
Secrecy-Oriented First-Order Logical Analysis of Cryptographic Protocols

Gergei Bana
SQIG - Instituto de Telecomunicações and

Department of Mathematics
IST, Technical University of Lisbon, Portugal

bana@math.upenn.edu

Koji Hasebe
Graduate School of Systems and

Information Engineering
University of Tsukuba, Japan

hasebe@iit.tsukuba.ac.jp

Mitsuhiro Okada
Department of Philosophy

Keio University, Tokyo, Japan
mitsu@abelard.flet.keio.ac.jp

Abstract

We present a computationally sound first-order system
for security analysis of protocols that places secrecy of
nonces and keys in its center. Even trace properties such
as agreement and authentication are proven via proving a
non-trace property, namely, secrecy first. This results a very
powerful system, the working of which we illustrate on the
agreement and authenti- cation proofs for the Needham-
Schroeder-Lowe public-key and the amended Needham-
Schroeder shared-key protocols in case of unlimited ses-
sions. Unlike other available formal verification techniques,
computational soundness of our approach does not require
any idealizations about parsing of bitstrings or unnecessary
tagging. In particular, we have total control over detecting
or eliminating the possibility of type-flaw attacks.

Keywords. cryptographic protocols, formal methods,
first order logic, computational semantics

1. Introduction

In the first-order logic framework, protocol correctness is
analyzed by defining a syntax with adding some additional
axioms (expressing security properties etc.) to the usual ax-
ioms and inference rules of first order logic and then prov-
ing some security property directly. This is in contrast with
other methods that eliminating the possibility of successful
formal (Dolev-Yao) adversaries. In those other approaches,
for computational soundness, it is necessary to show that
the lack of successful formal adversaries lead to a lack of
successful computational ones. However, no-one has man-
aged to do this satisfactorily, as such a theorem always re-
quires to limit the capabilities of computational adversaries

as there is no complete formal description of computational
adversarial capabilities. In contrast, a logical method, like
the one we present, does not require the notion of formal
adversary. The link to the computational world is done by
assigning a class of computational structures to the syntax,
proving that the axioms and inference rules hold (computa-
tionally) there, and so the elements of this class can work
as computational models of the syntax. This way, a prop-
erty provable in the syntax must be true in any such compu-
tational model.

In earlier logical methods as [13, 10, 2], trace properties
were not proven via secrecy of encryption, but, instead, via
rather limited aspects of the secrecy of encryption. Namely,
in case of public key, via axioms saying that if something
was encrypted honestly with an honest agent’s public key,
and this thing later appeared in a different form, then it had
to go through the agent whose key was used for the encryp-
tion. Hence, the strong notion of computational secrecy was
limited to this trace aspect of it. Instead, we now consider
the following predicates (Q actsit

′ is a send or receive ac-
tion of Q in session i) Sec(〈A1, ..., An〉, t, N);Q actsi t

′

and KeySec(〈A1, ..., An〉, t,K);Q actsi t
′ The meaning of

the first is the following: agents not included in A1, ..., An,
and also the adversary, based on their views of the proto-
col until (not included) the action Q actsi t

′, and providing
them t, they cannot differentiate the nonce N from another
nonce N ′ that was generated independently of the proto-
col. The meaning of the second one is that the keyK can be
used for secure encryption by any of A1, ..., An even if t is
revealed to the public.

The rough idea of protocol proof is then to de-
rive from a set of axioms that if A1, ..., An are hon-
est participants of the protocol carrying out only
their protocol roles, then for each of their send ac-

1

tions, [Key]Sec(〈A1, ..., An〉, N/K);Aj sendsi t im-
plies [Key]Sec(〈A1, ..., An〉, t, N/K);Aj sendsi t. Note
that t in the send action and inside the secrecy predi-
cate are the same. This means that if N (or K) was un-
corrupted until sending t, then the send action will not
corrupt N (or K), as the secrecy of it holds even if t is re-
vealed. The core part of the protocol proof is to build
t up inside the security predicate from its parts (e.g.
t = {N1, A}rA). This is proven for every send action of ev-
ery honest agent. Hence, this means that N and K are
never corrupted, because no send action corrupts them. For
the commitment problem, the formulation is a little differ-
ent, proving that N or K are not corrupted before a certain
action happens.

Once this way the uncorrupted nature of nonces and keys
are proven, the agreement and authentication properties can
be proven, as when uncorrupted nonces are received en-
crypted, they must have been sent by agents with respect
of whom the nonce is secret.

We also present a theorem, which says that for proving a
certain class of formulas (agreement and authentication are
such) the proof can be carried out in a simpler theory, which
is not sound though.

Recently, Roy et. al. [19, 18] created a system for prov-
ing secrecy inductively in PCL. However, they define in-
termediate trace properties, which we don’t need, but use
induction directly on non-trace properties. Our system is
rather simple: it is a standard first order theory, we did not
need the use of Hoare logic. Further, if we understand cor-
rectly, they do not prove authentication via secrecy, and we
do not need elaborate methods to avoid key cycles either.
Moreover, earlier in [2], we showed a number of problems
with their computational semantics, avoidable only with
tagging. In our system, no tagging is necessary. Further, a
problem of PCL is that none of their computational papers
clarify the full set of axioms used in their proofs, no sound
term axioms have been provided. In this paper we show the
full set of our axioms that we use.

This system hence has a number of advantages:

• It is a relatively simple, but very general system that
can provide computationally sound proofs of secrecy,
authentication, agreement for unlimited sessions.

• Does not require any idealizations about parsing bit-
strings or tagging for computational soundness.

• Parsing properties can be conveniently adjusted in the
term axioms. As a result, type-flaw errors in the form
of missing axioms for a proof can be detected, and the
set of axioms can be modified depending on what kind
of type-flaw errors we want to allow.

• As far as we know, for the first time without ideal-
ized parsing, provides computationally sound agree-
ment, authentication and secrecy proofs for NSL and

symmetric NS protocols (with IND-CCA public and
IND-CCA as well as for given plaintext unforgeable
public key encryptions).

• As far as we know, for the first time able to deal with
the commitment problem.

• The system implicitly also takes care of key cycles.
The axioms are such, that in case of key cycles, it is
not possible to prove KeySec for those keys, hence en-
cryptions with them cannot be used for proving secrecy
or authentication.

Related Work. Formal methods emerged from the semi-
nal work of Dolev and Yao [12]. The main approaches have
been on one hand logical such as in BAN logic [4], Proto-
col Composition Logic (PCL) [13], on the other hand trace-
based, such as strand spaces [14] or MSR [6]. Accordingly,
linking formal and computational security in an active set-
ting has two major different approaches: a logical with no
formal execution as in [11, 2], or deriving computational se-
curity from the non-existence of formal attacks [1, 9, 8]. Re-
cently Roy et al. considered inductive derivation of security
in computational setting in [18].

We would like to thank Paulo Mateus and Hubert
Comon-Lundh for many inspiring discussions.

2. Basic Protocol Logic 2.0 Syntax

For the intuitive meaning of syntactic objects, let’s clar-
ify the following: A computational execution of a protocol
is stochastic, with a sequence of coin tosses defining a tree
of coin tosses for each fixed security parameter. We will call
one branch, when all coins are fixed, a branch of coin tosses.
The set of all branches is the underlying probability space.

2.1. Language

Sorts. Our language is order-sorted, with the following sort
structure:

hseed
hname ⊆ name

hnonce
hkey

sessionid

 ⊆ bitstring ⊆ bittree

timesection event

We require countably infinite variables of each sort.
timesection has three constant, 0, 1 and∞, while event
has one: D. We also introduce the error constant ⊥ of sort
bitstring.

The intuitive meanings of the sorts are the following:

• hname is the sort of the names of honest (uncorrupted)
principals (we don’t model dynamic corruption here).

2

They as well as their long-term keys have to be fixed
before the run of the protocol.

• name represent principals in general. They don’t have
to be fixed before the run of the protocol. Their keys
do not have to be correctly generated. Any princi-
pal’s name may have non-trivial distributions. They are
known to all principals and the adversary.

• hnonce means honest nonces, which are honestly gen-
erated by some principal, with the correct distribution
and independently of everything that happened before.

• hkey means honest shared keys, which are honestly
generated by some principal with the correct distribu-
tion, independently of everything happening before.

• hseed represent honestly generated random seed of
encryptions.

• sessionid represents the session id’s that keep track
of the principals’ sessions. These are internal records.

• bitstring represents unparsed messages. Computa-
tionally, a sequence (in the security parameter) of bit-
string valued random variables (functions) over a non-
negligible part of the tree of coin tosses.

• bittree represents parsed messages. That is, la-
beled ordered trees such that the leafs are labelled
by items of sort bitstring, while the internal
nodes are labelled by one of the function sym-
bols Pair , LPKEnctypt , LSKEnctypt , SKEnctypt
(see below). The child nodes have to agree with the ar-
ities of the function symbols.

• timesection represents a moment of the execution.
Computationally, it assigns a natural number to every
branch of coin tosses, so it is a sequence of random
variables.

• event represents probabilistic events. Computation-
ally, non-negligible sequences (in the security parame-
ter) of sets of branches of coin tosses.

The computational interpretations of the sorts in Section
A.2 should clarify their meaning further.

Remark 2.1. The sort event is only needed for soundness.
In the authentication and agreement proofs, the proofs will
be correct even if we delete this sort from the axioms. How-
ever, in that case, the axioms will not be sound any more.
See Theorem 2.10.

We will denote variables according the Table 1.
Function Symbols and Terms. We introduce the following
function symbols with short notation. Please note from now
that the intuitive meaning of terms here is different from
what is common in computational semantics. {t}sQ is not a
ciphertext, but a parsed object. {t}sQ is the ciphertext.

hseed r, r′, . . . , r1, r2

hname A,B, . . . , A1, A2, . . .
name Q,Q′ . . . , Q1, Q2, . . .

hnonce N,N ′, . . . , N1, N2, . . .
hkey K,K ′, . . . ,K1,K2, . . .

nonce or hkey ν, ν′, . . . , ν1, ν2, . . .
sessionid i, i′, . . . , i1, i2, . . .

bitstring

s, s′, . . . , s1, s2, . . .
n, n′, . . . , n1, n2, . . .
k, k′, . . . , k1, k2, . . .

m,m′, . . . ,m1,m2, . . .

bittree
t, t′, . . . , t1, t2, . . .
u, u′, . . . , u1, u2, . . .

timesection τ, τ ′, . . . , τ1, τ2, . . .
event ∆,∆′, . . . ,∆1,∆2, . . .

any variable v, v′, . . . , v1, v2, . . .

Table 1. Notation of variables

• Pairing:

Pair : bittree× bittree→ bittree

〈t, t′〉 ≡ Pair(t, t′)

〈t1, t2, t3..., tj〉 ≡ 〈...〈〈t1, t2〉, t3〉, ..., tj〉

• Encryption with (long term) public key (of Q):

LPKEnctypt : name× bittree× bitstring→ bittree

{t}sQ ≡ LPKEncrypt(Q, t, s)

• Encryption with long term shared key (of Q and Q′):

LSKEnc :name×name×bittree×bitstring→bittree

{t}sQQ′ ≡ LSKEncrypt(Q,Q′, t, s)

• Encryption with shared session key:

SKEnc : bitstring× bittree× bitstring→ bittree

{t}sk ≡ SKEnc(k, t, s)

• Computation of the encryptions and pairings in a
bittree:

Evaluate : bittree→ bitstring

t ≡ Evaluate(t)

Message terms (we refer to them as ”terms” in short, al-
though strictly speaking τ and ∆ are also terms as usual in
first order logic) are defined as:

T ::= t
∣∣∣ T ∣∣∣ 〈T, T 〉 ∣∣∣ {T}sQ ∣∣∣ {T}sQQ′ ∣∣∣ {T}sk.

All message terms are of sort bittree. We will sometimes
use the meta-symbols T, T ′... to denote compound terms.
We think of a term as the following tree. The expression un-
der the overline is not parsed as it is a bitstring.

3

Pair(N �, Q)

A B r

N

K

A s

Pair

Pair

LSKEnc

LPKEnc
{N, �{�N �, Q�}s

A,K�}r
AB

Tree structure of

Figure 1. Parsing tree

Predicates. We introduce a number of predicate symbols,
the intuitive meanings of which require some explanation.

• t = t′, τ = τ ′, ∆ = ∆′

Equality up to negligible probability. For t and t′ trees,
the must have the same tree structure with the same
function symbol labels, and equal labels on the leafs.

• t = t′
∣∣
∆

, τ = τ ′
∣∣
∆

, ∆′ = ∆′′
∣∣
∆

Ternary predicates. Equality up to negligibility re-
stricted to the event (subset) ∆. We will also use the
notation t =∆ t′, τ =∆ τ ′, ∆′ =∆ ∆′′. Predicate =D

is the same as =, so = is a special case of =D.

• t v t′
∣∣
∆

Ternary predicate. Meaning that the tree of t equals on
∆ (in the above sense) a subtree of t′, and is not a leaf
corresponding to the random feed or the key of an en-
crypion. We will also use v∆. We also wright v for
vD. See examples below.

• τ < τ ′
∣∣
∆

Ternary. Time section τ is strictly earlier than τ ′ of ev-
ery branch of ∆ (up to negligible probability).

• ∆′ ⊆ ∆′′
∣∣
∆

The ∆′ ∩ ∆ is a subset of ∆′′ ∩ ∆ (up to negligible
probability).

• Q generatesiτN
∣∣
∆

Principal Q generates a fresh nonce N at time section
τ in session he labels i on all (up to negligible proba-
bility) branches in ∆. Such N will be required to have
the correct distribution of nonces in ∆ and be indepen-
dent of what happened until the generation.

• Q receivesiτ t
∣∣
∆

On all branches of ∆, principal Q receives a message
in session i at time τ represented by t and parses it
to reveal the subterms in t. Q does exactly as much
parsing as shown by t (except for randomnesses in
the upper index of encryption which is not parsed).
That is, Q receivesiτ{A,m, 〈N,K〉}rQ means that Q
received the message that as a random variable of bit-
strings is {A,m, 〈N,K〉}rQ, and parsed it to the point
of recordingA andm and the bit string 〈N,K〉 (again,
r is never parsed, and 〈N,K〉 is not parsed either as

it is not a tree, but a bit string). Note, if Q is hon-
est, it only parses using its own decryption key, so
Q receivesiτ{A,M}rQ′ implies Q = Q′.

• Q sendsiτ t
∣∣
∆

The meaning of this is similar to the receive action, but
in the opposite direction: it means on all branches of ∆,
Q in its session i puts together t from as many parts as
indicated in the expression, computes t and then sends
it at time τ .

• Secτ (〈A1, ...An〉, t, ν)
∣∣
∆

This is called secrecy predicate. It is satisfied if princi-
pals otherA1, ...An together with the adversary cannot
distinguish ν from a nonce (or key respectively) gener-
ated independently of the protocol based on their view
of the protocol until (not including) τ in ∆, even if they
are given the bitstring corresponding to t, that is, t.

• KeySecτ (〈A1, ...An〉, t,K)
∣∣
∆

This is called key-secrecy predicate. It is satisfied if
A1, ...An can safely encrypt messages using K until
(not including) τ in ∆, even if t is given to them.

If a predicate does not contain |∆, it is meant to be |D.
We will write [Key]Sec when we mean Sec or KeySec.

In case of multiple occurrence of [Key]Sec in a sentence or
formula, then either all are Sec or all are KeySec.

Since we do not have a special sort for lists of names, we
extend [Key]Sec to [Key]Sec(u, t, ν) so that if u is not a
list of honest names, then the predicate gives false. We will
use the notation ~A ≡ 〈A1, ...An〉.

We write [Key]Secτ (~A, ν) when no additional t is re-
vealed. This is the same as [Key]Secτ (~A,A, ν) for any A,
as A is known by everyone, so it does not reveal any addi-
tional information about ν.

Example 2.2. In order to make the term structure more un-
derstandable, we include a few examples here for equality
and for subterm relation: if N 6= Q, then Q 6v {N}sQQ′ ;
if N 6= s, then s 6v {N}sQQ′ ; if N 6= N ′, then N 6v
{{N}rB , N ′}sQQ; {N}rB v {{N}rB , N ′}sQQ. Notice, that
terms under the overline are not considered subterms. Vari-
ables in the indices are not subterms either. The terms
{N}sQQ′ and {N}s′QQ′ with different random seeds may, or
may not be equal. They are equal if and only if they com-
pute to the same bit string, that is, iff {N}sQQ′ = {N}s′QQ′ .
Formulas. Atomic formulas ϕ0 are either of the forms

ϕ0 ::=Q actsiτ t
˛̨
∆

˛̨̨
[Key]Secτ (u, t, ν)

˛̨
∆

t=∆ t
′
˛̨̨
tv∆ t

′
˛̨̨
τ <∆ τ

′
˛̨̨

∆′⊆∆ ∆′′

Compound formulas are defined by

ϕ ::= ϕ0

∣∣∣¬ϕ∣∣∣ϕ ∧ ϕ∣∣∣ϕ ∨ ϕ∣∣∣ϕ→ ϕ
∣∣∣∀vϕ∣∣∣∃vϕ

4

where v is any variable.
We use the meta expression ϕ[~v] to indicate the list of

all free variables ~v occurring in ϕ. Let ϕ|∆ be an abbrevia-
tion defined as follows. Let ϕ0 an atomic expression no |∆
restriction.
• (ϕ0

˛̨
∆′

)
˛̨
∆
≡(∆′ ⊆ ∆→ ϕ0

˛̨
∆′

) ∧ (∆ ⊆ ∆′ → ϕ0

˛̨
∆

)

• (ϕ1 ∧ ϕ2)
˛̨
∆
≡ ϕ1

˛̨
∆
∧ ϕ2

˛̨
∆

,
• (ϕ1 ∨ ϕ2)

˛̨
∆
≡ ϕ1

˛̨
∆
∨ ϕ2

˛̨
∆

• (¬ϕ)
˛̨
∆
≡ ¬(ϕ

˛̨
∆

)

• (∃∆′ϕ)
˛̨
∆
≡ ∃∆′(∆′ ⊆ ∆ ∧ ϕ

˛̨
∆

)

• (∀∆′ϕ)
˛̨
∆
≡ ∀∆′(∆′ ⊆ ∆ ∧ ϕ

˛̨
∆

)

Let us introduce the notation:

Q1 actsi11 t1; ...;Qk actsikk tk ≡
∃τ1...τk(0 < τ1<...<τk ∧Q1 actsi11,τ1t1 ∧ ... ∧Qk actsikτktk)

and

Q1 actsi11,τ1t1; ...;Qk actsikk,τktk ≡
0 < τ1<...<τk ∧Q1 actsi11,τ1t1 ∧ ... ∧Qk actsikτktk

These are called trace formula. Each actsj is
one of generates , sends or receives . We also use
α1; ...;αk (or ~α in short) to denote the formula
Q1 actsi11 t1; ...;Qk actsikk tk. For ~α (≡ α1; ...;αm)
and ~β (≡ β1; ...;βn), we say ~β includes ~α , denoted by

~α ⊆ ~β,

if there is a one-to-one, increasing function
j : {1, ...,m} → {1, ..., n} such that αk ≡ βj(k).

Roles and Protocols. Roles of principals are described by
trace formulas of the form

~αA,i ≡ A actsi1 t1; ...;A actsik tk,

where tj’s are not allowed to contain the Evaluate and
Restrict function symbols. Protocols are a set of roles to-
gether with a list of values that the principals have to agree
on.

Example 2.3. Roles of the Needham-Schroeder-Lowe
protocol. We consider the Needham-Schroeder-Lowe pub-
lic key protocol [16], whose informal description is as fol-
lows.

1. A→ B: {N1, A}B
2. B → A: {N1, N2, B}A
3. A→ B: {N2}B

Initiator’s and responder’s roles of the Needham-Schroeder-
Lowe public key protocol (denoted by InitNSL and
RespNSL, respectively) with session id’s are described as
the following formulas.

InitANSL[A, i,Q,N1, n2, r1, s2, r3] ≡ A generatesi N1;

A sendsi{N1, A}r1Q ;A receivesi{N1, n2, Q}s2A ;A sendsi{n2}r3Q

RespBNSL[B, i′, Q′, n1, N2, s1, r2, s3] ≡ B receivesi
′
{n1, Q

′}s1B ;

B generatesi
′
N2;B sendsi

′
{n1, N2, B}r2Q′ ;B receivesi

′
{N2}s3B

They further have to agree that Q = A, Q′ = B, n1 = N1,
n2 = N2.

Remark 2.4. Notice that, for example, in the responder’s
role, we wrote B receivesi

′{n1, Q
′}s1B . We used n1, Q′, s1,

which, according to our notation are of sort bitstring be-
cause they may have been created by adversary and there-
fore, be arbitrarily distributed.

Example 2.5. Roles of the amended Needham-
Schroeder shared-key protocol. We consider the amended
Needham-Schroeder shared-key protocol [17, 7], whose in-
formal description is as follows.

1. A→ B : A
2. B → A : {A,N1}BT
3. A→ T : 〈A,B,N2, {A,N1}BT 〉
4. T → A : {N2, B,K, {K,N1, A}BT }AT
5. A→ B : {K,N1, A}BT
6. B → A : {N3}K
7. A→ B : {N3, A}K

In the original protocol, there is N3 − 1 instead of 〈N3, A〉,
but for now we don’t want to extend our syntax with addi-
tional functions. We have to assume that A and the pairing
are such that 〈N3, A〉 6= N3.

The Initiator’s, the responder’s and the Trusted party’s
roles are described as the following formulas. We consider
a constant T of sort hname for the trusted party as we don’t
want to quantify on T .

InitAsNS [T,A, i,Q2,m1,m2, k,N2, n3, s3, s4, r5] ≡
A sendsiA;A receivesim1;A generatesiN2;

A sendsi〈A,Q2, N2,m1〉;A receivesi{N2, Q2, k,m2}s3AT ;

A sendsim2;A receivesi{n3}s4k ;A sendsi{n3, A}r5k
RespBsNS [T,B, i′, Q1, k

′, N1, N3, r1, s2, r4, s5] ≡
B receivesi

′
Q1;B generatesi

′
N1;B sendsi

′
{Q1, N1}r1BT ;

B receivesi
′
{k′, N1, Q1}s2BT ;B generatesi

′
N3;

B sendsi
′
{N3}r4k′ ;B receivesi

′
{N3, Q1}s5k′

TrustTsNS [T, i′′, Q′1, Q
′
2,K, n1, n2, s1, r2, r3] ≡

T receivesi
′′
〈Q′1, Q′2, n2, {Q′1, n1}Q′2T 〉;T generatesi

′′
K;

T sendsi
′′
{n2, Q

′
2,K, {K,n1, Q

′
1}r2Q′2T }

r3
Q′1T

They further have to agree that Q1 = Q′1 = A, Q2 = Q′2 =
B, n1 = N1, n2 = N2, n3 = N3, k = k′ = K ′.

Remark 2.6. Notice the variables m1 and m2

in the initiator’s role. For example, the role
says A receivesi{N2, Q2, k,m2}s3AT instead of
A receivesi{N2, Q2, k, {k′, N1, Q1}s2BT }s3AT . The rea-
son is, that A does not parse that part of the mes-
sage, it does not look into the encryption, just forwards

5

m2. In the course of the agreement proof, we show that
m2 = {k′, N1, Q1}s2BT .

2.2. Agreement and authentication

The authentication and agreement properties that we
consider have the following general pattern: An honest prin-
cipal thinks he finished a session with certain other princi-
pals. Assuming that the others are also honest, we would
like to prove that he really did communicate with the oth-
ers, the others finished their parts, and the sent and received
items that should be the same according the the protocol,
were indeed the same.

For example, in case of the symmetric NS protocol, if the
responder B finished a session with A and T , that is,

RespBsNS [T,B, i′, Q1, k
′, N1, N3, r1, s2, r4, s5]

is satisfied, and the others are carrying out their roles hon-
estly, and generate and encrypt honestly, then we want to
show that the others did have a session with the responder,
and they agree on the messages involved. We want to prove
that for some i, i′′, N2, m1, m2, s1, r2, s3, r3, s4, r5,

InitAsNS [T,A, i, B,m1,m2, k
′, N2, n3, s3, s4, r5],

TrustTsNS [T, i′′, A,B, k′, N1, N2, s1, r2, r3]

are also satisfied.
We first need to formulate what it means to follow the

roles honestly and not doing anything else. Let us introduce
the following abbreviation:

Only∆(A actsi1t1; ...;A actsiktk) ≡

∃τ1...τk
„
A actsi1,τ1t1; ...;A actsik,τk tk∧

∀τ ′1...τ ′kt′1...t′k
“`
A actsi1,τ ′1t

′
1; ...;A actsik,τ ′

k
t′k

→
^
j

τj = τ ′j ∧ tj = t′j
´

^
(acts1, ..., actsk) :
(acts1, ..., actsk) 6=

(actsk+1, ..., acts2k)

¬A actsik+1,τ ′1
t′1; ...;A actsi2k,τ ′

k
t′k

”«˛̨̨̨
∆

The meaning of this is that A in session i carries out these
and only these actions. It is a consequence of this definition
that for ~αA,i, ~βA,i, if ~βA,i 6⊆ ~αA,i, then

Only∆(~αA,i)→
(
~αA,i ∧ ¬ ~βA,i

)∣∣
∆

For ~αA,i≤j ≡ αA,i1 ; ...;αA,in and 0 ≤ j ≤ n, let ~αA,i≤j de-
note an initial segment of ~αA,i ending with αA,ij , i.e.,

~αA,i≤j ≡ α
A,i
1 ; · · · ;αA,ij .

Let Only∆(~αA,i≤0) ≡ ¬∃t(A generatesit ∨ A sendsit ∨
A receivesit)|∆ and S={0, n}∪{j|∃t(αA,ij =A sendsit)},

Foll(~αA,i) ≡ ∀∆
∨
j∈S

Only∆(~αA,i≤j)

This formula means thatA in session i does nothing but fol-
low ~αA,i, and may finish it, or stop after a send action, but
not after a receive action. Finally, for αA,i[A, i, ~m], let

FOLL(αA) ≡ ∀i∃~mFoll(αA,i[A, i, ~m])

that is,A, in each of its sessions, follows αA with some val-
ues. For example, a principal is carrying out the symmet-
ric Needham-Schroeder protocol’s initiator’s role in each
of his sessions and does nothing else, if

FOLL(InitANSL) ≡
∀i∃Q2m1m2kN2n3s3s4r5

Foll(InitAsNS [T,A, i,Q2,m1,m2, k,N2, n3, s3, s4, r5])

In general, the authentication property from A’s view has
the following form:

RoleA,i[~A] ∧
^
Bv ~A

FOLL(RoleB [~Q])→
^
Bv ~A

∃i′RoleB,i
′
[~Q/ ~A]

Meaning that if principal A finishes his role playing with
principals in ~A who honestly follow their roles playing with
some principals ~Q, then they all have a session that they car-
ried out with the group ~A. Agreement further requires some
values of their roles to match. In case of the symmetric NS
protocol, authentication together with agreement from the
responder’s view takes the form:

RespBsNS [T,B, i′, A, k,N1, N3, r1, s2, r4, s5]

∧ FOLL(InitAsNS) ∧ FOLL(RespBsNS) ∧ FOLL(TrustTsNS)

` ∃ii′′m1m2N2s1r2r3s3s4r5 (1)
(InitAsNS[T,A, i, B,m1,m2, k,N2, N3, s3, s4, r5]

∧ TrustTsNS [T, i′′, A,B, k,N1, N2, s1, r2, r3])

2.3. Secrecy Preservation

As we mentioned in the introduction, the central idea of
our system is to prove first that the send actions of hon-
est participants in a protocol do not corrupt the secrecy of
nonces or keys. That is, if they were secret before the send
action, then they are secret immediately after. Of course,
some nonces and keys may be revealed and are revealed
without any problem. For example, those nonces that were
generated by an honest participant in a session that is played
with a corrupted participant are of course allowed to be re-
vealed. The first idea that comes to mind is that we prove
this secrecy preservation for nonces or keys ν that satisfy
some condition C[ν]. Therefore, we want to prove is some-
thing like

6

∀Aitντ∆
“
A v ~A ∧ C[ν] ∧ A sendsiτ t ∧ [Key]Secτ (~A, ν)

−→ [Key]Secτ (~A, t, ν)
”˛̨̨

∆

which is actually two properties, one with Key , one with-
out it. This would mean that for each send action of the prin-
cipals of the group ~A, if any ν satisfying C[ν] is a secret of
the group before the the send action, then it is not corrupted
via the send action, as revealing the sent item maintains the
secrecy of it. If we could prove this for a protocol, then it
would ensure the secrecy of such ν’s all the way trough as
they are never revealed. However, this turns out to be nor-
mally impossible to prove. The property that we need is that
if secrecy before the send action holds even if we reveal cer-
tain other things, then the secrecy is not corrupted with the
send action. So accordingly, we define the following prop-
erty: Let C[ν] be a condition on ν, and C ′[u] on term u.

[Key]SecSend(~A,C,C′) ≡

∀Aitνuτ∆

„
Av ~A ∧ C[ν] ∧ C′[u] ∧ ν 6vu ∧A sendsiτ t (2)

∧ ∀u′∆′
“
∆′ ⊆ ∆ ∧ C′[u′] ∧ ν 6v u′ → [Key]Secτ (~A, u′, ν)

”˛̨̨
∆′

−→ [Key]Secτ (~A, 〈t, u〉, ν)

«˛̨̨̨
∆

Or, somewhat relaxed version is also sufficient:

[Key]SecSend(~A, Ĉ) ≡ ∀Aituντ∆

„
Av ~A ∧ Ĉ[ν, u] ∧A sendsiτ t

∧∀ν′u′∆′
“
∆′⊆∆ ∧ Ĉ[ν′, u′]→ [Key]Secτ (~A, u′, ν′)

”˛̨̨
∆′

(3)

−→ [Key]Secτ (~A, 〈t, u〉, ν)

«˛̨̨̨
∆

with Ĉ[ν, u] a condition on ν and u.

Example 2.7. (Preservation of Secrecy in the Needham-
Schroeder-Lowe protocol) For example, in case of the
NSL protocol, where ~A = 〈A,B〉, we can prove this prop-
erty fixing C as

C[N] ≡ ∃irn
(
A generatesiN ;A sendsi{N,A}rB

∨B generatesiN ;B sendsi{n,N,B}rA
)

and C ′ as

C ′[u] ≡ ∀t(t v u→ ∃m(t = m) ∨ ∃t1t2(t = 〈t1, t2〉)
∧ ∀m

(
m v u→ ∃i(A generatesim ∨B generatesim)

)
Here, C[N] expresses that N was generated by A and in-
tended to B, or N was generated by B and intended to A.
The formula SecSend(N, u) will guarantee the preserva-
tion of the secrecy of such a nonce. Of course, if N does
not satisfy these conditions, that is, if it was not intended to
be between A and B, then we do not care about its secrecy.
The first line of C ′[u] line expresses that the only function
symbol that appears in u is the pairing, and the second line
expresses that all bitstrings of u were generated by A or B.

So we have that u has the form u = 〈N1, ..., Nj〉, where
N1, ..., Nj were all generated by A or B. Then N 6v u ex-
presses that N 6= Ni for 1 ≤ i ≤ j. So what SecSend tells
us is that for each message that was sent by A or B, if all
N ’s that were intended to be betweenA andB, were the se-
cret of A and B before a send action, even when the other
nonces generated by A and B are revealed, then all such
N ’s remain secret after sending the message.

Example 2.8. (Preservation of Secrecy in the symmet-
ric Needham-Schroeder protocol) In case of the symmet-
ric NS protocol, where ~A = 〈A,B, T 〉, we can prove for ex-
ample, the preservation of secrecy of the shared key by fix-
ing C as

C[K] ≡ ∃i′′n1n2r2r3(T generatesi
′′
K;

T sendsi
′′
{n2, B,K, {K,n1, A}r2BT }

r3
AT)

And C ′[u] as

C′[u] ≡ ∀t(t v u→ ∃m(t = m) ∨ ∃t1t2(t = 〈t1, t2〉)
∧ ∀m

`
m v u→ ∃i(T generatesim ∨B generatesim)

´
Here, too, C[K] ensures that K is generated by T , and

meant for A and B. With these definitions, we are able to
prove KeySecSend(〈A,B, T 〉, C, C ′).

Commitment problem. For the sake of discussing com-
mitment but sticking to the symmetric NS protocol, let us
now assume that we would want to prove the secrecy of K,
and not the key secrecy. Since at a certain point, B sends
the message {N3}r4K , andA sends {N3, A}r5K . From this on,
K becomes distinguishable from another randomly gener-
ated key. In fact, already after sending {N3}r4K , K may al-
ready not be indistinguishable. So there is no hope to prove
SecSend in its previous form, for all send actions of A and
B and T . Let

Revealτ (〈A,B, T 〉,K)[N3, r4] ≡ B sendsi
′

τ {N3}r4K .
Then, instead of (2), we can prove

SecSend(~A,C,C′, Reveal) ≡

∀Aitνuτ ~m∆

„
Av ~A ∧ C(ν) ∧ C′[u] ∧ ν 6vu ∧A sendsiτ t

∧ ∀∆′
“

∆′ ⊆ ∆ ∧Revealτ ′(~A, ν)[~m]→ τ < τ ′
”˛̨̨

∆′

∧ ∀u′∆′
“
∆′⊆∆ ∧ C′[u′] ∧ ν 6vu′→ [Key]Secτ (~A, u′, ν′)

”˛̨̨
∆′

−→ [Key]Secτ (~A, 〈t, u〉, ν)

«˛̨̨̨
∆

.

2.4. The Axioms of Basic Protocol Logic 2.0

Finally, we present the axioms. We extend the usual first-
order predicate logic with equality by adding the following
sets of axioms.

(I) Axioms for the stochastic structure of the sets
branches of coin tosses.

7

(1) Events
(a) ∆1 ⊆∆ ∆2 ∧∆2 ⊆∆ ∆3 → ∆1 ⊆∆ ∆3 ;
(b) ∆1 ⊆∆ ∆2 ∧∆1 ⊆∆ ∆2 ↔ ∆1 =∆ ∆2 ;
(c) ∆ ⊆ D

(d) ∆1 ⊆ ∆ ∧∆1 ⊆∆ ∆2 → ∆1 ⊆ ∆2

(2) Time sections
(a) τ1 <∆ τ2 ∧ τ2 <∆ τ3 → τ1 <∆ τ3 ;
¬(τ1 <∆ τ2 ∧ τ2 <∆ τ1) ;

(b) ∀τ(0 <∆ τ) ;
∀τ(τ <∆ 1→ τ =∆ 0) ;
∀τ(τ <∆ ∞) ;

(c)
`
∀∆(τ 6<∆ τ ′ ∧ τ ′ 6<∆ τ)→ τ = τ ′

´˛̨
∆′

(II) Reflexibility and substitution properties of =∆. They
express that =∆ has the usual properties of equation in first
order logic when the predicates are restricted to ∆.

(1) v =∆ v ;
(2) For any function symbol f ,

v =∆ v′ → f(..., v, ...) =∆ f(..., v′, ...)

(3) If ϕ0 is any of the atomic formulas without
∣∣
∆

, v is a
variable in ϕ0 and ϕ′0 is a formula that we get from ϕ0

by replacing some occurrences of v by v′, then

v =∆ v′ ∧ ϕ0

∣∣
∆
→ ϕ′0

∣∣
∆

(III) Restriction of formulas by
∣∣
∆

. The meaning of (1) is
that the atomic formulas are such that they keep their valid-
ity by restriction. For example, if two formulas are equal on
∆, they are equal on every subsets of ∆. If a term was sent
on a set, it was sent also on every subset, etc. The meaning
of (2) is, that if a formula ϕ keeps its validity by restriction,
and if for all ∆, ϕ on ∆ implies ϕ′ on a subset of ∆, then we
have that ϕ on ∆ implies ϕ′ on ∆. So it is enough to prove
ϕ′ on a subset. (The soundness proof of this is very sim-
ple: the largest subset of ∆, where ϕ′ holds must be ∆, oth-
erwise easily get a contradiction by making it even larger.)

(1) If ϕ0 is an atomic formula without
∣∣
∆

, then

∆′ ⊆ ∆ ∧ ϕ0

˛̨
∆
→ ϕ0

˛̨
∆′

(2) Let ϕ and ϕ′ any formulas. Then

∀∆′`∆′ ⊆ ∆ ∧ ϕ
˛̨
∆
→ ϕ

˛̨
∆′

´
∧
`
ϕ
˛̨
∆
→ ∃∆′(∆′ ⊆ ∆ ∧ ϕ′

˛̨
∆′

)
´

−→
`
ϕ
˛̨
∆
→ ϕ′

˛̨
∆

´
(IV) Term axioms. These are the axioms that result the ex-
amples we listed in Example 2.2. They also express that
pairing is invertible, that a ciphertext decrypts to the correct
plaintext by the correct key. They also express that correctly
generated nonces, keys, encryptions cannot be the same ran-
dom variables as other correctly generated items. Etc.

(1) Axioms for = with not involving .̄

(a) 〈t1, t2〉 =∆ 〈t′1, t′2〉 → t1 =∆ t′1 ∧ t2 =∆ t′2 ;
(b) {t}sQ =∆ {t′}s

′
Q′ → t =∆ t′ ∧Q =∆ Q′ ;

{t}sQ1Q2 =∆ {t′}s
′

Q′1Q
′
2
→ t=∆ t

′∧Q1 =∆Q
′
1∧Q2 =∆Q

′
2 ;

{t}sk =∆ {t′}s
′
k′ → t =∆ t′ ∧ k =∆ k′ ;

(c) {t}sQ 6=∆ 〈t1, t2〉 ; {t}sQ 6=∆ m ; {t}sQ 6=∆

{t′}sQ1Q2 ; {t}sQ1Q2 6=∆ 〈t1, t2〉 ; {t}sQ1Q2 6=∆ m ;
m 6=∆ 〈t1, t2〉 ; {t}sk 6=∆ 〈t1, t2〉 ; {t}sk 6=∆ m

(d) A 6=∆ N ; A 6=∆ K ; A 6= A′ → A 6=∆ A′ ;
(e) {t}sQ1Q2 =∆ {t}sQ2Q1 ;
(2) Axioms for = with involving .̄

(a) m =∆ m ;
(b) For any function symbol f , f(..., t, ...) =∆ f(..., t, ...) ;
(c) ⊥ 6=∆ t1 ∧ ⊥ 6=∆ t2 → ⊥ 6=∆ 〈t1, t2〉 ;
⊥ 6=∆ 〈t1, t2〉 =∆ 〈t′1, t′2〉 → t1 =∆ t′1 ∧ t2 =∆ t′2 ;
⊥ 6=∆ {t}sQ =∆ {t′}s′Q → t =∆ t′ ;
⊥ 6=∆ {t}sQ1Q2

=∆ {t′}s′Q1Q2
→ t =∆ t′ ;

⊥ 6=∆ {t}sk =∆ {t′}s′k → t =∆ t′ ;
(d) {t}sQ =∆ {t}s′Q → {t}

s
Q =∆ {t}s

′
Q ;

{t}sQ1Q2
=∆ {t}s′Q1Q2

→ {t}sQ1Q2 =∆ {t}s
′
Q1Q2 ;

{t}sk =∆ {t}s′k → {t}
s
k =∆ {t}s

′
k ;

(e) {t}rA 6=∆ A′ ; {t}rA1A2
6=∆ A′ ; {t}rK 6=∆ A′ ;`

N 6= ⊥ → {t}rA 6= N ∧{t}rA1A2
6= N ∧{t}rK 6= N

´˛̨
∆

;`
K 6= ⊥ → {t}rA 6= K∧{t}rA1A2

6= K∧{t}rK′ 6= K
´˛̨

∆
;

(f) For any compound term T containing only variables of sort
hseed, hname, hkey or hnonce,`
(N v T ∧N 6=N ′)∨K v T ∨{t}r... v T → T 6=N ′´˛̨

∆
;`

NvT∨(KvT∧K 6=K′)∨{t}r...vT→T 6=K′´˛̨
∆

;
(g) For any function symbol f , f(...,⊥, ...) =∆ ⊥ ;
(3) Axioms for v
(a) t1 v∆ t2 ∧ t2 v∆ t3 → t1 v∆ t3 ;
(b) t v∆ t1 ∨ t v∆ t2 → t v∆ 〈t1, t2〉 ;
(c) t1 v∆ t2 → t1 v∆ {t2}sQ ; t1 v∆ t2 → t1 v∆

{t2}sQ1Q2 ; t1 v∆ t2 → t1 v∆ {t2}sk ;
(4) Axioms for v and =

(a) t1 =∆ t2 → t1v∆ t2 ; t1v∆ t2 ∧ t2v∆ t1 → t1 =∆ t2 ;
(b) t v∆ m→ t =∆ m ;
(c) t v∆ 〈t1, t2〉 → t v∆ t1 ∨ t v∆ t2 ∨ 〈t1, t2〉 =∆ t ;
(d) t1 v∆ {t2}sQ → t1 v∆ t2 ∨ {t2}sQ =∆ t1 ;

t1 v∆ {t2}sQ1Q2 → t1 v∆ t2 ∨ {t2}sQ1Q2 =∆ t1 ;
t1 v∆ {t2}sk → t1 v∆ t2 ∨ {t2}sk =∆ t1 ;

(V) Trace with Secrecy: These axioms describe what can
be revealed by still maintaining the secrecy of ν. They
are used in the course of proving [Key]SecSend , that is,
that send actions don’t corrupt keys and nonces. In order
to make the formulas less messy, we introduce a short-
hand notation: [Key]Secτ (~A, t

ϕ−→ t′, ν)|∆ means ϕ|∆ ∧
[Key]Secτ (~A, t, ν)|∆ → [Key]Secτ (~A, t′, ν)|∆.

(a) Items that were not yet generated, cannot be already cor-
rupted and cannot already corrupt:`
Q generatesiτν ∧ τ ′ < τ

´˛̨
∆
→ [Key]Secτ ′

`
~A, ν
´˛̨

∆
;`

Q generatesiν∧∀∆′¬∃tτ
`
Q sendsiτ t∧ν v t∧τ <τ ′

´˛̨
∆′

−→ [Key]Secτ ′
`
~A, ν
´´˛̨

∆
;

8

[Key]Secτ ′
`
~A, t

Q generatesiτν
′∧τ ′<τ

−−−−−−−−−−−−−→ 〈t, ν′〉, ν
´˛̨

∆
;

[Key]Secτ ′
“
~A, t

Qgeneratesiν′∧¬∃tτ
„
ν′vt ∧ τ <τ′

Qsendsiτt

«
−−−−−−−−−−−−−−−−−−−−→〈t, ν′〉, ν

”̨̨̨
∆

;

(b) Names are public, so revealing them does not corrupt:
[Key]Secτ

`
~A, t −→

˙
t, Q

¸
, ν
´˛̨

∆
;

(c) Revealing something t that was already revealed, shown by
a send or receive action, cannot corrupt secrecy:`
Qsendsiτ t ∨Qreceivesiτ t

´˛̨
∆
∧ τ <∆τ

′

∧ [Key]Secτ ′̀
~A, t′, ν

´̨̨
∆
→ [Key]Secτ ′

`
~A, 〈t, t′〉, ν

´˛̨
∆

;
(d) Something that is secret at time τ ′, was also secret earlier:

τ <∆τ
′∧ [Key]Secτ ′̀

~A, t, ν
´˛̨

∆
→ [Key]Secτ

`
~A, t, ν

´˛̨
∆

;
(e) Secrecy relative to different groups of principals:
∀A(A v ~A→ A v ~A′) ∧ [Key]Secτ

`
~A, t, ν

´˛̨
∆

→ [Key]Secτ
`
~A′, t, ν

´˛̨
∆

;
[Key]Secτ

`
~A, t, ν

´˛̨
∆
∧ [Key]Secτ

`
~A′, t, ν

´˛̨
∆

→ [Key]Secτ
`
〈 ~A, ~A′〉, t, ν

´˛̨
∆

;
(f) Manipulations of pairing inside the secrecy predicate:

[Key]Secτ
`
~A,
˙
t, t′
¸
−→ t, ν

´˛̨
∆

;
[Key]Secτ

`
~A, t −→

˙
t, t
¸
, ν
´˛̨

∆
;

[Key]Secτ
`
~A,
˙
t, t′
¸
−→

˙
t′, t
¸
, ν
´˛̨

∆
;

[Key]Secτ
`
~A,
˙
〈t, t′〉, t′′

¸
←→

˙
t, 〈t′, t′′〉

¸
, ν
´˛̨

∆
;

(g) ν reveals itself:
¬[Key]Secτ

`
~A, ν, ν

´˛̨
∆

;
(h) Corruption depends only on the bit string, not how it was cre-

ated:
[Key]Secτ

`
~A, t ←→ t, ν

´˛̨
∆

;
(i) Honest encryptions of t′ by secure keys cannot corrupt ν:

[Key]Secτ
`
~A, t

Av ~A−−−→
˙
t, {t′}rA

¸
, ν
´˛̨

∆
;

[Key]Secτ
`
~A, t,

Av ~A ∧ A′v ~A−−−−−−−−−→
˙
t, {t′}rAA′

¸
, ν
´˛̨

∆
;

Secτ
`
~A, t

KeySec(~A,〈t,t′〉,K)∧K 6=ν−−−−−−−−−−−−−−−−→
˙
t, {t′}rK

¸
, ν
´˛̨

∆
;

KeySecτ
`
~A,
˙
t, t′
¸
−→

˙
t, {t′}rK

¸
,K
´˛̨

∆
;

(j) If t′ does not corrupt ν, then its encryption does not either:
[Key]Secτ

`
~A,
˙
t, t′
¸
−→

˙
t, {t′}rQ

¸
, ν
´˛̨

∆
;

[Key]Secτ
`
~A,
˙
t, t′
¸
−→

˙
t, {t′}rQQ′

¸
, ν
´˛̨

∆
;

[Key]Secτ
`
~A,
˙
t, t′, k

¸
−→

˙
t, {t′}rk

¸
, ν
´˛̨

∆
;

(k) If ciphertexts of corrupted encryptions don’t corrupt ν, then
the plaintext cannot either, as corrupted encryptions don’t
provide any secrecy:

[Key]Secτ
`
~A,
˙
t, {t′}sQ

¸Q6v ~A∧{t′}sQ 6=⊥−−−−−−−−→
˙
t, t′, {t′}sQ

¸
, ν
´̨̨

∆
;

[Key]Secτ
`
~A,
˙
t,{t′}sQQ′̧

Q6v ~A∧{t′}s
QQ′6=⊥−−−−−−−−−→

˙
t, t′,{t′}sQQ′̧ ,ν

´˛̨
∆

;

[Key]Secτ
`
~A,
˙
t,{t′}sK ,K

{̧t′}sK 6=⊥−−−−→
˙
t, t′,{t′}rK ,K

¸
, ν
´˛̨

∆
;

Remark 2.9. Key cycles. Note that this system takes into
account that key cycles may corrupt security. The third item
of V.j. has the condition KeySec(~A, 〈t, t′〉,K) means that
even if we reveal t′ to the attacker, that is, it is free to submit
it to the encryption oracle, the goodness ofK is maintained.
In a protocol that allows key cycles, this condition cannot
be proven.

(VI) Axioms for relationship between properties. The
following axioms connect actions, terms and cryptographic
assumptions. Please note, that we do not put out

∣∣
∆

to
the axioms just for better readability, unless the set for the
premise and for the conclusion are different. Each axiom is
meant to be limited to ∆.

(1) Actions and terms. The following axioms express that terms
cannot be arbitrarily generated, sent.

(a) A term cannot be sent or received or generated and then gen-
erated:
(ν v t ∨ {t′}sν v t)
→¬(Q2sendsi2/receivesi2/generatesi1t;Q1generatesi1ν).

(b) Nothing can be generated in two different sessions or two
different principals:
(Q1 generatesi1ν1 ∧ Q2 generatesi2ν2

∧ (i1 6= i2 ∨ Q1 6= Q2)) → ν1 6= ν2.
(c) Something that was generated and then received by some-

one, had to be sent in the same session as it was generated,
before receiving it:
(ν v t2 ∨ {t}sν v t2) ∧ Q generatesi1ν;Q′ receivesi2t2
→ ∃t1t′s′((ν v t1 ∨ {t′}sν v t1)
∧ Q sendsi1t′;Q′ receivesi2t)

(d) Something that was sent by an honest agent had to be either
generated by him, or received from someone else:
(m v t2 ∨ {t}sm v t2) ∧ A sendsit2
→ (A generatesim;A sendsit2
∨ ∃t1(A receivesit1;A sendsit2 ∧ m v t1)).

(e) Something on which an honest action was carried out, can-
not be the error ⊥. (t v t′ ∨ t = A) ∧ (A sendsit′ ∨
A receivesit′ ∨A generatesit′)→ t 6= ⊥

(f) All honest nonces and keys were sometime generated:
∃Ai∆(A generatesiN |∆)

(2) Secrecy. This axioms expresses that if no send action cor-
rupted ν, then it had to remain uncorrupted. The axiom spec-
ified here is not suitable if reveal action is allowed. In that
case security will hold until the reveal action (in Appendix).
For ~A = 〈A1, ..., An〉 we postulate
[Key]SecSend(~A,C,C′) ∧

`
C[ν] ∧ C′[u] ∧ ν 6v u

´˛̨
∆

→ [Key]Sec∞(~A, u, ν)
˛̨
∆

(3) Authentication with public key. This says that if a mes-
sage of the form {t′}sA was received, and if {t′}sA does
not corrupt ν, but t′ does, then, at least on a part of the
traces (the part on which t′ corrupts ν), {t′}sA had to be cre-
ated by one of the principals in ~A as only they may know
ν. This axiom is sound as long as the public-key encryp-
tion satisfies IND-CCA security:“
{t′}sA v t2 ∧ A receivesi2τ2t2 ∧ τ 6< τ2

∧ [Key]Secτ (~A, 〈t, {t′}sA〉, ν)∧¬[Key]Secτ (~A, 〈t, t′〉, ν)
”˛̨̨

∆

→ ∃A′t1t′′i1rτ1∆′
“
A′ v ~A ∧ ∆′ ⊆ ∆ ∧ {t′′}rA v t1

∧ {t}sA = {t′′}rA ∧
“
A′ sendsi1τ1t1;A receivesi2τ2t2

”˛̨̨
∆′

”
(4) Authentication with long-term shared key: This axiom ex-

presses the unforgeability (see section 3) of the shared key
encryption for given plaintext. That is, if {t′}rAB was re-
ceived, and if it contains a randomly generated nonce or key,

9

then it had to be created and sent either by A or B:
A receivesi2τ2t2 ∧ {t}

s
AB v t2 ∧ N v t ∨ K′ v t

→ ∃A′i1t1t′((A′ = A ∨ A′ = B)
∧ A′ sendsi1τ1t1;A receivesi2τ2t2 ∧ {t′}rAB v t1
∧ {t}sAB = {t′}rAB))

(5) Authentication with shared session key
(a) This is the same as the previous for an uncorrupted key K:

KeySecτ2(~A,K) ∧A receivesi2τ2t2 ∧ {t}
s
K v t2

∧ N v t ∨ K′ v t
→ ∃A′i1t1t′rτ1(A′ v ~A∧A′ sendsi1τ1t1;A receivesi2τ2t2

∧ {t′}rK v t1 ∧ {t}sK = {t′}rK)

(b) This axiom is similar to the one for public key. It says that if
{t′}sK does not corrupt ν but t′ does, then, at least on a part
of the traces, {t′}sK had to be created by one of the principals
in ~A. Note, that this axiom does not require that K is uncor-
rupted. Nevertheless, soundness needs the IND-CCA prop-
erty of the encryption.“
A v ~A ∧ {t′}sK v t2 A receivesi2τ2t2 ∧

τ 6< τ2 ∧ [Key]Secτ (~A, 〈t, {t′}sK〉, ν) ∧
¬[Key]Secτ (~A, 〈t, t′〉, ν))

”˛̨̨
∆

→ ∃A′i1t1t′′rτ1∆′
“
A′ v ~A ∧ ∆′ ⊆ ∆ ∧

“
{t′′}rK v t1

∧ {t}sK = {t′′}rK ∧A
′ sendsi1τ1t1;A receivesi2τ2t2

”˛̨̨
∆′

”
Let the presented theory be called T . Let T ′ be the the-

ory where all elements of sort event are replaced by D,
which practically means deleting all items of this sorts from
every formulas. Then, T ′ is of course not sound, but it can
be used to prove the agreement and authentication formu-
las as we have the following theorem:

Theorem 2.10. If ϕ is a formula without |∆ satisfying
∀∆′

(
∆′ ⊆ ∆ ∧ ϕ

∣∣
∆
→ ϕ

∣∣
∆′

)
, that is, ϕ is restrictable,

then ϕ `T ϕ′ if and only if ϕ `T ′ ϕ′.
Since the premisses of agreement and authentication

properties are restrictable, we don’t have to consider ∆’s
when we prove them. The proof of this theorem uses the
fact that all of our axioms have the following pattern: If
some formula is true on a ∆, another is true on a ∆′ ⊆ ∆.
So all derived formulas have this form as well, and then ax-
iom III.2. proves the theorem.

3. Computational Assumptions

We need to fix a couple of computational operations:
Pairing is an injective pairing function [·, ·] : strings ×
strings → strings. We assume that the length of the pair
only depends on the lengths of its inputs. We assume that
the length of the ciphertext of encryptions depends only on
the length of the plaintext. Honest nonces all have identi-
cal lengths as well as honest keys.

In this paper, we assume that the encryption schemes sat-
isfie adaptive chosen ciphertext security (IND-CCA) both in
case of asymmetric and symmetric encryptions. For the def-
inition of IND-CCA security, we refer the reader to [3].

Unforgeability. In addition to IND-CCA security, we re-
quire that the symmetric encryption satisfies an unforgeabil-
ity condition. Clearly, agreement in the symmetric NS pro-
tocol cannot possibly be proven from the initiator’s view, if
the encryption {n3}sK can be forged. In that case, the initia-
tor cannot be sure where this message came from. To pre-
vent this, we need to require the so-called existential un-
forgeability (see [15]), saying that no encryption for a given
secret key can be forged. In this case however, an encryp-
tion cannot possibly be confused with another encryption,
so there is unarbitrary parsing for this encryption. We would
like to emphasize though that our method works even when
parsing in general may be arbitrary. So we we do not assume
this property (but they can easily be modified for it), and
we don’t prove agreement for sNS in initiator’s view. In-
stead, we assume random plaintext unforgeability (see again
[15]) but allowing decryption oracle for the attacker. In this
case, the attacker has to create a ciphertext for given, ran-
dom plaintext while allowed to quarry encryption and de-
cryption oracles. The authenticity of {n3}sK cannot be en-
sured, but of all other messages can, so we can prove agree-
ment from the responder’s view.

4. Amended Needham-Schroeder Authentica-
tion and Agreement

In this section, we would like to illustrate how the proof
works on the Amended Needham-Schroeder protocol intro-
duced in Example 2.5. The agreement - authentication prop-
erty was discussed earlier, it is expressed by the sequent
(1). That is, given that the responder finished its role, and
that the trusted party and the initiator follow their roles hon-
estly, we can conclude that the initiator and the trusted party
also finish their roles and the nonces and keys match. This
is proven via first proving KeySecSend :
FOLL(InitAsNS) ∧ FOLL(RespBsNS) ∧ FOLL(TrustTsNS)

` KeySecSend(〈A,B, T 〉, C, C′).

This amounts to proving that
FOLL(InitAsNS) ∧ FOLL(RespBsNS) ∧ FOLL(TrustTsNS)

∧ C[K] ∧ C′[u] ∧ K 6v u ∧A′ v 〈A,B, T 〉 ∧ A′ sendsiτ t

∧ ∀K′u′
`
C[K′] ∧ C′[u′] ∧ K′ 6v u′ (4)

→ KeySecτ
`
〈A,B, T 〉, u′,K′´´

` KeySecτ
`
〈A,B, T 〉, 〈t, u〉,K

´
.

C and C ′ were defined in Example 2.8.
For limited space, we just indicate the idea of the proof.

By Theorem 2.10, we don’t need to use ∆’s in the proof.
Proof sketch of (4). In the premise, the possibilities of
what A′ sendsiτ t can be is limited, as A′ may only be ei-
ther T , A, or B, and they all follow the protocol roles hon-
estly. So the possibilities are the following:
1.) If A′ = T , then for some n′1, n

′
2, Q

′
1, Q

′
2,K

′, r1, r
′
2,

t = {n′2, Q′2,K ′, {K ′, n′1, Q′1}
r′2
Q′2T
}r
′
3
Q′1T

.

10

2.) If A′ = B then for some Q1, N1, N3, k, r1, r4,

t = {Q1, N1}r1BT ∨ t = {N3}r4k .

3.) If A′ = A, then for some Q2, N2,m1,m2, n3, r5, k,

t = A ∨ t = 〈A,Q2, N2,m1〉 ∨ t = m2 ∨ t = {n3, A}r5k .

In the proof, we go through all these cases, and show
that KeySecτ

(
〈A,B, T 〉, 〈t, u〉,K

)
holds. Here there is no

room to do that, we only show one specific case, when
3.3.) t = m2. So we have to show

KeySecτ
(
〈A,B, T 〉, 〈m2, u〉,K

)
, (5)

which means tracking down where m2 came from, what
it is equal to, and so show that it does not corrupt the
security of K. Since A follows his role honestly, that is
FOLL(InitAsNS) holds, we have

A receivesiτ ′{N2, Q2, k,m2}s3AT ;A sendsiτm2. (6)

That is, A received m2 in a secure encryption from the
trusted party T . Axiom VI.4. tells us, that the long term
shared keys of honest participants guarantee authentication,
that is, the message had to come from T :

∃A′i′′t1t′((A′′ = A ∨ A′ = T) ∧ {t′}rAT v t1
∧ {N2, Q2, k,m2}s3AT = {t′}rAT (7)

∧ A′′ sendsi
′′

τ1 t1;A receivesiτ ′{N2, Q2, k,m2}s3AT))

and the third conjunct implies that

〈N2, Q2, k,m2〉 = t′. (8)

A sendsi
′′
t1 ∧ {t′}rAT v t1 is not possible because of

FOLL(InitAsNS) and term axioms (A never sends out a
message using his shared key with T). So A′′ = T .
But T sendsi

′′
t1 and FOLL(TrustTsNS) imply that t1 =

{n2, Q
′
2,K, {K,n1, Q

′
1}r2Q′2T }

r3
Q′1T

. Then {t′}rAT v t1 im-
plies with term axioms that

{t′}rAT = {K,n1, Q
′
1}r2Q′2T ∨

{t′}rAT = {n2, Q
′
2,K, {K,n1, Q

′
1}r2Q′2T }

r3
Q′1T

.

3.3.1.) If {t′}rAT = {K,n1, Q
′
1}r2Q′2T , then Q′2 = A, and

t′ = 〈K,n1, Q
′
1〉. (9)

By (8) and (9), 〈N2, Q2, k,m2〉 = 〈K,n1, Q′1〉, that is,
by our convention, 〈〈〈N2, Q2〉, k〉,m2〉 = 〈〈K,n1〉, Q′1〉,
which, by term axioms, implies that 〈N2, Q2〉 = K, which
results in a contradiction, because we would have

True ≡ Sec0(~A,K,N2)↔ Sec0(~A, 〈N2, Q2〉, N2) ≡ False.

So {t′}rAT 6= {K,n1, Q
′
1}r2Q′2T .

3.3.2.) If {t′}rAT = {n2, Q
′
2,K, {K,n1, Q

′
1}r2Q′2T }

r3
Q′1T

,
then by term axioms, Q′1 = A, and

t′ = 〈n2, Q
′
2,K, {K,n1, A}r2Q′2T 〉. (10)

By (8) and (10), 〈n2, Q′2,K, {K,n1, A}r2Q′2T 〉 =

〈N2, Q2, k,m2〉, and by term axioms,

N2 = n2 ∧ Q2 = Q′2 ∧ K = k ∧m2 = {K,n1, A}r2Q′2T .

So we know that m2 = {K,n1, A}r2Q′2T , and so to complete
the proof of (5), by axiom V.h., we have to show that

KeySecτ
(
〈A,B, T 〉, 〈{K,n1, A}r2Q′2T , u〉,K

)
.

From (6), (7), and that T follows the protocol,

T receivesi
′′

τ ′′1
〈A,Q2, N2, {A,n1}Q2T 〉;T generatesi

′′

τ ′1
K ′;

T sendsi
′′

τ1{N2, Q2,K
′, {K ′, n1, A}r2Q2T

}r3AT ; (11)
A receivesiτ ′{N2, Q2,K

′,m2}s3AT ;A sendsiτm2

follows with k = K ′ and m2 = {K ′, n1, A}r2Q2T
, where

Q2 6= T .
3.3.1.) If Q2 6= B ∧ Q2 6= A, then K ′ does not satisfy

C, so K 6= K ′. But T generatesi
′′
K ′, so 〈K ′, u〉 satisfies

C ′, and therefore, by the premise of SecSend,

KeySecτ (〈A,B, T 〉, 〈K ′, u〉,K).

Since τ ′′1 < τ , and T receivesi
′′

τ ′′1
〈A,Q2, N2, {A,n1}Q2T 〉,

by axiom V.c., we have with ~A = 〈A,B, T 〉,

KeySecτ (~A, 〈〈A,Q2, N2, {A,n1}Q2T 〉,K ′, u〉,K)

by this and ax. V.f., KeySecτ (~A, 〈{A,n1}Q2T ,K
′, u〉,K),

which in turn implies by axiom V.k., that
KeySecτ (~A, 〈A,n1, {A,n1}Q2T ,K

′, u〉,K). By IV.f
again, KeySecτ (~A, 〈K ′, n1, A, u〉,K). So, by axiom V.j.,

KeySecτ (〈A,B, T 〉, 〈{K ′, n1, A}r2Q2T
, u〉,K).

3.3.2.) If Q2 = B ∨ Q2 = A, then by Ax V.i,

KeySecτ (〈A,B, T 〉, 〈{K ′, n1, A}r2BT , u〉,K),

so KeySecτ (〈A,B, T 〉, 〈m2, u〉,K) was shown in all cases.
In a similar manner, we can prove that none of the other

send actions of A, B and T in any session corrupt K.

Proof sketch of (1). The premise of this formula, namely,
the responder’s role implies B receivesi

′{k,N1, A}s2BT .
The same way as we proved (11), we can show that k had
to be generated and sent by T . So there is a K = k, with

T generatesi
′′
K;T sendsi

′′{n2, B,K, {K,N1, A}s2BT }r3AT ;
B receivesi

′{K,N1, A}s2BT ;B receivesi
′{N3, A}s5K .

11

Therefore, we have

∃i′′n2s1r2r3TrustTsNS [T, i′′, A,B, k,N1, n2, s1, r2, r3].

Also,K satisfies C. Hence, since we showed KeySecSend ,
by axiom VI.2. we have KeySec∞(〈A,B, T 〉,K). Then,

∃A′i1t1t′r(A′ v 〈A,B, T 〉 ∧ {t′}rK v t1 ∧ {N3, A}s5K = {t′}rK
∧ A′ sendsi1t1;B receivesi

′
{N3, A}s5K).

By Axiom VI.5.a.
1.) A′ = T is not possible, because of

FOLL(TrustTsNS): T never encrypts with session key.
2.) If A′ = B, then by FOLL(RespBsNS), t1 = {N ′3}

r′4
K

and {N ′3}
r′4
K = {N3, A}s5K , therefore N ′3 = 〈N3, A〉, which

is not possible by Axiom IV.2.f., if N3 6= N ′3, and not
possible by our additional assumption in Example 2.5 if
N3 = N ′3. So A′ 6= B.

3.) If A′ = A, then by FOLL(InitAsNS), t1 = {n3, A}r5K ,
and by term axioms, n3 = N3, so

∃ir5(A sendsi{N3, A}r5K ;B receivesi
′{N3, A}s5K).

So by FOLL(InitAsNS),

∃iQ2m1m2N2s3s4r5

InitAsNS[T,A, i,Q2,m1,m2, k,N2, N3, s3, s4, r5].

In particular, A receivesi{N2, Q2,K,m2}r3AT ;
A sendsim2; A receivesi{N3}s4K ; A sendsi{N3, A}s5K .
Just as the way we received (11), we have that

∃i′′′Kn′1r′2r′3(m2 = {K,n′1, A}
r′2
Q2T
∧

T sendsi
′′′{N2, Q2,K, {K,n′1, A}

r′2
Q2T
}r
′
3
AT ;

A receivesi{N2, Q2,K,m2}r3AT ;A sendsim2;
A receivesi{N3}s4K ;A sendsi{N3, A}s5K).

But since by FOLL(TrustTsNS), T generatesi
′′
K ∧

T generatesi
′′′
K, according to axiom VI.1.b, we have

i′′ = i′′′. Then by FOLL(TrustTsNS),

{N2, Q2,K,{K,n′1, A}
r′2
Q2T
}r
′
3
AT ={n2, B,K,{K,N1, A}s2BT}

r3
AT

and term axioms, n′1 = N1, n2 = N2, Q2 = B. Therefore,
∃ii′′m1N2s1r2r3s3s4r5

(InitAsNS[A, T, i, B, ,m1,m2/{k,N1, A}r2BT , k,N2, N3, s3, s4, r5]

∧ TrustTsNS [T, i′′, A,B, k,N1, N2, s1, r2, r3]).

5. Discussion

Other results. We have also been able to prove agreement
and authentication from the initiator’s view of the sNS pro-
tocol when the axioms are modified for existential unforge-
ability. With the current set of axioms, we have proven
agreement and authentication from both responder’s and
initiator’s view.

Tuples. Note, that according to our choice, tuples of mes-
sages are created via pairings from left to right. If this con-
vention is changed, the proofs have to be changed as well.
There is no a priori guarantee that bracketing in a differ-
ent way will not result in new type-flaw attacks.

Type flaw attacks. In the proof, we needed the additional
axiom that 〈N3, A〉 6= N3. The assumptions that we pre-
sented for the computational pairing in fact prevent this (be-
cause of the length preservation and invertability, the left
must be longer), but we did not include this in the set of ax-
ioms, as with length-hiding encryption, this assumption on
the pairing is not needed. Allowing 〈N3, A〉 = N3, there is
an attack.

Honest names were assumed to be generated honestly,
so this analysis does not account for attacks that use incor-
rectly assigned honest names. If we want to allow the possi-
bility of such type-flaw attacks (see [5]), then we have to re-
move some of the term axioms from III.2.f and III.1.e, and
do the proofs without them.

In the course of the proof on NSL protocol, we also need
an additional assumption, namely, 〈n,Q〉 6= N . This is also
prevented by the length assumption as long as malicious
nonces must have fixed length too, and so introducing a new
type, nonce for possibly malicious nonces, this assumption
makes computational sense. Without this assumption how-
ever, there is an attack:

A type flaw attack on NSL. Take a Q such that for any
value of N , there is an n such that 〈N3, A〉 = N3. Catch
{N2}B and start a new session with B with this message.
B will think he received {n,Q}B , and will reveal n to Q in
his response. So Q learns N2.

Long-term keys. Observe, that in the current paper we as-
sume that the long-term keys were honestly generated, and
were successfully distributed earlier, after which they are
not being sent around. This analysis cannot account for at-
tacks that assume otherwise, for example, assume previ-
ously corrupted but replaced long-term keys.

6. Conclusions and future work

We have presented a relatively simple first-order proof
system to analyze secrecy, agreement and authentication of
protocols. Despite its simplicity, it takes care of key cy-
cles, type-flaw issues and commitment problem. No ideal-
izations are required for computational soundness. We have
presented a theorem that tells that for the aimed properties,
proof within a simpler (not sound) system is sufficient.

For future work, we are planning to introduce some lem-
mas that follow from the axioms to make the proofs simpler.
We also plan to verify additional protocols. We want to in-
troduce the possibility of multiple long term keys to be able
to handle corrupted, replaced long term keys.

12

References

[1] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. In Proceedings
of CCS’03, pages 220–230. ACM Press, 2003.

[2] G. Bana, K. Hasebe, and M. Okada. Computational seman-
tics for first-order logical analysis of cryptographic proto-
cols. In Formal to Practical Security, volume 5458 of LNCS,
pages 33–58. Springer-Verlag, 2009.

[3] M. Bellare and C. Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic com-
position paradigm. In ASIACRYPT 2000, volume 1976 of
LNCS, pages 531–545. Springer-Verlag, 2000.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authen-
tication. Technical report, Technical Report 39, Digital Sys-
tems Research Center, 1989.

[5] P. Ceelen, S. Mauw, and S. Radomirović. Chosen-name at-
tacks: An overlooked class of type-flaw attacks. Electron.
Notes Theor. Comput. Sci., 197(2):31–43, 2008.

[6] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and
A. Scedrov. Multiset rewriting and the complexity of
bounded security protocols. Journal of Computer Security,
12(1):677–722, 2004.

[7] J. Clark and J. Jacob. A survey of authentication protocol lit-
erature: Version 1.0, 1997.

[8] Hubert Comon-Lundh and Véronique Cortier. Computa-
tional soundness of observational equivalence. In ACM Con-
ference on Computer and Communications Security, pages
109–118, 2008.

[9] V. Cortier and B. Warinschi. Computationally sound, auto-
mated proofs for security protocols. In M. Sagiv, editor, Pro-
ceedings of the 14th European Symposium on Programming
(ESOP), volume 3444 of LNCS, pages 157–171, Edinburgh,
UK, April 4–8 2005. Springer.

[10] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A deriva-
tion system and compositional logic for security protocols.
Journal of Computer Security, 13:423–482, 2005.

[11] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Tu-
ruani. Probabilistic polynomial-time semantics for a proto-
col security logic. In Proceedings of ICALP’05, volume 3580
of LNCS, pages 16–29. Springer, 2005.

[12] D. Dolev and A. C. Yao. On the security of public-
key protocols. IEEE Transactions on Information Theory,
29(2):198–208, March 1983. Preliminary version presented
at FOCS’81.

[13] N.A. Durgin, J.C. Mitchell, and D. Pavlovic. A compo-
sitional logic for proving security properties of protocols.
Journal of Computer Security, 11:677–721, 2003.

[14] F. Javier Thayer Fábrega. Strand spaces: proving security
protocols correct. J. Comput. Secur., 7(2-3):191–230, 1999.

[15] J. Katz and M. Yung. Unforgeable encryption and chosen ci-
phertext secure modes of operation. In Proceedings of the 7th
International Workshop on Fast Software Encryption (FSE
2000), volume 1978 of LNCS, pages 25–36. Springer-Verlag,
2001.

[16] R. Needham and M. Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of
the ACM, 21(12):993–999, 1978.

[17] R. Needham and M. Schroeder. Authentication revisited.
ACM SIGOPS Operating Systems Review, 21(1):7, 1987.

[18] A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive
proofs of computational secrecy. In ESORICS 2007, volume
4734 of LNCS, pages 219–234, 2007.

[19] A. Roy, A. Datta, J. C. Mitchell, and J.P. Seifert. Secrecy
analysis in protocol composition logic. In 11th Annual Asian
Computing Science Conference (ASIAN’06), volume 4435 of
LNCS, 2006.

A. Computational semantics

A.1. Elements of the computational execution

In this paper, there is no room for providing a detailed
description of the semantics, so we briefly mention the as-
sumptions that we need for computational soundness. We
write a bit more about the semantics in the appendix.

First, we would like to remind the reader, that the fun-
damental objects of the computational world are bit strings,
strings = {0, 1}∗, and – as the algorithms we consider are
probabilistic – random variables of bit strings. Furthermore,
hardness of computation is modeled by complexity theory,
hence a size parameter, which is called security parameter
in the context of cryptography is given as input to all algo-
rithms considered here. Consequently, the probability fields
and random variables resulting from the executions of the
probabilistic algorithms are indexed by the security param-
eter. As usual, the security parameter is a natural number
η ∈ N, which, as an input of the algorithms, is represented
as an η long string of 1’s.

Definition A.1 (Negligible Function). A function f : N→
R is said to be negligible, if for any c > 0, there is an nc ∈
N such that |f(η)| ≤ η−c whenever η ≥ nc.

Pairing is an injective pairing function [·, ·] : strings ×
strings → strings. We assume that the length of the pair
only depends on the lengths of its inputs. An asymmetric en-
cryption scheme is a triple of algorithms (Ka, Ea,Da) with
probabilistic key generationKa, probabilistic encryption Ea
and deterministic decryption Da; the key generation on in-
put η outputs a random encryption-key decryption-key pair.
Ea is also assumed to be probabilistic, that is, in addition to
the plaintext and key, it also takes a random seed as input.
A symmetric encryption scheme is a triple of algorithms
(Ks, Es,Ds) with probabilistic key generation Ks, proba-
bilistic encryption Es and deterministic decryption Ds; the
key generation on input η outputs a single key, used both
for encryption and decryption. We assume that the length
of the ciphertext depends only on the length of the plain-
text.

13

A.2. Computational model

A computational model is generated the following way:
We consider all protocols for which the roles can be de-
scribed by the language that we gave. In particular, the pro-
tocol may only contain generation of nonces, keys, sym-
metric and asymmetric encryptions, decryption, creation of
pairs and taking them apart. We don’t allow the honest par-
ticipants to send their secret keys of public-key encryption,
neither long term shared keys. Further, we assume that the
encryptions are IND-CCA secure, and, in addition, the sym-
metric encryption is unforgeable. We also assume that long-
term keys (public and shared) of honest parties are all gen-
erated honestly, as well as the honest parties’ names. We
assume that the length of encryptions and pairings depend
only on the lengths of their inputs. All algorithms are as-
sumed to be probabilistic polynomial time in the security
parameter. An execution of a protocol in a malicious en-
vironment is defined by a set of honest PPT principals try-
ing to execute the protocol, an unlimited number of possible
other PPT principals acting arbitrarily, and a PPT adversary,
who totally controls the communication between the parties
(everything is sent through the adversary), and an initial-
ization generating the long-term keys, fixing the names etc.
The principals and the adversary can be represented as Tur-
ing machines, or, more conveniently, probabilistic random
access machines. Unlimited number of parallel sessions are
allowed. An execution is denoted by X .

For each security parameter η, an execution determines
a tree structure of the outcomes of the underlying subse-
quent coin tosses. We call this tree of coin tosses. The set
of the branches of this tree, ΩηX , is the underlying probabil-
ity field (with a sigma algebra structure that we don’t detail
here). The elements, ω are the branches of coin tosses, when
all tosses are fixed. For a time t natural number (t, ω) deter-
mines the configuration of the execution ξ(t, ω) uniquely.
Each pair of execution X together with a non-negligible se-
quence of subsets D = (Dη)η∈N (with Dη ⊆ ΩηX) deter-
mines a model,MX ,D.

The domains of interpretations of the different sorts are
given the following way:

• event: Φ(∆) is a sequence of sets Φ(∆)η ⊆ Dη and
the probabilities of Φ(∆)η give a non-negligible func-
tion in η.

• timesection: Φ(τ) is a sequence of sections of the
execution trees Φ(τ)η : Dη → N such that there is a
polynomial time algorithm such that for any t ∈ N and
ω ∈ Dη , it can determine whether t equals Φ(τ)η(ω)
or not based on ξ(1, ω), ..., ξ(t, ω).

• bitstring: Φ(m) is a sequences of random variables
such that Φ(m)η : Dη → {0, 1}∗ ∪ {⊥}.

• bittree: Φ(t) is a labeled ordered finite tree with
an element of the interpretation domain of sort
bitstring on each leaf and one of the function sym-
bols Pair , LPKEnc, LSKEnc, SKEnc on each of the
internal nodes. The child nodes have to match the ar-
ities of the function symbols. Such an element looks
exactly the same as the tree in Figure 1, except that
the leafs are labelled with sequences of random vari-
ables.

• hname is the sort of the names of honest (uncorrupted)
principals (we don’t model dynamic corruption here).

• name represent principals in general. They have to be
fixed before the run of the protocol, their public keys
and long term shared keys also fixed in advance. Their
keys do not have to be correctly generated. Any prin-
cipal’s name may vary with the security parameter.

• hnonce means honest nonces, that is, ones that are
honestly generated by some principal, with the correct
distribution and independently of everything that hap-
pened before. The distribution of nonces change with
the security parameter, namely, become longer

• hkey means honest shared keys, that is, ones that are
honestly generated by some principal (usually a trusted
party), with the correct distribution and independently
of everything that happened before. Clearly, they de-
pend on the security parameter.

• hseed represent honestly generated random inputs of
encryptions. Also depends on the security parameter.

• sessionid represents the session id’s that keep track
of the principals’ sessions. May also depend on the se-
curity parameter.

Let Φ(T) denote the interpretation of a term. For any vari-
able, t, Φ(t) is an element in one of the above domains, de-
pending on the sort of t. Interpretation of function symbols
and terms are defined the following way:

• Φ(〈T1, T2〉) is the tree with root node labelled Pair
and its two ordered children are roots of the trees
Φ(T1) and Φ(T2).

• Φ({T}sQ) is defined similarly: It is the tree with the
root node labelled as PKEnc, and its first chiled is la-
belled by Φ(Q), the second is the root of Φ(T), the
third is labeled by Φ(s). Φ({T}sQQ′) and Φ({T}sk) are
defined similarly.

• Φ(T) is a sequence of random variables because T is
of sort bitstring. It is computed the following way:
Its value Φ(T)η(ω) is given by taking the values given
by the labels on the leafs at η and ω, and carrying out
the encryptions and pairings indicated by the labels on

14

the tree. For example,

Φ({〈N,K}sQ)η(ω) =
Ea([KηQ(ω),Φ(N)η(ω),Φ(K)η(ω)],Φ(s)η(ω))

Where KQ is the key of Q.

Finally, the interpretation of predicates:

• t =∆ t′ means that the tree structure of Φ(t) and
Φ(t′) are identical, with identical internal labels, and
the random variables labeling the leafs that are not
of sort coin are identical up to negligible probabil-
ity, and further, if we compute the operations indi-
cated by the tree, the results are also the same ex-
cept for negligible probability on Φ(∆). ∆ = ∆′

means P ((Φ(∆)η ∪ Φ(∆′)η) \ (Φ(∆)η ∩ Φ(∆′)η))
is negligible in η, that is, Φ(∆)η and Φ(∆)η are the
same up to negligible probability. τ =∆ τ ′ means
P (ω|ω ∈ Φ(∆)η ∧ Φ(τ)η(ω) 6= Φ(τ ′)η(ω)) is neg-
ligible in η.

• t v∆ t′ means Φ(t) equals in the above sense on Φ(∆)
to a subtree of Φ(t′), such that it is not a name or seed
argument of an encryption.

• τ <∆ τ ′ means P (ω|ω ∈ Φ(∆)η ∧ Φ(τ)η(ω) 6<
Φ(τ ′)η(ω)) is negligible in η.

• ∆ ⊆ ∆′ means P (Φ(∆)η \ Φ(∆′)η) is negligible

• Q generatesiτN
∣∣
∆

Up to negligible probability, for ω ∈ Φ(∆)η ,
ξ(τ(ω), ω) indicates the generation of a nonce by Q
in its session i and writing it in a designated regis-
ter.

• Q receivesiτ t
∣∣
∆

Up to negligible probability, for ω ∈ Φ(∆)η ,
ξ(τ(ω), ω) indicates that Q received a message which
is than parsed the way t indicates it, each subterm be-
ing recorded in some register.

• Q sendsiτ t
∣∣
∆

Up to negligible probability, for ω ∈ Φ(∆)η ,
ξ(τ(ω), ω) indicates that Q sent a message which was
previously put together the way t indicates it.

• Secτ (〈A1, ...An〉, t, ν)
∣∣
∆

Satisfaction of this formula means the following: An
adversary that is provided with Φ(t)η(ω) as well as
the joint information available on ω until τ(ω)η to the
principals other A1, ...An and to the protocol adver-
sary, cannot distinguish ν from a nonce (or key respec-
tively) generated independently of the protocol (with
the same distribution that ν has restricted to Φ(∆)η .

• KeySecτ (〈A1, ...An〉, t,K)
∣∣
∆

This is called key-secrecy predicate. It is satisfied if
A1, ...An can safely encrypt messages using K until

(not including) τ in ∆, even if t is given to them. By
this we mean, that an adversary playing the security
game for the encryption, cannot win the game even if
provided with Φ(t)η(ω) as well as the joint informa-
tion available on ω until τ(ω)η to the principals other
A1, ...An and to the protocol adversary.

With these definitions, and if the encryptions and pair-
ings satisfy the above mentioned security properties, the ax-
ioms that we listed are sound. A completely rigorous proof
using probabilistic random access machines is being pre-
pared for submission to a journal.

B. Possible variations

We would like to indicate some possible variations to the
syntax that we gave.

B.1. Sorts

For example, when the lengths of keys and nonces are
fixed, it make sense to have the following sort structure:

hseed
hname ⊆ name

hnonce ⊆ nonce
hkey ⊆ key
sessionid

 ⊆ bitstring ⊆ bittree

Our analysis would still be valid without modifications, but
the meaning of notation would be a little different. We ac-

hseed r, r′, . . . , r1, r2

hname A,B, . . . , A1, A2, . . .
name Q,Q′ . . . , Q1, Q2, . . .

hnonce N,N ′, . . . , N1, N2, . . .
nonce n, n′, . . . , n1, n2, . . .
hkey K,K ′, . . . ,K1,K2, . . .
key k, k′, . . . , k1, k2, . . .

nonce or hkey ν, ν′, . . . , ν1, ν2, . . .
sessionid i, i′, . . . , i1, i2, . . .

bitstring
s, s′, . . . , s1, s2, . . .

m,m′, . . . ,m1,m2, . . .

bittree
t, t′, . . . , t1, t2, . . .
u, u′, . . . , u1, u2, . . .

timesection τ, τ ′, . . . , τ1, τ2, . . .
event ∆,∆′, . . . ,∆1,∆2, . . .

any variable v, v′, . . . , v1, v2, . . .

Table 2. Notation of variables

tually did assume that lengths of nonces and keys are fixed,

15

but we did not include nonce and key because we wanted
axioms that work for stricter security (and variable nonce
and key length) too, namely when length is hidden.

B.2. Reveal

As we mentioned, axiom VI.2 is not written to ac-
count for the reveal action. To incorporate that, we would
need two properties:

[Key]SecSend(~A,C,C ′, Reveal)
∧
(
C[ν] ∧ C ′[u] ∧ ν 6v u

)∣∣
∆

→ [Key]Sec∞(~A, u, ν)
∣∣
∆

∨ ∃∆′τ ~m
(
∆′ ⊆ ∆

∧ ([Key]Secτ (~A, u, ν) ∧Revealτ (~A, ν))|∆′
)

and

[Key]SecSend(~A,C,C ′, Reveal)
∧
(
C[ν] ∧ C ′[u] ∧ ν 6v u ∧Revealτ (~A, ν)

)∣∣
∆

→ [Key]Secτ (~A, u, ν)
∣∣
∆

B.3. Shared-key unforgeability

As we mentioned, it would also make sense to write the
axioms for existential unforgeability. In that case, we have

(4) Authentication with long-term shared key:
A receivesi2τ2t2 ∧ {t}

s
AB v t2

→ ∃A′i1t1t′((A′ = A ∨ A′ = B)
∧ A′ sendsi1τ1t1;A receivesi2τ2t2 ∧ {t′}rAB v t1
∧ {t}sAB = {t′}rAB))

(5) Authentication with shared session key
(a) KeySecτ2(~A,K) ∧A receivesi2τ2t2 ∧ {t}

s
K v t2

→ ∃A′i1t1t′rτ1(A′ v ~A∧A′ sendsi1τ1t1;A receivesi2τ2t2

∧ {t′}rK v t1 ∧ {t}sK = {t′}rK)

With these properties, agreement and authentica-
tion from the initiator’s proof in the sNS protocol can also
be proven.

16

