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Abstract. We propose a variant of Peikert’s lattice-based existentially
unforgeable signature scheme in the standard model. Our construction
offers the same efficiency as Peikert’s but supports the stronger notion of
strong unforgeability. Strong unforgeability demands that the adversary
is unable to produce a new message-signature pair (m, s), even if he or
she is allowed to see a different signature s′ for m.
In particular, we provide the first treeless signature scheme that supports
strong unforgeability for the post-quantum era in the standard model.
Moreover, we show how to directly implement identity-based, and even
hierarchical identity-based, signatures (IBS) in the same strong security
model without random oracles. An additional advantage of this direct
approach over the usual generic conversion of hierarchical identity-based
encryption to IBS is that we can exploit the efficiency of ideal lattices
without significantly harming security.
We equip all constructions with strong security proofs based on mild
worst-case assumptions on lattices and we also propose concrete security
parameters.
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1 Introduction

Digital signature schemes are the cornerstone of e-business, e-government, soft-
ware security, and many more applications. Their importance is likely to grow
in the future as more and more everyday tasks and processes are computerized.
With identity-based signature schemes (IBS), motivated by Shamir [31], one can
get rid of public-key infrastructures. The public key is replaced with a unique
identifier string, such as an e-mail address, and the secret key is “extracted”
by a trusted party for this identifier. In hierarchical identity-based signatures
(HIBS), this concept is generalized so that each party can act as a key extrac-
tion authority for its subordinates.

There are two classes of signature schemes. The first comprises tree-based and
stateful Merkle signature schemes [26] with a limited signature capacity. Such
schemes can be solely based on the security of hash functions. The drawback is
that they require an inefficient key generation phase, where all signatures need
to be prepared in advance. Furthermore, its statefulness poses a synchronization
problem as soon as more than one computer, or process thread, is supposed to
issue signatures with the same secret key.

The second class contains treeless constructions that are typically more effi-
cient and allow for an unlimited number of signatures without a complex setup
phase. Currently, we mainly use schemes that fall into the second category be-
cause they are easier to handle. Most of them rely on the hardness of factoring or
computing discrete logarithms. So, they are neither post-quantum, nor do they
resist subexponential time attacks.

Alternatives for the post-quantum era can be based on the hardness of the
decoding problem in error correcting codes, on the hardness of solving non-
linear multivariate equation systems, or on the hardness of lattice problems.
Refer to [7] for an overview of each field. Basically, all three alternatives rely
on the hardness of certain average-case problems and, at first, it is unclear how
to generate hard instances of these problems. More precisely, we always need to
know a “hard” distribution of keys that admits efficient key generation. Unlike
with multivariate or code-based cryptography, lattice-based constructions have
a “trust anchor” in the form of Ajtai’s worst-case to average-case reduction [2]
that is not found anywhere else in cryptography. It states that solving a certain
average-case problem, which is relevant in cryptography, implies a solution to
a related worst-case problem. Although this may sound purely theoretical, it is
of great practical value as keys that are chosen uniformly at random already
provide worst-case security guarantees. The hardness of this underlying worst-
case problem is also plausible as the best known algorithm to solve the relevant
lattice problems requires exponential time [3].

Another advantage of lattice-based cryptography over the alternatives is that
there is a whole range of provably secure signature schemes. In the random oracle
model there are schemes due to Gentry, Peikert, and Vaikuntanathan [16]; Stehlé,
Steinfeld, Tanaka, and Xagawa [32]; and Lyubashevsky [24]. As for the standard
model, there are the works of Lyubashevsky and Micciancio [25] (tree-based);
Peikert [29]; and Cash, Hofheinz, and Kiltz [12].



However, there is a gap in this range because none of the above schemes
is stateless, provably secure in the standard model, and strongly unforgeable.
Strong unforgeability under chosen message attacks (SU-CMA) is stronger than
existential unforgeability (EU-CMA) in the sense that the adversary is not ar-
tificially restricted by the security model. In EU-CMA, the adversary is forced
to output a signature for a fresh message m∗ after seeing signature for messages
mi 6= m∗of his or her choice. The SU-CMA adversary is also allowed to output
a fresh signature for one of the mi.

Strong unforgeability is interesting in both, theory and practice. Consider
generic tranformations from CPA to CCA2 security in the standard model, e.g.,
Dolev, Dwork, and Naor [13] or Boneh, Canetti, Halevi, and Katz [9]. They
typically involve a strongly unforgeable signature scheme to make the ciphertext
authentic and non-malleable. An EU-CMA signature of the CPA ciphertext may
already provide some security against CCA1 adversaries but a CCA2 attack
would certainly still succeed. Another reason is the construction of ID-based
blind signatures due to Galindo, Herranz, and Kiltz [14].

As a practical example, consider an access control protocol where you may
delegate certain rights to another party by signing a description for these rights
with a signature s. You want to be able to revoke them at any time in the future
via an online revocation system. The rights are revoked as soon as the online
system has s in its database. If the signature scheme is only EU-CMA secure,
the delegee can construct another signature s∗ for the same set of rights and
present this token instead of s — the revocation mechanism breaks down.

Notice that there are generic transformations from EU-CMA to SU-CMA.
They typically only apply to a certain small subclass of signature schemes, e.g.,
Boneh-Shen-Waters [10]. Recently, Bellare and Shoup [6] proposed an unre-
stricted transformation. However, all lose efficiency compared to the underlying
EU-CMA scheme because they require multiple signing steps.

Our Contribution. Table 1 compares our result with the current state-of-the-
art for lattice signatures, including the typical improvements with ideal lattices
[30,27]. All previously known SU-CMA schemes are either stateful, causing, e.g.,
synchronization problems, or they require random oracles. Using random oracles
is discouraged by the works of Canetti, Goldreich, and Halevi [11], as well as by
the more practical work of Leurent and Nguyen [22]. The only known scheme
that directly provides SU-CMA security in the standard model is stateful and has
a large secret key.1 Our construction in Section 4.1 offers the same complexity as
Peikert’s scheme. In our case, signing involves a simple additional linear algebra
step that can be pre-computed. Thus, we achieve a stronger security notion
without additional cost.

The situation is quite similar for HIBS. With the exception of Libert and
Quisquater [23], previous results deal only with existentially unforgeable HIBS.
They typically provide hierarchical identity-based encryption (HIBE) and then

1 Trade-offs are possible but the key generation complexity is nO(1) for a large poly-
nomial in any case.



Scheme Stateless Standard model SU-CMA Public key Secret Key Signature

[16] with [32] Yes No Yes eO(n) eO(n2) eO(n)

[24] Yes No Yes eO(n) O(n) eO(n)

[29], [12] Yes Yes No eO(n) eO(n2) eO(n)

[25] with [26] No Yes Yes O(n) nO(1) eO(n)

Section 4.1 Yes Yes Yes eO(n) eO(n2) eO(n)

Table 1. Comparison of the properties of current lattice-based signature schemes.

apply a generic conversion, e.g., [19], to obtain an HIBS. Both, HIBE and HIBS,
can be classified as selective-ID or adaptive-ID secure. Selective-ID security forces
the adversary to name its target identity before seeing the public key. In the
adaptive case, it may output a forgery for any identity. So far, lattice-based IBE
schemes either support a hierarchy [12,29,1] or they support adaptive-ID security
[16] in the random oracle model. Moreover, in contrast to our constructions, none
of them gives rise to an HIBS that is provably secure against subexponential
attacks when using efficient ideal lattices.

Hence, in addition to the first stateless standard-model SU-CMA signature
scheme from lattices in Section 4.1, we provide the first lattice-based construc-
tions for adaptive-ID secure and strongly unforgeably HIBS in the random oracle
model in Section 3.2 and for strongly unforgeable HIBS in the standard model
in Section 4.2. Our constructions in Section 4 rely on Chameleon hash functions
[21]. The security proofs involve a generic transformation to SU-CMA from a
slightly weaker notion, which was not explicitly known before (cf. Section 2).

2 Preliminaries

The security parameter is n. The statement x $← X means x is chosen uniformly
at random from X. With x ∼ ∆(X), we denote that x is chosen according to a
distribution ∆ over X. The concatenation of strings, vectors, and matrix columns
is done via ◦. Furthermore, x @ y means x is a prefix of y and ∅ is the empty
string. Lower-case boldface identifies vectors and upper-case boldface denotes
a matrix. For a given matrix X ∈ Rm×m, we write X̃ for its Gram-Schmidt
orthogonalization.

2.1 Security Models

Throughout the paper we stick to the following notation. The length of identities
is κ, the message length is λ, and ` is the hierarchy depth, meaning that there are
`+1 levels in the hierarchy tree. With {xi}m1 we denote the set {x1, . . . , xm}. The
subsequent paragraphs deal with the specification of strongly unforgeable sig-
nature schemes DSig = (Kg,Sign,Vf) and hierarchical identity-based signature
schemes HIBS = (Kg,Extract,Sign,Vf).



Signature Schemes. We follow the standard specification for digital signature
schemes: Kg(1n) outputs a private signing key sk and a public verification key
pk; Sign(sk,m) outputs a signature s under sk for the message m; Vf(pk, s,m)
outputs 1 iff s is a valid signature on m under pk.

Most schemes are proven to be existentially unforgeable under chosen mes-
sage attacks (EU-CMA), but we will consider the stronger notion of strongly
unforgeability under chosen message attacks (SU-CMA) as described in the fol-
lowing experiment, where H is a family of random oracles.

Experiment ExpSU-CMA
A,DSig (n)

H← H(1n); (sk, pk)← Kg(1n)
(m∗, s∗)← ASign(sk,·),H(·)(pk)
Let (mi, si) be the answer returned by Sign(sk, ·) on input mi, for i = 1, . . . , k.
Return 1 iff Vf(pk,m∗, s∗) = 1 and (m∗, s∗) 6∈ {(m1, s1), . . . , (mk, sk)}.

DSig is (t, qS, qH, ε)-strongly unforgeable if there is no t-time adversary that suc-
ceeds with probability ≥ ε after making ≤ qS signature oracle queries and ≤ qH
random oracle queries. In the standard model, we leave out H and qH.

The difference to the EU-CMA model is that the adversary in the SU-CMA
model even wins if it outputs a new signature for a message that it already
knows a signature for. In the EU-CMA model, the adversary is forced to output
a forgery for a “fresh” message. Instead of directly providing SU-CMA security in
our main constructions in Section 4, we use the weaker notion of strong unforge-
ability against static message attacks. Here, the adversary submits all messages
m1, . . . ,mqS

before seeing the public key and the corresponding signatures. Then,
we use a generic transformation to achieve full security (see below).

HIBS Schemes. The specification for HIBS schemes is a straightforward general-
ization of that for digital signature schemes. The main difference is that there are
no per-signer verification keys but rather a shared verification key for the entire
system. Moreover, the signer’s public key is easily computable from a unique
user identification string ID over a binary alphabet. The corresponding secret
signing key is “extracted” by a trusted authority using a master secret key. The
hierarchy is modeled by letting identities be a concatenation of per-level identi-
fiers with decreasing rank, i.e., ID = ID0 ◦ ID1 ◦ ID2 describes an identity on level
2 with parent identity ID0 ◦ ID1, whose parent identity is the master identity ID0.

More formally: Kg(1n) outputs a master private key msk and a master public
key mpk. The master identity is the empty string ∅; Extract(skID? , ID) outputs a
secret signing key sk for ID if ID? @ ID, otherwise ⊥; Sign(skID, ID,m) outputs a
signature s under skID for m; Vf(mpk, ID, s,m) outputs 1 iff s is a valid signature
on m for the given identity and master public key.

The security models for HIBS and ordinary signatures are tightly related with
the exception that one has to deal with the additional key extraction mechanism.
We consider two variants, selective-ID security (similar to selective-secure HIBE
[8]) and the stronger notion of adaptive-ID security. In both models, the adver-
sary can query a key extraction oracle E, a signature oracle, and an optional



random oracle. The experiment ExpSU-CMA-SelectiveID
A,HIBS describes selective-ID secu-

rity, where the adversary has to fix an identity ID∗ before seeing the master
public key. He is then forced to output a forgery for ID∗. The adversary gets
secret keys for all identities that are not a prefix of ID∗. Furthermore, it can
query a signature oracle S(ID,m) with arbitrary identities and messages.

Experiment ExpSU-CMA-SelectiveID
A,HIBS (n)

H← H(1n); (ID∗, state)← A(1n); (msk,mpk)← Kg(1n)
(m∗, s∗)← AE(msk,·)\{·@ID∗},S(·,·),H(·)(mpk, state)
Let {(IDi,mi, si)}k1 be the query-answer tuples for S.
Return 1 iff Vf(mpk, ID∗, s∗,m∗) = 1 and (ID∗,m∗, s∗) 6∈ {(IDi,mi, si)}k1 .

In the stronger model of adaptive-ID security, the adversary can output a forgery
for any identity, for which he has never queried a prefix to the extraction oracle
before.

Experiment ExpSU-CMA-AdaptiveID
A,HIBS (n)

H← H(1n); (msk,mpk)← Kg(1n)
(ID∗,m∗, s∗)← AE(msk,·),S(·,·),H(·)(mpk)
Let {(IDi,mi, si)}k1 be the query-answer tuples of S;
Let {IDj}l1 be the query-answer pairs of E.
Return 1 iff Vf(mpk, ID∗, s∗,m∗) = 1

and (ID∗,m∗, s∗) 6∈ {(IDi,mi, si)}k1
and {IDj}l1 3 IDj 6@ ID∗.

HIBS is (t, qE, qS, qH, ε)-strongly unforgeable under chosen message and selective
(adaptive) identity attacks if there is no t-time adversary that succeeds with
probability ≥ ε after making ≤ qE extraction queries, ≤ qS signature oracle
queries, and ≤ qH random oracle queries in the respective experiment. Again, we
leave out H and qH in the standard model.

In Section 4, we will provide instantiations secure against static message at-
tacks (SMA) and then use the following transformation to achieve CMA security.

From SMA to CMA. Krawczyk and Rabin [21] proposed Chameleon hashes to
be hash functions with a trapdoor and the following properties. 1) The function
C : D × E → R is chosen from a family C of Chameleon hashes along with
a secret trapdoor t. 2) In order to sample from the distribution (d, e,C(d)) ∈
D×E×R, we can do one of two things. Either we run C on the given document
d and a randomness e ∼ ∆(E) (efficiently sampleable), or we apply an inversion
algorithm e← C−1

t (r, d) on a given image r ∈ R and a target document d ∈ D.
Thus, we obtain a randomness e such that C(d) = (e, r). It is important that
the resulting distributions are within negligible statistical distance. Note that
whenever we need the Chameleon hash to map to a certain range 6= R, we
can compose it with an arbitrary collision resistant hash function. As for their
realization, Krawczyk and Rabin claim in [20] that Chameleon hash functions
exist if there are claw-free trapdoor permutations. Interestingly, they can be



easily implemented with the lattice-based trapdoor function in [16] as observed
in [29].

A helpful fact about Chameleon hash functions is that if they exist, then
there is a generic transformation from EU-SMA to EU-CMA signatures. This
was known since [21] and it is proven in [18]. We show that the transformation
also works for SU -SMA to SU -CMA in Appendix A. Observe that it is also
applicable to selective-ID secure HIBS schemes as it only affects the way the
signature oracle is simulated for the challenge identity.

Lemma 1. SU-SMA implies SU-CMA if Chameleon hash functions exist.

2.2 Lattices

In this work, we deal only with full-rank q-ary lattices, i.e., lattices that represent
the kernel of the linear map x 7→ Ax mod q for a prime modulus q and a matrix
A ∈ Zn×mq . These lattices are denoted with Λ⊥q (A) := {v ∈ Zm : Av ≡ 0
(mod q)}. As with all lattices of dimension m ≥ 2, they have infinitely many
bases. A basis of Λ⊥q (A) is a matrix B ∈ Zm×m, such that Λ(B) := {Bx :
x ∈ Zm} is equal to Λ⊥q (A). The quantity det(Λ) = |det(B)| (for any basis)
is a lattice constant. The main computational problem in q-ary lattices is the
“short integer solution” problem SIS. It is parameterized with positive integers
n,m = poly(n), q = poly(n), and a real norm bound ν and it is formulated as
an average-case problem: Given a uniformly random A ∈ Zn×mq , find a non-zero
v ∈ Λ⊥q (A) with ‖v‖2 ≤ ν. Ajtai showed in [2] that this problem is at least as
hard as finding short vectors in all lattices of dimension n, i.e., solving a related
worst-case problem. A recent improvement to this reduction can be formulated
as follows.

Theorem 1 (Worst-case to Average-case Reduction [16] (informal)).
If there is a polynomial time algorithm that breaks SIS(n,m, q, ν) for q ≥ ν
ω(
√
n log(n)), ν = poly(n) with non-negligible probability, then there is a poly-

nomial time algorithm that finds short non-zero vectors, which are only a γ ≥
νÕ(
√
n) factor longer than the shortest vector, in all lattices of dimension n.

In cryptography, we typically hand over A, or a “bad” basis with long vectors,
as the public key and keep a “good” (short) basis as our secret. The length of a
basis is ‖B‖ := maxi=1,...,m ‖bi‖2. This principle goes back to Ajtai. The most
recent improvement for generating such a matrix A together with a particularly
short trapdoor T for SIS is due to Alwen and Peikert [5].

2.3 Bonsai Trees

Peikert introduced the notion of “bonsai trees” on lattices in [29] in analogy to
arboriculture. An arborist always starts with a certain amount of undirected,
i.e., random, natural growth that he cannot control. Then, he applies his tools



and starts cultivating individual branches to achieve the desired looks via di-
rected growth. The arborist is successful if the resulting tree still looks suf-
ficiently natural to the observer. Once cultivated, a branch can easily be ex-
tended to form more directed growth without too much additional care. Instead
of extending directed growth, the arborist can also generate a randomized off-
strings, which can be given to another arborist that can easily cultivate them
by extending growth. The offsprings hide the first arborist’s work and the em-
ployed techniques. We formalize these concepts in the context of lattices. A
(binary) bonsai tree is generated out of a root A? and branches A(b)

i ∈ Zn×miq ,
b ∈ {0, 1}, i ≤ k ≤ poly(n), that are statistically close to uniform. The entire
tree is the set {A? ◦A(x1)

1 ◦ · · · ◦A(xk)
k : x ∈ {0, 1}≤k}.

Proposition 1 (Directed Growth). Let δ > 0 be any fixed real constant and
let q ≥ 3 be odd. There is a polynomial time algorithm ExtLattice(A1,m2) that,
given uniformly random A ∈ Zn×m1

q for any m1 ≥ (1 + δ)n log2(q) and poly(n)-
bounded m2 ≥ (4 + 2δ)n log2(q), outputs (A2 ∈ Zn×m2

q ,S ∈ Zm×m), where
m = m1 + m2, such that A = A1 ◦ A2 is within negligible statistical distance
of uniform; S is a basis of Λ⊥q (A1 ◦ A2); ‖S‖ ≤ L = Cn log2(q) with over-

whelming probability; and
∥∥∥S̃∥∥∥ ≤ L̃ = 1 +C

√
(1 + δ)n log2(n) ≤ 1 +C

√
m1 with

overwhelming probability.

The proposition reflects the most recent result on lattice trapdoors from [4].
In our constructions, we will use C = 20, δ = 1 and assume that A2 is uni-
formly random instead of within negligible statistical distance of uniform. The
interpretation in terms of arboriculture is generating “directed growth” out of
“undirected growth” because one starts with some random growth A1 and culti-
vates a branch A1◦A2 along with a trapdoor T, which is the arborist’s journal or
a trace of his work. However, the observer cannot distinguish undirected growth
from directed growth.

An important observation is that knowing a trapdoor for A ∈ Zn×mq implies
knowing a trapdoor for all A′ ∈ Zn×m′q , m′ ≥ m, when A @ A′. This is because
one can apply the trapdoor in dimension m and then pad the resulting vector
with zeros to solve SIS in dimension m′.

Proposition 2 (Extending Control). There is polynomial time algorithm
ExtBasis(S1,A = A1 ◦ A2) that takes a basis S of Λ⊥q (A1) and a matrix A

with Zn×m1
q 3 A1 @ A ∈ Zn×(m1+m2)

q as input. If m1 ≥ 2n log2(q), it outputs a

basis S for Λ⊥q (A) with
∥∥∥S̃∥∥∥ =

∥∥∥S̃1

∥∥∥.

Whenever trapdoor delegation is required, one cannot simply use extending
control and hand over the resulting basis as it leaks information about the origi-
nal trapdoor. Here, we can use tree propagation to obtain a randomized offspring
with a new, random trapdoor.

Proposition 3 (Randomizing Control). On input a basis S of the lattice
Λ⊥q (A) of dimension m and a Gaussian parameter s ≥

∥∥∥S̃∥∥∥ω(
√

log(n)), the



polynomial time algorithm RandBasis(S, s) outputs a basis S′ of Λ⊥q (A) with∥∥∥S̃′∥∥∥ ≤ s
√
m. The basis is independent of S in the sense that for any two

bases S0,S1 of Λ⊥q (A) and s ≥ max{
∥∥∥S̃0

∥∥∥ ,∥∥∥S̃1

∥∥∥}ω(
√

log(n)), RandBasis(S0, s)
is within negligible statistical distance of RandBasis(S1, s).

Estimating Secure Parameters. We could use the worst-case to average-case
reduction for selecting secure parameters but that might be too conservative as
the reduction is quite loose with respect to the ratio m/n = O(log(n)). The
observations of Gama and Nguyen in [15] may be more realistic. They assume
that lattice reduction algorithms find short lattice vectors v in lattices Λ of
dimension d with ‖v‖2 ≤ δd det(Λ)1/d for some δ > 0. This value δ is supposed to
“summarize” the capability of the employed lattice reduction algorithm. Nguyen
and Gama analyze random lattices from a certain distribution and find that
reaching δ < 1.01 in high dimensions is hard.

Since the distribution of lattices in the SIS problem is different, their conjec-
ture is not directly applicable. Furthermore, Micciancio and Regev describe an
attack that works best in a sub-lattice of the usual q-ary lattice Λ⊥q (A). Assum-
ing an adversary with capability δ∗, they show that for given parameters n and
q, the best strategy of for the adversary is to attack a sub-lattice of dimension
d∗ =

√
n log(q)/ log(δ∗). In this dimension, the adversary finds vectors of Eu-

clidean length ν∗ = min{q, 22
√
n log(q) log(δ∗)} [28]. For our parameter choices, we

will always assume that the adversary is capable of reaching δ∗ = 1.01, but no
less. All schemes in Sections 3 and 4 are based on the hardness of SIS in q-ary
lattices of dimension m for a particular norm bound ν. Given this norm bound
and δ∗, we need to establish that ν∗ � ν, e.g., with a factor of 10 between both
sides. The implicit assumption is that lattice basis reduction algorithms behave
the same on random q-ary sub-lattices. Whether this heuristic is completely
sound, is still unknown.

3 Warm-up — Constructions with Random Oracles

In this section, we recall strongly unforgeable GPV signatures as introduced in
[16]. Then, we show how to use GPV together with the Bonsai-tree concept to
build strongly unforgeable hierarchical identity-based signatures in the random
oracle model. The proposed scheme is also secure under adaptive-identity queries.

3.1 Strongly Unforgeable Signatures

Lattice-based strongly unforgeable signatures were first proposed by Gentry,
Peikert, and Vaikuntanathan in [16]. They introduce a family of preimage sam-
pleable functions GPV = (TrapGen,Eval,SamplePre) on lattices. Its parameters
q,m, L̃, s = ω(

√
log(n))L̃ only depend on the security parameter n as in Propo-

sition 1. We define the sets Dd := {x ∈ Zm \ {0} : ‖x‖2 ≤ d} and R := Znq .



The algorithm TrapGen(1n) outputs a public description A ∈ Zn×mq to-

gether with a secret trapdoor T ∈ Zm×m,
∥∥∥T̃∥∥∥ ≤ L̃. Evaluation of the function

fA : Zmq → R is performed by Eval(A,x) = Ax mod q. Finally, the inversion
algorithm SamplePre(T, s,y) samples from the set of preimages {x ∈ Ds

√
m :

fA(x) = y}. Preimages have a conditional min-entropy of ω(log(n)) and follow
a certain Gaussian distribution that can be efficiently sampled with SampleDom,
even without the trapdoor. By construction, the function compresses the input
and therefore admits collisions. Finding collisions in Dd, however, is at least as
hard as solving SIS(n, q,m, 2d).

Now, we can define DSigGPV accordingly. Let H be a family of random oracles
H : {0, 1}∗ → R = Znq . The key generator simply forwards the output of TrapGen.

Signing a message m involves choosing r $← {0, 1}n, computing y← H(m, r), and
calling s← SamplePre(T, s,y). A signature (s, r) for m verifies if s ∈ Ds

√
m and

fA(s) = H(m, r).

Security. Notice that the signature oracle can be efficiently simulated without
the trapdoor by standard random oracle techniques. A forgery (m∗, s∗, r∗) in
the SU-CMA experiment implies a collision (s∗, si) with fA(si) = fA(s∗) =
H(m∗, r∗), where si was chosen during the random oracle simulation. By the
conditional min-entropy, we know that si 6= s∗ with probability 1 − n−ω(1).
Let TTrapGen(n), TSampleDom(n), and TEval(n) be the cost functions for trapdoor
generation, sampling, and trapdoor evaluation. In addition, let TList(n) be the
cost function for list processing in the simulation of the random oracle.

Theorem 2 (Strong Unforgeability [16]). For the above choice of parame-
ters, DSigGPV is (t, qS, qH, ε)-strongly unforgeable in the random oracle model if
SIS(n,m, q, 2s

√
m) is (t + qSTList + qH(TSampleDom(n) + TEval(n) + TList(n)), (ε −

q2S/2
n)(1− n−ω(1)))-hard.

Via Theorem 1, a corollary states that a successful attacker can find the shortest
vector in all lattices of dimension n up to an approximation factor γ ≥ L̃Õ(n) =
Õ(n
√
n).

Secure Parameters. We estimate secure paramters for DSigGPV as described in
Section 2. For a given security parameter n, we choose the remaining parameters
according to Proposition 1 and a prime q ≈ n4.5. For n ≥ 197, we obtain the
required hardness of the underlying SIS problem.

3.2 Strongly Unforgeable Hierarchical ID-based Signatures

Using the signature scheme from the previous section, we can can directly apply
the Bonsai-tree concept to obtain a hierarchical identity-based signature scheme
HIBSGPV in the random oracle model. The idea is that, based on a given ID, the
secret key extraction algorithm Extract first uses ExtBasis to extend the matrix
A? to AID and the secret master key T? to TID such that AIDTID ≡ 0. Then,



in order to protect the master key, it uses RandBasis and outputs a randomized
trapdoor SID. The individual signers use DSigGPV and we have an identity-based
signature scheme that is strongly unforgeable. This concept can be transfered to
the hierarchical setting, where every signer may act as a key extraction entity.
Note that the number of levels in the hierarchy affects the tightness of the
security proof as these randomized trapdoors are slightly worse than the master
trapdoor.

We assume that all identities on all levels have length κ. The maximum num-
ber of levels, including the master-key, is `+1. We denote the basis length on level
k with L̃k and the corresponding Gaussian parameter with sk = ω(

√
log(n))L̃k.

Master-key Generation. Let q, L̃,m1,m2 be chosen according to Proposition
1 and let d = L̃ω(

√
log(n))`+1

√
m1 + (`κ+ 1)m2

`+1
. These parameters may

be excluded from the public key as they are the same for all users. Generate
a description A? ∈ Zn×m1+m2

q of the master lattice Λ⊥q (A?) together with

a trapdoor S? such that
∥∥∥S̃∥∥∥ ≤ L̃ with ExtLattice. Then, choose random

matrices 〈A〉 :=
{

(A(0)
i ,A(1)

i )
}`κ

1
from Zn×m2

q . The secret is S? and the

public key is (A?, 〈A〉).
Key Extraction. On input S?ID? , ID with ID = ID? ◦ ID′, |ID| = l ≤ `κ, ID′ =

ID′1, . . . , ID
′
κ ∈ {0, 1}κ recursively define the matrix AID := AID?◦A

(ID′1)
l+1 ◦· · ·◦

A(ID′κ)
l+κ with A∅ := A?, and call TID ← ExtBasis(S?ID? ,AID). Then, let s =∥∥∥T̃ID

∥∥∥ω(
√

log(n)) and output the randomized basis SID ← RandBasis(SID, s)

with
∥∥∥S̃ID

∥∥∥ ≤ s√dim(SID). For inappropriate inputs, return ⊥.
Signing. On input a message m ∈ {0, 1}∗ and the trapdoor SID, the signer with

identity ID on level k chooses r $← {0, 1}n and computes s← SamplePre(SID,
sk,H(m, r, ID)). It outputs (s, r).

Verification. On input (A?, 〈A〉), an identity ID, a signature (s, r), and a
message m, the algorithm outputs 1 if and only if s ∈ Dd and fAID

(s) =
H(m, r, ID).

Recall that SamplePre outputs a vector of length at most s
√
m with s = ω(

√
log(n))

L̃ when called with a trapdoor of length at most L̃ in dimension m. The maxi-
mum dimension in the scheme is m1 +(`κ+1)m2 on level `. The maximum basis
length on level i is L̃i = si−1

√
m1 + (`κ+ 1)m2 with L̃0 := L̃. The Gaussian pa-

rameter for presampling on level i is si = ω(
√

log(n))L̃i with s0 = s. This recur-

rence yields L̃` = L̃ω(
√

log(n))`
√
m1 + (`κ+ 1)m2

`
. Signing with such a basis

yields signatures of Euclidean length at most ω(
√

log(n))L̃`
√
m1 + (`κ+ 1)m2 =

d. Thus, such signatures are accepted by the verifier. The security guarantees
scale with the depth of the hierarchy as the norm bound becomes looser for
increasing `.

Security. We prove that HIBSGPV is secure under selective identity attacks. The
second theorem shows that it is even secure under adaptive identity attacks,



but with a looser reduction. The latter reduction, however, is not as loose as
the generic method of guessing the right identity with probability 2−κ [8]. Let
Tfunc(x) be the cost function for function func and let TList(n) be the cost function
for list processing for simulating a random oracle.

Theorem 3 (Selective Security). HIBSGPV is (t, qS, qH, ε)-strongly unforge-
able under selective identity attacks in the random oracle model if SIS is (t +
2TExtLattice + qETExtract + (qH + qS)TH, (1 − n−ω(1))(ε − q2S/2

n))-hard with norm

bound ν = 2L̃ω(
√

log(n))`+1
√
m1 + (`κ+ 1)m2

`+1
.

Notice the the GPV signature scheme can be efficiently simulated by a standard
random oracle technique. Moreoever, the adversary will make ≤ qE extraction
queries that need to be answered. We prepare for this by “knowing” a trapdoor
for a prefix of all but the challenge identity. Upon an extraction query, this
trapdoor can be extended to a trapdoor for the requested identity. The external
challenge, the input A from the SIS problem, is embedded in the public key
of the challenge identity. Via random oracle techniques, the reduction knows a
valid signature for the output message of the adversary. However, the adversary
outputs a different signature with probability 1−n−ω(1) by the conditional min-
entropy of the set of possible signature. The full proof is in Appendix B.

Theorem 4 (Adaptive Security). HIBSGPV can be made (t, qS, qH, qG, ε)-strong-
ly unforgeable under adaptive identity attacks in the random oracle model if it
is (t, qS, qH, qG, ε/qG)-strongly unforgeable under selective identity attacks.

Here, we only give the idea of the conversion. We need to change the way the
identities are mapped to the branches of the Bonsai tree. Instead of directly using
the binary representation of ID or its hash value, we apply a random oracle G to
the individual substrings of length κ first. Thus, every ID is mapped to a random
position in the tree. Assume that the adversary makes qG queries to this random
oracle, we can prepare a randomly selected path in the tree with “undirected
growth” and program the random oracle to map one of the qG queries to this
path. Therefore, the success probability of the reduction degrades with a factor
1/qG instead of the generic 1/2κ.

The worst-case to average-case reduction guarantees security if finding short-
est vectors up to an approximation factor γ ≥ 2dÕ(

√
n) = Õ(

√
n
`+3) is hard in

the worst case in dimension n.

Secure Parameters. We assume identites of length κ = 40 bits, which should be
sufficient in practical scenarios. The parameter q is crucial as it greatly influences
the hardness of SIS and the worst-case to average-case reduction only holds for
large enough q. The scheme’s efficiency greatly depends on the number `+ 1 of
layers in the hierarchy. For larger `, we are forced to increase q. Possible secure
choices for (`, n, q) are (1, 467, n6), (2, 692, n8), (3, 1011, n9), or (4, 1258, n11).



4 Constructions without Random Oracles

In the following, we propose our main constructions. We start with a strongly un-
forgeable signature scheme and then propose a strongly unforgeable hierarchical
identity-based signature scheme that is secure under selective identity attacks.
Both constructions are secure in the standard model.

In the following, we let H : {0, 1}∗ → {0, 1}λ be a collision-resistant hash
function that maps into the message space. Finding collisions in polynomial
time is only possible with probability ≤ c.

4.1 Strongly Unforgeable Signatures

We propose a variant of Peikert’s EU-CMA signature scheme [29]. He first creates
an EU-SMA secure signature scheme in the standard model and then applies a
generic conversion from EU-SMA to EU-CMA, using a Chameleon hash function.
We follow this line of thought and construct a signature scheme that is even
secure in the SU-CMA sense. We achieve this by computing the signatures in a
different way, compared to Peikert’s EU-SMA scheme. In Peikert’s scheme, there
is a matrix Am and a corresponding lattice Λ⊥q (Am) for which the signer can
derive a trapdoor. The matrix Am is formed as in Section 3.2. The signatures in
Peikert’s work are short lattice vectors in Λ⊥q (Am), i.e., short vectors s 6= 0 such
that Ams ≡ 0. In our scheme, we fix a random y ∈ Znq and let the signer solve
Ams ≡ y instead. The overhead is a simple linear algebra step (cf. [16]) that can
done once during key generation. Surprisingly, this slight change enables us to
prove strong unforgeability. It is important to note that, unlike Peikert, we need
to be able to answer all signature queries in the security proof, i.e., even for the
message m∗ that the adversary outputs a forgery for.

First of all, we demonstrate that the schemes in [29,12] are not strongly
unforgeable by showing an attack that only works in the SU-SMA model and
not in EU-SMA. The adversary in the SU-SMA experiment queries its signature
oracle with a random message m∗ and receives a signature s such that s ∈
D(s
√
m) and Ams ≡ 0. The adversary simply returns the valid forgery s∗ ← −s.

We specify DSigsu-sma, where one may interpret the randomness-message pair
as an identity.

Key Generation. Let q, L̃,m1,m2 be chosen according to Proposition 1 and
let s = L̃ω(

√
log(n)) and d = s

√
m1 + (λ+ 1)m2. These parameters may

be excluded from the public key as they are the same for all users. Use
ExtLattice to generate a description A? ∈ Zn×m1+m2

q of the master lattice

Λ⊥q (A?) together with a trapdoor S? such that
∥∥∥S̃∥∥∥ ≤ L̃. Furthermore,

generate a set 〈B〉 :=
{

(B(0)
i ,B(1)

i )
}λ

1
random matrices in Zn×m2

q . Finally,

choose y $← Znq and output the secret key S? and the public key (A?, 〈B〉,y).
Signing. On input a message m ∈ {0, 1}∗ and the secret trapdoor S?, the

signer with identity chooses r $← {0, 1}n and computes h ← H(m, r), s ←



SamplePre(Sh, s,y). The trapdoor Sh is formed via ExtBasis(S?,Ah), where
Ah := A? ◦B(h1)

1 ◦ · · · ◦B(hλ)
λ . It outputs (s, r).

Verification. On input (A?, 〈B〉,y), a signature (s, r), and a message m, the
algorithm outputs 1 if and only if s ∈ Dd and AH(m,r)(s) = y.

The scheme is complete because all signatures are generated using a basis of
length L̃ and with the Gaussian parameter s = ω(

√
log(n))L̃. The total dimen-

sion is m = m1 + (λ + 1)m2. Thus, SamplePre outputs signatures of length at
most s

√
m1 + (λ+ 1)m2 = d that are accepted by Vf. In order to get the full

(SU-CMA) scheme, we wrap the message with a Chameleon hash function.

Security. We prove that DSigsu-sma is SU-SMA secure and then apply the black-
box conversion in Lemma 1. Let Tfunc(n) be the cost function for the function
func and let TList(n) be the cost function for list processing, which is explained
in the analysis below.

Theorem 5 (Strong Unforgeability). DSigsu-sma is (t, ε) strongly unforge-
able under static message attacks (SU-SMA) if SIS with ν = 2L̃ω(

√
log(n))√

m1 + (λ+ 1)m2 is (t+ λqSTList + TExtLattice + qS(TSamplePre + TExtBasis), 1/2(1−
n−ω(1))(ε− q2S/2n − c)/(λqS))-hard.

The idea is to separate the adversaries into two classes. One works in the EU-
SMA sense and the other exploits the additional freedom of the SU-SMA setting.
The reduction guesses the type of adversary before handing over the public key.
If it expects an EU-SMA forger, the reduction knows x with A?x ≡ y and
forces the forger to solve an inhomogeneous SIS, for which the reduction does
not know the trapdoor. Together with x, it can solve the corresponding SIS with
overwhelming probability. For the SU-SMA forger, the reduction has to guess
the index i∗ of the signature query that will be recycled in the forgery with
probability 1/qS. There, it plants an x with AH(mi∗ ,ri∗ )x ≡ y. Again, with the
adversary’s help, the reduction solves SIS with overwhelming probability, while
being able to answer a single signature query for mi∗ with x. The key extraction
queries are answered as described in Section 3.2. The full proof is in Appendix
C.

Therefore, DSigsu-sma is secure if finding shortest vectors in dimension n,
within factors γ ≥ Õ(n

√
n), is hard in the worst case. Via Lemma 1, we imme-

diately get similar results for SU-CMA.

Secure Parameters. The underlying problem is SIS with ν = 2ω(
√

log(n))L̃√
m1 + (λ+ 1)m2. Let λ = 160 and consider log(n) = ω(

√
log(n)). As before,

q is chosen such that the worst-case to average-case reduction holds (q ≈ n5).
Now, for n ≥ 247, we obtain the required complexity of SIS.

4.2 Strongly Unforgeable Hierarchical ID-based Signatures

By adding more layers to the hierarchy in Section 4.1, we construct a hierarchical
identity-based signature scheme HIBSsu-sma that is strongly unforgeable. The



identities are handled as in Section 3.2 but then we use an additional Bonsai
tree to sign.

The length of each sub-identity on each level is κ, the number of levels is `,
and messages have λ bits. L̃k is the basis length on level k. The corresponding
Gaussian parameter is sk := ω(

√
log(n))L̃k.

Master-key Generation. Let q, L̃,m1,m2 be chosen according to Proposition
1 and let d = L̃ω(

√
log(n))`+1

√
m1 + (`κ+ λ+ 1)m2

`+1
. These parameters

may be excluded from the public key as they are the same for all users. Use
ExtLattice to generate a description A? ∈ Zn×m1+m2

q of the master lattice

Λ⊥q (A?) together with a trapdoor S? such that
∥∥∥T̃∥∥∥ ≤ L̃. Furthermore, gen-

erate the sets 〈A〉 :=
{

(A(0)
i ,A(1)

i )
}`κ

1
, 〈B〉 :=

{
(B(0)

i ,B(1)
i )
}λ

1
of random

matrices in Zn×m2
q . Finally, choose y $← Znq and output the secret key S?

and the public key (A?, 〈A〉, 〈B〉,y).
Key Extraction. On input S?ID? , ID with ID = ID? ◦ ID′, |ID| = l ≤ `κ, ID′ =

ID′1, . . . , ID
′
κ ∈ {0, 1}κ recursively define the matrix AID := AID?◦A

(ID′1)
l+1 ◦· · ·◦

A(ID′κ)
l+κ with A∅ := A?, and call TID ← ExtBasis(S?ID? ,AID). Then, let s =∥∥∥T̃∥∥∥ω(

√
log(n)) and output the randomized basis SID ← RandBasis(TID, s)

with
∥∥∥S̃ID

∥∥∥ ≤ s√dim(TID). For inappropriate inputs, return ⊥.
Signing. On input a message m ∈ {0, 1}∗ and a secret trapdoor SID, the signer

with identity ID on level k chooses r $← {0, 1}n and computes µ ← H(m, r).
Now µ is used to form AID◦µ := AID ◦B(µ1)

1 ◦ · · · ◦B(µλ)
λ . Then, the signer

extends its secret basis by calling SID◦µ ← ExtBasis(SID,AID◦µ). Finally, it
outputs s← SamplePre(SID◦µ, sk,y) and r.

Verification. On input (A?, 〈A〉, 〈B〉,y), a signature (s, r), and a message m,
the algorithm outputs 1 if and only if s ∈ Dd and AID◦H(m,r)(s) = y.

Notice that the scheme is complete by a similar argument as in Section 3.2. The
maximum trapdoor length (level `) is L̃` = L̃ω(

√
log(n))`

√
m1 + (`κ+ λ+ 1)m2

`
.

This basis is extended once before signing, which is length-preserving. Then, sign-
ing is done via SamplePre that outputs a vector of length at most ω(

√
log(n))

L̃`
√
m1 + (`κ+ λ+ 1)m2 ≤ d. Thus, the verification algorithm accepts.

Unforgeability. We prove that HIBSsu-sma is SU-SMA secure under a selective-
identity attack. Then, we can apply the transform in Lemma 1 to make it SU-
CMA secure. For the transformation to be identity-based as well, the Chameleon
hash function needs to be published as part of mpk.

Theorem 6 (Selective Security). HIBSsu-sma is (t, qS, ε) SU-SMA secure un-
der selective identity attacks if SIS is (t + 3TExtLattice + qETExtract + λqSTList +
qS(TSamplePre + TExtBasis), 1/2(1 − n−ω(1))(ε − q2S/2n − c)/(λqS))-hard with norm

bound ν = 2L̃ω(
√

log(n))`+1
√
m1 + (`κ+ λ+ 1)m2

`+1
.



Proof (Sketch). We assume that there is a successful adversary A against un-
forgeability of HIBSsu-sma and construct a reduction B that solves SIS. The setup
is as in Theorem 3 in order to be able to simulate the key extraction queries
for all identities that are not a prefix of the challenge identity I. However, the
input A of the reduction needs to be wider, namely in Zm1+(`κ+λ+1)m2

q in or-
der to simulate the static signature queries for identity I. Signature queries for
identities I ′ 6= I can be simulated with a known trapdoor. The overhead of the
reduction is 2TExtLattice + qETExtract for setting up and running the extraction ora-
cle. The overhead for signing is λqSTList +TExtLattice + qS(TSamplePre +TExtBasis). As
in Theorem 5, the reduction sets y such that it knows a preimage x either for
EU-SMA or for SU-SMA forgers. In both cases, the reduction solves SIS. The
probability that the adversary outputs a signature that yields a solution to SIS
is as in Theorem 5 because we use the same signature scheme here and we can
prepare for all extraction queries.

The full proof is a combination of the techniques that are used in Theorems
3 and 5. ut

In consequence, HIBSsu-sma is secure as long as finding shortest lattice vectors up
to approximation factors γ ≥ 2dÕ(

√
n) = Õ(n

√
n
`+3) is hard in the worst case

in dimension n.

Secure Parameters. We let κ = 40 and λ = 160 and estimate secure parame-
ters for ` = 1, 2, 3, 4, i.e., for 2, 3, 4, 5 levels. For (`, n, q), we obtain (1, 478, n7),
(2, 730, n9), (3, 1082, n10), or (4, 1362, n12).

5 Conclusions

We have shown three results. As a warm-up, we have constructed an adaptive-
ID secure, strongly unforgeable hierarchical identity-based signature scheme in
the random oracle model. Then, we have shown the first lattice-based strongly
unforgeable signature scheme without Merkle trees [26] in the standard model.
And, finally, we provide the first strongly unforgeable hierarchical identity-based
signatures scheme in the standard model from lattices. For each construction,
we have proposed a set of secure parameters based on today’s knowledge about
lattice reduction algorithms. Another benefit is that all of our constructions can
be transferred to ideal lattices that admit short keys and efficient operations.
Moreover, we can use mild, worst-case hardness assumptions in lattices as the
basis of security in all constructions.
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A Proof of Lemma 1

Proof. Let C be a Chameleon hash function family. Let DSigSU-SMA be an SU-
SMA secure signature scheme with DSigSU-SMA = (Kg,Sign,Vf). We define DSigSU-CMA

as follows.

Key Generation. Run (sk, pk)← DSigSU-SMA.Kg(1n) and (C, t)← C(1n). Out-
put the secret key (sk, t) and the public key (pk,C).



Signing. On input a secret key sk and a message m ∈ {0, 1}∗. Choose a random
r ← {0, 1}n Call m′ ← C(m, r) ∈ M and s ← DSigSU-SMA.Sign(sk,m′).
Output (s, r).

Verification. On input a verification key pk, a signature (s, r), and a message
m, compute m′ ← C(m, r) and output the result of DSigSU-SMA.Vf(pk, s,m′).

Observe that the modified scheme is complete.
Let TSign be the cost function for signing and TInv be the cost of calling

C−1. We prove that it is indeed (t, qS, ε)-secure (SU-CMA) if DSigsu-sma is (t +
qSTInv, qS, ε)-secure (SU-SMA) and C is (t+qSTSign, ε)-collision-resistant. Towards
contradiction, assume that there is an adversary A against SU-CMA security
of DSigsu-cma that runs in time t, makes qS signature queries, and has success
probability ε. Assume that the adversary queries the messages m1, . . . ,mqS

to its
signature oracle and receives (s1, r1), . . . , (sqS

, rqS
). Now, a successful adversary

can be classified into one of three types, depending on its output (m∗, s∗, r∗).

1. ∃iC(m∗, r∗) = C(mi, ri)
(a) r∗ 6= ri or m∗ 6= mi: we have a collision under C.
(b) r∗ = ri and m∗ = mi: we have s∗ 6= si, an SU-SMA forgery.

2. ∀iC(m∗, r∗) 6= C(mi, ri): we have an SU-SMA (even EU-SMA) forgery.

Type-1a adversaries find collisions under C, therefore the reduction has to play
against collision resistance of the family C. Type-1b adversaries find a forgery in
the strong sense, i.e., the reduction plays against SU-SMA security of DSigsu-sma.
Type-2 adversaries A always output an existential forgery that refutes SU-SMA,
and even EU-SMA, security of DSigsu-sma. Whenever we expect the adversary to
be of type 1a, we simulate the environment with the secret signing key. Other-
wise, we receive the public verification key from the SU-SMA experiment and
simulate the signature oracle with a trapdoor for the Chameleon has. However,
the adversary’s view in both reductions is indistinguishable. We describe both
reductions. W.l.o.g., we assume that the type is known in advance.

Type-1a. We describe a reduction that refutes collision resistance of the Chameleon
hash function family C. The reduction receives a random element of the family
C.

Setup. Receive C and run (sk, pk) ← DSigSU-SMA.Kg(1n). Then, execute A on
input (pk,C).

Signature Queries. On input m, choose a random r
$← {0, 1}n. Then, compute

c← C(m, r) and return the result of DSigSU-SMA.Sign(sk, c) and r.
Output. The adversaryA outputs (m∗, s∗, r∗). Output the collision (m, r), (m∗, r∗).

Analysis. Observe that the environment of A is perfectly simulated. By defini-
tion, a type-1a forger outputs a signature (s∗, r∗) and a message m∗ such that
C(m∗, r∗) = C(mi, ri) for some i but with m∗ 6= mi or r∗ 6= ri. Therefore, the
output is a valid collision under C and the reduction is successful whenever A.
The overhead of the reduction is dominated by qS calls of Sign.



Type-1b, Type-2. We describe a reduction that refutes SU-SMA security of
DSigSU-SMA The reduction has access to an external signature oracle during the
setup phase.

Setup. Choose qS message {mi}qS

1 and send them to the signature oracle. Re-
ceive {si}qS

1 and pk. Choose (C, t) ← C(1n) and execute A on input (pk,C).
Set up a counter ı← 0.

Signature Queries. On input m, increment ı and compute ri ← C−1(m,mi).
Return (ri, si).

Output. The adversaryA outputs (m∗, s∗, r∗). Output the forgery C(m∗, r∗), s∗).

Analysis. Observe that the environment of A is perfectly simulated. By defini-
tion, a type-1b forger outputs a signature (s∗, r∗) and a message m∗ such that
C(m∗, r∗) = C(mi, ri) for some i and m∗ = mi, r∗ = ri. Since it is a forgery, we
have that s∗ 6= si. Therefore, s∗ is a forgery for C(mi, ri) in the strong sense.
A type-2 forger outputs a pair (m∗, r∗) such that C(m∗, r∗) 6= C(mi, ri) for all
i = 1, . . . , qS. Thus, the reduction outputs a forgery in the existential sense. In
either case, the reduction is successful whenever A is. The overhead is dominated
by calling C−1. ut

B Proof of Theorem 3

Proof. We assume that there is a successful adversary A against unforgeability
of HIBSGPV and construct a reduction B that solves SIS.

Setup. On input A = A? ◦U1 ◦ · · · ◦U`κ ∈ Zm1+(`κ+1)
q , invoke the adversary

and receive the challenge identity I = I1 ◦ . . . ◦ Ik, lI ≤ `κ. Setup matrices
A(Ii)
i ← Ui for i = 1, . . . , lI and matrices A(1−Ii)

i ← ExtLattice(A? ◦A(I1)
1 ◦

· · · ◦A(Ii−1)
i−1 ,m2) for i = 1, . . . , lI . If lI < `κ, set A(0)

lI+1 ← ExtLattice(A? ◦
A(I1)

1 ◦ · · · ◦A(lI)
lI

,m2) and A(1)
lI+1 ← ExtLattice(A? ◦A(I1)

1 ◦ · · · ◦A(lI)
lI

,m2).

The remaining matrices A(0)
i ,A(1)

i , lI + 1 < i ≤ `κ are chosen uniformly at

random. The master public key is 〈A〉 :=
{

(A(0)
i ,A(1)

i )
}`κ

1
. Set up a list of

random oracle queries LH and run A on input 〈A〉.
Key Extraction Oracle Queries. On input ID, the oracle acts as in the orig-

inal scheme. However, the oracle answers ⊥ if ID is a prefix of I.
Random Oracle Queries. On input m, r, ID search the list LH. If there is a

corresponding entry (s,m, r, ID, h), return h. If not, use SampleDom in di-
mension m1 + (kκ+ 1)m2 with basis length L̃k to sample s, where k ≥ 0 is
the level of ID. Return h = Eval(AID, s) and store (s,m, r, ID, h).

Signature Queries. On input m, ID, choose r $← {0, 1}n and call h← H(m, r, ID)
and return s from the corresponding entry in LH.

Output. When A halts, it outputs a forgery m∗, s∗, r∗ for the challenge identity
I. W.l.o.g., there already is a tuple (s,m, r, I, h) in list LH . The reduction
computes v = s∗−s and outputs a vector w ∈ Λ⊥q (A) by suitably rearranging
and paddding the entries of v.



Analysis. First of all, observe that all oracles are efficiently simulated. If A runs
in time t, then the reduction runs in time t′ = t + 2TExtLattice + qETExtract +
(qH + qS)TH. Next, notice that all oracle queries are answered as expected. In
particular, the signature oracle can answer all queries for the challenge identity
without knowing the secret key and key extraction outputs matrices from the
correct distribution. There is only one deviation. In the case that the honest
signer would sign the hash H(m, r, ID) twice, the reduction acts stateful and does
not return different signatures. However, this happens with negligible probability
≤ q2S/2

n. As for key extraction, notice that the reduction knows a trapdoor for
all prefixes of all identities except for the challenge identity. Thus, it can simulate
key extraction.

The output (m∗, s∗, r∗) and the entry (s,m, r, I, h) in LH are used to find a
vector v = s∗ − s with AIv ≡ 0 and ‖v‖2 ≤ 2d. Now, AI is a concatenation of
certain blocks in A = A? ◦U1 ◦ · · · ◦U`κ. Therefore, we can build w by padding
and rearranging v such that Aw ≡ 0. The probability that w = 0 is at most
n−ω(1). Thus, B solves SIS with ν = 2d with non-negligible probability. ut

C Proof of Theorem 5

Proof. We assume that there is a successful adversary A against unforgeability
of DSigsu-sma and construct a reduction B that solves SIS. The reduction receives
a list of messages and returns a list of signatures along with the public key. Then,
the adversary either outputs a weak forgery (EU-SMA) or a strong forgery (SU-
SMA). The reduction guesses the type of adversary beforehand and solves SIS
is both cases. For the EU-SMA forger, the reduction knows x with A?x ≡ y
and for the SU-SMA forger, it prepares Ah∗x ≡ y by guessing the right message
with probability 1/qS.

Setup. On input A = A? ◦U(0)
1 ◦U

(1)
1 ◦ · · ·◦U

(0)
λ ◦U

(1)
λ ∈ Zm1+(2λ+1)m2

q , invoke

the adversary and receive a list of messages m1, . . . ,mqS
. It flips a coin a

$←
{0, 1} (0=EU, 1=SU) and i∗ $← {1, . . . , qS}. Choose r1, . . . , rqS

$← {0, 1}n and
compute h(i) ← H(mi, ri) for all i. If there is a collision under H, choose a
fresh set of ri’s. Let 〈π〉 := {πi}p1 be the set of all strings π ∈ {0, 1}λ such that
π 6@ h(j) for j ∈ {1, . . . , qS} \ {ai∗}, and πi 6@ πj for all distinct pairs (πi, πj)
in 〈π〉. The set 〈π〉 contains at most λqS elements. Now, randomly select an

element π $← 〈π〉, which represents the challenge subtree. Let |π| = lπ.
Setup matrices B(πi)

i ← U(0)
i for i = 1, . . . , lπ and matrices B(b)

i ← U(b)
i for

b ∈ {0, 1} and i = lπ + 1, . . . , λ.
Then, prepare the public key for signing by computing B1−πi

i and Si via
ExtLattice(A? ◦B(π1)

1 ◦ · · · ◦B(πi−1)
i−1 ,m2) for i = 1, . . . , lπ.

If a = 0, use SampleDom with s = ω(
√

log(n))L̃ to sample a vector x ∈
Zm1+m2 and compute y← A?x mod q. For a = 1, sample x ∈ Zm1+(λ+1)m2 ,
and set y ← Ah(i∗)x mod q. For each hash value h(i), let j be the smallest



index with h(i)
j 6= πj . Since

∥∥∥S̃i∥∥∥ ≤ L̃, we let s = ω(
√

log(n))L̃ and compute
the signature si ← SamplePre(ExtBasis(Sj ,Ah(i)), s,y).

The public key comprises A?, y, and 〈B〉 :=
{

(B(0)
i ,B(1)

i )
}λ

1
and the reduc-

tion returns the public key and the list of signatures to A.
Output. Eventually, A outputs its forgery (m∗, s∗, r∗). If a = 0, the reduction

pads x to form x′ ∈ Zm1+(λ+1)m2 and outputs x′ − s∗. In case a = 1, the
reduction outputs x − s∗. In either case, the output needs to be suitably
padded and rearranged to solve SIS for A.

Analysis. First of all, the setup phase is efficient. As in [29], the set 〈π〉 is of
polynomial size in n. Finding each of the strings π in the set costs TList. If A runs
in time t, then the reduction runs in time t+λqSTList +TExtLattice +qS(TSamplePre +
TExtBasis) plus some minor overhead. Next, notice that the setup phase outputs
valid signatures and a public key that is indistinguishable from uniform. The
only deviation from the real scenario is that there might be a collision under H,
which happens with probability ≤ c. It is also possible that the signer chooses
the same r when queried with a message m twice. This happens with probability
at most q2S/2

n.
As for the output (m∗, s∗, r∗) ofA, one of two things happens with probability

1/2: There is an index i with h∗ = H(m∗, r∗) = h(i). Then, the reduction must
have guessed i∗ = i correctly (probability 1/qS) and A has to output a signature
s∗ 6= x (probability 1−n−ω(1)). If there is no such i, the reduction works if π @ h∗

(probability 1/(λqS)) and the padded x′ 6= s∗ (probability 1−n−ω(1)). Therefore,
the total success probability is ε′ = 1/2(ε− q2S/2n − c)/(λqS)(1− n−ω(1)). ut


