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Abstract. We introduce the concept of attribute-based authenticated key exchange (AB-AKE) within
the framework of ciphertext-policy attribute-based systems. A notion of AKE-security for AB-AKE is
presented based on the security models for group key exchange protocols and also taking into account the
security requirements generally considered in ciphertext-policy attribute-based cryptosystems. We also
introduce a new primitive called encapsulation policy attribute-based key encapsulation mechanism
(EP-AB-KEM) and then define a notion of chosen ciphertext security for EP-AB-KEMs. A generic
one-round AB-AKE protocol that satisfies our AKE-security notion is then presented. The protocol
is generically constructed from any EP-AB-KEM that satisfies chosen ciphertext security. Finally, we
propose an EP-AB-KEM from an existing attribute-based encryption scheme and show that it achieves
chosen ciphertext security in the generic group and random oracle models. Instantiating our AB-AKE
protocol with this EP-AB-KEM will result in a concrete one round AB-AKE protocol also in the generic
group and random oracle models.
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1 Introduction

In a distributed collaborative system, it is often convenient for the members to communicate with
the others in the system using attributes that describe their roles or responsibilities. These attributes
are highly desirable if the members join/leave the system dynamically. Consider an Internet forum
where the members are organized into user groups based on the members’ skills or privileges. It
is a natural requirement that the members of a user group should be able to establish secure
communication with the other members belonging to particular user groups. The communication
in these forums is generally carried out through initiating a thread or by posting messages within
an existing thread. To enable authentic and confidential communication, the forum administrator
may specify an access policy with the user groups being attributes. Obviously, only the members
of the forum whose attributes (i.e., membership to user groups) satisfy the policy should be able
to have read and/or write access to the thread.

In the above scenario, the members do not necessarily have to know the identity of the other
members with whom they want to communicate. In fact, the administrator may be requested not to
disclose the identity of a member to the others for privacy reasons. Any member whose attributes
satisfy the policy specified by the administrator should be able to participate in the communication.
Note that the communication can naturally be among a group of more than two members, since the
defined policy may be satisfied by attributes of more than two members. Hence, an authenticated
group key exchange protocol that facilitates attributes usage can be employed in this setting. We
call such a protocol, an attribute-based authenticated key exchange (AB-AKE) protocol. Once a
session key among the willing participants has been established via the key exchange protocol, it
can be used for establishing secure communication among the participants.

We can further envisage applications for AB-AKE in interactive chat rooms and also in or-
ganizations with strict hierarchy like the military. In interactive chat rooms, each room may be



associated with a policy defined with a set of interests being the attributes. Any member whose
attributes satisfy the policy of a chat room can have read and/or write access to it. Similarly, a
policy over ranks as attributes can be specified for the units in the military by another unit at a
higher level in the hierarchy. All the units whose attributes satisfy the policy can establish secure
communication among themselves through an AB-AKE protocol.

Attribute-based Encryption. Sahai and Waters [22] introduced the concept of attribute
based encryption (ABE) as an extension to ID-based encryption [4], in which a set of descriptive
attributes is regarded as an identity. Goyal et al. [16] further extended the idea of ABE and
introduced two variants: key policy attribute based encryption (KP-ABE) and ciphertext policy
attribute based encryption (CP-ABE). In a KP-ABE system, the private key of a party is associated
with an access policy defined over a set of attributes while the ciphertext is associated with a
set of attributes. A ciphertext can be decrypted by a party if the attributes associated with the
ciphertext satisfy the policy associated the user’s private key. A CP-ABE system can be seen as
a complementary form to KP-ABE system, wherein the private key is associated with a set of
attributes, while a policy defined over a set of attributes is attached to the ciphertext. A ciphertext
can be decrypted by a party if the attributes associated with its private key satisfy the ciphertext’s
policy. Goyal et al. [16] presented a construction of KP-ABE scheme, while the first CP-ABE scheme
was proposed by Bethencourt et al. [3].

1.1 Contributions

In this paper, we introduce the concept of AB-AKE protocols. We assume that each member willing
to participate in an AB-AKE protocol is issued a private key for a set of attributes that he/she
possesses. Our modelling of AB-AKE follows the framework of CP-ABE in that the attributes are
associated with the private keys. We assume that the members are given an access policy which
their attributes have to satisfy for them to participate in the protocol. Alternatively, a common
policy may be negotiated by the group members themselves. The protocol takes the access policy as
input and computes the protocol messages for the other parties. Similar to the CP-ABE systems,
we may assume that the policy is attached to the protocol messages in the AB-AKE protocol,
although this assumption is not necessary since each member knows the policy at the outset of the
protocol. A member whose attributes satisfy the given policy can compute the session key from the
incoming messages and (if exists) its own contribution.

While a complementary flavour of AB-AKE can be conceptualized based on KP-ABE systems,
we do not explore this direction in this work. For the type of applications that we have discussed
earlier, AB-AKE protocols based on ciphertext-policy attribute based systems suit well. AB-AKE
can be seen as an extension of group key exchange (GKE) [8, 20, 19] with the additional expressive-
ness provided by the ciphertext-policy attribute-based systems. We define a notion of authenticated
key exchange security (AKE-security) for AB-AKE by adapting a corresponding notion for GKE
to the attribute-based setting. The property of collusion resistance considered by attribute-based
systems [16, 3, 24] is naturally embedded into our AKE-security notion.

We then propose a generic one-round AB-AKE protocol that satisfies our AKE-security notion.
The protocol is based on a type of attribute-based key encapsulation mechanism (KEM) that we
call encapsulation-policy attribute based KEM (EP-AB-KEM). In an EP-AB-KEM the attributes
are associated to the private key of a party and access policy is attached to the encapsulation. We
define a notion of chosen ciphertext security for EP-AB-KEM based on a corresponding notion
considered for CP-ABE schemes.
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Our AB-AKE protocol is generic in the sense that it can be instantiated using any EP-AB-KEM
that satisfies chosen ciphertext security. We propose a chosen-ciphertext secure EP-AB-KEM based
on the CP-ABE scheme of Bethencourt et al. [3] and using the generic technique of Boneh et al. [6].
While we apply the technique of Boneh et al. to the chosen plaintext secure EP-AB-KEM implicit
in Bethencourt et al.’s scheme, we also make some non-trivial changes to adapt it to the attribute-
based setting. The proposed EP-AB-KEM is then proven secure in the generic group and random
oracle models. Incidentally, we are the first to model and construct EP-AB-KEMs, which are of
independent interest.

Finally, an AB-AKE protocol satisfying our AKE-security provides implicit authentication that
is similar to the corresponding notion considered for normal key exchange protocols. Particularly,
our AKE-security notion ensures each protocol participant that no other party apart from par-
ties who satisfy the given policy can possibly learn the value of the session key. Note that an
EP-AB-KEM cannot achieve this property since it does not provide any sender authentication.
Consequently, the receivers in EP-AB-KEM whose attributes satisfy the policy have no way of
knowing whether the sender actually satisfies the same policy. For example, if we use an EP-AB-
KEM in a user group any one can post a message that is encrypted with the symmetric of the
EP-AB-KEM. Alternatively, if the message is encrypted with a session key derived from an AB-
AKE protocol the readers will get the assurance that only someone with valid attribute set has
posted the message.

Our generic construction of AB-AKE can be seen as an extension of Boyd et al.’s [7] technique
for two-party key exchange to the attribute-based setting. One disadvantage of our protocol is that
it cannot provide forward secrecy. However, for some of the applications that we have discussed
forward secrecy may not be necessary. For example, in an Internet forum the administrator may like
to moderate the content posted in the user groups or in the military a unit at a higher rank would
like monitor the communication among the units at the same/lower rank. In such scenarios, an AB-
AKE protocol without forward secrecy will be useful since any party with the right attribute set will
be able to recover the session key and consequently the messages encrypted with it. However, note
that forward secrecy is generally a highly desirable attribute for key exchange protocols. Hence, we
also sketch constructions of AB-AKE protocols that can achieve forward secrecy.

1.2 Related Work

The concept of fuzzy secret handshake proposed by Ateniese et al. [1] seems closely related to
our modelling of AB-AKE. However, there are a few important differences: In AB-AKE, we allow
policies specified by the members to be very expressive consisting of several threshold gates, while
fuzzy secret handshake only considers a single threshold gate. In a (fuzzy) secret handshake protocol,
if a member do not satisfy the attributes specified by another member, the attributes of none of
the members can be learned by the other member. On the other hand, in an AB-AKE protocol, if
a member does not satisfy the policy specified by the other members, the members do not know
anything about the attributes of the other members except what can be inferred by the policies
attached to the protocol messages. Although both the properties look similar, we emphasize that
an AB-AKE protocol would not hide the affiliation of the members even if the protocol was not
successful [17]. Note that this property of “affiliation hiding” is the main requirement for (fuzzy)
secret handshakes. Finally, the fuzzy secret handshake protocol of Ateniese et al. considers only
two party setting, while our protocol naturally operates in a group setting.
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1.3 Organization

Section 2 presents a security model for EP-AB-KEM and also proposes a chosen ciphertext secure
EP-AB-KEM. We first define a security model for AB-AKE in Section 3 and then present a generic
one round AB-AKE protocol based on EP-AB-KEM. In Appendix A, we outline how to construct
AB-AKE protocols with forward secrecy. Appendices B, C and D contain preliminaries, proof of
the proposed EP-AB-KEM and proof of the generic AB-AKE protocol respectively.

2 Encapsulation Policy Attribute-based KEM

We first give a formal definition of security for EP-AB-KEM. As in the earlier attribute-based
systems [16, 3], we review the definition of an access structure and use it in the security model.
Later, we present a concrete EP-AB-KEM based on the CP-ABE scheme of Bethencourt et al. [3].

Definition 1 (Access Structure [2]). Let {U1, · · · , Un} be a set of parties. A collection A ⊆
2{U1,··· ,Un} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. An access structure (respec-
tively, monotone access structure) is a collection (respectively, monotone collection) A of non-empty
subsets of {U1, · · · , Un}, i.e., A ⊆ 2{U1,··· ,Un} \ {φ}. The sets in A are called authorized sets, and
the sets not in A are called the unauthorized sets.

In our EP-AB-KEM and later in the protocol, each party possesses a set of attributes. A policy
over a set of attributes is specified through an access structure A. Hence, A contains the authorized
sets of attributes. As in the CP-ABE of Bethencourt et al., we consider only monotonic access
structures. In the rest of the paper, by an access structure we mean a monotonic one.

A EP-AB-KEM consists of five polynomial-time algorithms:

Setup: This algorithm takes the security parameter k and the attribute universe description U as
inputs. The public parameters PK and the master key MK are the outputs.

Encapsulation: This algorithm takes as input the public parameters PK and an access structure
A over the attribute universe U. It outputs an encapsulation C and a symmetric key K such
that only a user who possesses attributes satisfying A can recover K from C. Similar to the
CP-ABE schemes, we assume that the encapsulation implicitly contains A.

KeyGen: This algorithm takes as input the master key MK and a set of attributes S of a user that
give a description of the user’s private key. The output is the user’s private key SK .

Decapsulation: takes as input the public parameters PK , an encapsulation C which contains an
access structure A and a private key SK corresponding to a set of attributes S. If S satisfies A,
the algorithm outputs a symmetric key K, otherwise it outputs ⊥.

Delegate: This algorithm takes as input a secret key SK corresponding to a set of attributes S
and a set S̃ ⊆ S. It output a secret key ˜SK for S̃.

2.1 Security Model

Bethencourt et al. [3] defined the notion of indistinguishability under chosen plaintext attack (IND-
CPA) for CP-ABE schemes. In this section, we adapt their notion and extend it to define a notion
of indistinguishability under chosen ciphertext attacks (IND-CCA) for EP-AB-KEM. An adversary
ACCA against the IND-CCA notion is allowed to ask Extract and Decap queries. The security notion
is formally defined as follows.
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Definition 2. An EP-AB-KEM is IND-CCA secure if the advantage of any probabilistic polynomial
time adversary ACCA in the following game is negligible in the security parameter k.

Setup: The challenger runs the Setup algorithm and returns the public parameters PK to ACCA.

Phase 1: ACCA issues Extract and Decap queries as follows:

Extract: This query can be issued multiple times with sets of attributes S1, · · · , Sq1 as input.
The challenger returns private keys corresponding to the input attribute sets.

Decap: This query is issued with an encapsulation C and an attribute set S as inputs. Note that
C implicitly contains an access structure A defined over the attribute universe U. If S satisfies
A, the challenger executes the Decap algorithm on C using a private key corresponding to
S and returns a symmetric key K. Otherwise, the ⊥ is returned.

Challenge: At the end of Phase 1, ACCA gives an access structure A
∗ defined over U to the

challenger. The challenger first chooses a bit b. It then runs the Encapsulation algorithm with
A
∗ as input and generates a symmetric key–encapsulation pair (K1, C

∗). It then sets K0 to be a
random key drawn from the probability distribution of the symmetric key. The tuple (Kb, C

∗) is
returned to ACCA as the challenge. A trivial restriction on the adversary’s choice of A∗ is that
none of the attributes sets S1, · · · , Sq1 passed as input to Extract queries in Phase 1 should
satisfy A

∗.

Phase 2:ACCA is allowed to execute in the same way as inPhase 1 with the following restrictions:
(1) none of the attribute sets Sq1+1, · · · , Sq passed as input to Extract queries satisfy A

∗ and
(2) a Decap query with C∗ as input in combination with an attribute set S∗ that satisfies A∗ is
not allowed.

Guess: The goal of ACCA is to guess whether the key Kb is encapsulated within C∗ or not. ACCA

finally outputs a guess bit b′. It wins the game if b′ = b. The advantage of ACCA is given as
AdvACCA = |2 · Pr[b′ = b]− 1|

Existing security notions for CP-ABE schemes also consider the selective model where ACCA

declares the challenge access structure A
∗ before the Setup phase.

Remark 1. In the above definition, ACCA is allowed to issue multiple Extract queries with attribute
sets as input such that none of the individual sets Si satisfy the challenge access structure A

∗.
Hence, similar to earlier definitions of attribute based encryption schemes, our definition also takes
care of collusion resistance. An EP-AB-KEM satisfying the above definition ensures that from the
private keys of Si’s, A

CCA cannot construct a private key corresponding to another attribute set
S∗ such that S∗ satisfies A∗.

Hybrid CP-ABE. An EP-AB-KEM satisfying the above IND-CCA security notion can be
combined with an IND-CCA secure data encapsulation mechanism (DEM) [11, 12] to construct an
IND-CCA secure CP-ABE scheme. We do not formally analyze this hybrid construction as it is out
of scope of this paper.

2.2 A Chosen Ciphertext Secure EP-AB-KEM

Bethencourt et al. [3] first proposed a construction of a CP-ABE scheme. Their scheme was shown
IND-CPA secure assuming generic group and random oracle models. More recently, many CP-ABE
schemes [15, 10, 24] were proposed and were shown IND-CPA secure without assuming generic group
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or random oracle models, but analyzed only in the selective model of security. Waters [24] gave a
brief survey comparing existing CP-ABE schemes.

We now construct a chosen ciphertext secure EP-AB-KEM based on the CP-ABE scheme of
Bethencourt et al. The idea is to enhance the security of the chosen plaintext secure EP-AB-KEM
that is implicit in Bethencourt et al.’s CP-ABE scheme. For this purpose, the techniques of Fujisaki
and Okamoto [14, 13] and Canetti et al. (CHK) [9] can be applied in the random oracle and standard
models respectively. As remarked by Bethencourt et al., chosen ciphertext security for CP-ABE
and correspondingly for EP-AB-KEM schemes can be achieved by a straightforward application of
the Fujisaki-Okamoto technique.

Bethencourt et al. also suggested that the delegation mechanism of their CP-ABE scheme can
be leveraged to achieve IND-CCA security using the CHK transform. However, we observe that
applying the CHK transform to CP-ABE schemes (similarly to EP-AB-KEMs) is slightly more
involved. Specifically, contrary to the approach followed by KP-ABE schemes, IND-CCA security
for CP-ABE schemes cannot be achieved by directly leveraging the delegation mechanism. We later
discuss why this is so and then present an IND-CCA secure EP-AB-KEM by making a few changes
to the Setup and Encapsulation algorithms derived from Bethencourt et al.’s CP-ABE scheme.
Although the CHK technique can be used to achieve IND-CCA security in the standard model, our
EP-AB-KEM will only be secure assuming generic groups and random oracles since the base CP-
ABE scheme also assumes the same. Finally, we choose the scheme of Bethencourt et al. because it
is secure in the fully adaptive model (i.e., non-selective model). We later (in Appendix D) discuss
the necessity of an EP-AB-KEM to be secure in the adaptive model for constructing AB-AKE
protocols.

The scheme first generates a one-time key pair (sk , vk) for a signature scheme with the condition
that the verification key is of the same length as the length of an attribute in the system. Let A be
the access structure given as input to the EP-AB-KEM. We now construct a more restrictive access
structure A

′ = A AND vk and execute the CPA secure EP-AB-KEM under A
′. The resulting

encapsulation is then signed using the one-time signing key sk . The encapsulation of the CCA
secure EP-AB-KEM contains the encapsulation generated by the underlying CPA-secure KEM,
the signature generated on it and the verification key vk . The recipient first checks the signature
using vk and then executes the CPA-secure KEM’s decapsulation algorithm under A

′ to extract
the symmetric key.

While the above informal description of our construction directly follows the CHK technique,
the tricky part in the context of EP-AB-KEM (or CP-ABE) is to empower the recipient with
a private key corresponding to the attributes that satisfy the modified access structure A

′. The
recipient may already possess attributes that satisfy A. However, since the verification key vk is
one-time and chosen randomly for each execution of EP-AB-KEM, the recipient cannot be issued
with a private key that can decrypt messages encrypted under A

′ = A AND vk . This problem
cannot be addressed by the delegation mechanism in a EP-AB-KEM (or CP-ABE) scheme since it
can be used to derive private key corresponding to an attribute set S′ from the one corresponding
to S only if S′ ⊆ S. But, we have an additional attribute in the form of vk . Note that this is not a
problem in the KP-ABE system since it naturally allows a party with a private key corresponding
to an access structure A to derive private keys corresponding to access structures that are more
restrictive than A.

To address the above problem, we make modifications to the Setup and Encapsulation algorithms
derived from the CP-ABE scheme of Bethencourt et al. [3]. Our EP-AB-KEM now enables a
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recipient with private key for attributes that satisfy A to decapsulate an encapsulation created
under A′, irrespective of the choice of vk by the sender. As in the CP-ABE scheme of Bethencourt
et al., an access structure A is represented in the form of a an access tree T .

Access Tree. Let T be a tree representing an access structure. Each interior node of T represents
a threshold gate, while each leaf node is described by an attribute. Let numx be the number of
children of a node x and let kx be its threshold value. We have 0 ≤ kx ≤ numx. If the threshold
gate represented by an interior node is an AND gate then kx = numx and if the gate is OR, kx = 1.
The threshold value for each leaf node x is defined to be kx = 1. The parent of a node x in the tree
T is denoted by the function parent(x), while the attribute of a leaf node x is denoted by att(x).
The children of each interior node are numbered from 1 to numx. The function index(x) returns
such a number associated with a node x. We assume that the index values are uniquely assigned
in an arbitrary manner for a given access structure.

Satisfying an access tree. Let r be the root of an access tree T . The subtree of T rooted at
a node x is denoted by T x. If a set of attributes γ satisfy the access tree T x, it is denoted as
Tx(γ) = 1. The function Tx(γ) is computed recursively as follows: If x is an interior node, for each
children x′ of x, Tx′(γ) is evaluated. Tx(γ) returns 1 if and only if at least kx children of x return
1. If x is a leaf node, Tx(γ) returns 1 if and only if att(x) ∈ γ.

Let G0 and G1 be two multiplicative groups of prime order p and g be an arbitrary generator of
G0. Let e : G0 × G0 → G1 be a bilinear map as defined in Section B.1. The Lagrange’s coefficient
∆i,S for i ∈ Zp and a set S of elements in Zp is defined as: ∆i,S = Πj∈S,j 6=i

x−j
i−j .

Setup(1k). It chooses the groups G0, G1 and defines a bilinear map e : G0 × G0 → G1. It also
selects α, β1, β2 ∈ Zp such that β1 6= β2, β1 6= 0 and β2 6= 0. The public key is

PK =
(

G0,G1, e, g, h1 = gβ1 , f1 = g1/β1 , h2 = gβ2 , f2 = g1/β2 , e(g, g)α
)

The master key MK is (β1, β2, g
α).

Encapsulation(PK , T ). This algorithm generates an encapsulation and a symmetric key under the
access tree T using the public key PK . It first executes the KeyGen algorithm of the signature
scheme (ref. Section B.2) and obtains a one-time key pair (sk , vk). Let A be the access structure
represented by T . The algorithm now constructs a new access tree T ′ for the access structure
(A AND vk) as follows: Let R be the root node of T . The root node R′ of the new tree T ′ is
set as the AND gate with T as its subtree and the verification key vk as a leaf node attached
to R′.
The algorithm now generates a polynomial qx for each node x in the tree T ′ in a top-down
approach as follows: Starting from the root node R′, for each node x in the tree set the degree
dx of the polynomial associated with x to be kx − 1 i.e., the degree of the polynomial is one
less than the threshold value associated with the node x. The algorithm starts from the root
node and first chooses a random s ∈ Zp. Then it chooses dR′ other points randomly to define
the polynomial q(R′). For any node x other than the root, it sets qx(0) = qparent(x)(index(x))
and chooses dx other points randomly to define the polynomial q(x).
Let Y be the set of leaf nodes in the subtree T rooted at R. The only other leaf node in the
tree T ′ is the one that describes the verification key vk . The algorithm proceeds as follows:

1. K = e(g, g)αs
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2. C1 = hs1
3. ∀y ∈ Y : Cy = gqy(0), C ′

y = H(att(y))qy(0)

4. Cvk = h
qvk (0)
2 , C ′

vk
= H(vk)qvk (0)

5. Let C = (T ′, C1, Cy, C
′
y, Cvk , C

′
vk
). Compute a signature σ = Sigsk (C).

The final encapsulation C = (C, vk , σ)

KeyGen(MK ,S). The key generation algorithm takes as input the master key MK and a set of
attributes S and outputs a private key corresponding to S. It chooses r, rvk ∈ Zp and rj ∈ Zp

for each j ∈ S. The private key is computed as:

SK = (D = g(α+r)/β1 , E = gr/β2 , ∀j ∈ S : Dj = gr ·H(j)rj , D′
j = grj )

Delegate(SK , S̃). It takes as input a secret key SK corresponding to a set of attributes S and
another set S̃ ⊆ S. The key SK is of the form SK = (D,E, ∀j ∈ S : Dj , D

′
j). The algorithm

chooses r̃ and r̃k∀k ∈ S̃. The new key for S̃ is created as:

˜SK = (D̃ = Df r̃1 , Ẽ = Ef r̃2 , ∀k ∈ S̃ : D̃k = Dkg
r̃H(k)r̃k , D̃′

k = D′
kg

r̃k)

Decapsulation(SK , C). Upon receiving an encapsulation C, the decryptor first parses the access
tree T ′. It then extracts the subtree T rooted at R from T ′. Note that this can be easily done
since the node that describes the verification key as an attribute can be identified with the help
of the verification key vk sent in the encapsulation. The algorithm first verifies the signature σ
on C using the verification key vk . If the verification succeeds, it proceeds as follows:

Fvk =
e(Cvk , H(vk) · gr/β2)

e(C ′
vk
, h2)

=
e(Cvk , g

r/β2) · e(Cvk , H(vk))

e(C ′
vk
, h2)

(1)

=
e(h

qvk (0)
2 , gr/β2) · e(h

qvk (0)
2 , H(vk))

e(H(vk)qvk (0), h2)

= e(gβ2·qvk (0), gr/β2) = e(g, g)rqvk (0)

A recursive algorithm DecryptNode(C,SK , x) that takes as input C, a private key SK associated
with a set of attributes S and a node x from the subtree T is then executed as below:

If x is a leaf node, then let i = att(x). If i /∈ S, then DecryptNode(C,SK , x) = ⊥. Otherwise it
is defined as follows:

DecryptNode(C,SK , x) = e(Di,Cx)
e(D′

i,C
′
x)

= e(gr·H(i)ri ,gqx(0))

e(gri ,H(i)qx(0))
= e(g, g)rqx(0)

If x is an interior node then DecryptNode(C,SK , x) proceeds as follows: For all nodes z that are
children of x, the algorithm DecryptNode(C, sk , z) is called. The output is stored as Fz. Let Sx
be an arbitrary kx-sized set of child nodes z such that Fz 6= ⊥. If no such set exists, the function
returns ⊥. Otherwise, the decapsulation algorithm proceeds as follows:
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Fx =
∏

z∈Sx

F
∆i,S′

x
(0)

z , where i = index(z), S′
x = {index(z) : z ∈ Sx}

=
∏

z∈Sx

(e(g, g)r·qz(0))
∆i,S′

x
(0)

=
∏

z∈Sx

(e(g, g)r·qparent(z)(index(z)))
∆i,S′

x
(0)

=
∏

z∈Sx

(e(g, g)
r·qx(i)·∆i,S′

x
(0)

= (e(g, g)r·qx(0)

(2)

Finally, the decapsulation algorithm calls the DecryptNode algorithm on the node R, which
is the root of the subtree T . If T is satisfied by the attribute set S, then we have FR =
DecryptNode(C,SK , R) = e(g, g)r·qR(0). We now compute FR′ from Fvk and FR using polynomial
interpolation as follows:

FR′ =
∏

x∈{R,vk}

F
∆index(x),{R,vk}
x

= e(g, g)r·qR′ (0)

= e(g, g)rs

Let A = e(g, g)rs. The symmetric key is recovered as

e(C1, D)/A = e(hs1, g
(α+r)/β1)/e(g, g)rs = e(g, g)s(α+r)/e(g, g)rs = e(g, g)αs = K (3)

Note that in Equation 1 we implicitly verify that the one-time verification key has not been
replaced. If the vk was replaced the symmetric key computed in Equation 3 would be ⊥. Alterna-
tively, the verification check can be done explicitly at the cost of an additional pairing operation.
In Appendix C, we show that the proposed EP-AB-KEM is IND-CCA secure in the generic group
and random oracle models.

3 Attribute-based Authenticated Key Exchange

An AB-AKE protocol consists of three polynomial-time algorithms: Setup, KeyGen and KeyEx-
change. The Setup and KeyGen algorithms are identical to those defined for EP-AB-KEM in Sec-
tion 2. Each party in the AB-AKE protocol executes the KeyExchange algorithm which initially
takes as input the master public key PK , an access structure A and a private key for a set of
attributes S. If S satisfies A, KeyExchange proceeds as per specification and may generate out-
going messages and also accept incoming messages from other parties as inputs. The output of
KeyExchange is either a session key κ or the ⊥ symbol.
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Communication Model Let U= {U1, · · · , Un} be a set of n users. The protocol may be executed
among any subset Ũ ⊆ U of size ñ ≥ 2. We assume that each user has a set of descriptive attributes.
Let SK i be the private key corresponding to an attribute set Si of user Ui. We assume that an
access structure A is given as input to all the users. Note that this A may be specified by a higher
level protocol. Alternatively, the users can run an interactive protocol to negotiate a common access
structure A. We also assume that all the users execute the protocol honestly. If a user Ui wants to
establish a key with other users in U , it first checks whether its attribute set Si satisfy A or not.
Ui proceeds with the protocol execution only if Si satisfy A. Thus, any user Uj with attribute set
Sj that satisfy A is a potential participant in the key exchange protocol. The set of parties whose
individual attributes satisfy A can compute a common session key.

An AB-AKE protocol π executed among ñ ≤ n users is modelled as a collection of ñ programs
running at the ñ parties. Each instance of π within a party is defined as a session and each party
may have multiple such sessions running concurrently. Let πji be the j-th run of the protocol π at
party Ui ∈ Ũ . Each protocol instance at a party is identified by a unique session ID. We assume
that the session ID is derived during the run of the protocol. The session ID of an instance πji is

denoted by sidji . An instance πji enters an accepted state when it computes a session key sk
j
i . Note

that an instance may terminate without ever entering into an accepted state. The information of
whether an instance has terminated with acceptance or without acceptance is assumed to be public.

Note that there may be more than one party whose attributes can satisfy A, hence we consider
group setting for AB-AKE. We define partnership in AB-AKE protocol as follows: A set of ñ
instances at ñ different parties Ũ ⊆ U are called partners if

1. they all have the same session ID and
2. the attributes of each Ui ∈ Ũ satisfy A

Adversarial Model The communication network is assumed to be fully controlled by the adver-
sary, which schedules and mediates the sessions among all the parties. The adversary is allowed to
insert, delete or modify the protocol messages. If it honestly forwards the protocol messages among
all the participants, then all the instances are partnered and output identical session keys. We also
assume that it is the adversary that may select the protocol participants from the set U . While
the adversary may not know the attribute set that a user possesses, it can initiate an instance of
the AB-AKE protocol with an access structure of its choice. In addition to controlling the message
transmission, the adversary is allowed to ask the following queries.

– Send(πji ,m) sends a messagem to the instance πji . If the message is A, the instance πji is initiated
the access structure A. Otherwise, the message is processed as per the protocol specification.
The response of πji to any Send query is returned to the adversary.

– RevealKey(πji ) If π
j
i has accepted, the adversary is given the session key skji established at πji .

– Corrupt(Si) This query returns the private key SK i corresponding to the attribute set Si.
– Test(πji ) A random bit b is secretly chosen. If b = 1,the adversary is given skji established at πji .

Otherwise, a random value chosen from the session key probability distribution is given. Note
that a Test query is allowed only on an accepted instance.

Definition 3 (Freshness). Let A be the access structure for an instance πji . π
j
i is called fresh if the

following the conditions hold: (1) the instance πji or its partners have not been asked a RevealKey
query and (2) there has not been a Corrupt query on an input Si such that Si satisfies A.

10



Definition 4 (AKE-Security). An adversary Aake against the AKE-security notion is allowed to
make Send, RevealKey and Corrupt queries in Stage 1. Aake makes a Test query to an instance πji
at the end of Stage 1 and is given a challenge key Kb as described above. It can continue asking
queries in Stage 2. Finally, Aake outputs a bit b′ and wins the AKE security game if (1) b′ = b
and (2) the Test instance πji remains fresh till the end of Aake’s execution. Let SuccAake

be the
success probability of Aake in winning the AKE-security game. The advantage of Aake in winning
this game is AdvAake

= |2 ·Pr[SuccAake
]−1|. A protocol is called AKE-secure if AdvAake

is negligible
in the security parameter k for any polynomial time Aake.

Remark 2. By allowing the adversary to reveal the private keys corresponding to attribute sets
which individually do not satisfy the given access structure A

∗ in the test session, our definition
naturally considers collusion resistance. In other words, any number of parties whose individual
attribute sets do not satisfy A

∗ may collude among themselves and try to violate the AKE-security
of the protocol. An AB-AKE protocol satisfying our AKE-security notion will still remain secure
against such collusion attacks.

4 A Generic One Round AB-AKE Protocol

We now present a simple generic AB-AKE protocol based on IND-CCA secure EP-AB-KEM.
Informally, each party executes an EP-AB-KEM in parallel and combines the symmetric key it has
generated with the symmetric keys extracted from the incoming messages to establish a common
session key. Our construction is an extension of Boyd et al.’s [7] one round generic protocol for
two-party key exchange to the attribute-based setting. Figure 1 presents our generic one round
AB-AKE protocol.

At the beginning of the protocol each party is given an access structure A represented via an
access tree T . The protocol uses an EP-AB-KEM scheme (Setup, Encapsulation, KeyGen, Decapsu-
lation). Each Ui is issued a private key SK i corresponding to the attributes set Si that it possesses.
Each party Ui who has attribute set Si satisfying the access structure A runs the Encapsulation
algorithm and obtains a symmetric key-encapsulation pair (Ki, Ci). The parties broadcast the en-
capsulations to other parties. Upon receiving the encapsulations, each party runs the Decapsulation
algorithm using the its private key on each of the incoming encapsulations and extracts the sym-
metric keys. The session key is finally computed by each party from the symmetric key that it has
generated and all the symmetric keys decapsulated from the incoming encapsulations.

A pseudo-random function f is applied to derive the session key. We assume that the symmetric
key output by the Decapsulation algorithm can be directly used as a seed for f . Otherwise, we have
to extract and then expand the randomness from the output of the Decapsulation algorithm as done
by Boyd et al. [7].

Theorem 1. The AB-AKE protocol in Fig. 1 is AKE-secure as per Definition 4 assuming that the

underlying EP-AB-KEM is IND-CCA secure. The advantage of Aake is

AdvAake ≤ ñ ·
q2s
|C|

+ qs · (ñ ·AdvAPRF
+AdvACCA)

where n is the number of parties in the protocol, qs is the number of sessions Aake is allowed

to activate, |C| is the size of the ciphertext space, ACCA is a polynomial adversary against the

IND-CCA security of the underlying EP-AB-KEM and APRF is a polynomial adversary adversary

against the pseudo random function f .
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Computation

Each Ui executes an EP-AB-KEM on the input (PK , T ) where PK is the master public key and T is the access
tree that represents an access structure A. As a result, a symmetric key and encapsulation pair (Ki, Ci) is
obtained.

(Ki, Ci)← Encapsulation(PK , T )

Broadcast

Each Ui broadcasts the generated encapsulation Ci.

Ui → Ũ \ {Ui} : Ci

Key Computation

1. Each Ui executes the decapsulation algorithm using its private key SK i on each of the incoming encapsulations
Cj and obtains the symmetric keys Kj , for j 6= i.

Kj ← Decapsulation(sk i, Cj) for each j 6= i

2. Each Ui then computes the session ID as the concatenation of all the outgoing and incoming messages
exchanged i.e. sid = (C1‖ · · · ‖Cñ).

3. The session key κ is then computed as

κ = fK1
(sid)⊕ fK2

(sid)⊕ · · · ⊕ fKn
(sid)

where f is a pseudo-random function.

Fig. 1. A Generic One round AB-AKE Protocol

The proof of the above theorem is given in Appendix D.

Concrete Instantiation. From the EP-AB-KEM proposed in Section 2.2, a concrete AB-AKE
protocol can be directly realized. It follows from the security of the EP-AB-KEM and the generic
AB-AKE protocol that the instantiated protocol is AKE-secure in the generic group model and the
random oracle model. We leave it an open problem to construct an adaptive and IND-CCA secure
EP-AB-KEM in the standard model. By our generic protocol, constructing such an EP-AB-KEM
will immediately result in a one-round AB-AKE protocol secure in the standard model.

5 Conclusion

We have initiated the concept of attribute based authenticated key exchange (AB-AKE) in the
ciphertext-policy attribute-based system. Our modelling of AB-AKE assumes that each party has
a set of attributes and a corresponding private key. A policy is defined (or negotiated) for each
execution of the protocol and the parties satisfying the policy can establish a common shared key
by executing the protocol.

In the security model for AB-AKE, we have considered only outsider adversaries. Our security
model can be extended by considering insider attackers who try to impersonate other protocol
participants [19]. However, constructing AB-AKE protocols secure against insider attackers may
require additional setup assumptions since we assume that a given policy can be satisfied by multiple
parties at the same time. One possible solution to avoid impersonation in such case is to employ
some authentication mechanism like signatures (not attribute-based).

We have also introduced the concept of EP-AB-KEM. We then proposed a one-round generic
AB-AKE protocol based on IND-CCA secure EP-AB-KEMs. For concrete instantiation of this
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protocol, we have presented an EP-AB-KEM and shown it secure under the IND-CCA notion in
the generic group and random oracle models. As a consequence, a concrete AB-AKE protocol based
on this EP-AB-KEM would also be secure in the group group and random oracle models.
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A Extensions

The security model in Section 3 is concerned only about the basic notion of AKE-security without
forward secrecy. Forward secrecy is one of the most important security attributes for key exchange
protocols since it limits the damage of long-term key exposure. A key exchange protocol with
forward secrecy ensures that even if the long-term key of a party is exposed, all the past session
keys established using that long-term key will remain uncompromised.

Forward secrecy seems to be more important in the case of AB-AKE protocols than it is for
normal key exchange protocols. To see why, let us assume that the adversary obtains the private key
of a user Ui who possesses a set of attributes Si. If an AB-AKE protocol does not achieve forward
secrecy, then the adversary can compromise all the protocol sessions which have been established
with access structures that can be satisfied by Si. Note that the party Ui does not even have to
participate in any of these sessions. We now define a notion of freshness that takes forward secrecy
into account.

A.1 AKE-security with Forward Secrecy

Definition 5 (FS-Freshness). Let A be the access structure for an instance πji . π
j
i is called fs-

fresh if the following the conditions hold: (1) the instance πji or its partners have not been asked a

RevealKey query and (2) there has not been a Corrupt query on an input Si before π
j
i or its partner

instances have terminated, such that Si satisfies A.

Definition 5 can be coupled with the AKE-security notion in Definition 4 to arrive at AKE-
security notion with forward secrecy for AB-AKE protocols.

A.2 Constructing AB-AKE Protocols with Forward Secrecy

Our one-round AB-AKE protocol can be modified to achieve AKE-security with forward secrecy
for two-party and three-party settings using known techniques. For a two-party AB-AKE protocol
with forward secrecy, one can use the technique of Boyd et al. [7] where ephemeral Diffie-Hellman
public keys are appended with the encapsulations. Similarly, for a three-party AB-AKE protocol
with forward secrecy, the protocol of Joux [18] can be executed in the same round with our EP-
AB-KEM based protocol. The session keys in both the protocols will include the ephemeral Diffie-
Hellman and ephemeral bilinear Diffie-Hellman keys, which ensure forward secrecy. However, the
protocols will achieve weak forward secrecy, wherein the adversary has to remain passive during
protocol execution. The security of the resulting two-party and three-party AB-AKE protocols will
depend on the hardness of the computational Diffie-Hellman and bilinear Diffie-Hellman problems
respectively along with the security of the underlying AB-AKE protocol (the security of the latter
has been proven already).

Constructing AB-AKE protocols in the more general group setting needs more than one round.
The compiler of Katz and Yung (KY) [20] turns an unauthenticated group key exchange protocol
into an authenticated one. The compiler uses a public key based signature as an “authenticator”
for this purpose. One may adapt the KY compiler to the attribute-based setting by replacing the
normal public key based signature with an attribute-based signature [21]. The resulting compiler
can then be applied to the two-round unauthenticated Burmester and Desmedt (BD) protocol [8]
to achieve a three-round AB-AKE protocol with forward secrecy. Since the session key established
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by the BD protocol is ephemeral it achieves forward secrecy, where as the attribute-based KY
compiler provides authentication. Although the attribute-based version of the KY compiler can be
constructed with necessary changes to the KY compiler, it may not be straightforward.

B Preliminaries

B.1 Bilinear Pairing

Let G0 and G1 be two multiplicative groups of prime order p. Let g be an arbitrary of G0. The
pairing e : G0 ×G0 → G1 is called an admissible bilinear map if it has the following properties:

Bilinearity: ∀u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

Non-degeneracy: e(g, g) 6= 1

Computable: There exists an efficient algorithm to compute e(g, g)

B.2 Strong Existential Unforgeability

A signature scheme Σ consists of three polynomial time algorithms: SigKeyGen, Sign and Verify.
The probabilistic algorithm SigKeyGen generates a signing-verification key pair (sk , vk). Sign is also
a probabilistic algorithm that produces a signature σ on an input message m using the signing key
sk . Verify is a deterministic algorithm that takes a tuple (m,σ, vk) as input and outputs a boolean
value. If σ is a valid signature on m under vk , Verify returns 1. Otherwise 0 is returned.

A signature is said to be strongly existentially unforgeable against chosen message attacks (sUF-
CMA) if there exists no probabilistic polynomial time adversary ACMA that has non-negligible
success probability in the security game below:

Setup: The challenger runs the SigKeyGen algorithm to generate a key pair (sk , vk) and passes
the verification key vk on to ACMA.

Sign Queries: This query is asked by ACMA with a message m as input. The challenger runs the
Sign algorithm with signing key sk and returns the signature σ to ACMA. ACMA is allowed to
issue multiple Sign queries in an adaptive manner.

Forgery: The adversary outputs a tuple (m∗, σ∗). It wins the sUF-CMA security game if (1) σ∗

is a valid signature on the message m∗ under vk and (2) (m∗, σ∗) has not been an output of any
of the Sign queries issued earlier.

C Security Proof of EP-AB-KEM

We prove the security of our EP-AB-KEM in the generic group and random oracle models. Intu-
itively, our security proof implies that if there are any weaknesses in the our EP-AB-KEM, they
will only have come from exploiting specific mathematical structures of the underlying groups or
the cryptographic hash functions used in the instantiation. Our proof closely follows the proof of
the CP-ABE scheme of Bethencourt et al. [3].
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The Generic Group Model [5] . We consider two random encodings ψ0, ψ1 of the additive group
Fp i.e., injective maps ψ0, ψ1 : Fp → {0, 1}

m, where m > 3 log(p). We write G0 = {ψ0(x)|x ∈ Fp}
and G1 = {ψ1(x)|x ∈ Fp}. We are given oracles to compute the group operations in both the groups
and also a non-degenerate bilinear map e : G0×G0 → G1. The identity elements in the groups can
be accessed by the queries ψ0(0) and ψ1(0), while the generators by ψ0(1) and ψ1(1). We denote
ψ0(1), ψ0(x) and ψ1(y) by g, g

x and e(g, g)y respectively.

We are also given access to a random oracle to represent the hash function H : {0, 1}∗ → G0.

Theorem 2. Let ψ0, ψ1, G0 and G1 be defined as above. For any ACCA, let q be the total number

of group elements it receives from the oracles and during the interaction with EP-AB-KEM security

game. Let AdvACMA be the advantage of a polynomial adversary ACMA against the signature scheme

Σ. We have the advantage of ACCA as max{AdvACMA , O(q2/p)}.

Proof. Note that in the Challenge phase of the EP-AB-KEM security game, the adversary has to
distinguish between real symmetric key and a value randomly chosen from symmetric key probabil-
ity distribution i.e., with respect to our scheme the adversary has to distinguish between e(g, g)αs

and e(g, g)θ for a randomly chosen θ ∈ Fp.

At the setup time, the simulation chooses α, β1, β2 at random from Fp. If β1 = β2, β1 = 0 or
β2 = 0 the setup is aborted just as it would be in the actual construction. The public parameters

h1 = gβ1 , h2 = gβ2 , f1 = g
1
β1 , f2 = g

1
β2 and e(g, g)α are sent to the adversary. The answers to the

queries asked by ACCA as part of the EP-AB-KEM security game are simulated as below:

H-queries: The simulation maintains a list for the random oracle H with the input and response
as entries. When a query is issued to the random oracle with input i, the simulation first checks
if there is an entry for i in the list. If there exists an entry, it returns the previously returned
response. Otherwise a new random value ti is chosen from Fp and the value gti is returned. The
queries with input vk are answered in the same way.

Extract queries: When the ACCA makes j-th key generation query on a set of attributes Sj , a

new random value r(j) ∈ Fp and for each i ∈ Sj new random value r
(j)
i ∈ Fp are chosen. The

simulator then generates the private key corresponding to Sj as in the scheme. It computes

D = g(α+r(j))/β1 , E = gr
(j)/β2 and for each i ∈ Sj , Di = gr

(j)
· H(i)r

(j)
i and D′

i = gr
(j)
i . The

private key is passed onto ACCA.

Decap queries: When ACCA asks for a decapsulation query on an input encapsulation C, the
simulation first parses the access tree T ′ from C. It then extracts the verification key vk and
the subtree T from T ′. The simulation first verifies the signature on the encapsulation using
vk and if it is valid proceeds with decapsulation as follows: It computes Fvk and Fx for each
leaf node and interior node in T as specified in the decapsulation algorithm. Note that this
can be performed using appropriate queries to ψ0, ψ1 and the random oracle H. Finally, FR′ is
computed and the symmetric key K recovered. Note that as in the decapsulation algorithm if
vk was replaced, the simulation would set K to ⊥. Finally, K is returned.

In the Challenge phase, ACCA outputs a challenge access structure T ∗. The simulation does
the following: It generates a one-time key pair (sk∗, vk∗) and constructs an access tree T ∗′ from T ∗

and vk∗. It then chooses s ∈ Fp. It uses the linear secret sharing scheme associated with the access
tree T ∗′ (as described in the scheme) to construct shares λi and λvk∗ of s for all relevant attributes
i and the verification key vk∗. Note that all the λi are chosen uniformly and independently at
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random from Fp subject to the condition imposed on them by the linear secret sharing scheme.
The choice of λi’s can be perfectly simulated by choosing l random values µ1, · · · , µl uniformly
at random from Fp for some value l and then letting λi be fixed as public linear combination of
µ1, · · · , µl and s. Later in proof, we will think of λi as such linear combination of these independent
random variables.

Finally, the simulation chooses a random θ ∈ Fp and constructs the challenge symmetric
key and encapsulation as follows: K∗ = e(g, g)θ and C∗

1 = hs1. For each relevant attribute i,

C∗
i = gλi , C ′∗

i = gtiλi . For the verification key vk∗, Cvk
∗ = h

λvk∗

2 , C ′
vk

∗ = gtvk∗λvk∗ . Let C∗ =
(T ∗′, C∗, C∗

i , C
′∗
i , Cvk

∗ , C ′
vk

∗). It then computes a signature σ∗ on C∗ using the one-time secret key
sk∗. The encapsulation values (C∗, vk∗, σ∗) are sent to ACCA.

Following the generic proof of Boneh et al. [6], we divide the proof into the following two cases:

Case 1: Let Forge be the event that ACCA submits a decapsulation query with input (C, vk , σ)
that is different from the challenge encapsulation given to it but with vk = vk∗. We now show
that Pr[Forge] is negligible.
With the simulation of ACCA’s queries as described above we now construct a forger ACMA

against the signature scheme. We assume that ACMA is given the challenge verification key
vk∗ at the beginning the experiment. As described above, the public parameters are generated
and answers to ACCA’s queries are simulated. If ACCA outputs a query (C, vk∗, σ) even before
the Challenge phase, then F outputs (C, σ) as its forgery and stops. Let (C∗, vk∗, σ∗) be the
challenge encapsulation given to ACCA. If ACCA submits a valid encapsulation (C, vk∗, σ) in a
decapsulation query, as per the EP-AB-KEM security game we must have (C, σ) 6= (C∗, σ∗).
In this case ACMA submits (C, σ) as its forgery. Hence, the success probability of ACMA is at
least Pr[Forge]. Since, the one-time signature scheme is assumed to be strongly unforgeable,
Pr[Forge] ≤ AdvACMA must be negligible. Note that in this case (i.e., when Forge occurs),
ACCA’s view would have been identical even if we had set θ = αs.

Case 2: In this case, we assume that the event Forge does not occur. We now show that decap-
sulation queries with an input verification key vk 6= vk∗ does not give ACCA any advantage.
Note that since we have assumed that Forge does not occur, a decapsulation query with input
vk = vk∗ must contain an invalid signature. For such a query ACCA is returned ⊥. The rest of
the proof below deals with Case 2.

When ACCA makes a query to the group oracles, we may condition on the event that (1)
ACCA provides as input only the values it received from the simulation or intermediate values it
obtained as response from the oracles and (2) there are p distinct values in the ranges of both ψ0

and ψ1. This event happen with the overwhelming probability of 1−O(q/p2), where q is the upper
bound on the number of queries that can be made during simulation. We may even keep track
of the algebraic expressions being called for from the oracles as long as “accidental collisions” do
not occur. Specifically, we can think of an oracle query as being a rational function ν = η/ξ in

the variables θ, α, β1, β2, s, ti’s, r
(j)’s, r

(j)
i ’s and µk’s. An accidental collision would be when for

queries corresponding to any two distinct formal rational functions η/ξ 6= η′/ξ′, we have that the
values of η/ξ and η′/ξ′ coincide due to random choices of these independent variables’ values.

We now condition that no such accidental collisions occur in either G0 or G1. For any pair of
distinct queries η/ξ and η′/ξ′ within a group, a collision occurs only if the non-zero polynomial
η/ξ−η′/ξ′ evaluates to zero. The total degree of this polynomial in our case is at most 5 (a constant).
By Schwart-Zippel lemma [23, 25], the probability of this event is O(1/p). By a union bound, the
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probability that any such collision happens in our simulation is at most O(q2/p). Hence, we can
condition on no such collision happening and still maintain 1−O(q2/p) of the probability mass.

We now consider what the adversary’s view would have been, if we had set θ = αs. In this
part of Case 2 of the proof, subject to the above conditioning, we show that the adversary’s view
would have been identically distributed. Since we are in the generic group model, where each group
element’s representation is uniformly and independently chosen, the only way that adversary’s
view can differ in the case θ = αs is if there are two queries ν and ν ′ into G1 such that ν 6= ν ′ but
ν|θ=αs = ν ′|θ=αs. Since θ only occurs as e(g, g)θ in G1, the only dependence ν or ν ′ can have on
θ is by having some additive terms of the form γθ for some constant γ. Therefore we must have
ν−ν ′ = γαs−γθ for some constant γ 6= 0. We can then artificially add the query ν−ν ′+γθ = γαs
to the adversary’s queries. We will now show that based on the information given to the adversary
it can never construct a query for e(g, g)γαs.
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Table 1. Possible query types into G01 from the adversary

Table 1 enumerates all the possible query types into G1 by means of the bilinear map and the
group elements given to the adversary except for those that contain β1 or β2 in every monomial as
they will not be relevant for constructing a query involving the term αs. In the table, the variables i
and i′ are possible attribute strings, j and j′ are indices of secret key queries made by the adversary
and vk and vk ′ are the verification keys generated by KeyGen algorithm of the signature scheme.
Note that all the possible queries are given in terms of λi’s, not µk’s. It can be checked that the
query terms in the table can be formed by the adversary from the information available to it. In
addition to the polynomials in the table, the adversary also has access to 1 and α. The adversary can
query for arbitrary linear combination of these terms. We will now show that no such combination
can produce a polynomial of the form γαs for some constant γ 6= 0.

In Table 1 the only term that contains αs is αs+r(j)s, which can be formed by pairing sβ1 with
α+r(j)/β1. By such queries, the adversary could create a polynomial of the form γαs+

∑

j∈T γjsr
(j)

for some set T and constants γ, γj 6= 0. To obtain a query polynomial of the form γαs the adversary
must add other linear combinations in order to cancels the terms of the form

∑

j∈T γjsr
(j). From

the table, the only other terms that the adversary has access to that could involve terms of the

form sr(j) are obtained by pairing r(j)+ tir
(j)
i with some λi′ and also by pairing β2λvk with r(j)/β2.

This is so since, λi′ and λvk terms are public linear combinations of µ1, · · · , µl and s. The adversary
can create a query polynomial of the form:
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γαs+
∑

j∈T



γjsr
(j) +

∑

(i,i′,vk)∈Tj′

λi′r
(j) + λi′tir

(j)
i + λvkr

(j)



+ other terms

We now complete the proof with the following case analysis that shows that any of the adver-
sary’s query polynomials cannot be of the form γαs.

Case 2a: In this case, let us assume that there exists some j ∈ T such that the set of secret shares
Lj = {λi′ , λvk : ∃i : (i, i′, vk) ∈ T ′

j} do not allow for reconstruction of s. If this is the case, then

the term sr(j) will not be cancelled and hence the adversary’s query cannot be of the form γαs.
Case 2b: Now we assume that for all j ∈ T , the set of secret shares Lj = {λi′ , λvk : ∃i :

(i, i′, vk) ∈ T ′
j} do allow for the reconstruction of the secret s. Fix any j ∈ T . Consider the set

of attributes Sj that belongs to the j-th Extract query from the adversary. By the restriction
that no requested key should pass the challenge access structure and by the properties of the
secret sharing scheme, the set of shares L′

j = {λi : i ∈ Sj} cannot reconstruct s. Thus, there
must exist at least one share λi′ in Lj such that λi′ is linearly dependent of L′

j when written in

terms of s and µ1, · · · , µl. Thus for some i ∈ Sj , there must be a term of the form λi′tir
(j)
i in

the adversary’s queries. However, it is evident from Table 1 that the adversary has no access to
a term of this form. Hence, none of the queries can be of the form γαs.

D Security Proof of the Generic AB-AKE Protocol

Proof. We prove the theorem in a sequence of games. Let Si be the event that Aake wins the
AKE-security game in Game i.

Game 0. This is the original AKE-security game as per Definition 4. We have

AdvAake
= |2 · Pr[S0]− 1| (4)

Game 1. This game is the same as the previous one except that if two different sessions at user
Ui output identical message Ci, then the game aborts. Let Repeat be such an event. As there
are ñ users in the protocol, we have

|Pr[S1]− Pr[S0]| ≤ ñ · Pr[Repeat] (5)

As the adversary is allowed to activate at most qs number of sessions, we have

Pr[Repeat] ≤
q2s
|C|

(6)

Game 2. This is the same as the previous game except that a value t
R
← [1, qs] is chosen. If the

Test query does not occur in the t-th session the game aborts and outputs a random value. Let
E2 be the event that the guess is correct.

Pr[S2] = Pr[S2|E2] Pr[E2] + Pr[S2|¬E2] Pr[¬E2] = Pr[S1]
1

qs
+

1

2

(

1−
1

qs

)

(7)
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Game 3. This is identical to the previous game except that the output of each fKi
for 1 ≤ i ≤ ñ

is replaced by a random value chosen uniformly from {0, 1}k. We have,

|Pr[S3]− Pr[S2]| ≤ ñ ·AdvAPRF
(8)

Game 4. This game is identical to the previous game except that the queries asked of Aake are
now answered by ACCA, an adversary against the IND-CCA security of the underlying EP-
AB-KEM as follows: ACCA forwards the public parameters that it received from its challenger
to Aake. Note that if we allow Aake to choose the access structure in the Test session, Aake

chooses A∗ and sends it to ACCA at the beginning of the Test session. Otherwise, ACCA itself
may choose A

∗. Once Aake chooses the Test session, ACCA gives the challenge access structure
A
∗ to its challenger. The EP-AB-KEM challenger returns (Kb, C

∗) to ACCA as described in
Definition 2. The goal of ACCA is output whether Kb is encapsulated within C∗ or not. ACCA

finally chooses a user U∗
i whose attributes S∗

i satisfy the challenge access structure A
∗. With

these choices, ACCA now starts simulating answers to the queries of Aake as below. Note that we
explain only the simulation done in the test session. The queries issued in all the other sessions
can be trivially answered by ACCA, since it is allowed to extract private keys corresponding to
attributes that satisfy all the access structures except A∗.

Send(πti ,m): If m contains only A
∗ as per the protocol it has to initiate the test session at

Ui. If Ui = U∗
i , A

CCA returns the challenge encapsulation C∗ as the outgoing message from
the instance πti . otherwise, A

CCA runs the Encapsulation algorithm on behalf of the Ui and
obtains the pair (Ki, Ci). It keeps Ki with itself and returns Ci as the outgoing message.

On the other hand, if the message contains an encapsulation Ci, A
CCA proceeds as follows:

1. If Ui = U∗
i , it issues a Decap query to its challenger with Ci and the attributes of U∗

i

as input. If the challenger returns a key Ki, A
CCA stores Ki and accepts the session.

Otherwise, the session is rejected. Note that if Ui = U∗
i , then Ci cannot be equal to C∗

i

conditioning on the event Repeat in Game 1.
2. If Ui 6= U∗

i , A
CCA first checks if Ci = C∗

i . If it matches ACCA accepts the session.
Otherwise, as described above it issues Decap query to its challenger with Ci and the
attributes of U∗

i as input. Note that the attributes of U∗
i satisfy the access structure A

∗

embedded in Ci. If the challenger returns a key Ki, A
CCA stores Ki and accepts the

session. Otherwise, ACCA rejects the session.

RevealKey(πji ): Note that a RevealKey query on the test session is not allowed. In all other
sessions ACCA can answer this query by simply asking Decap query on all the encapsulations
exchanged in that session. Since ACCA is also allowed to extract private keys corresponding
to attributes that do not satisfy A

∗, it can trivially answer the RevealKey queries of all the
sessions other than the test session.

Corrupt(Si): If Si do not satisfy A
∗, then ACCA can trivially answer this query using the Extract

query available to it as part of EP-AB-KEM game.

Test(πti): A
CCA now embeds the challenge key Kb into the response to Aake. It computes the

challenge key κ∗ = fK1(sid)⊕ · · · ⊕ fKb
(sid)⊕ · · · ⊕ fKn(sid). Note that, as described in the

simulation of Send queries above, all the symmetric other than Kb are either generated by
ACCA or obtained from its challenger via Decap queries. The key κ∗ is returned to Aake.

Since the simulation by ACCA for Aake is perfect without any aborts, Game 3 and Game 4 are
indistinguishable. We have Pr[S4] = Pr[S3].
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Let b′ be the output of Aake. A
CCA simply passes this bit onto its challenger. This game is

essentially Aake playing IND-CCA security game against the EP-AB-KEM’s challenger. ACCA

succeeds whenever Aake does so. Hence, the advantage of ACCA is at least the same as that of
Aake. We have

|2 · Pr[S4]− 1| ≤ AdvACCA (9)

From Equations 4 to 9,we have the claimed advantage for Aake.

Remark 3. From Game 4 of the above proof, it is evident that ACCA obtains the challenge access
structure A

∗ only at initiation of the Test session. However, ACCA has to answer the queries asked
by Aake on sessions established prior to the Test session for which ACCA has to interact with its
challenger. As in the selective security model for EP-AB-KEM, if ACCA commits to an access
structure at the start of its game, it cannot simulate answers to the queries asked by Aake. Hence,
we need an IND-CCA secure EP-AB-KEM secure in the adaptive model.
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