely efficient.

More generally, instead of splitting 8 into (4, 4), one can (and should) split k into (j, k−j),
where j is the unique power of 2 satisfying j + 1 ≤ k ≤ 2j. This is exactly what Shokrollahi’s
transformations Sk and S−1

k do.

2.4. Shokrollahi’s multiplication algorithm. Shokrollahi expands N(a) and N(b) by
inserting a leading 0, obtaining linear combinations of N , and then uses the transforma-
tion Sn+1 to obtain linear combinations of P, which are then interpreted as polynomials of
degree at most n. Multiplying these two size-(n + 1) polynomials takes M(n + 1) bit opera-
tions and produces a polynomial of degree at most 2n. Shokrollahi uses the transformation
S−1

2n+1 to obtain a linear combination of (1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ2n + ζ−2n), uses
ζn+i + ζ−(n+i) = ζn+i−2n−1 + ζ2n+1−(n+i) = ζ−(n+1−i) + ζn+1−i for 1 ≤ i ≤ n to reduce the
intermediate result back to N , and finally discards the coefficient of 1 (which is always 0 by
[Sho07, Theorem 31]), obtaining N(ab).

2.5. Shokrollahi’s analysis. Shokrollahi shows in [Sho07, Lemma 21] that the cost for a
size-2r transformation is η(r) = 2r−1(r−2) + 1. He then computes the following upper bound
on the cost of his multiplication algorithm:

• two conversions from N to P, costing η(dlog2(n+ 1)e) each; plus
• a multiplication of polynomials of degree ≤ n, costing M(n+ 1); plus
• one double-length conversion of a polynomial of degree ≤ 2n, costing η(dlog2(2n + 1)e);

plus
• n final additions.

See [Sho07] and [vzGSS07, Theorem 8, first display].
We point out that Shokrollahi’s bounds are much higher than the actual costs of his

algorithm, often losing a factor of 2 or more outside the M(n + 1) term. See Section 5 of
this paper for an example. The “+16n log2 n” appearing in [vzGSS07, Section 1], and in more
generality in [vzGSS07, Theorem 8, second display], is even more misleading. Those bounds
should be disregarded by readers evaluating the performance of normal-basis arithmetic. We
present quickly computable formulas for exact operation counts of our algorithms, along with
reasonably precise approximations such as (n/2) log2(n/4).

3 Streamlined Multiplication in Type-II Normal Basis

This section presents a simpler, smaller, slightly faster algorithm to compute N(a), N(b) 7→
N(ab). This algorithm is a convenient starting point for the larger speedups discussed in

6 Daniel J. Bernstein and Tanja Lange

subsequent sections, so we present the algorithm from scratch, but we begin by summarizing
the most important differences between the algorithm and Shokrollahi’s algorithm.

3.1. Summary of the simplification. Recall that Shokrollahi’s original algorithm extends
the basis ζ + ζ−1, . . . , ζn + ζ−n to 1, ζ + ζ−1, . . . , ζn + ζ−n. Note that 1 6= ζ0 + ζ−0; evidently
1 plays a special role here.

The algorithm in this section shifts the underlying transformation by one position, avoiding
the need to extend the original basis. The new transformation works with only n elements
rather than n+ 1, and feeds the multiplier polynomials of size n rather than n+ 1.

3.2. Summary of the speedup. This multiplication algorithm has overhead approximately
2n log2(n/2): i.e., it uses approximatelyM(n)+2n log2(n/2) bit operations. It savesM(n+1)−
M(n) bit operations compared to Shokrollahi’s original algorithm (according to our analysis
of Shokrollahi’s algorithm; Shokrollahi’s analysis produces a much larger upper bound, as
discussed in Section 2.5).

The differences M(1)−M(0),M(2)−M(1), . . . ,M(n)−M(n−1) have sum M(n)−M(0) =
M(n) ∈ O(n log2 n log2 log2 n), so the average difference is bounded by O(log2 n log2 log2 n),
which is asymptotically not nearly as large as 2n log2 n. However, for typical values of n there
is a quite significant difference between the best known upper bound on M(n + 1) and the
best known upper bound on M(n). For example, these differences for n = 53, n = 83, n = 89,
n = 113, n = 131, and n = 173 are 67, 121, 73, 81, 154, and 108 respectively.

This section’s algorithm makes structurally clear that the polynomials to be multiplied
have size only n. An alternate, more complicated, way to save M(n+ 1)−M(n) is as follows:
observe that the coefficient of 1 inside Shokrollahi’s algorithm is initialized to 0 and is never
modified; conclude that the size-(n + 1) polynomials in the algorithm always have constant
coefficient 0; speed up the algorithm accordingly. The intermediate conclusion appeared (with
a different proof) in [Sho07, Theorem 31, proof, third sentence], but was not exploited in the
algorithm.

3.3. The transformation. For each k ≥ 1, each vector e ∈ Fk
2, and each i ∈ {1, 2, . . . , k},

define ei as the ith component of e. Then e = (e1, e2, . . . , ek). To support infinite sums over
i, as in [Knu97a], we also allow “out-of-range” indices: define ei = 0 for i ∈ Z \ {1, 2, . . . , k}.
We also use the notation [i 6= 0] to mean 0 if i = 0 and 1 if i 6= 0.

For each k ≥ 1 we define an invertible function Tk : Fk
2 → Fk

2 by the following recursion:

• Define T1(e) = e.
• For k ≥ 2: Define j as the largest power of 2 in {1, 2, . . . , k − 1}. For each f ∈ Fj

2 and
each g ∈ Fk−j

2 define Tk(f, g) = (Tj(h), Tk−j(g)) where hi = fi + [i 6= 0]gj−i.

To recover f, g from Tk(f, g) = (Tj(h), Tk−j(g)), first invert Tj and Tk−j to obtain h and g,
and then compute f from fi = hi + [i 6= 0]gj−i.

For example:

• T2(e1, e2) = (e1, e2). Here j = 1, f = (e1), g = (e2), and h = (e1).
• T3(e1, e2, e3) = (e1 + e3, e2, e3). Here j = 2, f = (e1, e2), g = (e3), and h = (e1 + e3, e2).
• T4(e1, e2, e3, e4) = (e1 + e3, e2, e3, e4). Here j = 2, f = (e1, e2), g = (e3, e4), and h =

(e1 + e3, e2).
• T5(e1, e2, e3, e4, e5) = (e1 + e3 + e5, e2, e3 + e5, e4, e5). Here j = 4, f = (e1, e2, e3, e4),
g = (e5), and h = (e1, e2, e3 + e5, e4).

Type-II Optimal Polynomial Bases 7

• T6(e1, e2, e3, e4, e5, e6) = (e1+e3+e5, e2+e6, e3+e5, e4, e5, e6). Here j = 4, f = (e1, e2, e3, e4),
g = (e5, e6), and h = (e1, e2 + e6, e3 + e5, e4).

One can visualize the computation of h as folding g onto f in reverse order, but skipping the
highest coefficient of f , and skipping the highest coefficient of g if g is as long as f .

Theorem 3.4. Let k be a positive integer. Let ζ be an element of a field of characteristic 2.
Then

∑
i(Tk(e))i(ζ + ζ−1)i =

∑
i ei(ζ

i + ζ−i) for each e ∈ Fk
2.

Proof. For k = 1: T1(f) = f so (T1(f))1(ζ + ζ−1)1 = f1(ζ + ζ−1).
For k ≥ 2: Define j as the largest power of 2 in {1, 2, . . . , k − 1}. Write e as (f, g) for some

f ∈ Fj
2 and g ∈ Fk−j

2 . Then Tk(e) = (Tj(h), Tk−j(g)) where hi = fi + gj−i.
Both j and k − j are smaller than k, so by induction∑

i

(Tj(h))i(ζ + ζ−1)i =
∑

i

hi(ζi + ζ−i),∑
i

(Tk−j(g))i(ζ + ζ−1)i =
∑

i

gi(ζi + ζ−i).

Now use (ζ + ζ−1)j = ζj + ζ−j to see that∑
i

(Tk(e))i(ζ + ζ−1)i =
∑

i

(Tj(h))i(ζ + ζ−1)i + (ζ + ζ−1)j
∑

i

(Tk−j(g))i(ζ + ζ−1)i

=
∑

i

hi(ζi + ζ−i) + (ζj + ζ−j)
∑

i

gi(ζi + ζ−i)

=
∑

i

(fi + [i 6= 0]gj−i)(ζi + ζ−i) +
∑

i

gi(ζi+j + ζ−i−j + ζi−j + ζj−i)

=
∑

i

(fi + gj−i)(ζi + ζ−i) +
∑

i

gi(ζi+j + ζ−i−j + ζi−j + ζj−i)

=
∑

i

fi(ζi + ζ−i) +
∑

i

gi(ζi+j + ζ−i−j)

=
∑

i

ei(ζi + ζ−i)

as claimed. The replacement of [i 6= 0] by 1 on the fourth line follows from [i 6= 0](ζi + ζ−i) =
ζi + ζ−i; note that ζ0 + ζ−0 = 0. ut

3.5. Speed of the transformation. The following in-place algorithm replaces e ∈ Fk
2 by

Tk(e):

• Stop if k = 1.
• Define j as the largest power of 2 in {1, 2, . . . , k − 1}.
• Add e2j−i into ei for max {1, 2j − k} ≤ i ≤ j − 1. (Now e = (h, g) in the notation of the

definition of Tk.)
• Recursively apply Tj to the first j coefficients of e.
• Recursively apply Tk−j to the remaining coefficients of e.

8 Daniel J. Bernstein and Tanja Lange

Inverting this algorithm is a simple matter of carrying out the same additions in reverse order.
The cost of Tk is min {j − 1, k − j} plus the costs of Tj and Tk−j . An easy induction shows

that if k = 2k0 + 2k1 + · · · , with k0 > k1 > . . ., then the cost of Tk is exactly
∑

i(2
ki−1(ki −

2 + 2i) + 1).

3.6. The N × N → N multiplication algorithm. The following algorithm computes
N(ab) given N(a) and N(b):

• Compute A = Tn(N(a)) and B = Tn(N(b)).
• Compute the product P2z

2 + · · · + P2nz
2n of the polynomials A1z + · · · + Anz

n and
B1z + · · ·+Bnz

n in the polynomial ring F2[z].
• Compute p = T−1

2n (0, P2, . . . , P2n).
• Compute N(ab) = (p1 + p2n, p2 + p2n−1, . . . , pn + pn+1).

Recall that a =
∑

iN(a)i(ζi+ζ−i) by definition of N , so a =
∑

iAi(ζ+ζ−1)i by Theorem 3.4.
Similarly b =

∑
iBi(ζ + ζ−1)i. Hence ab =

∑
i Pi(ζ + ζ−1)i, so ab =

∑
i pi(ζi + ζ−i) by

Theorem 3.4, so ab = (p1 + p2n)(ζ + ζ−1) + · · ·+ (pn + pn+1)(ζn + ζ−n).
The two computations of Tn each cost

∑
i(2

ni−1(ni − 2 + 2i) + 1) if n = 2n0 + 2n1 + · · ·
with n0 > n1 > The polynomial multiplication costs M(n). The computation of p costs∑

i(2
ni(ni − 1 + 2i) + 1). The final computation of N(ab) costs n =

∑
i 2ni .

The total number of bit operations is M(n)+
∑

i(2
ni(2ni−2+4i)+3). The overhead term∑

i(2
ni(2ni − 2 + 4i) + 3) is approximately 2n log2(n/2), and a trivial computer calculation

shows that it is bounded by 2(n+ 2) log2(n/2) for 4 ≤ n ≤ 100000.
We comment that the 0 component in the T−1

2n input allows a subsequent addition of 0 to
be eliminated. This speedup might seem too minor to be worth mentioning, and our operation
counts in this section do not take it into account, but the underlying idea helps produce much
larger savings in subsequent sections.

4 Type-II Polynomial Basis

Let us pause to review the attractive features of the (permuted) type-II normal basis ζ +
ζ−1, ζ2 + ζ−2, . . . , ζn + ζ−n. The multiplication overhead, compared to size-n polynomial
multiplication, is only about 2n log2(n/2). Repeated squaring is a very fast permutation,
costing no bit operations.

This section presents a multiplication algorithm for the non-traditional polynomial basis
c, c2, . . . , cn, where c = ζ + ζ−1. The overhead in the new algorithm is only about n log2 n.
Repeated squaring in this basis is more complicated than a permutation but is still very fast,
costing only n log2(n/4) bit operations. We refer to this basis as a “type-II optimal polynomial
basis” because of its close connection to the type-II optimal normal basis.

For comparison, in a traditional low-weight polynomial basis, the multiplication overhead
is typically 2n (for trinomials) or 4n (for pentanomials), and single squarings are fast, but
repeated squarings such as a 7→ a2bn/3c

are very slow.
We obtain our best results by combining type-II polynomial basis P with type-II normal

basis N . This combined system keeps repeated-squaring inputs in N form, and keeps multi-
plication inputs in P form. Multiplications are P × P → N when the outputs are used for
repeated squarings, and P × P → N → P when the outputs are used for repeated squarings
and for multiplications, but P ×P → P when the outputs are used solely for multiplications.

Type-II Optimal Polynomial Bases 9

4.1. The N → P and P → N conversions. We begin by reinterpreting the transformation
Tn in Section 3 as a fast conversion from type-II normal basis to type-II polynomial basis:
Theorem 3.4 implies that Tn(N(a)) = P (a). This also means that T−1

n is a fast conversion
from type-II polynomial basis to type-II normal basis: T−1

n (P (a)) = N(a). Recall that each
of these conversions costs

∑
i(2

ni−1(ni − 2 + 2i) + 1) ≈ (n/2) log2(n/4).
For comparison: Shokrollahi in [Sho07, Theorem 28], emphasizing “the most important

property” of his multiplier, showed that conversion between a type-II normal basis and the
basis 1, c, c2, . . . , cn−1 takes time O(n log2 n). We simplify and accelerate the conversion by
shifting to the basis c, c2, . . . , cn. The speedup is Θ(n) operations. The simplification is il-
lustrated by the fact that our basis conversion naturally appears as a subroutine in our
multiplication algorithm, whereas modifying the multiplication algorithm from [Sho07] to use
the basis conversion from [Sho07, Theorem 28] would slow down the multiplication algorithm.

4.2. The P ×P → N multiplication algorithm. We next observe that the N ×N → N
multiplication algorithm of Section 3 factors into two N → P conversions and a P × P → N
multiplication algorithm.

Specifically, the first step of the N(a), N(b) 7→ N(ab) algorithm of Section 3 computes
A = Tn(N(a)) and B = Tn(N(b)); i.e., it computes A = P (a) and B = P (b). The remaining
steps make no further use of N(a) and N(b): they start from A = P (a) and B = P (b) and
compute N(ab). In other words, the remaining steps are exactly a P ×P → N multiplication
algorithm. This P × P → N multiplication algorithm costs M(n) +

∑
i(2

ni(ni + 2i) + 1) ≈
M(n) + n log2 n.

4.3. The P × P → P multiplication algorithm. Composing P × P → N with a final
N → P conversion would produce a P × P → P multiplication algorithm with overhead
approximately n(1.5 log2 n − 1). This algorithm would feed the size-2n polynomial product
through a size-2n transform, then fold the result in half using ζ2n+1−i + ζi−2n−1 = ζi + ζ−i,
then transform the size-n result from N to P .

We do better by separately handling the two halves of the polynomial product. The point
is that

Tn(fold(T−1
2n (bottom, top)))

= Tn(fold(T−1
2n (bottom, 0, . . . , 0))) + Tn(fold(T−1

2n (0, . . . , 0, top)))

= bottom + Tn(fold(T−1
2n (0, . . . , 0, top))).

Instead of uselessly transforming the bottom half back and forth between P and N , we simply
leave it in P and add it at the end. We use transforms as a fast mechanism to reduce the top
half from coefficients of cn+1, . . . , c2n to coefficients of c1, . . . , cn.

In the computation of T−1
2n (0, . . . , 0, top), and in the subsequent folding, we systematically

eliminate all additions of 0. For any particular n one can do this elimination by hand, keeping
track of which intermediate values are 0; or one can generate straight-line code for the entire
computation and use standard optimizing-compiler tools.

We have done this optimization for all n ∈ {1, 2, . . . , 100000} and found that the cost
of fold(T−1

2n (0, . . . , 0, top)) can in every case be computed as follows. Write n + 1 (not n) as
2n0 + 2n1 + · · · + 2nr with n0 > n1 > · · · > nr. The cost is then

∑
i 2ni−1(ni + 4i) minus a

nonnegative rebate. The rebate is 2r, plus nr, plus 1 for each 11 in the binary expansion of
n+ 1− 2nr , plus 2 for each 111 in the same binary expansion, plus 4 for each 1111, plus 8 for
each 11111, etc.

10 Daniel J. Bernstein and Tanja Lange

Examples: If n = 131 then n+1 has binary expansion 10000100, so the rebate is 2 ·1+2 =
4, and the cost is 27−1(7) + 22−1(2 + 4) − 4 = 456. If n = 491 then n + 1 has binary
expansion 111101100, with 3 occurrences of 11 before the last bit, 2 occurrences of 111, and
1 occurrence of 1111, so the rebate is 2 · 5 + 2 + 3 · 1 + 2 · 2 + 1 · 4 = 23, and the cost is
28−1(8) + 27−1(7 + 4) + 26−1(6 + 8) + 25−1(5 + 12) + 23−1(3 + 16) + 22−1(2 + 20)− 23 = 2545.

To summarize, P × P → P multiplication involves

• cost M(n) for the polynomial product;
• the cost discussed above, approximately (n/2) log2 n;
• the cost of Tn, approximately (n/2) log2(n/4); and
• cost n for the final addition of the bottom half.

The total cost is approximately M(n) + n log2 n, similar to the cost of P × P → N multi-
plication. These approximations should not be viewed as equalities: a closer look shows that
P × P → P multiplication costs about

∑
i 2nii more than P × P → N multiplication.

4.4. Dynamically mixing N and P . At this point our basic tools are as follows:

• N → P conversion: 1 transform, cost
∑

i(2
ni−1(ni − 2 + 2i) + 1).

• P → N conversion: 1 transform, cost
∑

i(2
ni−1(ni − 2 + 2i) + 1).

• N → N repeated squarings: 0 transforms, cost 0.
• P×P → N multiplication: 2 transforms (actually one double-size transform), cost M(n)+∑

i(2
ni(ni + 2i) + 1).

• P × P → P multiplication: 2 transforms, slightly larger cost as discussed above.

There are several reasonable ways to combine these tools. One extreme is to work every-
where in N , using N → N repeated squarings (0 transforms) and N × N → P × P → N
multiplications (4 transforms). Another extreme is to work everywhere in P , using P → N →
N → P repeated squarings (2 transforms) and P × P → P multiplications (2 transforms).

We take a more fluid approach, mixing the advantages of both approaches. We compute
N(a) for variables a that will be used in repeated squarings; we compute P (a) for variables a
that will be used in multiplications; we compute both N(a) and P (a) for variables a that will
be used in both repeated squarings and multiplications. The overall number of transforms in
this approach is 0 for each squaring and between 2 and 4 for each multiplication, depending on
the exact pattern of multiplications and repeated squarings. See Section 5 for an illustrative
example.

We briefly comment that P → P single squaring can be sped up by the same idea used
in P × P → P multiplication. However, in every application so far where we have tried this
approach, we have found a faster solution that uses N → N squaring and rearranges the
earlier computations.

5 Case Study: ECC2K-130

This section illustrates the use of optimal polynomial bases and optimal normal bases in
the ECC2K-130 computation mentioned in Section 1. Specifically, this section shows that the
5B+5 multiplications in B iterations of the ECC2K-130 iteration function from [BBB+09] can
be carried out with an overhead of only 5854B+9408 bit operations. The original Shokrollahi
approach, with our improved analysis, would have used 8565B + 8565 bit operations.

Type-II Optimal Polynomial Bases 11

5.1. Review of the iteration function. We take the perspective of an implementor faced
with the job of implementing the ECC2K-130 iteration function from [BBB+09], the bottle-
neck in the ECC2K-130 computation. To keep this paper self-contained we now repeat the
definition of the iteration function.

The input to an iteration is a pair (x, y) ∈ F2131 × F2131 satisfying two conditions: first,
y2 + xy = x3 + 1; second, x has trace 0, i.e., N(x) has even Hamming weight. The output of
the iteration is the pair (x′, y′) defined by the equations

j = 3 +
(

weight(N(x))
2

mod 8
)
, λ =

y + y2j

x+ x2j ,

x′ = λ2 + λ+ x+ x2j
, y′ = λ(x+ x′) + x′ + y.

One can check that (y′)2 + x′y′ = (x′)3 + 1 and that x′ has trace 0.
This iteration function can be computed using 3 + (5/B) multiplications for a B-way-

batched inversion of x + x2j
; 1 multiplication of the inverse by y + y2j

, producing λ; and 1
multiplication of λ by x+ x′. All of these stages are discussed in more detail below.

See [BBB+09] for further information on how these iterations are being used to solve the
ECC2K-130 challenge. We comment that thousands of CPU cores have already been busy
for months computing these iterations, and that many more cores are being added; obviously
every speedup in the computation is valuable.

5.2. The main loop. It is natural to represent the input (x, y) as (N(x), N(y)): the first step
is to compute the weight of N(x), and both x and y are then fed through repeated squarings.
On the other hand, dividing y + y2j

by x+ x2j
requires P (y + y2j

) and P (1/(x+ x2j
)). The

quotient λ is then used for both a squaring λ2 and a multiplication λ(x+ x′), so we compute
both N(λ) and P (λ).

Figure 5.1 shows the resulting data flow between representations of various field elements.
There are 4 explicit size-131 transforms, and 2 multiplications P × P → N each involving
2 size-131 transforms. Working solely with N , and with an N × N → N multiplication
subroutine, would require an extra transform for N(1/d). Note that more transforms are
saved inside the inversion, as discussed below.

Figure 5.1 shows computations from N(y) through N(y2j
) in parallel with computations

from N(x) through N(x2j
). To reduce storage requirements, cache misses, etc., the ECC2K-

130 software actually delays the N(y2j
) computations until after the inversion.

5.3. Batching inversions. Montgomery in [Mon87, Section 10.3.1] suggested computing
1/d1 and 1/d2 as d2/(d1d2) and d1/(d1d2). This suggestion eliminates 1 inversion in favor of
3 multiplications. We are not aware of any inversion method for F2131 that can compete with
3 multiplications if the multiplications are performed by state-of-the-art techniques.

A batch of B parallel iterations involves B inversions 1/d1, 1/d2, . . . , 1/dB. Merging the
first two inversions, then merging with the next, etc., leads to the following standard computa-
tion, replacing B− 1 inversions with 3(B− 1) multiplications: first compute d1d2, d1d2d3, . . . ,
d1d2 · · · dB using B− 1 multiplications; then compute 1/(d1d2 · · · dB) using a single inversion;
then compute 1/dB = (d1d2 · · · dB−1)/(d1d2 · · · dB) and 1/(d1d2 · · · dB−1) = dB/(d1d2 · · · dB)
using 2 multiplications, etc.

The single central inversion begins with squarings, as discussed below, and therefore takes
N(d1d2 · · · dB) as input. However, all of the intermediate products here are used solely for
further multiplications, so we represent them in P form. Figure 5.2 shows the resulting data

12 Daniel J. Bernstein and Tanja Lange

N(x)

��

��??????

''OOOOOOOOOO

**TTTTTTTTTTTTTTTTT

��

��

N(y)

��

		

��

Compute
weight(N(x)) =

2b1 + 4b2 + 8b3 + · · · .
b1

�� ''

b2

yy %%

b3

vv ""

N(x23
)

��

N(y23
)

��

Compute

r = x23
,

s = r + b1(r2 + r),

t = s+ b2(s4 + s),

x2j

= t+ b3(t16 + t).

Similarly y2j

.

N(s) = N(x23+b1
)

��

N(y23+b1
)

��
N(x23+b1+2b2

)

��

N(y23+b1+2b2
)

��
N(x2j

)

��

N(y2j

)

��Compute

d = x+ x2j

,

e = y + y2j

.

N(d)

convert
��

��

N(e)

convert
��

P (d)

and then a
miracle occurs��

P (e)

�����������������

Compute 1/d. P (1/d)

''OOOOOOOOO

Compute
λ = e/d.

N(λ)

wwooooooooo

����������������� convert

''OOOOOOOOO

N(λ2)

��

P (λ)

��������������������������

Compute
x′ = λ2 + λ+ d.

N(x′)

''OOOOOOOO

))

N(x+ x′)

convert
��

P (x+ x′)

��?????

Compute
λ(x+ x′).

N(λ(x+ x′))

��?????

Compute
y′ = λ(x+ x′) + x′ + y.

N(y′)

Fig. 5.1. The ECC2K-130 iteration function.

Type-II Optimal Polynomial Bases 13

flow for B = 4. Working solely with N , and with an N ×N → N multiplication subroutine,
would double the number of transforms.

Other merging patterns, such as a balanced tree, reduce latency without changing the
number of operations. The same comments regarding P and N apply to arbitrary merging
patterns.

P (d2)

%%KKKKKKKK

''

P (d1)

��

��

Compute d1d2. P (d3)

%%KKKKKKKK

((

P (d1d2)

��

��

Compute d1d2d3. P (d4)

%%KKKKKKKK

((

P (d1d2d3)

��

Compute d1d2d3d4. N(d1d2d3d4)

and then a
miracle occurs��

Compute 1/(d1d2d3d4). P (1/(d1d2d3d4))

�� %%KKKKKKKK

Compute 1/d4 and 1/(d1d2d3). P (1/(d1d2d3))

�� %%KKKKKKKK
P (1/d4)

Compute 1/d3 and 1/(d1d2). P (1/(d1d2))

�� %%KKKKKKKK
P (1/d3)

Compute 1/d2 and 1/d1. P (1/d1) P (1/d2)

Fig. 5.2. Batching 4 independent inversions.

5.4. Core inversions. Eventually one has to actually invert something. Inversion time is
amortized across a batch of B iterations, but B is often limited by communication costs,
making inversion an important part of the ECC2K-130 computation.

The standard branchless inversion method for F2n , certainly not the only method, is
to compute a (2n − 2)nd power. This inversion method is also important in many other
computations, so we describe the details for general n before focusing on n = 131.

The standard method of computing a (2n − 2)nd power uses n − 1 squarings and just r
multiplications, where r is the length of an “`0 chain” for n − 1; an `0 chain is a particular
type of addition chain. The idea is to convert a chain 1 = e0, e1, . . . , er = n − 1 into a chain
containing 1 = 2e0 − 1, 2e1 − 1, . . . , 2er − 1 = 2n−1 − 1 along with various doublings; i.e.,
to compute x1 = x2e0−1, . . . , x2er−1 = x2n−1−1 along with various squarings. This powering
method was introduced by Brauer in 1939 for the special case of “star chains” and by Hansen
in 1959 for all `0 chains. See [Bra39], [Han59], and [Knu97b, Section 4.6.3, Theorem G]. Note
that the shortest `0 chains are as short as the shortest addition chains for all integers below
5784689; see [Cli05].

In particular, a simple binary addition chain achieves r = blog2(n− 1)c+weight(n−1)−1,
producing an inversion method that takes n−1 squarings and blog2(n− 1)c+weight(n−1)−1

14 Daniel J. Bernstein and Tanja Lange

multiplications. This inversion method is often credited to the 1988 paper [IT88] by Itoh and
Tsujii. For most values of n one can do noticeably better (often more than 1.5× better!) by
switching to a standard “windowing” addition chain for n−1, producing an inversion method
that takes n− 1 squarings and (1 + o(1)) log2 n multiplications. For further discussion of this
inversion method see [vzGN99] and [Nöc01].

In the case n = 131 we take the length-8 addition chain 1, 2, 4, 8, 16, 32, 64, 65, 130 for
n− 1. We could compute

x, x2, x3, x12, x15, x240, x255 = x28−1, x216−28
, x216−1, x232−216

, x232−1,

x264−232
, x264−1, x265−2, x265−1, x2130−265

, x2130−1, x2131−2 = x−1

but we eliminate a final transform by moving the final squaring to the beginning:

x, x2, x4, x6, x24, x30, x480, x510 = x29−2, x217−29
, x217−2, x233−217

, x233−2,

x265−233
, x265−2, x266−4, x266−2, x2131−266

, x2131−2 = x−1.

Figure 5.3 shows the resulting data flow. Working solely with N , and with an N × N → N
multiplication subroutine, would require an extra transform for P (x2), and an extra transform
for P (x−1).

5.5. Total overhead. A batch of B ≥ 2 iterations involves the following multiplications and
conversions:

• Inversion (see Figure 5.3): 8 multiplications P × P → N and 15 conversions N → P .
• Batching (see Figure 5.2 for B = 4): 1 multiplication P×P → N and 3B−4 multiplications
P × P → P . Note that all B inversions together involve 8 + 1 + (3B − 4) = 3B + 5
multiplications; i.e., 3 + (5/B) multiplications per inversion, as mentioned earlier.
• Iteration (B copies of Figure 5.1): 4B conversions N → P and 2B multiplications P×P →
N .

In total there are

• 2B + 9 multiplications P × P → N , each having overhead 909;
• 3B − 4 multiplications P × P → P , each having overhead 912; and
• 4B + 15 conversions N → P , each having overhead 325.

The total overhead is 5854B+9408, i.e., 5854+9408/B per iteration. To put this in perspective,
the fastest known method for size-131 polynomial multiplication (see [Ber09a]) costs 11961
bit operations, and all of the other operations in the iteration cost 3929 bit operations.

For comparison, Shokrollahi’s original approach would have used 5B + 5 multiplications
N×N → N , each costing M(132)+1559. (Shokrollahi’s analysis actually says M(132)+3462;
M(132) + 1559 is the result of our own analysis of Shokrollahi’s algorithm, and has been
computer-verified.) The fastest known methods for size-132 multiplication involve 154 bit
operations more than the fastest known methods for size-131 multiplication; if these methods
are used then each N × N → N multiplication has overhead 154 + 1559 = 1713, for a total
overhead of 8565B + 8565, i.e., 8565 per iteration.

5.6. Comparison to other normal-basis approaches. Almost all normal-basis papers
before [Sho07] used more than 2n2 bit operations for each multiplication. Known bounds on

Type-II Optimal Polynomial Bases 15

N(x)

��
P (x2)

&&NNNNNNNNNNNNNNNNNN

''

N(x2)

��

convertoo

N(x4)
convert // P (x4)

sshhhhhhhhhhhhhhhhh

P (x6)

&&NNNNNNNNNNNNNNNNNN
N(x6)

��

convertoo

N(x24)
convert // P (x24)

sshhhhhhhhhhhhhhhh

P (x30)

&&NNNNNNNNNNNNNNNNNN
N(x30)

��

convertoo

N(x480)
convert // P (x480)

sshhhhhhhhhhhhhhh

P (x29−2)

&&NNNNNNNNNNNNNNNNN
N(x29−2)

��

convertoo

N(x217−29
)

convert // P (x217−29
)

sshhhhhhhhhhhhh

P (x217−2)

&&NNNNNNNNNNNNNNNNN
N(x217−2)

��

convertoo

N(x233−217
)

convert // P (x233−217
)

sshhhhhhhhhhhh

P (x233−2)

&&NNNNNNNNNNNNNNNNN
N(x233−2)

��

convertoo

N(x265−233
)

convert // P (x265−233
)

sshhhhhhhhhhhh

N(x265−2)

��
N(x266−4)

convert // P (x266−4)

sshhhhhhhhhhhhh

P (x266−2)

&&NNNNNNNNNNNNNNNNN
N(x266−2)

��

convertoo

N(x2131−266
)

convert // P (x2131−266
)

sshhhhhhhhhh

P (x2131−2) = P (x−1)

Fig. 5.3. Core inversion inside the ECC2K-130 iteration function.

16 Daniel J. Bernstein and Tanja Lange

M(131) imply that 2 · 1312 > M(131) + 20000, so these methods would incur an overhead of
more than 100000 bit operations per iteration.

There are two previous methods that are asymptotically better than 2n2 bit operations.
One method by Gao et al. uses two size-n polynomial multiplications and is obviously super-
seded by Shokrollahi’s approach. The other method uses roughly 13n1.6 bit operations and is
also not as fast as Shokrollahi’s approach. See [vzGSS07] and [Sho07] for further discussion
of both of these methods.

5.7. Comparison to traditional low-weight polynomial bases. The current ECC2K-130
attack software uses our techniques. The original ECC2K-130 attack software instead used a
low-weight polynomial basis, specifically the basis 1, z, z2, . . . , z130 of F2131 = F2[z]/(z131 +
z13 + z2 + z + 1). There is no trinomial basis for this field.

The obvious approach to multiplication in this polynomial basis has overhead 4·130 = 520:
for example, one eliminates the coefficient of z260 by adding it to 4 previous coefficients.
However, a closer look shows that 65 of these 520 additions can be reused, thanks to the even
spacing of z2, z, 1, reducing the multiplication overhead to 455.

Similarly, a single squaring costs just 203. The problem is that there are 21 squarings in
Figure 5.1: 10 for x2j

via r2, s4, t16; another 10 for y2j
; and another 1 for λ2. Even worse, one

still needs to convert x to N(x) as a stepping-stone to weight(N(x)).
The total overhead for 5 multiplications and 21 squarings is 5 · 455 + 21 · 203 = 6538 per

iteration. The basis conversion from x to N(x) can be performed in 3380 bit operations as
explained in [Ber09b]. We have seen some ideas for slightly reducing these costs, but nothing
that could make this low-weight polynomial basis competitive with the approach explained
in this paper.

References

[BBB+09] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos, Hsieh-Chung
Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo de Meulenaer, Luis Julian Dominguez
Perez, Junfeng Fan, Tim Güneysu, Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange, Nele
Mentens, Ruben Niederhagen, Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel,
Anthony Van Herrewege, and Bo-Yin Yang. Breaking ECC2K-130. Cryptology ePrint Archive,
Report 2009/541, 2009. http://eprint.iacr.org/2009/541.

[Ber09a] Daniel J. Bernstein. Batch binary Edwards. In Shai Halevi, editor, CRYPTO, volume 5677 of
Lecture Notes in Computer Science, pages 317–336. Springer, 2009. http://cr.yp.to/papers.

html#bbe.
[Ber09b] Daniel J. Bernstein. Optimizing linear maps modulo 2, 2009. http://cr.yp.to/papers.html#

linearmod2.
[Bra39] Alfred T. Brauer. On addition chains. Bull. Amer. Math. Soc., 45:736–739, 1939.
[Cer97] Certicom. Certicom ECC Challenge. http://www.certicom.com/images/pdfs/cert_ecc_

challenge.pdf, 1997.
[Cli05] Neil Clift. Hansen chains do not always produce optimum addition chains. Posting to sci.math on

31 Jul 2005, http://sci.tech-archive.net/Archive/sci.math/2005-08/msg00447.html, 2005.
[Han59] Walter Hansen. Zum Scholz–Brauerschen Problem. Journal für die reine und angewandte Mathe-

matik (Crelles Journal), 202:129–136, 1959. In German.
[IT88] Toshiya Itoh and Shigeo Tsujii. A Fast Algorithm for Computing Multiplicative Inverses inGF (2m)

Using Normal Bases. Inf. Comput., 78(3):171–177, 1988.
[IT89] Toshiya Itoh and Shigeo Tsujii. Structure of parallel multipliers for a class of fields GF (2m).

Information and Computation, 83(1):21–40, 1989.
[Knu97a] Donald E. Knuth. The art of computer programming. Vol. 1, Fundamental algorithms. Addison-

Wesley Publishing Company, Reading, MA, third edition, 1997. Addison-Wesley Series in Com-
puter Science and Information Processing.

Type-II Optimal Polynomial Bases 17

[Knu97b] Donald E. Knuth. The art of computer programming. Vol. 2, Seminumerical algorithms. Addison-
Wesley Publishing Company, Reading, MA, third edition, 1997. Addison-Wesley Series in Com-
puter Science and Information Processing.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathe-
matics of Computation, 48:243–264, 1987.

[MOVW89] Ronald C. Mullin, I. M. Onyszchuk, Scott A. Vanstone, and R. M. Wilson. Optimal normal bases
in GF (pn). Discrete Applied Mathematics, 22(2):149–161, 1989.

[Nöc01] Michael Nöcker. Data structures for parallel exponentiation in finite fields. PhD thesis, Universität
Paderborn, 2001. http://math-www.uni-paderborn.de/~aggathen/Publications/noc01.ps.

[Sho07] Jamshid Shokrollahi. Efficient implementation of elliptic curve cryptography on FPGAs. PhD the-
sis, Universität Bonn, 2007. http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2007/

shokrollahi_jamshid/0960.pdf.
[vzGN99] Joachim von zur Gathen and Michael Nöcker. Computing special powers in finite fields (extended

abstract). In ISSAC, pages 83–90, 1999.
[vzGSS07] Joachim von zur Gathen, Amin Shokrollahi, and Jamshid Shokrollahi. Efficient multiplication

using type 2 optimal normal bases. In Claude Carlet and Berk Sunar, editors, WAIFI, volume
4547 of Lecture Notes in Computer Science, pages 55–68. Springer, 2007.

