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Abstract—Two-party Secure Function Evaluation (SFE) al-
lows mutually distrusting parties to (jointly) correctly compute
a function on their private input data, without revealing
the inputs. SFE, properly designed, guarantees to satisfy
the most stringent security requirements, even for interactive
computation. Two-party SFE can benefit almost any client-
server interaction where privacy is required, such as banking,
TV, targeted advertisements, etc. Today, SFE is a subject of
immense amount of research in a variety of directions, and is
not easy to navigate.

In this work, we systematize some of the vast SFE research
knowledge. It turns out that the most efficient SFE protocols
are obtained by combining several basic techniques, such as
Garbled Circuit (GC) and computation under Homomorphic
Encryption (HE). We show how these techniques can be
viewed as building blocks with clean interfaces, which can
be easily combined for a complete efficient solution. Further,
our approach naturally lends itself to automated protocol
generation (compilation). We believe, today, this approach is
the best candidate for implementation and deployment.

We consider passive and active cheating, and give exact
computation and communication costs of the building blocks.

Keywords-protocol design; privacy-preserving protocols; ho-
momorphic encryption; garbled circuits; garbled OBDDs;

I. INTRODUCTION

The concept of Secure Two-Party Computation was intro-
duced in 1982 by Andrew Yao [1]. The basic idea is to let
two mutually mistrusting parties compute an arbitrary func-
tion on their private inputs without revealing any information
about their input beyond the output of the function. Since
then this concept has been an appealing research subject in
cryptographic and security community with many interesting
and exciting results.

Although a large number of security-critical applications
(e.g., electronic auctions and voting, data classification,
remote diagnostics, etc.) with sophisticated privacy and
security requirements can benefit from secure computation,
its deployment for real world applications was believed to
be very limited and expensive for a relatively long time.
However, this has dramatically changed in the recent years
thanks to many algorithmic improvements and automatic
tools, as well as faster computing platforms and commu-
nication networks.

The aim of this paper is to put together and in perspective
the main current approaches to efficient secure two-party
computation. We demonstrate that in most cases, the most
efficient protocols are simply a combination of a few basic
techniques. We build our presentation in the style of a
tutorial, and aim for the paper to be understandable to non-
specialists in secure computation.

One of the main reasons for this work is to clarify the
unsubstantiated, but popular, belief that generic techniques,
such as Garbled Circuit (GC) introduced by Yao in 1986
[2], are too slow, and cannot be used in practice due
to their inefficiency. This state of affairs is evidenced by
authors’ personal communications, and by the abundance of
submissions and publications in security and cryptography
conferences, where the proposed solutions, often entirely
based on homomorphic encryption (HE), fall far behind
GC in efficiency and are subsequently replaced with their
GC-based equivalents (e.g., [3]). Authors often assume that
the generality of GC necessarily makes it inefficient. One
of our aims is to explain and to promote GC as one of
the most efficient and versatile techniques today. We note
that with the recent GC improvements (e.g., [4]–[6]), it is
increasingly difficult to outperform GC even by special-
purpose solutions.

Our remaining goal is to establish and promote the
efficiency baseline, against which future work could be
measured and improved.

A. Background: Where SFE Fits in Secure Computing

Cryptography (from Greek “secret writing”) with thou-
sands of years of history [7] has emerged as a tool for secret
communication. However, only recently, with the develop-
ment of fast computing devices, has cryptography grown into
a structured and mathematical science. The science of secret
communications became more formal and rigorous, and, si-
multaneously, new directions of cryptography appeared and
developed. Modern cryptography encompasses much more
than the original intent. Examples of new directions include
ability to prove knowledge of secrets without revealing any
information about them, means of electronic identification,
secure financial transactions, and much more.



The state of modern communications allows easy access
to almost any imaginable resource or person. At the same
time, the underlying connectivity layer provides weak, if
any, guarantees. For example, if Alice sends a message to
Bob, this message not only may be lost, it may also be read
and, more importantly, modified by an adversary, while in
transit. While most Internet traffic is of little or no interest to
attackers, a portion of it serves transactions of value, and re-
quires strong security. Protection against eavesdropping and
interference with the legitimate communication is relatively
well understood and remains perhaps the most commonly
used fruit of cryptography.

However, even a perfectly secure communication system
is only a part of the solution. Imagine a situation where
Alice participates in a transaction with Bob, but does not
completely trust him. This occurs in many settings where
the participants may have conflicting interests, including
contract signing, buy/sell transactions, outsourcing compu-
tation or storage to untrusted servers, etc. Securing the
communication channel cannot provide any assurance that
Bob does not cheat. Can we protect Alice’s (and everyone
else’s) interests in this setting? A study of Secure Function
Evaluation (SFE), which began in the 1980’s, emerged from
the need not only to communicate, but also to compute
securely. It addresses the problem of providing security
against cheating participants of the computation.

B. Applications

There is a large body of literature on SFE applications,
in particular those with strong privacy requirements such as
Privacy-Preserving Genomic Computation [3], [8], [9], Re-
mote Diagnostics [10], Graph Algorithms [11], Data Mining
[12], [13], Credit Checking [14], Medical Diagnostics [15],
Face Recognition [16], [17], or Policy Checking [18]–[20],
just to name a few. Here different cryptographic techniques
such as Garbled Circuits (GC) and/or Homomorphic En-
cryptions (HE) are used. Recently, verifiable outsourcing
of computations for cloud-computing applications has been
proposed, based on a combination of algebraically homo-
morphic encryption and garbled circuits [21]1. Existence of
a variety of SFE compilers, coming from both academia, e.g.
[23], and industry [24], further proves significant interest in
the SFE technology.

Moreover, we note that secure two-party protocols can
often be naturally extended to secure multi-party protocols.
Examples include secure mobile agents which can be based
on HE [25] and GC [26], as well as privacy-preserving
auction systems based on GC [27] or HE [28].

C. Outline of the Presentation

We start our discussion in §II with a few of most popu-
lar function representations, and pointing out their relative

1Because of its complexity and novelty, the practical performance of
algebraically homomorphic encryption [22] is still under investigation.
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Figure 1. Function Representations

advantages in terms of possibility of efficient secure eval-
uation. We note that it is possible to “mix-and-match” the
representations in construction of the protocol. Then, in §III,
we discuss various notions of security and their relationship.
In §IV, we describe today’s efficient SFE constructions for
each of the function representations we consider. We aim to
present our constructions modularly, with clean “interfaces”,
so that it remains intuitive that they can be composed.
We handle actual details of the composition, namely the
techniques to convert encrypted intermediate values between
the the protocols in §V (semi-honest players) and §VI
(malicious players).

II. FUNCTION REPRESENTATIONS

Given the function to be securely computed, the first de-
cision we face is the choice of the “programming language”
for describing the function. It turns out that this decision has
a major impact on the efficiency of the final solution. Further,
it is not feasible to describe the optimal choice strategy as
finding minimal function representations is hard [29], [30].
In this section we describe several function representations
considered in SFE, and give general guidelines with respect
to the efficiency choices.

We note that the cost of implementing SFE protocols
varies greatly among the function representations. For ex-
ample, boolean circuit is securely evaluated using GC tech-
nique, which is much more efficient than techniques for
evaluating arithmetic circuits. However, some functions are
represented much more compactly as an arithmetic circuit. In
this work, we explain and advocate a hybrid approach, where
function blocks can be evaluated using different techniques,
and their encrypted intermediate results then glued together.

We now proceed to summarizing function representa-
tions which are particularly useful for secure computation:
boolean circuits, arithmetic circuits and ordered binary de-
cision diagrams.

A. Boolean Circuits

Boolean circuits is a classical representation of functions
in engineering and computer science.



A boolean circuit with u inputs, v outputs and k gates is a
directed acyclic graph (DAG) with |V | = u+v+k vertices
(nodes) and |E| edges. Each node corresponds to either a
gate, an input or an output. The edges are called wires. For
simplicity, the input- and output nodes are often omitted in
the graphical representation of a boolean circuit as shown
in Fig. 1(a). For a more detailed definition see [31].

A d-input gate G computes a d-ary boolean function g :
{0, 1}d → {0, 1}. Typical gates are XOR (⊕), XNOR (=),
AND (∧), OR (∨); gates are often specified by their function
table, which contains 2d entries.

Gates of the boolean circuit can be evaluated in any order,
as long as all of the current gate inputs are available. This
property is ensured by sorting (and evaluating) the gates
topologically, which can be done efficiently in O(|V |+ |E|)
[32, Topological sort, pp. 549-552]. The topologic order of
a boolean circuit indexes the gates with labels G1, . . . , Gk
and ensures that the i-th gate Gi has no inputs that are
outputs of a successive gate Gj>i. In complexity theory, a
circuit with such a topologic order is called a straight-line
program [33]. Given the values of the inputs, the output of
the boolean circuit can be evaluated by evaluating the gates
one-by-one in topologic order. A valid topologic order for
the example boolean circuit in Fig. 1(a) would be ∧,⊕,∨,=.
The topologic order is not necessarily unique.

Automatic Generation: Boolean circuits can be auto-
matically generated from a high-level specification of the
function. A prominent example is the well-established Fair-
play compiler [23]. Fairplay’s Secure Function Description
Language (SFDL) resembles a simplified version of a hard-
ware description language, such as VHDL2, and supports
types, variables, functions, boolean operators (∧,∨,⊕, . . .),
arithmetic operators (+,−, ∗, /), comparison (<,≥,=, . . .)
and control structures like if-then-else or for-loops with
constant range (cf. [23, Appendix A] for a detailed descrip-
tion of the syntax and semantics of SFDL). Fairplay also
includes a GUI that assists the programmer in creating SFDL
programs with graphical code templates. The Fairplay com-
piler automatically transforms the functionality described as
SFDL program into the corresponding boolean circuit.

B. Arithmetic Circuits

Arithmetic circuits is a more compact function represen-
tation than boolean circuits.

An arithmetic circuit over a ring R and the set of variables
x1, ..., xn is a directed acyclic graph (DAG). Fig. 1(b)
illustrates an example. Each node with in-degree zero is
called an input gate labeled by either a variable xi or an
element in R. Every other node is called a gate and labeled
by either + or × denoting addition or multiplication in R.

Any boolean circuit can be expressed as an arithmetic
circuit over R = Z2. However, if we use R = Zm for

2Very high speed integrated circuit Hardware Description Language

sufficiently large modulus m, the arithmetic circuit can
be much smaller than its corresponding boolean circuit,
as integer addition and multiplication can be expressed as
single operations in Zm.

Number Representation: We note that arithmetic cir-
cuits can simulate computations on both positive and neg-
ative integers by mapping them into elements of Zm as
follows. Zero and positive values are mapped to the el-
ements 0, 1, 2, . . . whereas negative values are mapped to
m − 1,m − 2, . . .. As with all fixed precision arithmetics,
overflows or underflows must be avoided.

C. Ordered Binary Decision Diagrams

Another possibility to represent boolean functions are
Ordered Binary Decision Diagrams (OBDD) introduced by
Bryant [34].

A binary decision diagram (BDD) is a rooted, directed
acyclic graph (DAG) which consists of decision nodes and
two terminal nodes called 0-terminal and 1-terminal. Each
decision node is labeled by a boolean decision variable
and has two child nodes, called low child and high child.
The edge from a node to a low (high) child represents
an assignment of the variable to 0 (1). An ordered binary
decision diagram (OBDD) is a BDD in which the decision
variables appear in the same order on all paths from the root.

Given an assignment 〈x1 ← b1, . . . , xn ← bn〉 to the
variables x1, . . . , xn, the value of the Boolean function
f(b1, . . . , bn) can be found by starting at the root and
following the path where the edges on the path are labeled
with b1, . . . , bn.

Example: Fig. 1(c) shows the OBDD for the function
f(x1, x2, x3, x4) = (x1 = x2)∧ (x3 = x4) of four variables
x1, x2, x3, x4 with the total ordering x1 < x2 < x3 < x4.3

Consider the assignment 〈x1 ← 1, x2 ← 1, x3 ← 0, x4 ←
0〉. In the OBDD shown in Fig. 1(c), if we start at the root
and follow the edges corresponding to the assignment, we
end up at the 1-terminal which implies that f(1, 1, 0, 0) = 1.

Generalizations: Multiple OBDDs can be used to rep-
resent a function g with multiple outputs. If g’s outputs
can be encoded by k boolean variables, then g can be
represented by k OBDDs where the i-th OBDD computes
the i-th output bit.

Further generalizations of OBDDs can be obtained by
having multiple terminal nodes (called classification nodes)
and more general branching conditions: In a Branching
Program [10] the child node is determined depending on the
comparison of the `-bit input variable xαi

with a decision
node specific threshold ti. In Linear Branching Programs
[15] the branching condition is the comparison of the scalar
product between the input vector x of n `-bit values and a
decision node specific coefficient vector ai with a decision
node specific threshold ti.

3OBDDs are sensitive to variable ordering, e.g., with the ordering x1 <
x3 < x2 < x4 the OBDD for f has 11 nodes.



Efficiency: Although some functions require in the
worst case an OBDD of size exponential in the number of
inputs, many functions encountered in typical applications
(e.g., addition or comparison) have a reasonably small
OBDD representation [34].

Even though finding an optimal variable ordering for
OBDDs is NP-complete [29], in many practical cases OB-
DDs can be minimized to a reasonable size. Algorithms
to improve the variable ordering of OBDDs are Rudell’s
sifting algorithm [35], the window permutation algorithm
[36], genetic algorithms [37], [38], or algorithms based on
simulated annealing [39].

Nevertheless, some functions have a lower bound for the
size of the smallest OBDD representation which is exponen-
tial. For example n-bit integer multiplication has an expo-
nential size OBDD [40], [41] but requires only one multipli-
cation gate in an arithmetic circuit over a sufficiently large
ring. Multiplication within a boolean circuit has complexity
O(n2) using school method or O(nlog2 3) with the method
of [42]. Fast multiplication methods which apply the Fourier
transformation have better asymptotic complexity but hide
large constant factors in the O notation which makes them
more efficient for large inputs (thousands of bits) only:
O(n log n log log n) [43] and n log n2O(lg∗n) [44]4.

III. SECURE FUNCTION EVALUATION

Before presenting SFE protocols in §IV, we discuss the
notions of security, give some insight in two-party compu-
tation, and introduce notation.

A. Security Notions

In this section, we give intuition for the notions of
security that we use. For the lack of space, and because the
definitions are standard, we do not include the full formal
definitions here. However, we refer the reader to standard
sources. We consider semi-honest, covert and malicious
players.

Perhaps, the most natural and the strongest notion is the
malicious adversary. Such attacker is allowed to arbitrarily
deviate from the prescribed protocol, aiming to learn private
inputs of the parties and/or to influence the outcome of the
computation. This is the strongest and most general type
of adversary, and, not surprisingly, protection against such
attacks is relatively expensive, as we discuss in §VI. To be
malicious-secure, a protocol must guarantee that there does
not exist a course of action that results in any gain to the
attacker.

A somewhat weaker covert adversary is similar to ma-
licious, but with the restriction that he must avoid being
caught cheating. That is, a protocol in which an active
attacker may gain advantage may still be considered secure
if attacks are discovered with certain fixed probability (e.g.,

4lg∗n = mini≥0 lg
(i)n ≤ 1, lg(0)n = n, lg(i+1)n = log2 lg

(i)n.

1/2). It is reasonable to assume that in many social, political
and business scenarios the consequences of being caught
overweight the gain from cheating; we believe covert adver-
saries is the right way to model the behavior of players in the
interactions of interest. At the same time, protocols secure
against covert adversaries are substantially more efficient
than those secure against malicious players.

Finally, we consider the semi-honest adversary, one who
does not deviate from the protocol, but aims to learn the
output of the computation. At first, it may appear contrived
and trivial. Consideration of semi-honest adversaries, how-
ever, is important in many typical practical settings. Firstly,
even externally unobservable cheating, such as poor random
number generation, manipulations under encryption, etc.,
can be uncovered by an audit or reported by a conscientious
insider, and cause negative publicity. Therefore, especially
if the gain from cheating is low, it is often reasonable
to assume that a well-established organization will exactly
follow the protocol (and thus can be modeled as semi-
honest). Further, even if players are trusted to be fully honest,
it is sometimes desired to ensure that the transcript of the
interaction reveals no information. This is because in many
cases, it is not clear how to reliably delete the transcript due
to lack of control of underlying computing infrastructure
(network caching, virtual memory, etc.) Running an SFE
protocol ensures that player’s input cannot be subsequently
revealed even by forensic analysis.

At the same time, designing semi-honest-secure SFE
protocols is far from trivial, and is in fact an important basic
step in the design of the malicious protocols.

1) Intuition for Formalization: Formal definitions of se-
curity of SFE are very detailed (pages long) and subtle. Here
we convey the basic idea behind the formalization and the
employed ideal/real paradigm.

Intuitively, a protocol transcript does not leak player’s
input, if an indistinguishable (i.e., similar-looking) transcript
can be constructed without any knowledge of the input. (We
note that the two transcripts, real and simulated, must look
the same to a powerful distinguisher who, in particular,
knows the inputs.) It is now intuitive that if the protocol
leaks some information on the inputs, there will exist a
distinguisher who simply extracts this information from
the transcript, and compares to the player’s input. Since
simulated transcript was constructed without the knowledge
of the input, distinguisher will be able to distinguish it
from the real one, and such protocol will be insecure by
definition. Further, the proof of security for players A
and B in the protocol Π consists of constructing such
simulator SimA, SimB , and proving that their output is
indistinguishable from the real transcript of the protocol.

The above intuition is sufficient for the formalization of
the semi-honest model. However, in the presence of actively
cheating players (who can substitute their input, among other
things), this does not quite work, as it is not even clear



if the players indeed evaluate the intended function. Thus,
the following extension of the simulation paradigm was
introduced. We now define an ideal world, where players
have very limited cheating powers (they are allowed to abort,
substitute their local inputs, and output what they wish), and
rely on a trusted party to provide them with the resulting
output of the computation over a perfectly secure channel.
We say that a real-world protocol Π is secure if for any real-
world attacker there is a corresponding ideal-world attacker
that can do “the same harm”. Since ideal world clearly
limits the attack powers, the same limit would apply to the
real world. This is formalized by the ability to simulate the
real-world transcript (i.e., to generate an indistinguishable
transcript) by the ideal-world simulator.

The formal definitions for the semi-honest and malicious
player security can be found in [45].

The formalization of the covert adversaries is similar to
that of the malicious; the difference is in the definition of
the ideal world, where ideal world adversaries are given
the option to cheat, but are caught (i.e., their opponent
is notified) with certain fixed probability. Other aspects
of definition remain the same; because of simulatability
properties and the general approach of ideal-real paradigm, a
secure real-world covert adversary also may choose to cheat,
but be caught by the opponent with the specified probability.
The formal definitions for covert security (three variations)
were proposed in [46].

We note that SFE protocols will guarantee security for
the honestly behaving player who may be engaging with
cheating adversary. If both players are deviating from the
protocol, definitions provide no guarantees.

2) Hybrid Security: It is often the case that protocol
participants are not equal in their capabilities, trustworthi-
ness, and motivation. This is true especially often in the
client-server scenarios. For example, it may be reasonable
to assume that the bank will not deviate from the protocol
(act semi-honestly), but similar assumption should not be
made on bank clients, who are not established and may be
much more willing to risk committing fraud.

This can be naturally reflected in protocol design and the
guarantees given by the protocol. This is because security
definitions already separately state security against player
A and player B. When proposing a protocol, the security
claim may be in the form “Protocol Π is secure against
malicious A and semi-honest B.” The proof of security then
involves two different definitions, and simulator construc-
tions would also be correspondingly different. The benefit of
this hybrid approach is the possibility to design significantly
more efficient protocols. For example, the garbled circuit
protocol (in which players take the roles of garbled circuit
constructor or evaluator) is almost free to secure against
malicious evaluator, and much more expensive to secure
against malicious constructor (details later in §IV-B3). Thus,
GC-based protocols are good candidates for settings with

corresponding trust relationships, e.g., banking.

B. Computation under encryption

Before presenting the protocols in the next section, we
find it instructive to present the following simple insight on
two-party SFE. We believe the reader will benefit from keep-
ing it in mind while reading the SFE protocol descriptions.
Each of the SFE techniques we consider can be viewed as
evaluation under encryption. In fact, this holds for any two-
party SFE technique.

Intuitively, this is the case since parties must use their
entire inputs in the computation, to be able to correctly
compute the output. This means that players must exchange
messages that are dependent on their inputs. Moreover, the
messages must cumulatively contain the entire inputs. (To be
more precise, at least one party must send such messages,
and the other party may only perform actions based on
his inputs.) Because of the input privacy requirements, the
messages must not reveal their plaintext content (inputs),
and thus are encryptions of the inputs. Further, the message
recipient acts based on the message and his input, which
amounts to computing under encryption. (We note that this
intuition does not hold in secure multiparty computation,
where there are three or more players. There, secure com-
putation is possible without sending encryptions of the input
and evaluation under encryption.)

We note that evaluation under encryption is very com-
plicated in its generality. In fact, only recently, the first
promising candidate was proposed – an encryption scheme
that allows to perform an arbitrary number of both multipli-
cations and additions on the plaintext [22]. What we solve
is a much simpler problem, where the computed function is
fixed. Now, for example, one party can send his encrypted
input and then collaborate with the other party to help him
evaluate under encryption. We further simplify our work by
considering only elementary operations, e.g., boolean gates.
If we give a self-composing protocol for evaluation of a
few basic gates, the entire SFE problem is solved, since any
function can be built of these gates.

C. Parameters and Notation

We denote symmetric security parameter by t and the
asymmetric security parameter, e.g., bitlength of RSA mod-
uli, by T . NIST recommends choosing for short-term secu-
rity (until year 2010) t = 80 and T = 1024, for medium-
term security (until year 2030) t = 112 and T = 2048
and for long-term security (after year 2030) t = 128 and
T = 3072. For a detailed summary on various recommen-
dations for security parameters we refer to [47].

The statistical security parameter is denoted by σ and can
be chosen as σ = 80 in practice. This parameter controls the
statistical distance for blinded values.

We denote the bitlength of a variable x with |x|.



In the following, we will refer to the two SFE participants
as client C and server S. Our naming choice is mainly
influenced by the asymmetry in the SFE protocols, which fits
into client-server model. We stress that, while in most of the
real-life two-party SFE scenarios the corresponding client-
server relationship in fact exists in the evaluated function,
we do not limit ourself to this setting.

IV. BUILDING BLOCKS: SFE TECHNIQUES FOR OBDD,
ARITHMETIC AND BOOLEAN CIRCUITS IN THE

SEMI-HONEST MODEL

As mentioned above, to reduce complexity, functions can
be decomposed into several sub-functions (blocks). Each of
these blocks can be represented in a different way, e.g.,
a multiplication block can be represented as an arithmetic
circuit, a comparison block as a boolean circuit and a specific
decision tree as an ordered binary decision diagram.

In this section, we present the SFE protocols for the three
representations we consider. At this time, we only consider
semi-honest adversaries. We explain how to prevent/detect
deviations from the protocol in §VI.

It is our goal to be able to arbitrarily compose the three
protocols. This means that the encrypted output of one
protocol will be fed as input into another. To preserve a
common interface and simplify the presentation, we will
extract and describe separately the core (computation under
encryption) of each protocol. (For completeness, we also
discuss the simple issue of how to appropriately encrypt
the inputs and decrypt the outputs.) Thus, protocol structure
will look as follows: encrypt the plaintext inputs, perform
the computation under encryption (which may include a
composition of encrypted computations), and, finally decrypt
the output value. We will discuss the issues of composition
of the protocols, such as conversions of encryptions, in §V.

A. Homomorphic Encryption and Evaluation of Arithmetic
Circuits

In this section, we describe semantically secure homo-
morphic encryption schemes and how they can be used for
secure evaluation of arithmetic circuits.

Let (Gen,Enc,Dec) be an encryption scheme with plain-
text space P and ciphertext space C. We write JmK for
Enc(m, r).

1) Additively Homomorphic Cryptosystems: An addi-
tively homomorphic encryption scheme allows addition un-
der encryption as follows. It defines an operation + on
plaintexts and a corresponding operation � on ciphertexts,
satisfying ∀x, y ∈ P : JxK � JyK = Jx + yK. This naturally
allows for multiplication with a plaintext constant a using re-
peated doubling and adding: ∀a ∈ Z, x ∈ P : aJxK = JaxK.

Popular instantiations for additively homomorphic en-
cryption schemes are summarized in Table I: The Paillier
cryptosystem [48] provides a T -bit plaintext space, where
T is the size of the RSA modulus N , and is sufficient for

Table I
ADDITIVELY HOMOMORPHIC ENCRYPTION SCHEMES WITH

N : RSA MODULUS, s ≥ 1, u: SMALL PRIME.

Scheme P C Enc(m, r)

Paillier [48] ZN Z∗
N2 gmrN mod N2

Damgård-Jurik [49] ZNs Z∗
Ns+1 gmrN

s
mod Ns+1

DGK [28], [50], [51] Zu Z∗
N gmhr mod N

most applications. The Damgård-Jurik cryptosystem [49] is
a generalization of the Paillier cryptosystem which provides
a large plaintext space of size sT -bit for arbitrary s ≥ 1.
The Damgård-Geisler-Krøigaard (DGK) cryptosystem [28],
[50], [51] has smaller ciphertexts but can be used with a
small plaintext space only as decryption requires to solve a
discrete log.

Homomorphic Cryptosystems with Addition and Mul-
tiplication: For the sake of completeness, we mention that
some cryptosystems allow addition and multiplication under
encryption. For this, a separate operation × for multiplica-
tion of plaintexts and a corresponding operation � on cipher-
texts is defined satisfying ∀x, y ∈ P : JxK � JyK = Jx× yK.
Cryptosystems with such a property are called “fully” or
“algebraically” homomorphic.

A possible instantiation is the cryptosystem of [52] which
allows for an arbitrary number of additions and one multipli-
cation. Algebraically homomorphic cryptosystems allow to
evaluate an arbitrary number of additions and multiplications
on ciphertexts. Possible candidates are the cryptosystem of
[53] (boolean operations only) and [54] (size of ciphertexts
grows exponentially in the number of multiplications for
both). The most recent candidates are the schemes of [22],
[55], [56] without such a restriction. We note that the size
of ciphertexts and computational cost of elementary steps
in fully homomorphic cryptosystems is substantially larger
than that of the purely additively homomorphic schemes.
Taking in consideration that for today’s SFE applications,
even a single public-key operation per gate is most often too
expensive, we don’t see fully homomorphic schemes being
used for SFE in practical applications in the near future.
Although we concentrate on the additively homomorphic
Paillier cryptosystem in the following, our framework can
be used together with fully homomorphic schemes as well.

2) Computing on Encrypted Data: Homomorphic en-
cryption naturally allows to evaluate arithmetic circuits via
computation on encrypted data, as follows. The client C
generates a key pair for a homomorphic cryptosystem and
sends his inputs encrypted under the public key to the server
S together with the public key. With an fully homomorphic
scheme, S can simply evaluate the arithmetic circuit by com-
puting on the encrypted data and send back the (encrypted)
result to C, who then decrypts it to obtain the output. If
the homomorphic encryption scheme only supports addition,
one round of interaction between C and S is needed to



evaluate each multiplication gate (or a layer of multiplication
gates), e.g., as described later in this section (and also in
§VI-B). We note that today, the latter is a much faster SFE
approach than using fully homomorphic schemes.

3) Packing: Often the plaintext space P of the homomor-
phic encryption scheme is substantially larger than the size
of encrypted numbers. This allows for optimization of many
protocols based on homomorphic encryption by packing
together multiple ciphertexts into one before or after additive
blinding and sending back the single ciphertext from S to C
instead. This substantially decreases the size of the messages
sent from S to C as well as the number of decryptions
performed by C. The computational overhead for S is small
as packing the ciphertexts Jx1K, ..., JxnK into one ciphertext
JXK = Jxn|| . . . ||x1K costs less than one full-range modular
exponentiation with Horner’s scheme: JXK = JxnK; for i =
n− 1 downto 1 : JXK = 2|xi+1|JXK � JxiK.

4) Multiplication of Homomorphic Values with
Additively-Homomorphic Encryption: To multiply two
homomorphic `-bit values JxK and JyK held by S the
following standard protocol requires one single round of
interaction with C: S randomly chooses rx, ry ∈R {0, 1}`+σ ,
where σ is the statistical security parameter, computes
the blinded values Jx̄K = Jx + rxK, JȳK = Jy + ryK
and sends these to C . C decrypts, multiplies and
sends back JzK = Jx̄ȳK. S obtains JxyK by computing
JxyK = JzK � (−rx)JyK � (−ry)JxK � J−rxryK.

Packing can be used to improve efficiency of parallel mul-
tiplications by packing multiple blinded ciphertexts together
instead of sending them to C separately.

5) Homomorphic Values and Conversions: Finally, we
mention a few relatively simple issues and optimizations
with encrypting the input, and decrypting the output of
the homomorphic computation. Describing these procedures
completes (at a high level) the description of SFE of
arithmetic circuits.

The interface for SFE protocols based on homomorphic
encryption are homomorphic values, i.e., a homomorphic
encryption held by S encrypted under the public key of C
(see Fig. 3 in §V). These homomorphic values can be
converted from or to plaintext values as described next.

Plain Value to Homomorphic Value for Inputs: To
convert a plain `-bit value x into a homomorphic value JxK,
it is encrypted under C’s public key (and sent to S if the plain
value belonged to C). If C is malicious he has to prove in
zero-knowledge that the encryption was performed correctly
and JxK indeed encrypts an `-bit value (details later in §VI).

Homomorphic Value to Plain Value for Outputs: To
convert a homomorphic value into a plain value for C,
S sends the homomorphic value to C who decrypts and
obtains the plain value. If only S should learn the plain
value corresponding to a homomorphic `-bit value JxK, S
additively blinds the homomorphic value by choosing a
random mask r ∈R {0, 1}`+σ , where σ is the statistical

security parameter, and computing Jx̄K = JxK�JrK. S sends
this blinded value to C who decrypts and sends back x̄ to
S. Finally, S computes x = x̄− r. If C is malicious he has
to prove in zero-knowledge that he correctly decrypted x̄.

Packing can be used to improve efficiency of parallel
output conversions.

B. Garbled Functions and Evaluation of OBDDs and
Boolean Circuits

Efficient techniques for evaluation boolean circuits and
OBDDs are quite similar; in fact the underlying idea is the
same. In this section we will present the main idea and
complete high-level treatment of the two protocols. We then
present corresponding details for SFE of boolean circuits in
§IV-C and OBDDs in §IV-D.

The idea for SFE, going back to Yao [2], is in fact to
evaluate the function, step by basic step, under encryption.
Yao’s approach, which considered circuits, is to encrypt (or
garble) each wire with a symmetric encryption scheme. In
contrast with homomorphic encryption, described above in
§IV-A, the encryptions/garblings here cannot be operated on
without additional help. We will explain in detail how to
operate under encryption on the basic function steps in §IV-C
and §IV-D.

We now proceed with describing at the high level Yao’s
technique, and presenting the state of the art in the crypto
primitives the method relies on. Following Yao’s terminol-
ogy, in this section, we talk about garbled functions, as the
generalization of OBDD and boolean circuit.

To securely evaluate a function f , the constructor (server
S) creates a garbled function f̃ from f . In f̃ , the garbled
values of each wire Wi are two (random-looking) secrets
w̃0
i , w̃

1
i that correspond to the values 0 or 1. We note that

a garbled value w̃ji does not reveal its corresponding plain
value j. S sends f̃ to evaluator (client C) and C additionally
obtains both players’ garbled input values x̃1, . . . , x̃u from
S in an oblivious way (this requires further interaction as
described later). C uses the garbled function and the gar-
bled input values to obliviously compute the corresponding
garbled output values (z̃1, . . . , z̃v) = f̃(x̃1, . . . , x̃u). We
emphasize that during the step-by-step encrypted evaluation,
all intermediate results are garbled values and hence do not
reveal any additional information. (We remind the reader
that we postpone the explanation of the encrypted evaluation
techniques for circuits and OBDDs to §IV-C and §IV-D.)
Finally, the garbled output values z̃i can be translated into
their corresponding plaintext values zi.

We stress that a garbled function f̃ cannot be re-used.
Each secure evaluation requires construction and transfer
of a new garbled function which can be done in a pre-
computation phase.

1) Garbled Values and Conversions: For garbled func-
tions, conversions between the plaintext values and encryp-
tions involve a number of subtleties and tricks. Recall, we



need to convert both players’ plaintext input values into their
corresponding garbled values (encrypt inputs), then evaluate
the garbled function (evaluate under encryption), and finally
convert the garbled outputs back into plain values (decrypt
result).

The interface for SFE protocols based on garbled func-
tions are garbled values (see Fig. 3 in §V). A garbled
boolean value x̃i represents a bit xi. Each garbled boolean
value x̃i = 〈ki, πi〉 consists of a key ki ∈ {0, 1}t, where
t is the symmetric security parameter, and a permutation
bit πi ∈ {0, 1}. The garbled value x̃i is assigned to one
of the two corresponding garbled values x̃0i =

〈
k0i , π

0
i

〉
or

x̃1i =
〈
k1i , π

1
i

〉
with π1

i = 1 − π0
i . The permutation bit πi

allows efficient evaluation of the garbled function using the
so-called point-and-permute technique but does not reveal
information about the corresponding plain value as it looks
random. Of course, a garbled `-bit value can be viewed as
a vector of ` garbled boolean values.

In the following we show how to convert a plain value
into its corresponding garbled value and back.

Garbled Value to Plain Value for Outputs: To convert
a garbled value x̃i = 〈ki, πi〉 into its corresponding plain
value xi for evaluator C, constructor S reveals the output
permutation bit π0

i which was used during construction of
the garbled wire and C obtains xi = πi ⊕ π0

i .
If the garbled value x̃i should be converted into a plain

value for constructor S, evaluator C can simply send x̃i to
S who obtains the plain value by decrypting it. We note
that malicious C cannot cheat in this conversion as he only
knows one of the two garbled values.

Plain Value to Garbled Value for Inputs: To translate a
plain value xi held by S into a garbled value x̃i for C,
S sends the corresponding garbled value x̃0i or x̃1i to C
depending on the value of xi.

To convert a plain value xi held by C into a garbled
value x̃i for C, both parties execute an oblivious transfer
(OT) protocol where C inputs xi, S inputs x̃0i and x̃1i and
the output to C is x̃i = x̃0i if xi = 0 or x̃1i otherwise.
In the following we describe how OT can be implemented
efficiently in practice.

2) Oblivious Transfer: Parallel 1-out-of-2 Oblivious
Transfer (OT) of n t′-bit strings (recall, t′ = t + 1 is the
length of garbled values for symmetric security parameter
t), denoted as OTnt′ , is a two-party protocol run between
a chooser (client C) and a sender (server S) as shown in
Fig. 2: For i = 1, . . . , n, S inputs n pairs of t′-bit strings
s0i , s

1
i ∈ {0, 1}t

′
and C inputs n choice bits bi ∈ {0, 1}.

At the end of the protocol, C learns the chosen strings sbii
but nothing about the other strings s1−bii , whereas S learns
nothing about C’s choices bi. As described above, OT is
used to convert plain values held by C into corresponding
garbled values, i.e., the strings have length t′ = t + 1 bits
for symmetric security parameter t.

Server SClient C

OTn
t�

∀i = 1, .., n :
Si =

�
s0

i , s
1
i

�

s0
i , s

1
i ∈ {0, 1}t�

S1, .., Snb1, .., bn

sb1
1 , .., sbn

n

Figure 2. Parallel Oblivious Transfer

Efficient OT Protocols: OTnt′ can be instantiated ef-
ficiently with different protocols [57]–[59]. For example
the protocol of [58] implemented over a suitably chosen
elliptic curve has communication complexity n(6(2t+1))+
(2t + 1) ∼ 12nt bits and is secure against malicious C
and semi-honest S in the standard model as described in
[60]. Similarly, the protocol of [57] implemented over a
suitably chosen elliptic curve has communication complexity
n(2(2t+1)+2t′) ∼ 6nt bits and is secure against malicious
C and semi-honest S in the random oracle model. Both
protocols require O(n) scalar point multiplications and two
messages (C → S → C).

Extending OT Efficiently: The extensions of [4] can
be used to reduce the number of computationally expensive
public-key operations of OTnt′ to be independent of n.5

The transformation for semi-honest C reduces OTnt′ to OTtt
and a small additional overhead: one additional message,
2n(t′+ t) bits additional communication, and O(n) invoca-
tions of a correlation robust hash function such as SHA-256
(2n for S and n for C) which is substantially cheaper than
O(n) asymmetric operations. Also a slightly less efficient
extension for malicious C is given in [4].

In some computation-sensitive applications, the important
technique of [4] provides a critical performance improve-
ment by getting rid of expensive public-key operations. We
strongly recommend using it for functions with large inputs,
or in conjunction with OT pre-computation (see next).

Pre-Computing OT: All computationally expensive op-
erations for OT can be shifted into a setup phase by pre-
computing OT of [61]: In the setup phase the parallel OT
protocol is run on randomly chosen values. Then, in the
online phase, C uses its randomly chosen values ri to mask
his private inputs bi, and sends them to S. S replies with
encryptions of his private inputs sji using his random values
mj
i from the setup phase. Which input of S is masked with

which random value is determined by C’s message. Finally,
C can use the masks mi he received from the OT protocol
in the setup phase to decrypt the correct output values sbii .

More precisely, the setup phase works as follows: for i =
1, . . . , n, C chooses random bits ri ∈R {0, 1} and S chooses
random masks m0

i ,m
1
i ∈R {0, 1}t

′
. Both parties run a OTnt′

protocol on these randomly chosen values, where S inputs
the pairs

〈
m0
i ,m

1
i

〉
and C inputs ri and obtains the masks

mi = mri
i as output. In the online phase, for each i =

5This is the reason for our choice of notation OTn
t′ instead of n×OTt′ .



1, . . . , n, C masks its input bits bi with ri as b̄i = bi⊕ri and
sends these masked bits to S. S responds with the masked
pair of t′-bit strings

〈
s̄0i , s̄

1
i

〉
=
〈
m0
i ⊕ s0i ,m1

i ⊕ s1i
〉

if b̄i =
0 or

〈
s̄0i , s̄

1
i

〉
=
〈
m0
i ⊕ s1i ,m1

i ⊕ s0i
〉

otherwise. C obtains〈
s̄0i , s̄

1
i

〉
and decrypts sbii = s̄rii ⊕ mi. Overall, the online

phase consists of two messages of size n bits and 2nt′ bits
and negligible computation (XOR of bitstrings).

3) Covert and Malicious Adversaries: It is relatively easy
to protect SFE protocols based on garbled functions against
covert or malicious client C by using an OT protocol which
is secure against covert or malicious C.

Standard SFE protocols with garbled functions which
additionally protect against covert [62] or malicious [63]
server S rely on the following cut-and-choose technique:
S creates multiple garbled functions f̃i, deterministically
derived from random seeds si, and commits to each, e.g.,
by sending f̃i or Hash(f̃i) to C. In covert case, C asks
S to open all but one garbled function I by revealing the
corresponding si 6=I . For all opened functions, C computes f̃i
and checks that they match the commitments. The malicious
case is similar, but C asks S to open half of the functions,
evaluates the remaining ones and chooses the majority of
their results. To ensure that S’s inputs into OT are consistent
with the garbled circuits one needs to resort to committed
OT protocols as described in [64].

According to [6], the protocols of [65] and [66] which
also achieve security against malicious adversaries require
substantially more computation than protocols based on
garbled functions and cut-and-choose as they need public-
key operations rather than symmetric key operations for
each gate of the circuit. Yet, a precise practical comparison
between the different approaches has not been looked at so
far and remains to be investigated in the future.

C. Garbled Circuits

We now turn to presenting the boolean-circuit-specific
details of SFE of garbled functions as introduced in [2].
Recall, in §IV-B we left out the method of step-by-step
creation of the garbled function f̃ and its evaluation given
the garblings of the input wires. In the following we describe
how the garbled circuit is constructed and evaluated.

To construct the garbled circuit C̃ for a given boolean cir-
cuit C, constructor S assigns to each wire Wi of the circuit
two randomly chosen garbled values w̃0

i , w̃
1
i – encryptions of

0 and 1 on that wire. We now show how to perform a basic
step – to evaluate a gate Gi under encryption. That is, given
two garblings (one of each of the two of the gate’s inputs),
we need to obtain the garbling of the output wire consistently
with the gate function. Here constructor S gives help to
evaluator in the form of a garbled table T̃i with the following
property: given a set of garbled values of Gi’s inputs, T̃i
allows to recover the garbled value of the corresponding
Gi’s output, but nothing else. This is easily done as follows.
There are only four possible input combinations (and their

Table II
SIZE OF KNOWN GC TECHNIQUES IN BITS PER GARBLED 2-INPUT GATE.

t: SYMMETRIC SECURITY PARAMETER

GC Technique non-XOR gate XOR gate
Point-and-Permute [23] 4t+ 4 4t+ 4
Garbled Row Reduction [27] 3t+ 3 3t+ 3
Secret-Sharing [6] 2t+ 4 2t+ 4
Free XOR [5] 4t+ 4 0
Garbled Row Reduced Free XOR [6] 3t+ 3 0

garblings). The garbled table will consist of four entries,
each of which is an encryption under a pair of input wire
garblings of the corresponding output garbling. Clearly, this
allows the evaluator to compute Gi under encryption, and it
can be shown that T̃i does not leak any information [67].

This method is composable, and the entire boolean circuit
can be evaluated gate-by-gate in this manner. This technique
also applies to gates with more than two inputs, but the size
of garbled tables grows exponentially in the number of gate
inputs.

The above is a simple description of Yao’s technique.
Today, a number of optimizations exist, which we survey
next (but do not discuss in detail).

1) Efficient Garbled Circuits: A summary of several
techniques for garbled circuits is shown in Table II. In the
following we concentrate on the currently most efficient
technique for garbled circuits, Garbled Row Reduced Free
XOR of [6], which combines free XOR gates of [5] with gar-
bled row reduction of [27]. As XOR gates occur frequently
in most circuits, this technique results in better performance
than the point-and-permute technique of [23] or the secret-
sharing based technique of [6].

The garbled circuit technique of [6] allows “free” evalua-
tion of XOR gates from [5], i.e., a garbled XOR gate has no
garbled table (no communication) and its evaluation consists
of XOR-ing its garbled input values to obtain the garbled
output value (negligible computation).

The other gates, referred to as non-XOR gates, are evalu-
ated with the garbled row reduction technique of [27], i.e.,
each 2-input non-XOR gate requires a garbled table of size
3t + 3 bit, where t is the symmetric security parameter.
Creating the garbled table for a 2-input non-XOR gate in the
pre-computation phase requires 4 invocations of a suitably
chosen cryptographic hash function such as SHA-256 in the
random oracle model. Later, for evaluation of a garbled 2-
input non-XOR gate, evaluator needs 1 invocation of the
hash function. If the cryptographic hash function is modeled
to be correlation robust (a notion which is weaker than
random oracles and was introduced in [4]), the number of
hash invocations is twice as high.

2) Efficient Circuit Constructions with free XOR: As
XOR gates can be evaluated essentially for free, the circuits
to be evaluated can be optimized such that the number
of non-XOR gates is minimized. Such constructions which



Table III
EFFICIENT CIRCUIT CONSTRUCTIONS FOR `-BIT VALUES (FREE XOR).

Functionality [#non-XOR 2-input gates] Reference
Addition ` [68]
Subtraction, Comparison ` [60]
Multiplexer ` [5]
Minimum/Maximum Value

2`(n− 1) + (n+ 1) [60]+ Index of n `-bit values
Permute n bits n logn− n+ 1 [5], [69]
Select v from u ≥ v bits u+3v

2
log v + u− 2v + 1 [5], [70]

Multiplication 2`2 − ` [60]

are commonly used in many applications are summarized
in Table III: Addition, Subtraction and Comparison have
cheap circuit representations (linear in the size of the inputs).
Also selecting the minimum or maximum value of n values
together with its index (the function evaluated in a first-
price auction [27]) has linear overhead. Permuting (without
duplicates) or selecting (with duplicates) n bits grows like
O(n log n) and is hence feasible as well. In contrast, multi-
plication has a more expensive circuit representation.

3) Private Circuits: In some applications the evaluated
function is known by one party only and should be kept
secret from the other party. This can be achieved by se-
curely evaluating a Universal Circuit (UC) which can be
programmed to simulate any circuit C and hence entirely
hides C (besides the number of inputs, number of gates and
number of outputs). Efficient UC constructions to simulate
circuits consisting of k 2-input gates are given in [70], [71].
Generalized UCs of [72] can simulate circuits consisting of
d-input gates. Which UC construction is favorable depends
on the size of the simulated functionality: Small circuits
can be simulated with the UC construction of [72] with
overhead O(k2) gates, medium-size circuits benefit from
the construction of [70] with overhead O(k log2 k) gates
and for very large circuits the construction of [71] with
overhead O(k log k) gates is most efficient. Explicit sizes
and a detailed analysis of the break-even points between
these constructions are given in [72].

While universal circuits entirely hide the structure of
the evaluated functionality f , it is sometimes sufficient
to hide f only within a class of topologically equivalent
functionalities F , called secure evaluation of a semi-private
function f ∈ F . The circuits for many standard func-
tionalities are topologically equivalent and differ only in
the specific function tables, e.g., comparison (<,>,=, . . .)
or addition/subtraction. It is possible to directly evaluate
the circuit and avoid the overhead of UC for semi-private
functions as GC constructions (without free XOR) hide the
type of the gates from evaluator C [14], [18]–[20], [73].

D. Garbled OBDDs

OBDDs can be evaluated securely in a way analogous
to garbled circuits, as first described in [74]. We base our
presentation on the natural extension [15] of [74], which

also offers a (slight) improvement. Alternative approaches
[75], [76] based on homomorphic encryption have smaller
communication overhead, but put more computational load
on S (public key operations instead of symmetric operations
for each decision node).

We now turn to presenting the OBDD-specific details of
SFE of garbled functions. Recall, in §IV-B we left out the
method of step-by-step creation of the garbled function f̃
and its evaluation given the garblings of the input wires.
In the following we describe how the garbled OBDD is
constructed and evaluated. We note that the technique is
somewhat similar to that of GC.

1) Create Garbled OBDD: In the pre-computation phase,
S generates a garbled version Õ of the OBDD O. For this,
the OBDD is first extended with dummy nodes to ensure that
each evaluation path traverses the same number of variables
in the same order resulting in evaluation paths of equal
length. Further, OBDD nodes are randomly permuted to
prevent leaking information from the sequence of steps taken
by the evaluator (the start node P1 remains the first node
in Õ). Then, each decision node Pi, labeled with boolean
variable xj , is converted into a garbled node P̃i in Õ, as
follows. A randomly chosen key ∆i ∈R {0, 1}t is associated
with each node Pi. Node’s information (pointers to the two
successor nodes, and their encryption keys) is encrypted with
the node’s key ∆i. To preserve security, we ensure that ∆i

is only revealed to the evaluator, if this node is reached
by executing on the parties’ inputs. Processing/evaluating
an OBDD node is simply following the pointer to one of
the two child nodes, depending on the input. Since we
must prevent the evaluator from following both successor
nodes, we additionally encrypt left (resp. right) successor
information with the garbling of the 0-value (resp. 1-value)
of Pi’s decision variable xj .

2) Evaluate Garbled OBDD: It is now easy to see the
corresponding OBDD evaluation procedure. C receives the
garbled OBDD Õ from S, and evaluates it locally on the
garbled values x̃1, .., x̃n and obtains the garbled value z̃ that
corresponds to the result z = O(x1, . . . , xn), as follows.
C traverses the garbled OBDD Õ by decrypting garbled

decision nodes along the evaluation path starting at P̃1. At
each node P̃i, C takes the garbled input value x̃i = 〈ki, πi〉
together with the node’s key ∆i to decrypt the information
needed to continue evaluation of the garbled successor
node until the garbled output value z̃ for the corresponding
terminal node is obtained.

Implementation observations and optimizations: The
employed semantically secure symmetric encryption scheme
can be instantiated as Encsk(m) = m ⊕ H(k||s), where s
is a unique identifier used once, and H(k||s) is a pseudo-
random function (PRF) evaluated on s and keyed with k,
e.g., a cryptographic hash function from the SHA-2 family.
Additionally the following technical improvement from [74]
can be used: instead of encrypting twice (sequentially, with



∆i and kji ), the successor Pij ’s data can be encrypted
with ∆i ⊕ kji . The terminal nodes are garbled simply by
including their corresponding garbled output value (z̃0 for
the 0-terminal or z̃1 for the 1-terminal) into the parent’s node
(instead of the decryption key ∆i).

Efficiency: To evaluate the garbled OBDD Õ, the
cryptographic hash function (e.g., SHA-256) is invoked once
per decision node along the evaluation path.

The garbled OBDD Õ for an OBDD with d decision nodes
(after extension to evaluation paths of equal length) contains
d garbled nodes P̃i consisting of two ciphertexts of size
dlog de+ t+ 1 bits each. The size of Õ is 2d(dlog de+ t+
1) ∼ 2d(log d + t) bits. Overall, creation of Õ requires 2d
invocations of a cryptographic hash function.

3) Private OBDDs: The garbled OBDD reveals only a
small amount of information about the evaluated OBDD to
C, namely the total number d of decision nodes. We note that
in many cases this is acceptable. If not, this information can
be hidden using appropriate padding with dummy-nodes.

V. COMPOSITION OF SFE PROTOCOLS WITH
SEMI-HONEST PARTIES

We now show how to convert encryptions of intermediate
values between the different representations that are used in
the three protocols we described. Done securely, this allows
arbitrary compositions of the three techniques, and implies
significant improvements to SFE.

We had already described the conversions between the
plaintext values and encryptions. These conversions are only
applicable for input encryption and output decryption. Inter-
mediate values in the protocol must be converted without
ever being decrypted.

Fig. 3 shows the types of conversions that may occur
in the composed SFE protocol. Both parties have plain
values as their inputs into the protocol. These plain values,
denoted as x, are first encrypted by converting them into
their corresponding encrypted value (garbled value, denoted
as x̃, or homomorphic value, denoted as JxK, depending on
which operations should be applied). After encryption the
function is securely evaluated on the encrypted values, which
may involve conversion of the encryptions between several
representations. Finally, an encryption of the output is ob-
tained. The encrypted outputs are decrypted by converting
them into their corresponding plain output values. In the
following we describe how to efficiently convert between
the two types of encryptions.

A. Garbled Values to Homomorphic Values

A garbled `-bit value x̃ held by C (usually obtained from
evaluating a garbled function) can be efficiently converted
into a homomorphic value held by S by using additive
blinding or bitwise encryption as described next.

Plain Value x

Boolean Circuits or OBDDs
with Garbled Function

Client C

Homomorphic Value �x�

Plain Value x

Server S

Garbled Value �x

Arithmetic Circuits
with Homomorphic Encryption

Inputs/Outputs

Encrypted Values

SFE of

Figure 3. Composition of Secure Function Evaluation Protocols

1) Additive Blinding: S randomly chooses a random
mask r ∈R {0, 1}`+σ , where σ is the statistical security
parameter and ` + σ ≤ |P | to avoid an overflow, and adds
the random mask converted into garbled value r̃ to x̃ using
a garbled (` + σ)-bit addition circuit that computes ˜̄x with
x̄ = x + r. This value is converted into a plain output
value x̄ for C who homomorphically encrypts this value and
sends the result Jx̄K to S. Finally, S takes off the random
mask under encryption as JxK = Jx̄K � (−1)JrK. A detailed
description of this conversion protocol is given in [60].

2) Bitwise Encryption: If the bitlength ` of x̃ is small,
a bitwise approach can be used as well in order to avoid
the garbled addition circuit: C homomorphically encrypts
the permutation bits πi of the garbled boolean output values
x̃i = 〈ki, πi〉 and sends JπiK to S. S flips those encrypted
permutation bits for which the permutation bit was set as
π0
i = 1 during creation to Jπ′iK = J1K � (−1)Jπ′iK or other-

wise Jπ′iK = JπiK. Then, S combines these potentially flipped
bit encryptions using Horner’s scheme as JxK = Jπ′`||..||π′1K.

Performance Comparison: The conversion based on
additive blinding requires a garbled addition circuit for
(`+σ)-bit values and the transfer of the (`+σ)-bit garbled
value r̃. When using the efficient GC technique described
in §IV-C1, this requires in total 4(` + σ)(t + 1) bits sent
from S to C in the pre-computation phase. In the online
phase, the garbled circuit is evaluated and the result is
homomorphically encrypted and sent to S (one ciphertext).

The conversion using bitwise encryption requires ` homo-
morphic encryptions and transfer of ` ciphertexts from C to
S in the online phase. At least for converting a single bit,
i.e., when ` = 1, this technique results in better performance.

B. Homomorphic Values to Garbled Values

In the following we describe how to convert a homomor-
phic `-bit value JxK into a garbled value x̃. This protocol
has been widely used to combine homomorphic encryption
with garbled functions, e.g., in [10], [15], [77], [78].
S additively blinds JxK with a random pad r ∈R

{0, 1}`+σ , where σ is the statistical security parameter and
` + σ ≤ |P | to avoid an overflow, as Jx̄K = JxK � JrK.
S sends the blinded ciphertext Jx̄K to C who decrypts and
inputs the ` least significant bits of x̄, χ = x̄ mod 2`, to an
`-parallel OT protocol to obtain the corresponding garbled
value χ̃. Then, the mask is taken off within a garbled `-bit
subtraction circuit which gets as inputs χ̃ and ρ̃ converted



from ρ = r mod 2` as input from S. The output obtained
by C is x̃ which corresponds to x = χ− ρ.

Again, packing as described in §IV-A3 can be used to im-
prove efficiency of parallel conversions from homomorphic
to garbled values by packing multiple ciphertexts together
before additive blinding and sending them to C.

VI. EFFICIENT TECHNIQUES FOR PROTECTION AGAINST
MALICIOUS ACTIONS

To achieve security against malicious parties, privacy-
preserving protocols are usually designed in “layers”. First
a core protocol in the semi-honest model is constructed,
and then, following the compilation paradigm of [45], each
party needs to prove in zero-knowledge that it behaved
honestly. (In the case of covert adversaries, each party
needs to be convinced that a cheating opponent can be
caught with certain probability, a weaker requirement.) As
discussed in §III-A2, it is often necessary to achieve hybrid
security against malicious client C, while the server S is
assumed to be semi-honest. In the following, we summarize
standard methods for proving relations among homomorphi-
cally encrypted values in zero-knowledge and show how to
avoid expensive zero-knowledge proofs for several standard
tasks, such as multiplication of homomorphic values and
conversion between homomorphic and garbled values.

A. Zero-Knowledge Proofs

A proof of knowledge for a relation R = {(x,w)} is a
protocol between a prover and a verifier. Both parties get the
public value x as common input while prover gets witness
w as private input with (x,w) ∈ R and tries to convince
the verifier that he knows a witness. After the protocol
execution, verifier decides whether it accepts or rejects the
proof. A proof must be complete and sound. Completeness
guarantees that for any pair (x,w) ∈ R, the verifier accepts
the proof if both prover and verifier follow the protocol.
Soundness guarantees that a cheating prover cannot success-
fully convince a verifier if prover does not know a witness
w for x. More formally, a knowledge extractor with black-
box access to the prover can be constructed to compute a
witness (cf., e.g., [79]). A proof is zero-knowledge, if a
simulator can be constructed that, given access to x and the
malicious verifier, produces a view of the protocol which is
indistinguishable from verifier’s view in a protocol execution
with a real prover. In special honest-verifier zero-knowledge
(SHVZK) proofs the verifier is assumed to be semi-honest
and the simulator can produce views for a given challenge
of the verifier.

Efficient SHVZK proofs of knowledge are the well-known
Σ-protocols [80], [81]. These are 3-move protocols where
prover starts with a commit message, verifier provides a
randomly chosen challenge which is answered by the prover.
Σ-protocols can be efficiently combined to prove an arbitrary
AND/OR combination of underlying statements [80].

Σ-protocols can be made non-interactive using the stan-
dard Fiat-Shamir heuristic [82] of computing the challenge
from the first message using a hash function. This can be
proved secure in the random oracle model.

Zero-Knowledge Proofs for SFE: We summarize sev-
eral efficient zero-knowledge protocols suited as building-
blocks to secure SFE protocols against malicious behavior.

For the additively homomorphic Paillier and Damgård-
Jurik cryptosystems one can efficiently prove knowledge
of the plaintext encrypted within a ciphertext [49]. It is
also possible to prove various relations about the plaintexts
encrypted within a ciphertext [83], e.g., equality, linear, or
multiplicative relations between two encrypted plaintexts, or
that an encrypted plaintext indeed is an `-bit value using
efficient interval proofs of [84].

To achieve security against malicious client C in SFE
protocols based on homomorphic encryption, it is necessary
that C’s public-key pk is well-formed. To achieve this, pk
can be generated (or checked) and certified by a trusted third
party. Alternatively, C can prove to S in zero-knowledge that
pk – an RSA modulus in most commonly used additively
homomorphic schemes of [48], [49] – is well-formed using
the rather expensive zero-knowledge proof of [85].

B. Multiplication of Homomorphic Values

In the following, we discuss protocols for multiplying two
homomorphic `-bit values JxK and JyK with security against
malicious C. The obvious approach is to extend the semi-
honest protocol of §IV-A4 which uses additively blinded
values Jx̄K, JȳK such that C proves in zero-knowledge that
he behaved honestly, i.e., that the multiplicative relation
between Jx̄K, JȳK, and Jx̄ȳK holds.

Optimization: We show how to improve efficiency
of this protocol by avoiding to prove the multiplicative
relation in zero-knowledge: S chooses random multiplicative
masks mx,my ∈R {0, 1}σ and additive masks tx, ty ∈R
{0, 1}`+2σ , where σ is the statistical security parameter
and ` + 2σ ≤ |P | to avoid an overflow. Then, S blinds
the values multiplicatively and additively by computing
Jx̄K = Jmxx + txK and JȳK = Jmyy + tyK and sends these
blinded values to C. C decrypts, multiplies and sends back
JcK = Jx̄ȳK. Finally, S obtains the intended result as JxyK =
(mxmy)−1JcK � (−mytx)JyK � (−mxty)JxK � J−txtyK.

It is easy to verify that if C cheats by sending back the
encryption of a different value, then he modifies the result
in an unpredictable way.

C. Garbled Values to Homomorphic Values

To convert a garbled value x̃ into its corresponding
homomorphic value JxK with malicious client C we extend
the bitwise conversion protocol of §V-A2 as follows: When
C sends the homomorphically encrypted values of the output
bits to S he additionally has to prove in zero-knowledge that
the encrypted bit is consistent with the garbled output value
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is the generator of a prime-order group in which the discrete
logarithm problem is hard (e.g., an elliptic curve group
for maximal efficiency). Using the efficient zero-knowledge
proofs for knowledge of a discrete logarithm in a prime-
order group of [86], C can efficiently prove the following
statements in zero-knowledge: (C knows the discrete log
of c0i AND the homomorphic ciphertext encrypts 0) OR
(C knows the discrete log of c1i AND the homomorphic
ciphertext encrypts 1).

D. Homomorphic Values to Garbled Values

Finally, we describe how to efficiently convert a ho-
momorphic `-bit value JxK into a garbled value JxK with
malicious client C. The high-level structure is the same as
the conversion for semi-honest parties described in V-B: S
blinds the homomorphic value with a randomly chosen mask
r ∈R {0, 1}`+σ as Jx̄K = JxK � JrK and sends this to C. C
decrypts and obtains the (`+σ)-bit representation x̄i. Now,
C must be guaranteed that he decrypted correctly and the
inputs in the following OT protocol match this decrypted
value. For this, C decomposes x̄ into its bit-representation
x̄i and sends homomorphic encryptions of each bit Jx̄iK
to S. Additionally, C proves in zero-knowledge that these
homomorphically encrypted bits when added together as∑`+σ
i=1 2i−1Jx̄iK encrypt the same value as Jx̄K. This cor-

responds essentially to proving equality of two encrypted
plaintexts as the encryption scheme is homomorphic. Addi-
tionally, C has to prove that each encrypted bit Jx̄iK is indeed
an encryption of either 0 or 1. We show how to avoid this
rather expensive proof later. S uses Jx̄iK as first message in
the Paillier-based OT protocol of [59] to obliviously transfer
the corresponding garbled values of ˜̄x to C. Then, C evaluates
a garbled subtraction circuit to take off the random mask.
This circuit gets inputs ˜̄x and r̃ and computes the garbled
value x̃ corresponding to x = x̄− r.

Optimization: In the following we try to optimize such
that C does not need to prove in zero-knowledge that he
indeed sent homomorphic encryptions of bits. We note that
if C tries to cheat by sending an encryption of neither 0 nor
1 he will obtain a random string instead of a valid garbled
input value corresponding to this bit as output of the OT
protocol. Due to this property of OT it would be sufficient
if C proves in zero-knowledge that he obtained correctly
the garbled input values ˜̄xi which implies that he did not
cheat with the inputs of the OT protocol (the probability
that C guesses a valid garbled value is negligible). Instead
of proving this in zero-knowledge we reduce the costs even
more. For this we observe that the most significant output
bit of the subtraction circuit depends on all input bits ˜̄xi.
C can obtain one of the two valid garbled output values for
this most-significant bit only if he knows all garbled input

bits. We connect a garbled 1-input zero-gate to this wire
which maps both possible garbled input values to the single
garbled output value c̃0 (invalid garbled inputs are mapped to
different values with high probability). Finally, C only needs
to send c̃0 to S to prove that it behaved correctly. As the
zero-gate always evaluates to the same value, no additional
information is leaked to S.
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