
Modular Design of Efficient Secure Function Evaluation
Protocols

Vladimir Kolesnikov1, Ahmad-Reza Sadeghi2, and Thomas Schneider2

1 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

2 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de?

Abstract. Two-party Secure Function Evaluation (SFE) allows mutually distrusting parties to
(jointly) correctly compute a function on their private input data, without revealing the inputs.
SFE, properly designed, guarantees to satisfy the most stringent security requirements, even for in-
teractive computation. Two-party SFE can benefit almost any client-server interaction where privacy
is required, such as privacy-preserving credit checking, medical classification, or face recognition. To-
day, SFE is a subject of immense amount of research in a variety of directions, and is not easy to
navigate.
In this paper, we systematize some of the vast research knowledge on practically efficient SFE. It
turns out that the most efficient SFE protocols are obtained by combining several basic techniques,
such as garbled circuits and computation under homomorphic encryption.
As an important practical contribution, we present a framework in which these techniques can be
viewed as building blocks with well-defined interfaces. These components can be easily combined
to establish a complete efficient solution. Further, our approach naturally lends itself to automated
protocol generation (compilation). We believe, today, this approach is the best candidate for imple-
mentation and deployment.

Keywords: protocol design; privacy-preserving protocols; homomorphic encryption; garbled functions; garbled
circuits

? Supported by EU FP7 project CACE and ECRYPT II.

2 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

1 Introduction

The concept of two-party Secure Function Evaluation (SFE) was introduced in 1982 by Yao [93].
The idea is to let two mutually mistrusting parties compute an arbitrary function on their
private inputs without revealing any information about their inputs beyond the output of the
function. Since then, this concept has been an appealing research subject in crypto and security
communities, with many exciting results.

Although a large number of security-critical applications (e.g., electronic auctions and voting,
data classification, remote diagnostics, etc.) with sophisticated privacy and security requirements
can benefit from SFE, its real-world deployment was believed to be very limited and expensive for
a relatively long time. Fortunately, the cost of SFE has been dramatically reduced in the recent
years thanks to many algorithmic improvements and automatic tools, as well as faster computing
platforms and communication networks. (We note that SFE is only a part of a general task of
secure computing. We expand on the place of SFE in Appendix §A.)

In this paper we survey and systematize the current state of the art of practically efficient
secure two-party computation. Moreover, we present a framework which allows to modularly
combine the required techniques with well-defined interfaces to obtain highly efficient protocols
suitable for practical applications. We build our presentation in the style of a tutorial, and aim for
the paper to be both a reference on practically efficient SFE for experts, and an understandable
area guide for non-experts in secure computation.

Efficient SFE techniques. For several years, two different approaches for secure two-party
computation have co-existed. One approach is based on homomorphic encryption (HE). Here
one party sends its encrypted inputs to the other party, who then computes the intended func-
tion under encryption using the homomorphic properties of the cryptosystem, and sends back the
encrypted result. Popular examples are the additively homomorphic cryptosystems of Paillier [75]
and Damg̊ard-Jurik [24], and the recent fully homomorphic schemes [25, 38, 87]. (We elaborate
on the practicality of fully homomorphic schemes in §4.1). Alternatively, SFE can be done us-
ing garbled functions (GF), a generalization of Yao’s garbled circuits (GC) [94] that works as
follows: one party (constructor)“encrypts” the function (using symmetric keys), the other party
(evaluator) obliviously obtains the keys corresponding to both parties’ inputs and the garbled
function, and is able to decrypt the corresponding output value.

Both approaches have their respective advantages and disadvantages, i.e., GF requires to
transfer the garbled function (communication complexity is at least linear in the size of the
function) but allows to pre-compute almost all expensive operations resulting in a low latency of
the online phase, whereas most HE schemes require relatively expensive public-key operations in
the online phase but can result in a smaller overall communication complexity.

For a particular primitive, one of the techniques is usually more suitable than the other. For
example, for comparison or computing the maximum, GF [58, 73] is better than HE [21–23],
whereas multiplication often benefits from using HE. Therefore, simply switching from one ap-
proach for secure computation to the other can result in substantial performance improvements.
For instance, for privacy-preserving DNA matching based on secure evaluation of finite automa-
tons, GF-based [29] is substantially more efficient than HE-based [88].

Going one step further, it would be beneficial to use the most efficient primitive for the
respective sub-task even if they are based on different paradigms. Indeed, secure and efficient
composition of sub-protocols based on HE and GF can result in performance improvements as
shown for several privacy-preserving applications (see, e.g., [5, 11,13,80]).

Applications of SFE. There is a large body of literature on SFE applications, in particular those
with strong privacy requirements such as Privacy-Preserving Genomic Computation [29, 52, 88],
Remote Diagnostics [11], Graph Algorithms [12], Data Mining [63, 66], Credit Checking [32],
Medical Diagnostics [5], Face Recognition [27, 80], or Policy Checking [30, 31, 33], just to name
a few. These applications are based on either HE or GF or a combination of both as explained

Modular Design of Efficient Secure Function Evaluation Protocols 3

before. Recently, verifiable outsourcing of computations for cloud-computing applications has
been proposed, based on evaluating garbled circuits under fully homomorphic encryption [37].
Existence of a variety of SFE compilers, coming from both academia, e.g., [71], and industry [86],
further proves significant interest in the SFE technology.

Moreover, we note that secure two-party protocols can often be naturally extended to secure
multi-party protocols. Examples include secure mobile agents which can be based on HE [81]
and GC [16], as well as privacy-preserving auction systems based on GC [73] or HE [21].

Outline of the presentation. We start our discussion in §2 with a few of most popular func-
tion representations, and pointing out their relative advantages in terms of possibility of efficient
secure evaluation. We note that it is possible to “mix-and-match” the representations in construc-
tion of protocols. Then, in §3, we briefly discuss various notions of security and their relationship.
In §4, we describe today’s practically efficient SFE constructions for each of the function repre-
sentations we consider. We handle the actual details of the composition, namely the techniques
to convert encrypted intermediate values between the protocols in §5 for semi-honest players, a
model which suits most client server applications. In Appendix §D we summarize main techniques
for extending this to the malicious scenario.

2 Function Representations

Given the function to be securely computed, the first decision we face is the choice of the “pro-
gramming language” for describing the function. It turns out that this decision has a major
impact on the efficiency of the final solution. Further, it is not feasible to describe the optimal
choice strategy as finding minimal function representations is hard [8, 54].

The following standard representations for functions are particularly useful for SFE: boolean
circuits (cf. Fig. 1(a)), arithmetic circuits (cf. Fig. 1(b)) and ordered binary decision diagrams
(OBDD) (cf. Fig. 1(c)).

In Appendix §B, we give their detailed descriptions and provide guidelines regarding efficiency
choices. Here we stress that the cost of implementing SFE protocols varies greatly among the
function representations. For example, the GC technique for SFE of boolean circuits is much
more efficient than techniques for evaluating arithmetic circuits (e.g., using HE). However, some
functions are represented much more compactly as an arithmetic circuit. As another example,
some functions (e.g., decision strategies) are most compactly represented as OBDDs, while others
(e.g., multiplication), require exponentially large OBDDs.

In this work (specifically, §4 and §5), we explain and advocate a hybrid approach, where
function blocks can be evaluated using different techniques, and their encrypted intermediate
results then glued together.

∧

∨

⊕

=

x1 x2 x3 x4

z1 z2

(a) Boolean Circuit

x1 x2 5

×

z

×+

(b) Arithmetic Circuit

x1

x3

x4 x4

x2 x2

0 1

0 1

0 11 0

10

1001

(c) OBDD

Fig. 1. Function Representations

4 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

3 SFE: Security Notions, Parameters and Notation

3.1 Security Notions

In this section, we give the intuition of the security notions we use. Due to the lack of space,
we do not include the standard definitions here. However, we present the intuitive discussion
of definitional approaches in Appendix §C and refer the reader to standard sources for formal
definitions and further discussion, e.g., [42, 66]. The definitions model semi-honest, covert and
malicious behavior.

The strongest and most general (and, perhaps, the most natural) notion is the malicious
adversary. Such attacker is allowed to arbitrarily deviate from the prescribed protocol, aiming
to learn private inputs of the parties and/or to influence the outcome of the computation. Not
surprisingly, protection against such attacks is relatively expensive, as we discuss in §4.2 and
Appendix §D.

A somewhat weaker covert adversary may cheat, but he must avoid being caught. That is, a
protocol in which an active attacker may gain advantage may still be considered secure if attacks
are discovered with certain fixed probability (e.g., 1/2). Modeling players as covert fits many
business scenarios; at the same time, protection against covert players can be quite efficient, e.g.,
as summarized later in §4.2.

Finally, we consider the semi-honest adversary, one who follows the protocol and analyzes
its transcript. Far from trivial, this model covers many typical practical settings. Firstly, even
externally unobservable cheating, such as poor random number generation, can be uncovered
and cause negative publicity. Therefore, it is often reasonable to assume that a well-established
organization will exactly follow the protocol. Further, even if players are trusted to be fully honest,
it is sometimes desired to ensure that the transcript of the interaction reveals no information.
This is because in many cases, it is not clear how to reliably delete the transcript due to lack of
control of underlying computing infrastructure (network caching, virtual memory, etc.) Running
an SFE protocol ensures that player’s input cannot be subsequently revealed even by forensic
analysis. Finally, semi-honest-secure SFE protocols serve as important basic step in designing
covert and malicious protocols, e.g., as we describe later in §4.2.

Hybrid Security. It is often the case that players are not equal in their capabilities, trust-
worthiness, and motivation. This is true especially often in client-server scenarios. For example,
it may be reasonable to assume that the bank, but not the client, will follow the protocol exactly.

This can be naturally reflected in protocol design and the guarantees, since security definitions
separately state security against the two players. Thus, the security claim may be in the form
“Protocol Π is secure against malicious A and semi-honest B.” The proof of security then
simply involves two definitions. The benefit of this hybrid approach is the possibility to design
significantly more efficient protocols. For example, the garbled circuit protocol (in which players
take the roles of constructor or evaluator of garbled circuits) is almost free to secure against
malicious evaluator, and much more expensive to secure against malicious constructor (cf. §4.2).

3.2 Parameters and Notation

We denote symmetric security parameter by t and asymmetric security parameter, e.g., bitlength
of RSA moduli, by T . From 2011 on, NIST recommends at least t = 112 and T = 2048. For
detailed recommendations on the choice of security parameters we refer to [40]. The statistical
security parameter is denoted by σ and can be set to σ = 112. The bitlength of variable x is
written |x|.

In the following, we refer to the two SFE participants as client C and server S. Our naming
choice is mainly influenced by the asymmetry in the SFE protocols, which fits into client-server
model. We stress that, while in most of the real-life two-party SFE scenarios the corresponding
client-server relationship in fact exists in the evaluated function, we do not limit ourself to this
setting.

Modular Design of Efficient Secure Function Evaluation Protocols 5

4 SFE of Circuits and OBDDs in the Semi-honest Model

To reduce complexity, functions can be decomposed into several sub-functions (blocks). Each of
these blocks can be represented in its own way, e.g., a multiplication block can be represented as
an arithmetic circuit, a comparison block as a boolean circuit and a specific decision tree as an
OBDD.

In this section, we present the SFE protocols for the three representations of interest with
semi-honest adversaries. We explain how to prevent/detect deviations from the protocol in §D.

It is our goal to be able to arbitrarily compose the three protocols. This, in particular, means
that the encrypted output of one protocol will be fed as input into another. To preserve a
common interface and simplify the presentation, we will extract and describe separately the core
– computation under encryption – of each protocol (done in this section). (For completeness,
we also discuss here the simple issue of how to appropriately encrypt the inputs and decrypt
the outputs.) We will discuss the issues of composition of the protocols, such as conversions of
encryptions, in §5. Overall, protocol structure will look as follows: (i) encrypt the plaintext inputs,
(ii) perform the computation under encryption (which may include a composition of encrypted
computations), and, (iii) decrypt the output values.

4.1 Homomorphic Encryption for SFE of Arithmetic Circuits

In this section, we describe semantically secure homomorphic encryption schemes and how they
can be used for secure evaluation of arithmetic circuits. Let (Gen,Enc,Dec) be an encryption
scheme with plaintext space P and ciphertext space C. We write JmK for Enc(m, r).

Additively Homomorphic Cryptosystems. An additively homomorphic encryption scheme
allows addition under encryption as follows. It defines an operation + on plaintexts and a cor-
responding operation � on ciphertexts, satisfying ∀x, y ∈ P : JxK � JyK = Jx + yK. This natu-
rally allows for multiplication with a plaintext constant a using repeated doubling and adding:
∀a ∈ N, x ∈ P : aJxK = JaxK.

Popular instantiations for additively homomorphic encryption schemes are summarized in
Table 1: The Paillier cryptosystem [75] provides a T -bit plaintext space, where T is the size of the
RSA modulus N , and is sufficient for most applications. The Damg̊ard-Jurik cryptosystem [24]
is a generalization of the Paillier cryptosystem which provides a large plaintext space of size
sT -bit for arbitrary s ≥ 1. The Damg̊ard-Geisler-Krøigaard cryptosystem [21–23] has smaller
ciphertexts but can be used with a small plaintext space only as decryption requires to solve a
discrete log.

Table 1. Additively Homomorphic Encryption Schemes (N : RSA modulus, s ≥ 1, u: small prime)

Scheme P C Enc(m, r)

Paillier [75] ZN Z∗N2 gmrN mod N2

Damg̊ard-Jurik [24] ZNs Z∗Ns+1 gmrN
s

mod Ns+1

Damg̊ard-Geisler-Krøigaard [21–23] Zu Z∗N gmhr mod N

Fully Homomorphic Cryptosystems. For completeness, we mention that some cryptosystems
allow both addition and multiplication under encryption. For this, a separate operation × for
multiplication of plaintexts and a corresponding operation � on ciphertexts is defined satisfying
∀x, y ∈ P : JxK�JyK = Jx×yK. Cryptosystems with such a property are called fully homomorphic.

Until recently, it was widely believed that such cryptosystems do not exist. Several works
provided partial solutions: [9, 39] allow for an arbitrary number of additions and one multipli-
cation, and ciphertexts of [3, 82] grow exponentially in the number of multiplications. Recent
schemes [25, 38, 87] are fully homomorphic. However, the size of ciphertexts and computational

6 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

cost of elementary steps in fully homomorphic schemes are substantially larger than those of addi-
tively homomorphic schemes.3 Although significant effort is underway in theoretical community
to improve its performance, it seems unlikely that fully homomorphic encryption would reach the
efficiency of current public-key encryption schemes. Intuitively, this is because a fully homomor-
phic cryptosystem must provide the same strong security guarantees, while, at the same time,
possessing extra algebraic structure to allow for homomorphic operations. The extra structure
weakens security, and countermeasures (costing performance) are necessary.

In this work, we do not rely on, but could use, (expensive) fully homomorphic schemes.

Computing on Encrypted Data. Homomorphic encryption naturally allows to evaluate arith-
metic circuits via computation on encrypted data, as follows. The client C generates a key pair for
a homomorphic cryptosystem and sends his inputs encrypted under the public key to the server
S together with the public key. With a fully homomorphic scheme, S can simply evaluate the
arithmetic circuit by computing on the encrypted data and send back the (encrypted) result to C,
who then decrypts it to obtain the output. If the homomorphic encryption scheme only supports
addition, one round of interaction between C and S is needed to evaluate each multiplication gate
(or a layer of multiplication gates) as described later in this section (and also in §D.2). Today,
the interactive approach results in much faster SFE protocols than using fully homomorphic
schemes. (The latter, however, allows non-interactive evaluation of private functions by S; this
can be done efficiently without fully HE, but with interaction, using universal circuits circuits as
shown in §4.3.)

Packing. Often the plaintext space P of the homomorphic encryption scheme is substantially
larger than the size of encrypted numbers. This allows for optimization of many protocols based
on homomorphic encryption by packing together multiple ciphertexts into one before or after
additive blinding and sending back the single ciphertext from S to C instead. This substantially
decreases the size of the messages sent from S to C as well as the number of decryptions performed
by C. The computational overhead for S is small as packing the ciphertexts Jx1K, ..., JxnK into one
ciphertext JXK = Jxn|| . . . ||x1K costs less than one full-range modular exponentiation by using
Horner’s scheme: JXK = JxnK; for i = n− 1 downto 1 : JXK = 2|xi+1|JXK � JxiK.
Homomorphic Values and Conversions. We mention a few relatively simple issues and op-
timizations with encrypting the input, and decrypting the output of the homomorphic computa-
tion. Describing these procedures completes (at a high level) the description of SFE of arithmetic
circuits.

The interface for SFE protocols based on homomorphic encryption are homomorphic values,
i.e., homomorphic encryptions held by S encrypted under the public key of C (see Fig. 3 in §5).
These homomorphic values can be converted from or to plaintext values as described next.
Plain Value to Homomorphic Value for Inputs. To convert a plain `-bit value x, i.e.,
|x| = `, into a homomorphic value JxK, x held by S is simply encrypted under C’s public key.
If x belongs to C, JxK is sent to S. If C is malicious he has to prove in zero-knowledge that the
encryption was performed correctly and JxK indeed encrypts an `-bit value (details later in §D).
Homomorphic Value to Plain Value for Outputs. To convert a homomorphic value into
a plain value for C, S sends the homomorphic value to C who decrypts and obtains the plain
value. If only S should learn the plain value corresponding to a homomorphic `-bit value JxK, S
additively blinds the homomorphic value by choosing a random mask r ∈R {0, 1}`+σ, where σ
is the statistical security parameter, and computing Jx̄K = JxK � JrK. S sends this blinded value
to C who decrypts and sends back x̄ to S. Finally, S computes x = x̄ − r. If C is malicious he
has to prove in zero-knowledge that he correctly decrypted x̄. Packing can be used to improve
efficiency of parallel output conversions.

3 Recent implementation results of [87] show that even for small parameters where the multiplicative depth of
the evaluated circuit is d = 2.5, i.e., at most two multiplications, encrypting a single bit takes 3.7 s on 2.4GHz
Intel Core2 (6600) CPU.

Modular Design of Efficient Secure Function Evaluation Protocols 7

Multiplication of Homomorphic Values with Additively-Homomorphic Encryption.
To multiply two homomorphic `-bit values JxK and JyK held by S the following standard protocol
requires one single round of interaction with C: S randomly chooses rx, ry ∈R {0, 1}`+σ, where σ is
the statistical security parameter, computes the blinded values Jx̄K = Jx+ rxK, JȳK = Jy+ ryK and
sends these to C. C decrypts, multiplies and sends back JzK = Jx̄ȳK. S obtains JxyK by computing
JxyK = JzK�(−rx)JyK�(−ry)JxK�J−rxryK. Efficiency of parallel multiplications can be improved
by packing multiple blinded ciphertexts together instead of sending them to C separately.

4.2 Garbled Functions for SFE of Boolean Circuits and OBDDs

Efficient techniques for evaluating boolean circuits and OBDDs are quite similar; in fact the
underlying idea is the same. In this section we will present the main idea and complete high-level
treatment of the two protocols. We then present the corresponding details for SFE of boolean
circuits in §4.3 and OBDDs in §4.4.

The idea for SFE, going back to Yao [94], is to evaluate the function, step by basic step,
under encryption. Yao’s approach, which considered circuits, is to encrypt (or garble) each wire
with a symmetric encryption scheme. In contrast to homomorphic encryption, described above
in §4.1, the encryptions/garblings here cannot be operated on without additional help. We will
explain in detail how to operate under encryption on the basic function steps in §4.3 and §4.4.

We now proceed with describing at the high level Yao’s technique, and presenting the state
of the art in the crypto primitives the method relies on. Following Yao’s terminology, in this
section, we talk about garbled functions, as the generalization of OBDD and boolean circuit.

To securely evaluate a function f , the constructor (server S) creates a garbled function f̃
from f (details on creating f̃ later in §4.3 for garbled circuits and §4.4 for OBDDs). In f̃ , the
garbled values of each wire Wi are two (random-looking) secrets w̃0

i , w̃
1
i that correspond to the

values 0 or 1. We note that a garbled value w̃ji does not reveal its corresponding plain value j.

S sends f̃ to evaluator (client C) and C additionally obtains both players’ garbled input values
x̃1, . . . , x̃u from S in an oblivious way (this requires further interaction as described later). C
uses the garbled function and the garbled input values to obliviously compute the corresponding
garbled output values (z̃1, . . . , z̃v) = f̃(x̃1, . . . , x̃u). We emphasize that during the step-by-step
encrypted evaluation, all intermediate results are garbled values and hence do not reveal any
additional information. (We give details on evaluating f̃ later in §4.3 for garbled circuits and
§4.4 for OBDDs.) Finally, the garbled output values z̃i can be translated into their corresponding
plaintext values zi.

We stress that a garbled function f̃ cannot be re-used. Each secure evaluation requires con-
struction and transfer of a new garbled function which can be done in a pre-computation phase.

Garbled Values and Conversions. For garbled functions, conversions between the plaintext
values and encryptions involve a number of subtleties and tricks. Recall, we need to convert
both players’ plaintext input values into their corresponding garbled values (encrypt inputs),
then evaluate the garbled function (evaluate under encryption), and finally convert the garbled
outputs back into plain values (decrypt result).

The interface for SFE protocols based on garbled functions are garbled values (see Fig. 3 in §5).
A garbled boolean value x̃i represents a bit xi. Each garbled boolean value x̃i = 〈ki, πi〉 consists of
a key ki ∈ {0, 1}t, where t is the symmetric security parameter, and a permutation bit πi ∈ {0, 1}.
The garbled value x̃i is assigned to one of the two corresponding garbled values x̃0i =

〈
k0i , π

0
i

〉
or

x̃1i =
〈
k1i , π

1
i

〉
with π1i = 1− π0i . The permutation bit πi allows efficient evaluation of the garbled

function using the so-called point-and-permute technique but does not reveal information about
the corresponding plain value as it looks random [71]. Of course, a garbled `-bit value can be
viewed as a vector of ` garbled boolean values.

We show how to convert a plain value into its corresponding garbled value and back next.

8 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

Garbled Value to Plain Value for Outputs. To convert a garbled value x̃i = 〈ki, πi〉 into its
corresponding plain value xi for evaluator C, constructor S reveals the output permutation bit
π0i which was used during construction of the garbled wire and C obtains xi = πi ⊕ π0i .

If the garbled value x̃i should be converted into a plain value for constructor S, evaluator C
can simply send x̃i to S who obtains the plain value by decrypting it, e.g., compare with x̃0i and
x̃1i . We note that malicious C cannot cheat in this conversion as he only knows one of the two
garbled values possible and is unlikely to guess the other one.
Plain Value to Garbled Value for Inputs. To translate a plain value xi held by S into a
garbled value x̃i for C, S sends the corresponding garbled value x̃0i or x̃1i to C depending on the
value of xi.

To convert a plain value xi held by C into a garbled value x̃i for C, both parties execute an
oblivious transfer (OT) protocol where C inputs xi, S inputs x̃0i and x̃1i and the output to C is
x̃i = x̃0i if xi = 0 or x̃1i otherwise. In the following we describe how OT can be implemented
efficiently in practice.

Oblivious Transfer. Parallel 1-out-of-2 Oblivious Transfer (OT) of n t′-bit strings (where
t′ = t + 1 is the length of garbled values for symmetric security parameter t), denoted as OTn

t′ ,
is a two-party protocol run between a chooser (client C) and a sender (server S) as shown in
Fig. 2: For i = 1, . . . , n, S inputs n pairs of t′-bit strings s0i , s

1
i ∈ {0, 1}t

′
and C inputs n choice

bits bi ∈ {0, 1}. At the end of the protocol, C learns the chosen strings sbii but nothing about

the other strings s1−bii , whereas S learns nothing about C’s choices bi. As described above, OT
is used to convert plain values held by C into corresponding garbled values.

Server SClient C

OTn
t�

∀i = 1, .., n :
Si =

�
s0

i , s
1
i

�

s0
i , s

1
i ∈ {0, 1}t�

S1, .., Snb1, .., bn

sb1
1 , .., sbn

n

Fig. 2. Parallel Oblivious Transfer

Efficient OT Protocols. OTn
t′ can be instantiated efficiently with different protocols [1,69,72].

For example the protocol of [1] implemented over a suitably chosen elliptic curve using point
compression has communication complexity n(6(2t + 1)) + (2t + 1) ∼ 12nt bits and is secure
against malicious C and semi-honest S in the standard model as described in [58]. Similarly, the
protocol of [72] has communication complexity n(2(2t+ 1) + 2t′) ∼ 6nt bits and is secure against
malicious C and semi-honest S in the random oracle model. Both protocols require O(n) scalar
point multiplications and two messages (C → S → C).
Extending OT Efficiently. The extensions of [46] can be used to reduce the number of compu-
tationally expensive public-key operations of OTn

t′ to be independent of n.4 The transformation
for semi-honest C reduces OTn

t′ to OTt
t and a small additional overhead: one additional message,

2n(t′+ t) bits additional communication, and O(n) invocations of a correlation robust hash func-
tion such as SHA-256 (2n for S and n for C) which is substantially cheaper than O(n) asymmetric
operations. Also a slightly less efficient extension for malicious C is given in [46].

In some computation-sensitive applications, the important technique of [46] provides a crit-
ical performance improvement by getting rid of expensive public-key operations. We strongly
recommend using it for functions with many/large inputs, possibly in conjunction with OT pre-
computation described next.
Pre-Computing OT. All computationally expensive operations for OT can be shifted into a
setup phase by pre-computing OT of [6]: In the setup phase the parallel OT protocol is run

4 This is the reason for our choice of notation OTn
t′ instead of n× OTt′ .

Modular Design of Efficient Secure Function Evaluation Protocols 9

on randomly chosen values. Then, in the online phase, C uses its randomly chosen values ri to
mask his private inputs bi, and sends them to S. S replies with encryptions of his private inputs
sji using his random values mj

i from the setup phase. Which input of S is masked with which
random value is determined by C’s message. Finally, C can use the masks mi he received from
the OT protocol in the setup phase to decrypt the correct output values sbii .

More precisely, the setup phase works as follows: for i = 1, . . . , n, C chooses random bits
ri ∈R {0, 1} and S chooses random masks m0

i ,m
1
i ∈R {0, 1}t

′
. Both parties run a OTn

t′ protocol
on these randomly chosen values, where S inputs the pairs

〈
m0
i ,m

1
i

〉
and C inputs ri and obtains

the masks mi = mri
i as output. In the online phase, for each i = 1, . . . , n, C masks its input bits

bi with ri as b̄i = bi ⊕ ri and sends these masked bits to S. S responds with the masked pair of
t′-bit strings

〈
s̄0i , s̄

1
i

〉
=
〈
m0
i ⊕ s0i ,m1

i ⊕ s1i
〉

if b̄i = 0 or
〈
s̄0i , s̄

1
i

〉
=
〈
m0
i ⊕ s1i ,m1

i ⊕ s0i
〉

otherwise.

C obtains
〈
s̄0i , s̄

1
i

〉
and decrypts sbii = s̄rii ⊕mi. Overall, the online phase consists of two messages

of size n bits and 2nt′ bits and negligible computation (XOR of bitstrings).

Covert and Malicious Adversaries. Garbled functions-based SFE protocols can be easily
protected against covert or malicious client C, by using an OT protocol with corresponding
security.

Standard SFE protocols with garbled functions which additionally protect against covert
[4,44] or malicious [64] server S rely on the following cut-and-choose technique: S creates multiple
garbled functions f̃i, deterministically derived from random seeds si, and commits to each, e.g.,
by sending f̃i or Hash(f̃i) to C. In covert case, C asks S to open all but one garbled function I by
revealing the corresponding si 6=I . For all opened functions, C computes f̃i and checks that they
match the commitments. The malicious case is similar, but C asks S to open half of the functions,
evaluates the remaining ones and chooses the majority of their results. Additionally, it must be
guaranteed that S’s input into OT is consistent with the garbled circuits as pointed out in [57],
e.g., using committed or committing OT. The practical performance of cut-and-choose-based
garbled circuit protocols has been investigated experimentally in [67,77].5

For completeness, note that cut-and-choose may be avoided with SFE schemes, e.g., [49],
which use zero-knowledge proofs of correctness of circuit construction, and operate on committed
inputs [36]. However, their elementary steps involve public-key operations. As estimated by [77],
malicious-secure protocols [49, 74] often require substantially more computation than garbled
functions/cut-and-choose-based protocols.

We further note that there are yet other approaches to malicious security, e.g., [48]. Their
precise performance comparison is a desired but complicated undertaking, since, firstly, there are
several performance measures, and, further, some schemes may work well only for certain classes
of functions.

4.3 Garbled Circuits for SFE of Boolean Circuits

We now turn to presenting the boolean-circuit-specific details of SFE of garbled functions as
introduced in [94]. Recall, in §4.2 we left out the method of step-by-step creation of the garbled
function f̃ and its evaluation given the garblings of the input wires. In the following we describe
how the garbled circuit is constructed and evaluated.

To construct the garbled circuit C̃ for a given boolean circuit C, constructor S assigns to
each wire Wi of the circuit two randomly chosen garbled values w̃0

i , w̃
1
i – encryptions of 0 and 1

on that wire. We now show how to perform a basic step – to evaluate a gate Gi under encryption.
That is, given two garblings (one of each of the two of the gate’s inputs), we need to obtain the
garbling of the output wire consistently with the gate function. Here the constructor S gives
help to the evaluator C in the form of a garbled table T̃i with the following property: given a
set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the corresponding

5 Secure evaluation of the AES functionality (boolean circuit with 33, 880 gates) between two Intel Core 2 Duos
running at 3.0 GHz, with 4 GB of RAM connected by gigabit ethernet takes approximately 0.5 MB data transfer
and 7 s for semi-honest, 8.7 MB / 1 min for covert, and 400 MB / 19 min for malicious adversaries [77].

10 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

Gi’s output, but nothing else. This is easily done as follows. There are only four possible input
combinations (and their garblings). The garbled table will consist of four entries, each of which is
an encryption under a pair of input wire garblings of the corresponding output garbling. Clearly,
this allows the evaluator to compute Gi under encryption, and it can be shown that T̃i does not
leak any information [65].

This method is composable, and the entire boolean circuit can be evaluated gate-by-gate in
this manner. This technique also applies to gates with more than two inputs, but the size of
garbled tables grows exponentially in the number of gate inputs.

The above is a simple description of Yao’s technique. Today, a number of optimizations exist,
which we survey next (but do not discuss in detail).

Table 2. Size of efficient GC techniques in bits per garbled 2-input gate. t: symmetric security parameter

GC Technique non-XOR gate XOR gate Model

Point-and-Permute [71] 4t + 4 4t + 4 StM/ROM
Garbled Row Reduction [73] 3t + 3 3t + 3 StM/ROM
Secret-Sharing [77] 2t + 4 2t + 4 StM/ROM

Free XOR [59] 4t + 4 0 CoR/ROM
Garbled Row Reduced Free XOR [77] 3t + 3 0 CoR/ROM

Efficient Garbled Circuits. A summary of several techniques for garbled circuits is shown in
Table 2. In the following we concentrate on the currently most efficient technique for garbled
circuits, Garbled Row Reduced Free XOR of [77], which combines free XOR gates of [59] with
garbled row reduction of [73]. As XOR gates occur frequently in most circuits, this technique
results in better performance than the point-and-permute technique of [71] or the secret-sharing
based technique of [77], but can be proven secure only under a slightly stronger assumption than
the standard model (StM).

The garbled circuit technique of [77] allows “free” evaluation of XOR gates from [59], i.e.,
a garbled XOR gate has no garbled table (no communication) and its evaluation consists of
XOR-ing its garbled input values to obtain the garbled output value (negligible computation).

The other gates, referred to as non-XOR gates, are evaluated with the garbled row reduction
technique of [73], i.e., each 2-input non-XOR gate requires a garbled table of size 3t + 3 bit,
where t is the symmetric security parameter. Creating the garbled table for a 2-input non-XOR
gate in the pre-computation phase requires 4 invocations of a suitably chosen cryptographic
hash function such as SHA-256 in the random oracle model (ROM). Later, for evaluation of
a garbled 2-input non-XOR gate, the evaluator needs 1 invocation of the hash function. If the
cryptographic hash function is modeled to be correlation robust (CoR), a notion which is weaker
than random oracles and was introduced in [46], the number of hash invocations is twice as high.
Indeed, all known efficient GC constructions listed in Table 2 require exactly this number of hash
invocations.

Hardware-based SFE. We note that the transfer of garbled tables can be avoided entirely
when server S can send to client C a tamper-proof hardware token that generates the garbled
circuit on behalf of S. The token needs to compute only symmetric key primitives, has constant
amount of memory and does not need to be trusted by C [51]. Using trusted hardware also allows
to implement OT non-interactively, called one-time programs in combination with GC [43,45].

Efficient Circuit Constructions with free XOR. As XOR gates can be evaluated essentially
for free, the circuits to be evaluated can be optimized such that the number of non-XOR gates is
minimized. Such constructions which are commonly used in many applications are summarized
in Table 3: Addition, Subtraction and Comparison have cheap circuit representations (linear in
the size of the inputs). Also selecting the minimum or maximum value of n values together with

Modular Design of Efficient Secure Function Evaluation Protocols 11

its index (the function evaluated in a first-price auction [73]) has linear overhead. Permuting
(without duplicates) or selecting (with duplicates) n bits grows like O(n log n) and is hence
feasible as well. In contrast, multiplication has a more expensive circuit representation.

Table 3. Efficient circuit constructions for `-bit values (optimized for free XOR).

Functionality #non-XOR 2-input gates

Addition [10] `
Subtraction, Comparison [58] `
Multiplexer [59] `

Minimum/Maximum Value + Index of n `-bit values [58] 2`(n− 1) + (n + 1)

Permute n bits [59,91] n logn− n + 1
Select v from u ≥ v bits [59,60] u+3v

2
log v + u− 2v + 1

Multiplication [58] 2`2 − `

Private Circuits. In some applications the evaluated function is known by one party only
and should be kept secret from the other party. This can be achieved by securely evaluating a
Universal Circuit (UC) which can be programmed to simulate any circuit C and hence entirely
hides C (besides the number of inputs, number of gates and number of outputs). Efficient UC
constructions to simulate circuits consisting of k 2-input gates are given in [60, 89]. Generalized
UCs of [79] can simulate circuits consisting of d-input gates. Which UC construction is favorable
depends on the size of the simulated functionality: Small circuits can be simulated with the UC
construction of [79] with overheadO(k2) gates, medium-size circuits benefit from the construction
of [60] with overhead O(k log2 k) gates and for very large circuits the construction of [89] with
overhead O(k log k) gates is most efficient. Explicit sizes and a detailed analysis of the break-even
points between these constructions are given in [79].

While universal circuits entirely hide the structure of the evaluated functionality f , it is some-
times sufficient to hide f only within a class of topologically equivalent functionalities F , called
secure evaluation of a semi-private function f ∈ F . The circuits for many standard functionali-
ties are topologically equivalent and differ only in the specific function tables, e.g., comparison
(<,>,=, . . .) or addition/subtraction. It is possible to directly evaluate the circuit and avoid the
overhead of UC for semi-private functions as GC constructions of [71] and [73] completely hide
the type of the gates from evaluator C [30–33,76].

4.4 Garbled OBDDs for SFE of OBDDs

OBDDs can be evaluated securely in a way analogous to garbled circuits, as first described in [61].
We base our presentation on the natural extension of [61] described in [83, Sect. 3.4.1] and [5],
which also offers a (slight) improvement. Alternative approaches [47,70] based on homomorphic
encryption have smaller communication overhead, but put more computational load on S (public
key operations instead of symmetric operations for each decision node).

We now turn to presenting the OBDD-specific details of SFE of garbled functions. Recall, in
§4.2 we left out the method of step-by-step creation of the garbled function f̃ and its evaluation
given the garblings of the input wires. In the following we describe how the garbled OBDD is
constructed and evaluated. We note that the technique is somewhat similar to that of GC.

Create Garbled OBDD. In the pre-computation phase, S generates a garbled version Õ of the
OBDD O. For this, the OBDD is first extended with dummy nodes to ensure that each evaluation
path traverses the same number of variables in the same order resulting in evaluation paths of
equal length. Further, OBDD nodes are randomly permuted to prevent leaking information from
the sequence of steps taken by the evaluator (the start node P1 remains the first node in Õ).
Then, each decision node Pi, labeled with boolean variable xj , is converted into a garbled node

P̃i in Õ, as follows. A randomly chosen key ∆i ∈R {0, 1}t is associated with each node Pi. Node’s

12 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

information (pointers to the two successor nodes, and their encryption keys) is encrypted with
the node’s key ∆i. To preserve security, we ensure that ∆i is only revealed to the evaluator, if
this node is reached by executing on the parties’ inputs. Processing/evaluating an OBDD node
is simply following the pointer to one of the two child nodes, depending on the input. Since we
must prevent the evaluator from following both successor nodes, we additionally encrypt left
(resp. right) successor information with the garbling of the 0-value (resp. 1-value) of Pi’s decision
variable xj .

Evaluate Garbled OBDD. It is now easy to see the corresponding OBDD evaluation pro-
cedure. C receives the garbled OBDD Õ from S, and evaluates it locally on the garbled values
x̃1, .., x̃n and obtains the garbled value z̃ that corresponds to the result z = O(x1, . . . , xn), as
follows. C traverses the garbled OBDD Õ by decrypting garbled decision nodes along the evalu-
ation path starting at P̃1. At each node P̃i, C takes the garbled input value x̃i = 〈ki, πi〉 together
with the node’s key ∆i to decrypt the information needed to continue evaluation of the garbled
successor node until the garbled output value z̃ for the corresponding terminal node is obtained.

Implementation observations and optimizations. The employed semantically secure sym-
metric encryption scheme can be instantiated as Encsk(m) = m ⊕ H(k||s), where s is a unique
identifier used once, and H(k||s) is a pseudo-random function (PRF) evaluated on s and keyed
with k, e.g., a cryptographic hash function from the SHA-2 family. Additionally the following
technical improvement from [61] can be used: instead of encrypting twice (sequentially, with ∆i

and kji), the successor Pij ’s data can be encrypted with ∆i⊕ kji . The terminal nodes are garbled
simply by including their corresponding garbled output value (z̃0 for the 0-terminal or z̃1 for the
1-terminal) into the parent’s node (instead of the decryption key ∆i).

Efficiency. To evaluate the garbled OBDD Õ, the cryptographic hash function (e.g., SHA-256)
is invoked once per decision node along the evaluation path.

The garbled OBDD Õ for an OBDD with d decision nodes (after extension to evaluation paths
of equal length) contains d garbled nodes P̃i consisting of two ciphertexts of size dlog de+t+1 bits
each. The size of Õ is 2d(dlog de+ t+ 1) ∼ 2d(log d+ t) bits. Overall, creation of Õ requires 2d
invocations of a cryptographic hash function.

Private OBDDs. The garbled OBDD reveals only a small amount of information about the
evaluated OBDD to C, namely the total number d of decision nodes. We note that in many
cases this is acceptable. If not, this information can be hidden by appropriate padding with
dummy-nodes.

5 Composition of SFE Blocks with Semi-Honest Parties

We now show how to convert encryptions of intermediate values between the different represen-
tations that are used in the three protocols we described. Done securely, this allows arbitrary
compositions of the three techniques, and implies significant improvements to SFE.

We had already described the conversions between the plaintext values and encryptions.
These conversions are only applicable for input encryption and output decryption. Intermediate
values in the protocol must be converted without ever being decrypted entirely.

Fig. 3 shows the types of conversions that may occur in the composed SFE protocol. Both
parties have plain values as their inputs into the protocol. These plain values, denoted as x,
are first encrypted by converting them into their corresponding encrypted value (garbled value,
denoted as x̃, or homomorphic value, denoted as JxK, depending on which operations should
be applied). After encryption the function is securely evaluated on the encrypted values, which
may involve conversion of the encryptions between several representations. Finally, an encryption
of the output is obtained. The encrypted outputs are decrypted by converting them into their
corresponding plain output values. In the following we describe how to efficiently convert between
the two types of encryptions.

Modular Design of Efficient Secure Function Evaluation Protocols 13

Plain Value x

Boolean Circuits or OBDDs
with Garbled Function

Client C

Homomorphic Value �x�

Plain Value x

Server S

Garbled Value �x

Arithmetic Circuits
with Homomorphic Encryption

Inputs/Outputs

Encrypted Values

SFE of

Fig. 3. Composition of Secure Function Evaluation Protocols

5.1 Garbled Values to Homomorphic Values.

A garbled `-bit value x̃ held by C (usually obtained from evaluating a garbled function) can be
efficiently converted into a homomorphic value held by S by using additive blinding or bitwise
encryption as described next.

Additive Blinding. S randomly chooses a random mask r ∈R {0, 1}`+σ, where σ is the sta-
tistical security parameter and ` + σ ≤ |P | to avoid an overflow, and adds the random mask
converted into garbled value r̃ to x̃ using a garbled (`+ σ)-bit addition circuit that computes ˜̄x
with x̄ = x+ r. This value is converted into a plain output value x̄ for C who homomorphically
encrypts this value and sends the result Jx̄K to S. Finally, S takes off the random mask under
encryption as JxK = Jx̄K � (−1)JrK. A detailed description of this conversion protocol is given
in [58].

Bitwise Encryption. If the bitlength ` of x̃ is small, a bitwise approach can be used as well
in order to avoid the garbled addition circuit: C homomorphically encrypts the permutation
bits πi of the garbled boolean output values x̃i = 〈ki, πi〉 and sends JπiK to S. S flips those
encrypted permutation bits for which the permutation bit was set as π0i = 1 during creation to
Jπ′iK = J1K � (−1)Jπ′iK or otherwise Jπ′iK = JπiK. Then, S combines these potentially flipped bit
encryptions using Horner’s scheme as JxK = Jπ′`||..||π′1K.
Performance Comparison. The conversion based on additive blinding requires a garbled ad-
dition circuit for (`+σ)-bit values and the transfer of the (`+σ)-bit garbled value r̃. When using
the efficient GC technique described in §4.3, this requires in total 4(`+ σ)(t+ 1) bits sent from
S to C in the pre-computation phase. In the online phase, the garbled circuit is evaluated and
the result is homomorphically encrypted and sent to S (one ciphertext).

The conversion using bitwise encryption requires ` homomorphic encryptions and transfer of
` ciphertexts from C to S in the online phase. At least for converting a single bit, i.e., when ` = 1,
this technique results in better performance.

5.2 Homomorphic Values to Garbled Values

In the following we describe how to convert a homomorphic `-bit value JxK into a garbled value x̃.
This protocol has been widely used to combine homomorphic encryption with garbled functions,
e.g., in [5, 11,13,50].
S additively blinds JxK with a random pad r ∈R {0, 1}`+σ, where σ is the statistical security

parameter and `+σ ≤ |P | to avoid an overflow, as Jx̄K = JxK�JrK. S sends the blinded ciphertext
Jx̄K to C who decrypts and inputs the ` least significant bits of x̄, χ = x̄ mod 2`, to an `-parallel
OT protocol to obtain the corresponding garbled value χ̃. Then, the mask is taken off within a
garbled `-bit subtraction circuit which gets as inputs χ̃ and ρ̃ converted from ρ = r mod 2` as
input from S. The output obtained by C is x̃ which corresponds to x = χ− ρ.

Again, packing as described in §4.1 can be used to improve efficiency of parallel conversions
from homomorphic to garbled values by packing multiple ciphertexts together before additive
blinding and sending them to C.

14 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

References
1. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods. In Advances in

Cryptology – EUROCRYPT’01, volume 2045 of LNCS, pages 119–135. Springer, 2001.
2. E. Allender, M. C. Loui, and K. W. Regan. Complexity classes. In M. J. Atallah, editor, Algorithms and

Theory of Computation Handbook, chapter 27. CRC Press, 1999.
3. F. Armknecht and A.-R. Sadeghi. A new approach for algebraically homomorphic encryption. Cryptology

ePrint Archive, Report 2008/422, 2008.
4. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. In

Theory of Cryptography (TCC’07), volume 4392 of LNCS, pages 137–156. Springer, 2007.
5. M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider. Secure evaluation of private

linear branching programs with medical applications. In European Symposium on Research in Computer
Security (ESORICS ’09), volume 5789 of LNCS, pages 424–439. Springer, 2009.

6. D. Beaver. Precomputing oblivious transfer. In Advances in Cryptology – CRYPTO’95, volume 963 of LNCS,
pages 97–109. Springer, 1995.

7. B. Bollig, M. Löbbing, and I. Wegener. Simulated annealing to improve variable orderings for OBDDs.
IEEE/ACM International Workshop on Logic Synthesis (IWLS’95), 1995.

8. B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on
Computers, 45(9):993–1002, 1996.

9. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In Theory of Cryptography
(TCC’05), volume 3378 of LNCS, pages 325–341. Springer, 2005.

10. J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of boolean functions over the basis
(∧,⊕, 1). Theoretical Computer Science, 235(1):43–57, 2000.

11. J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving remote diagnostics. In ACM
Conference on Computer and Communications Security (CCS’07), pages 498–507. ACM, 2007.

12. J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In Advances in
Cryptology – ASIACRYPT’05, volume 3788 of LNCS, pages 236–252. Springer, 2005.

13. J. Brickell and V. Shmatikov. Privacy-preserving classifier learning. In Financial Cryptography and Data
Security (FC’09), volume 5628 of LNCS, pages 128–147. Springer, 2009.

14. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers,
35(8):677–691, 1986.

15. R. E. Bryant. On the complexity of VLSI implementations and graph representations of boolean functions
with application to integer multiplication. IEEE Transactions on Computers, 40(2):205–213, 1991.

16. C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and secure autonomous
mobile agents. In International Colloquium on Automata, Languages and Programming (ICALP’00), volume
1853 of LNCS. Springer, 2000.

17. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two safe primes. In
Advances in Cryptology – EUROCRYPT’99, volume 1592 of LNCS, pages 107–122. Springer, 1999.

18. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition. The
MIT Press, September 2001.

19. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI and University
of Amsterdam, 1997.

20. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness
hiding protocols. In Advances in Cryptology – CRYPTO’94, volume 839 of LNCS, pages 174–187. Springer,
1994.

21. I. Damg̊ard, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-line auctions. In Australasian
Conference on Information Security and Privacy (ACISP’07), volume 4586 of LNCS, pages 416–430. Springer,
2007.

22. I. Damg̊ard, M. Geisler, and M. Krøigaard. A correction to “efficient and secure comparison for on-line
auctions”. Cryptology ePrint Archive, Report 2008/321, 2008.

23. I. Damg̊ard, M. Geisler, and M. Krøigaard. Homomorphic encryption and secure comparison. Journal of
Applied Cryptology, 1(1):22–31, 2008.

24. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of paillier’s probabilistic
public-key system. In Public-Key Cryptography (PKC’01), volume 1992 of LNCS, pages 119–136. Springer,
2001.

25. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In
Advances in Cryptology – EUROCRYPT’10, LNCS. Springer, 2010. To appear. Preliminary version available
at http://eprint.iacr.org/2009/616.

26. R. Drechsler, B. Becker, and N. Gockel. Genetic algorithm for variable ordering of OBDDs. IEE Proceedings
on Computers and Digital Techniques, 143(6):364–368, 1996.

27. Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-preserving face recog-
nition. In Privacy Enhancing Technologies Symposium (PETS’09), volume 5672 of LNCS, pages 235–253.
Springer, 2009.

Modular Design of Efficient Secure Function Evaluation Protocols 15

28. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems.
In Advances in Cryptology – CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, 1987.

29. K. B. Frikken. Practical private DNA string searching and matching through efficient oblivious automata
evaluation. In Data and Applications Security (DBSec’09), volume 5645 of LNCS, pages 81–94. Springer,
2009.

30. K. B. Frikken, M. J. Atallah, and J. Li. Hidden access control policies with hidden credentials. In ACM
Workshop on Privacy in the Electronic Society (WPES’04), pages 27–27. ACM, 2004.

31. K. B. Frikken, M. J. Atallah, and J. Li. Attribute-based access control with hidden policies and hidden
credentials. IEEE Transactions on Computers, 55(10):1259–1270, 2006.

32. K. B. Frikken, M. J. Atallah, and C. Zhang. Privacy-preserving credit checking. In ACM conference on
Electronic Commerce (EC’05), pages 147–154. ACM, 2005.

33. K. B. Frikken, J. Li, and M. J. Atallah. Trust negotiation with hidden credentials, hidden policies, and policy
cycles. In Network and Distributed System Security Symposium (NDSS’06), 2006.

34. M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of binary decision diagrams for the application
of multi-level logic synthesis. In Conference on European Design Automation (EURO-DAC’91), pages 50–54.
IEEE, 1991.

35. M. Fürer. Faster integer multiplication. In ACM Symposium on Theory Of Computing (STOC’07), pages
57–66. ACM, 2007.

36. J. A. Garay, P. MacKenzie, and K. Yang. Efficient and universally composable committed oblivious transfer
and applications. In Theory of Cryptography (TCC’04), volume 2951 of LNCS, pages 297–316. Springer, 2004.

37. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to
untrusted workers. Cryptology ePrint Archive, Report 2009/547, 2009. http://eprint.iacr.org/.

38. C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on Theory of Computing
(STOC’09), pages 169–178. ACM, 2009.

39. C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple BGN-type cryptosystem from LWE. In Advances
in Cryptology – EUROCRYPT’10, LNCS. Springer, 2010. To appear. Updated version available at http:

//eprint.iacr.org/2010/182.
40. D. Giry and J.-J. Quisquater. Cryptographic key length recommendation, March 2009. http://keylength.

com.
41. O. Goldreich. Foundations of Cryptography, volume 1: Basic Tools. Cambridge University Press, 2001. Draft

available at http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html.
42. O. Goldreich. Foundations of Cryptography, volume 2: Basic Applications. Cambridge University Press, 2004.

Draft available at http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html.
43. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In Advances in Cryptology – CRYPTO

2008, volume 5157 of LNCS, pages 39–56. Springer, 2008.
44. V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party computation against covert ad-

versaries. In Advances in Cryptology – EUROCRYPT’08, volume 4965 of LNCS, pages 289–306. Springer,
2008.

45. V. Gunupudi and S. Tate. Generalized non-interactive oblivious transfer using count-limited objects with
applications to secure mobile agents. In Financial Cryptography and Data Security (FC’08), volume 5143 of
LNCS, pages 98–112. Springer, 2008.

46. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In Advances in
Cryptology – CRYPTO’03, volume 2729 of LNCS, pages 145–161. Springer, 2003.

47. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In Theory of Cryptography
(TCC’07), volume 4392 of LNCS, pages 575–594. Springer, 2007.

48. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In Advances
in Cryptology – CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer, 2008.

49. S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs. In Advances in
Cryptology – EUROCRYPT’07, volume 4515 of LNCS, pages 97–114. Springer, 2007.

50. A. Jarrous and B. Pinkas. Secure hamming distance based computation and its applications. In Applied
Cryptography and Network Security (ACNS’09), volume 5536 of LNCS, pages 107–124. Springer, 2009.

51. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Embedded SFE: Offloading server and network
using hardware tokens. In Financial Cryptography and Data Security (FC’10), LNCS. Springer, 2010. To
appear. Full version available at http://eprint.iacr.org/2009/591.

52. S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic computation. In IEEE Symposium
on Security and Privacy (S&P’08), pages 216–230. IEEE, 2008.

53. M. Jurik. Extensions to the Paillier Cryptosystem with Applications to Cryptological Protocols. PhD thesis,
Basic Research in Computer Science, August 2003.

54. V. Kabanets and J. Cai. Circuit minimization problem. In ACM Symposium on Theory of Computing
(STOC’00), pages 73–79. ACM, 2000.

55. David Kahn. The Codebreakers — The Story of Secret Writing. Macmillan Publishing Co, New York, USA,
1967.

56. A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers. Proceedings
of the SSSR Academy of Sciences, 145:293–294, 1962.

16 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

57. M. S. Kiraz and B. Schoenmakers. A protocol issue for the malicious case of Yaos garbled circuit construction.
In 27th Symposium on Information Theory in the Benelux, pages 283–290, 2006.

58. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks and applications
to auctions and computing minima. In Cryptology and Network Security (CANS’09), volume 5888 of LNCS,
pages 1–20. Springer, 2009.

59. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In International
Colloquium on Automata, Languages and Programming (ICALP’08), volume 5126 of LNCS, pages 486–498.
Springer, 2008.

60. V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure evaluation of private
functions. In Financial Cryptography and Data Security (FC’08), volume 5143 of LNCS, pages 83–97. Springer,
2008.

61. L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function evaluation with ordered binary decision diagrams.
In ACM Conference on Computer and Communications Security (CCS’06), pages 410–420. ACM Press, 2006.

62. W. Lenders and C. Baier. Genetic algorithms for the variable ordering problem of binary decision diagrams.
In Foundations Of Genetic Algorithms (FOGA’05), volume 3469 of LNCS, pages 1–20, 2005.

63. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–206, 2002.
64. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious

adversaries. In Advances in Cryptology – EUROCRYPT’07, volume 4515 of LNCS, pages 52–78. Springer,
2007.

65. Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party computation. Journal of Cryptology,
22(2):161–188, 2009. Cryptology ePrint Archive: Report 2004/175.

66. Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data mining. Journal of
Privacy and Confidentiality, 1(1):59–98, 2009.

67. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with security against
malicious adversaries. In Security and Cryptography for Networks (SCN’08), volume 5229 of LNCS, pages
2–20. Springer, 2008.

68. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In Advances on Cryptology
- ASIACRYPT’03, volume 2894 of LNCS, pages 398–415. Springer, 2003.

69. H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In Advances in Cryptology –
ASIACRYPT’03, volume 2894 of LNCS. Springer, 2003.

70. H. Lipmaa. Private branching programs: On communication-efficient cryptocomputing. Cryptology ePrint
Archive, Report 2008/107, 2008. http://eprint.iacr.org/.

71. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system. In USENIX,
2004. http://fairplayproject.net.

72. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In ACM-SIAM Symposium On Discrete Algo-
rithms (SODA’01), pages 448–457. Society for Industrial and Applied Mathematics, 2001.

73. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In ACM Conference
on Electronic Commerce, pages 129–139, 1999.

74. J. B. Nielsen and C. Orlandi. Lego for two-party secure computation. In Theory of Cryptography (TCC’09),
volume 5444 of LNCS, pages 368–386. Springer, 2009.

75. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptology
– EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

76. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private functions. In Applied
Cryptography and Network Security (ACNS’09), volume 5536 of LNCS, pages 89–106. Springer, 2009. http:

//www.trust.rub.de/FairplaySPF.
77. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical. In

Advances in Cryptology – ASIACRYPT’09, volume 5912 of LNCS, pages 250–267. Springer, 2009.
78. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In IEEE/ACM International

Conference on Computer-Aided Design (ICCAD’93), pages 42–47. IEEE, 1993.
79. A.-R. Sadeghi and T. Schneider. Generalized universal circuits for secure evaluation of private functions

with application to data classification. In International Conference on Information Security and Cryptology
(ICISC’08), volume 5461 of LNCS, pages 336–353. Springer, 2008.

80. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition. In International
Conference on Information Security and Cryptology (ICISC’09), LNCS. Springer, 2009.

81. T. Sander and C. Tschudin. Protecting mobile agents against malicious hosts. In Mobile Agents and Security,
volume 1419 of LNCS, pages 44–60. Springer, 1998.

82. T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In IEEE Symposium on
Foundations of Computer Science (FOCS’99), pages 554–566. IEEE, 1999.

83. T. Schneider. Practical secure function evaluation. Master’s thesis, University of Erlangen-Nuremberg, Febru-
ary 27, 2008. http://thomaschneider.de/papers/S08Thesis.pdf.

84. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.
85. A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen (Fast multiplication of large numbers).

Computing, 7(3):281–292, 1971.

Modular Design of Efficient Secure Function Evaluation Protocols 17

86. A. Schröpfer, F. Kerschbaum, D. Biswas, S. Geißinger, and C. Schütz. L1 – faster development and bench-
marking of cryptographic protocols. In ECRYPT Workshop on Software Performance Enhancements for
Encryption and Decryption and Cryptographic Compilers (SPEED-CC’09), 2009.

87. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes.
In Public Key Cryptography (PKC’10), LNCS. Springer, 2010. To appear. Preliminary version available at
http://eprint.iacr.org/2009/571.

88. J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. U. Celik. Privacy preserving error resilient DNA searching
through oblivious automata. In ACM Conference on Computer and Communications Security (CCS’07), pages
519–528. ACM, 2007.

89. L. G. Valiant. Universal circuits (preliminary report). In ACM Symposium on Theory of Computing
(STOC’76), pages 196–203. ACM, 1976.

90. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer, Secaucus, NJ, USA, 1999.
91. A. Waksman. A permutation network. Journal of the ACM (JACM), 15(1):159–163, 1968.
92. P. Woelfel. Bounds on the OBDD-size of integer multiplication via universal hashing. Journal of Computer

and System Sciences, 71(4):520–534, 2005.
93. A. C. Yao. Protocols for secure computations. In IEEE Symposium on Foundations of Computer Science

(FOCS’82), pages 160–164. IEEE, 1982.
94. A. C. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations of Computer Science

(FOCS’86), pages 162–167. IEEE, 1986.

A Background: Where SFE Fits in Secure Computing

Cryptography (from Greek “secret writing”) with thousands of years of history [55] has emerged
as a tool for secret communication. However, only recently, with the development of fast comput-
ing devices, has cryptography grown into a structured and mathematical science. The science of
secret communications became more formal and rigorous, and, simultaneously, new directions of
cryptography appeared and developed. Modern cryptography encompasses much more than the
original intent. Examples of new directions include ability to prove knowledge of secrets with-
out revealing any information about them, means of electronic identification, secure financial
transactions, and much more.

The state of modern communications allows easy access to almost any imaginable resource
or person. At the same time, the underlying connectivity layer provides weak, if any, guarantees.
For example, if Alice sends a message to Bob, this message not only may be lost, it may also
be read and, more importantly, modified by an adversary, while in transit. While most Internet
traffic is of little or no interest to attackers, a portion of it serves transactions of value, and
requires strong security. Protection against eavesdropping and interference with the legitimate
communication is relatively well understood and remains perhaps the most commonly used fruit
of cryptography.

However, even a perfectly secure communication system is only a part of the solution. Imagine
a situation where Alice participates in a transaction with Bob, but does not completely trust
him. This occurs in many settings where the participants may have conflicting interests, including
contract signing, buy/sell transactions, outsourcing computation or storage to untrusted servers,
etc. Securing the communication channel cannot provide any assurance that Bob does not cheat.
Can we protect Alice’s (and everyone else’s) interests in this setting? A study of Secure Function
Evaluation (SFE), which began in the 1980’s, emerged from the need not only to communicate,
but also to compute securely. It addresses the problem of providing security against cheating
participants of the computation.

B Function Representations

B.1 Boolean Circuits

Boolean circuits is a classical representation of functions in engineering and computer science.

A boolean circuit with u inputs, v outputs and k gates is a directed acyclic graph (DAG) with
|V | = u+ v+ k vertices (nodes) and |E| edges. Each node corresponds to either a gate, an input
or an output. The edges are called wires. For simplicity, the input- and output nodes are often

18 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

omitted in the graphical representation of a boolean circuit as shown in Fig. 1(a). For a more
detailed definition see [90].

A d-input gate G computes a d-ary boolean function g : {0, 1}d → {0, 1}. Typical gates are
XOR (⊕), XNOR (=), AND (∧), OR (∨); gates are often specified by their function table, which
contains 2d entries.

Gates of the boolean circuit can be evaluated in any order, as long as all of the current gate
inputs are available. This property is ensured by sorting (and evaluating) the gates topologically,
which can be done efficiently in O(|V | + |E|) [18, Topological sort, pp. 549-552]. The topologic
order of a boolean circuit indexes the gates with labels G1, . . . , Gk and ensures that the i-th gate
Gi has no inputs that are outputs of a successive gate Gj>i. In complexity theory, a circuit with
such a topologic order is called a straight-line program [2]. Given the values of the inputs, the
output of the boolean circuit can be evaluated by evaluating the gates one-by-one in topologic
order. A valid topologic order for the example boolean circuit in Fig. 1(a) would be ∧,⊕,∨,=.
The topologic order is not necessarily unique, e.g., ⊕,∧,=,∨ would be possible as well.

Automatic Generation. Boolean circuits can be automatically generated from a high-level
specification of the function. A prominent example is the well-established Fairplay compiler [71].
Fairplay’s Secure Function Description Language (SFDL) resembles a simplified version of a
hardware description language, such as VHDL6, and supports types, variables, functions, boolean
operators (∧,∨,⊕, . . .), arithmetic operators (+,−, ∗, /), comparison (<,≥,=, . . .) and control
structures like if-then-else or for-loops with constant range (cf. [71, Appendix A] for a detailed
description of the syntax and semantics of SFDL). Fairplay also includes a GUI that assists the
programmer in creating SFDL programs with graphical code templates. The Fairplay compiler
automatically transforms the functionality described as SFDL program into the corresponding
boolean circuit.

B.2 Arithmetic Circuits

Arithmetic circuits is a more compact function representation than boolean circuits.

An arithmetic circuit over a ring R and the set of variables x1, ..., xn is a directed acyclic
graph (DAG). Fig. 1(b) illustrates an example. Each node with in-degree zero is called an input
gate labeled by either a variable xi or an element in R. Every other node is called a gate and
labeled by either + or × denoting addition or multiplication in R.

Any boolean circuit can be expressed as an arithmetic circuit over R = Z2. However, if we
use R = Zm for sufficiently large modulus m, the arithmetic circuit can be much smaller than its
corresponding boolean circuit, as integer addition and multiplication can be expressed as single
operations in Zm.

Number Representation. We note that arithmetic circuits can simulate computations on
both positive and negative integers by mapping them into elements of Zm as follows. Zero and
positive values are mapped to the elements 0, 1, 2, . . . whereas negative values are mapped to
m−1,m−2, As with all fixed precision arithmetics, overflows or underflows must be avoided.

B.3 Ordered Binary Decision Diagrams

Another possibility to represent boolean functions are Ordered Binary Decision Diagrams (OBDD)
introduced by Bryant [14].

A binary decision diagram (BDD) is a rooted, directed acyclic graph (DAG) which consists
of decision nodes and two terminal nodes called 0-terminal and 1-terminal. Each decision node is
labeled by a boolean decision variable and has two child nodes, called low child and high child.
The edge from a node to a low (high) child represents an assignment of the variable to 0 (1). An
ordered binary decision diagram (OBDD) is a BDD in which the decision variables appear in the
same order on all paths from the root.

6 Very high speed integrated circuit Hardware Description Language

Modular Design of Efficient Secure Function Evaluation Protocols 19

Given an assignment 〈x1 ← b1, . . . , xn ← bn〉 to the variables x1, . . . , xn, the value of the
Boolean function f(b1, . . . , bn) can be found by starting at the root and following the path where
the edges on the path are labeled with b1, . . . , bn.

Example. Fig. 1(c) shows the OBDD for the function f(x1, x2, x3, x4) = (x1 = x2)∧(x3 = x4) of
four variables x1, x2, x3, x4 with the total ordering x1 < x2 < x3 < x4.

7 Consider the assignment
〈x1 ← 1, x2 ← 1, x3 ← 0, x4 ← 0〉. In the OBDD shown in Fig. 1(c), if we start at the root and
follow the edges corresponding to the assignment, we end up at the 1-terminal which implies that
f(1, 1, 0, 0) = 1.

Generalizations. Multiple OBDDs can be used to represent a function g with multiple outputs.
If g’s outputs can be encoded by k boolean variables, then g can be represented by k OBDDs
where the i-th OBDD computes the i-th output bit.

Further generalizations of OBDDs can be obtained by having multiple terminal nodes (called
classification nodes) and more general branching conditions: In a Branching Program [11] the
child node is determined depending on the comparison of the `-bit input variable xαi with a
decision node specific threshold ti. In Linear Branching Programs [5] the branching condition is
the comparison of the scalar product between the input vector x of n `-bit values and a decision
node specific coefficient vector ai with a decision node specific threshold ti.

Efficiency. Although some functions require in the worst case an OBDD of size exponential
in the number of inputs, many functions encountered in typical applications (e.g., addition or
comparison) have a reasonably small OBDD representation [14].

Even though finding an optimal variable ordering for OBDDs is NP-complete [8], in many
practical cases OBDDs can be minimized to a reasonable size. Algorithms to improve the variable
ordering of OBDDs are Rudell’s sifting algorithm [78], the window permutation algorithm [34],
genetic algorithms [26,62], or algorithms based on simulated annealing [7].

Nevertheless, some functions have a lower bound for the size of the smallest OBDD repre-
sentation which is exponential. For example n-bit integer multiplication has an exponential size
OBDD [15,92] but requires only one multiplication gate in an arithmetic circuit over a sufficiently
large ring. Multiplication within a boolean circuit has complexity O(n2) using school method or
O(nlog2 3) with the method of [56]. Fast multiplication methods which apply the Fourier trans-
formation have better asymptotic complexity but hide large constant factors in the O notation
which makes them more efficient for large inputs (thousands of bits) only: O(n log n log logn) [85]
and n log n2O(lg

∗n) [35]8.

C Intuition Behind SFE Definitions

Formal definitions of security of SFE are very detailed (pages long) and subtle. Here we convey
the basic idea behind the formalization and the employed ideal/real paradigm.

Intuitively, a protocol transcript (i.e., the sequence of messages exchanged between the par-
ties) does not leak player’s input, if an indistinguishable (i.e., similar-looking) transcript can be
constructed without any knowledge of the input. (We note that the two transcripts, real and
simulated, must look the same to a powerful distinguisher who, in particular, knows the inputs.)
It is now intuitive that if the protocol leaks some information on the inputs, there will exist a dis-
tinguisher who simply extracts this information from the transcript, and compares to the player’s
input. Since the simulated transcript was constructed without the knowledge of the input, the
distinguisher will be able to distinguish it from the real one, and such protocol will be insecure
by definition. Further, the proof of security for players A and B in the protocol Π consists of
constructing such simulators SimA, SimB, and proving that their output is indistinguishable
from the real transcript of the protocol.

7 OBDDs are sensitive to variable ordering, e.g., with the ordering x1 < x3 < x2 < x4 the OBDD for f has 11
nodes.

8 lg∗n = mini≥0 lg
(i)n ≤ 1, lg(0)n = n, lg(i+1)n = log2 lg

(i)n.

20 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

The above intuition is sufficient for the formalization of the semi-honest model. However, in
the presence of actively cheating players (who can substitute their input, among other things),
this does not quite work, as it is not even clear if the players indeed evaluate the intended function.
Thus, the following extension of the simulation paradigm was introduced. We now define an ideal
world, where players have very limited cheating powers (they are allowed to abort, substitute
their local inputs, and output what they wish), and rely on a trusted party to provide them
with the resulting output of the computation over a perfectly secure channel. We say that a
real-world protocol Π is secure if for any real-world attacker there is a corresponding ideal-world
attacker that can do “the same harm”. Since ideal world clearly limits the attack powers, the same
limit would apply to the real world. This is formalized by the ability to simulate the real-world
transcript (i.e., to generate an indistinguishable transcript) by the ideal-world simulator.

The formal definitions for the semi-honest and malicious player security can be found in [42].

The formalization of the covert adversaries is similar to that of the malicious; the difference
is in the definition of the ideal world, where ideal world adversaries are given the option to cheat,
but are caught (i.e., their opponent is notified) with certain fixed probability. Other aspects
of definition remain the same; because of simulatability properties and the general approach of
ideal-real paradigm, a secure real-world covert adversary also may choose to cheat, but be caught
by the opponent with the specified probability. The formal definitions for covert security (three
variations) were proposed in [4].

We note that SFE protocols will guarantee security for the honestly behaving player who may
be engaging with cheating adversary. If both players are deviating from the protocol, definitions
provide no guarantees.

D Efficient Techniques for Protection Against Malicious Actions

To achieve security against malicious parties, privacy-preserving protocols are usually designed
in “layers”. First a core protocol in the semi-honest model is constructed, and then, following
the compilation paradigm of [42], each party needs to prove in zero-knowledge that it behaved
honestly. (In the case of covert adversaries, each party needs to be convinced that a cheating
opponent can be caught with certain probability, a weaker requirement.) As discussed in §3.1, it is
often necessary to achieve hybrid security against malicious client C, while the server S is assumed
to be semi-honest. In the following, we summarize standard methods for proving relations among
homomorphically encrypted values in zero-knowledge and show how to avoid expensive zero-
knowledge proofs for several standard tasks, such as multiplication of homomorphic values and
conversion between homomorphic and garbled values.

D.1 Zero-Knowledge Proofs

A proof of knowledge for a relation R = {(x,w)} is a protocol between a prover and a verifier.
Both parties get the public value x as common input while prover gets witness w as private input
with (x,w) ∈ R and tries to convince the verifier that he knows a witness without revealing
any further information on it. After the protocol execution, verifier decides whether it accepts
or rejects the proof. A proof must be complete and sound. Completeness guarantees that the
protocol works for any pair (x,w) ∈ R, i.e., for all (x,w) ∈ R the verifier accepts the proof if
both parties follow the protocol. Soundness guarantees that a cheating prover cannot successfully
convince a verifier if prover does not know a witness w for x. More formally, an efficient knowledge
extractor with black-box access to the possibly malicious prover can be constructed to compute
a witness (cf., e.g., [41]). A proof is zero-knowledge, if a simulator can be constructed that, given
access to x and the malicious verifier, produces a view of the protocol which is indistinguishable
from verifier’s view in a protocol execution with a real prover. In special honest-verifier zero-
knowledge (SHVZK) proofs the verifier is assumed to be semi-honest and the simulator can
produce views for a given challenge of the verifier.

Modular Design of Efficient Secure Function Evaluation Protocols 21

Efficient SHVZK proofs of knowledge are the well-known Σ-protocols [19, 20]. These are 3-
move protocols where prover starts with a commit message, verifier provides a randomly chosen
challenge which is answered by the prover. Σ-protocols can be efficiently combined to prove an
arbitrary AND/OR combination of underlying statements [20].

Σ-protocols can be made non-interactive using the standard Fiat-Shamir heuristic [28] by
computing the challenge from the first message using a cryptographic hash function. This can
be proved secure in the random oracle model.

Zero-Knowledge Proofs for SFE. We summarize several efficient zero-knowledge protocols
suited as building-blocks to secure SFE protocols against malicious behavior.

For the additively homomorphic Paillier and Damg̊ard-Jurik cryptosystems one can efficiently
prove knowledge of the plaintext encrypted within a ciphertext [24]. It is also possible to prove
various relations about the plaintexts encrypted within a ciphertext [53], e.g., equality, linear, or
multiplicative relations between two encrypted plaintexts, or that an encrypted plaintext indeed
is an `-bit value using efficient interval proofs of [68].

To achieve security against malicious client C in SFE protocols based on homomorphic encryp-
tion, it is necessary that C’s public-key pk is well-formed. To achieve this, pk can be generated (or
checked) and certified by a trusted third party. Alternatively, C can prove to S in zero-knowledge
that pk – an RSA modulus in most commonly used additively homomorphic schemes of [24, 75]
– is well-formed using the rather expensive zero-knowledge proof of [17].

D.2 Multiplication of Homomorphic Values

In the following, we discuss protocols for multiplying two homomorphic `-bit values JxK and JyK
with security against malicious C. The obvious approach is to extend the semi-honest protocol
of §4.1 which uses additively blinded values Jx̄K, JȳK such that C proves in zero-knowledge that
he behaved honestly, i.e., that the multiplicative relation between Jx̄K, JȳK, and Jx̄ȳK holds.

Optimization. We show how to improve efficiency of this protocol by avoiding to prove the
multiplicative relation in zero-knowledge: S chooses random multiplicative masks mx,my ∈R
{0, 1}σ and additive masks tx, ty ∈R {0, 1}`+2σ , where σ is the statistical security parameter
and `+ 2σ ≤ |P | to avoid an overflow. Then, S blinds the values multiplicatively and additively
by computing Jx̄K = Jmxx + txK and JȳK = Jmyy + tyK and sends these blinded values to C.
C decrypts, multiplies and sends back JcK = Jx̄ȳK. Finally, S obtains the intended result as
JxyK = (mxmy)

−1JcK � (−mytx)JyK � (−mxty)JxK � J−txtyK.
It is easy to verify that if C cheats by sending back the encryption of a different value, then

he modifies the result in an unpredictable way.

D.3 Garbled Values to Homomorphic Values

To convert a garbled value x̃ into its corresponding homomorphic value JxK with malicious client C
we extend the bitwise conversion protocol of §5.1 as follows: When C sends the homomorphically
encrypted values of the output bits to S he additionally has to prove in zero-knowledge that
the encrypted bit is consistent with the garbled output value which is either x̃0i =

〈
k0i , π

0
i

〉

or x̃1i =
〈
k1i , π

1
i

〉
. For this, S provides C with deterministic commitments for the two possible

garblings c0i , c
1
i , where c

π0
i
i = gx̃

0
i , c

π1
i
i = gx̃

1
i , and g is the generator of a prime-order group in

which the discrete logarithm problem is hard (e.g., an elliptic curve group for maximal efficiency).
Using the efficient zero-knowledge proofs for knowledge of a discrete logarithm in a prime-order
group of [84], C can efficiently prove the following statements in zero-knowledge: (C knows the
discrete log of c0i AND the homomorphic ciphertext encrypts 0) OR (C knows the discrete log of
c1i AND the homomorphic ciphertext encrypts 1).

D.4 Homomorphic Values to Garbled Values

Finally, we describe how to efficiently convert a homomorphic `-bit value JxK into a garbled
value JxK with malicious client C. The high-level structure is the same as the conversion for
semi-honest parties described in 5.2: S blinds the homomorphic value with a randomly chosen

22 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

mask r ∈R {0, 1}`+σ as Jx̄K = JxK � JrK and sends this to C. C decrypts and obtains the (`+ σ)-
bit representation x̄i. Now, C must be guaranteed that he decrypted correctly and the inputs
in the following OT protocol match this decrypted value. For this, C decomposes x̄ into its
bit-representation x̄i and sends homomorphic encryptions of each bit Jx̄iK to S. Additionally,
C proves in zero-knowledge that these homomorphically encrypted bits when added together as∑`+σ

i=1 2i−1Jx̄iK encrypt the same value as Jx̄K. This corresponds essentially to proving equality of
two encrypted plaintexts as the encryption scheme is homomorphic. Additionally, C has to prove
that each encrypted bit Jx̄iK is indeed an encryption of either 0 or 1. We show how to avoid this
rather expensive proof later. S uses Jx̄iK as first message in the Paillier-based OT protocol of [69]
to obliviously transfer the corresponding garbled values of ˜̄x to C. Then, C evaluates a garbled
subtraction circuit to take off the random mask. This circuit gets inputs ˜̄x and r̃ and computes
the garbled value x̃ corresponding to x = x̄− r.
Optimization. In the following we try to optimize such that C does not need to prove in zero-
knowledge that he indeed sent homomorphic encryptions of bits. We note that if C tries to cheat
by sending an encryption of neither 0 nor 1 he will obtain a random string instead of a valid
garbled input value corresponding to this bit as output of the OT protocol. Due to this property
of OT it would be sufficient if C proves in zero-knowledge that he obtained correctly the garbled
input values ˜̄xi which implies that he did not cheat with the inputs of the OT protocol (the
probability that C guesses a valid garbled value is negligible). Instead of proving this in zero-
knowledge we reduce the costs even more. For this we observe that the most significant output
bit of the subtraction circuit depends on all input bits ˜̄xi. C can obtain one of the two valid
garbled output values for this most-significant bit only if he knows all garbled input bits. We
connect a garbled 1-input zero-gate to this wire which maps both possible garbled input values
to the single garbled output value c̃0 (invalid garbled inputs are mapped to different values with
high probability). Finally, C only needs to send c̃0 to S to prove that it behaved correctly. As the
zero-gate always evaluates to the same value, no additional information is leaked to S.

Table of Contents

Modular Design of Efficient Secure Function Evaluation Protocols . 1
Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider

1 Introduction . 2
2 Function Representations . 3
3 SFE: Security Notions, Parameters and Notation . 4

3.1 Security Notions . 4
3.2 Parameters and Notation . 4

4 SFE of Circuits and OBDDs in the Semi-honest Model . 5
4.1 Homomorphic Encryption for SFE of Arithmetic Circuits . 5
4.2 Garbled Functions for SFE of Boolean Circuits and OBDDs 7
4.3 Garbled Circuits for SFE of Boolean Circuits . 9
4.4 Garbled OBDDs for SFE of OBDDs . 11

5 Composition of SFE Blocks with Semi-Honest Parties . 12
5.1 Garbled Values to Homomorphic Values. 13
5.2 Homomorphic Values to Garbled Values . 13

References . 14
Appendix . 17
A Background: Where SFE Fits in Secure Computing . 17
B Function Representations . 17

B.1 Boolean Circuits . 17
B.2 Arithmetic Circuits . 18
B.3 Ordered Binary Decision Diagrams . 18

C Intuition Behind SFE Definitions . 19
D Efficient Techniques for Protection Against Malicious Actions . 20

D.1 Zero-Knowledge Proofs . 20
D.2 Multiplication of Homomorphic Values . 21
D.3 Garbled Values to Homomorphic Values . 21
D.4 Homomorphic Values to Garbled Values . 21

