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Abstract

In this work, we present a generic framework for constructing efficient signature scheme, ring
signature schemes, and identity based encryption schemes, all in the standard model (without
relying on random oracles).

We start by abstracting the recent work of Hohenberger and Waters (Crypto 2009), and
specifically their “prefix method”. We show a transformation taking a signature scheme with a
very weak security guarantee (a notion that we call a-priori-message unforgeability under static
chosen message attack) and producing a fully secure signature scheme (i.e., existentially unforge-
able under adaptive chosen message attack). Our transformation uses the notion of chameleon
hash functions, defined by Krawczyk and Rabin (NDSS 2000) and the “prefix method”. Con-
structing such weakly secure schemes seems to be significantly easier than constructing fully
secure ones, and we present simple constructions based on the RSA assumption, the short in-
teger solution (SIS) assumption, and the computational Diffie-Hellman (CDH) assumption over
bilinear groups.

Next, we observe that this general transformation also applies to the regime of ring signatures.
Using this observation, we construct new (provably secure) ring signature schemes: one is based
on the short integer solution (SIS) assumption, and the other is based on the CDH assumption
over bilinear groups. As a building block for these constructions, we define a primitive that we
call ring trapdoor functions. We show that ring trapdoor functions imply ring signatures under
a weak definition, which enables us to apply our transformation to achieve full security.

Finally, we show a connection between ring signatures and identity based encryption (IBE)
schemes. Using this connection, and using our new constructions of ring signature schemes, we
obtain two IBE schemes: The first is based on the learning with error (LWE) assumption, and is
similar to the recently introduced IBE schemes of Peikert, Agrawal-Boyen and Cash-Hofheinz-
Kiltz (2009); The second is based on the d-linear assumption over bilinear groups.
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1 Introduction

Digital signature schemes are one of the most fundamental cryptographic notions. It is well
known that signature schemes that adhere to very strong security guarantees (that are formally
defined in [GMR88]) can be constructed under the necessary assumption that one-way functions
exist [NY89, Rom90]. However, the resulting scheme is highly inefficient, and does not suffice for
practical purposes.
Efficient signature schemes. There has been a major effort to try and construct efficient signa-
ture schemes, even based on stronger primitives than one-way functions, such as collision-resistant
hash functions or trapdoor permutations, or even based on specific number theoretic assumptions.
This task, however, appears to be surprisingly hard.

One successful line of work was in the random oracle model, where many very efficient and
simple schemes were constructed [FS86, Gam84, Sch91, Oka92, BR93, PS96, BLS04, GJKW07,
GPV08]. However, in the standard model, constructing efficient schemes seems to be significantly
harder. Indeed, until recently, all such schemes were either very complicated or relied on relatively
strong assumptions such as strong-RSA or assumptions in bilinear groups [GHR99, CS00, BB04c,
CL04, Wat05]. Very recently, efficient schemes were constructed and proven secure under standard
assumptions: Hohenberger and Waters [HW09a, HW09b] constructed a signature scheme based on
the standard RSA assumption; and Peikert [Pei09], Agrawal and Boyen [AB09] and Cash Hofheinz
and Kiltz [CHK09], constructed similar schemes based on the lattice-related short integer solution
(SIS) assumption (see Section 6.1 and [MR07, GPV08] for details on this assumption), which are,
while based on standard assumptions, still quite complicated.
Ring Signatures. The notion of ring signatures was introduced in [RST01]: A ring signature
scheme is a signature scheme with the property that a user can specify any set of possible signers
that includes itself, and sign without revealing which member actually produced the signature. Ring
signatures provide an elegant way to leak authoritative secrets in an anonymous way. Unlike the
related notion of group signatures (see [CvH91]), ring signatures have no group managers, no setup
procedures, no revocation procedures, and no coordination: any user can choose any set of possible
signers that includes himself, and sign any message by using his secret key and the others public
keys, without getting their approval or assistance. Many implementations of ring signatures having
various properties were proposed in the literature (see [RST06, Section 7] for discussion), however
their security was proven only in the random oracle model or under nonstandard assumptions. To
the best of our knowledge, the question of constructing ring signature schemes that are secure in
the standard model and under standard assumptions was not answered by previous works.
Identity based encryption. An identity-based encryption (IBE) scheme, a notion introduced by
Shamir [Sha84], is an encryption scheme where the public key of each user is simply their identity.
Each IBE scheme is associated with a pair (pp,msk) issued by a trusted authority, where pp are
public parameters (sometimes referred to as the “master public key”) and msk is the master secret
key. Each user, uses their identity id as a public key, and obtains a corresponding secret key
skid from the trusted authority. Each secret key skid, corresponding to identity id is a (possibly
randomized) function of the identity id and the master secret key msk. An encryption of a message
m, corresponding to identity id, is a randomized function of the message m, the identity id and the
public parameters pp. The decryption of a ciphertext c corresponding to identity id, is a (possibly
randomized) function of the ciphertext c, the identity id, and the secret key skid corresponding to
the identity id.
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Constructing secure IBE schemes based on standard assumptions, without using random oracles
(or “interactive assumptions”), even under weak notions of security, has been a long standing open
problem. Secure schemes were finally introduced based on assumptions in groups with bilinear
maps, starting with the works of [CHK07, BB04a]. Recently, several schemes, which are quite
similar, were introduced based on lattice assumptions [AB09, CHK09, Pei09].

1.1 Our Results

We present a formal connection between strong and weak notions of security for digital signature
schemes, by abstracting the recent work of Hohenberger and Waters [HW09b]. We use these ideas
to show similar connections in the regime of ring signatures, which enable us to construct ring
signatures based on a new generic primitive: ring trapdoor functions, which can be constructed
based on the SIS assumption or the CDH assumption over bilinear groups. We go on to show
a connection between ring signatures and identity based encryption schemes, and finally present
constructions of identity based encryption schemes based on standard lattice assumptions and on
hardness assumptions in bilinear groups. More details follow.
Signature schemes. We reduce the task of constructing signature schemes that are existentially
unforgeable under adaptive chosen message attack (e-cma), into the one of constructing signature
schemes under a (seemingly) much weaker security notion, that we call a-priori-message unforge-
ability under static chosen message attack (a-scma). While in e-cma-security, the forger makes
adaptive queries after seeing the verification key, and successfully forges if it can come up with an
accepting signature for any new message; in a-scma-security, the forger must produce a signature
for a random message (sampled by the challenger). Its queries may depend on this random message,
but not on the verification key, and they are not adaptive.

Our reduction uses, as a first step, the reduction of [KR00] between adaptive and static chosen
message attacks and, as a second step, it reduces existential to a-priori-message unforgeability,
abstracting the ideas of [HW09b]. Our abstraction comes at a cost of a linear factor loss in the
signature length. The computational complexity of signing and verifying also increases by the same
factor, but this increase is completely parallelizeable.

We exemplify the simplicity of constructing secure signature schemes (in the standard model)
using this methodology: we provide an explicit example based on the RSA assumption; additional
examples, based on lattice assumptions and on assumptions in bilinear groups, follow from our
constructions of ring signatures.
Ring signature schemes. We show that a very similar reduction to the one presented for signature
schemes, also holds in the regime of ring signature schemes. Namely, we show that it is sufficient
to construct ring signature schemes that are a-priori-message ring unforgeable under static chosen
message attack (ar-scma), which is defined slightly differently from the standard signature variant:
while the forger receives a random challenge message, and needs to specify the messages it wants to
query on at the beginning of the experiment, it may still be adaptive in the selection of the set of
users with respect to which the messages are signed. This makes the definition more complicated,
but essentially the same tools are used in the reduction. The reduction in this case requires a slight
variant of chameleon hash, which we demonstrate how to achieve in a very similar manner to the
known chameleon hash constructions.

We then show that ar-scma-security is implied by ring trapdoor functions (see below). Our
constructions of ring trapdoor functions under the SIS assumption and under CDH in bilinear
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groups (see below for details), therefore, imply ring signatures under these assumptions (we also
show that they imply the variant of chameleon hash we require).
Identity based encryption. We consider two security notions for IBE (many other notions exist,
which we do not discuss in this work). An IBE scheme is said to be adaptively-secure if an adversary,
who is given properly generated public parameters, cannot break semantic security corresponding
to any identity id∗ of his choice, even after seeing the secret keys of an adaptively chosen set of
identities (so long as id∗ is not in this set). The weaker notion of selective-security requires the
adversary to “declare” the value of id∗ before seeing the public-parameters of the scheme.

It is well known that IBE schemes immediately yield secure signature schemes as follows: The
generation of the verification key and the signing key of the signature scheme is identical to the
generation of the public parameters and the master secret key. Namely, the verification key is pp
and the signing key is msk. To sign a message id, compute a secret key skid corresponding to id.
To verify, encrypt random messages using pp and id and see that they decrypt correctly using the
alleged signature as secret-key.1

The converse is not necessarily true. Moreover, even if the signature scheme S = (Gen, Sign, Ver)
has the special property that for any message id the pair (id,Sign(id)) can be used as a public and a
secret key pair for a public key encryption scheme, still it is not clear that S can be used to construct
a secure IBE scheme. The naive attempt would be to construct an IBE scheme by generating public
parameters and a master secret key using Gen; namely, pp = vk and msk = sk. Then a user with
identity id will be assigned a secret key Sign(id), and will use the pair (id,Sign(id)) as public and
secret keys for a public key encryption scheme. This attempt may at first seem promising. However,
taking a closer look, one can see that the resulting IBE scheme will not necessarily be secure. The
reason is that getting many secret keys corresponding to identities id1, . . . , id` does not allow one
to compute a secret key for a new identity, but may still give enough information for breaking
semantic security.

In contrast, we show that ring signature schemes that have a special property, similar to the
one described above, can actually be used to construct selectively-secure IBE schemes. We refer to
these as encryption augmented ring signatures. Furthermore, known techniques [BB04a, BB04b] for
converting selectively-secure to adaptively-secure IBE, are applicable to IBE schemes constructed
from encryption-augmented ring signatures (the technique of [BB04b] requires, in addition, a family
of collision resistent hash functions).
Ring trapdoor functions. We present a new primitive called ring trapdoor functions and show
that it can be used to produce ring signatures. The notion of ring trapdoor functions is a gener-
alization of the standard notion of trapdoor functions. It is not only required that given f, y it
is hard to find x such that f(x) = y, but it is also hard, given f1, . . . , ft, y to find x1, . . . , xt such
that

∑t
i=1 fi(xi) = y, for any polynomial t. However, given a trapdoor for any of the functions

fi, one can efficiently generate such x1, . . . , xt, and furthermore, it is impossible to tell, looking at
x1, . . . , xt, which of the t trapdoors was used generate them.

In addition, we relax the standard definition of trapdoor functions and only require that given
f, x, y, one can efficiently verify that f(x) = y, we do not require that f is efficiently computable.
Instantiations under cryptographic assumptions. We show that ring trapdoor functions
can be constructed under the SIS assumption (in fact, we only require the weaker inhomogenous

1A selectively-secure IBE implies a signature scheme that is secure against selective forgery and an adaptively-
secure IBE implies a scheme that is secure against existential forgery.
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variant, called ISIS). The ring signature scheme obtained from this family is shown to be encryption
augmented under the LWE assumption, yielding a secure IBE scheme.

We further show a construction of ring signature schemes under the CDH assumption in bilinear
groups. The construction carries a very similar structure to the SIS construction mentioned above.2

We show that under the d-linear assumption, the resulting ring signature scheme can be encryption-
augmented, thus obtaining an IBE encryption scheme under the d-linear assumption, for any d ≥ 2.
To the best of our knowledge, this is the first IBE scheme based solely on the d-linear assumption
(the scheme of Waters [Wat09] relies on a combination of the 2-linear and the bilinear Diffie-Hellman
assumptions).

1.2 Our Techniques

Let us first explain our reduction for standard signatures. We use a result of Krawczyk and
Rabin [KR00] to reduce the adaptive notion of security, in which the forger makes adaptive queries,
into a static one where the forger specifies all of its queries at the beginning of the experiment. We
stress that in both cases, the forgery is existential, i.e. a successful forgery is a valid signature for
any message of the forger’s choosing, so long as this message was not queried on. This reduction
uses a primitive called chameleon hash functions (see Section 2.1).

Our next reduction is from existential forgery, where the forger needs to forge a signature on
a message of its choice, to a-priori-message forgery, where the forger is given a random message
to forge on. We do this by abstracting the “prefix method” of [HW09b]. We sign a message µ of
length m by considering all m prefixes of µ, applying a universal hash function to each of them,
and signing the results separately. The new signature for µ is, thus, composed of m signatures of
the m prefixes. Intuitively, the reason why this should be secure is that when the forger (for the
existential attack) specifies the messages he wishes to get signatures for (recall that this is done
before seeing the public-key), it actually “commits” to forging a signature for one of polynomially
many messages. This is because the message it forges the signature of, must contain a prefix that
only differs in the last bit from one of the prefixes of one of the messages it specified, and there
are only polynomially many options for that. Therefore, the message that it forges a signature of
is determined before the key generation, and thus is “a-priori” in some weak sense. The universal
hash function (which is just XORing with a random string) is required so that all of these messages
“look random”, i.e. be distributed as the a-priori challenge. We also need to add a “tag” to each
prefix we sign, in order to avoid “cut and paste” attacks between prefixes.

The ring signature variants of the aforementioned reductions are quite similar, with the excep-
tion of a minor technical difficulty resulting from the fact that “trusted” public parameters are not
allowed in this setting (this also requires us to define a variant of the chameleon hash functions
primitive mentioned above).

We are left with the task of constructing ring signature schemes, that need to be secure against
a-priori-message forgery under static chosen message attack, from ring trapdoor functions. We
recall that finding a pre-image for a set of ring trapdoor functions can be done, by definition,
using a trapdoor for any of the functions in the set. We can, therefore, construct a ring signature
scheme with a degenerate message space containing just one message. This is done by setting the
verification key to be the description of the function and the signing key to be the trapdoor. To sign

2Our proof works by showing that it is CDH-hard to solve a set of random linear equations in the exponent. To
the best of our knowledge, our proof technique, though simple, is novel and may be useful outside the scope of this
paper.
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the message using a set of verification keys (which are function descriptions), we use the signing
key, which is a trapdoor for one of the functions in the set, to sample a pre-image respective to
these functions (there is a minor technical issue of for which output we find a pre-image, but this
can be resolved).

We extend this idea to make the signature also depend on the message (and not only on the
subset of verification keys) by sampling 2m such functions for each user, where m is the message
size (in fact we use 2m + 1 functions for a reason related to the complexity of the scheme and key
lengths). Each message defines a subset of m functions for each user (each bit of the message selects
one of two functions). We then sign with respect to the combined set of m times the number of
users functions.

Our identity based encryption construction from encryption-augmented ring signatures is an
abstraction of an idea used in many previous schemes, where the public-parameters contains 2d
“challenges”, where d is the bit-length of identities (or rather 2d+1, which can improve efficiency),
and each identity specifies a cardinality-d subset of challenges. These challenges are then “com-
bined” to create the public-key for the encryption. We note the resemblance between this method
and our construction of ring signatures described above. We demonstrate that verification keys of a
ring signature scheme qualify as such “challenges”, provided that there exists an encryption scheme
whose public-keys are associated with a set of verification keys, and whose secret keys are associated
with ring signatures for the public-key - which is exactly the definition of encryption-augmented
ring signatures.

Once the above reductions and definitions are obtained, our lattice-based instantiation is es-
sentially casting the known ideas on lattices (see e.g. [GPV08, AB09, Pei09, CHK09]) into our new
framework. Essentially a ring trapdoor function is a multiplication of a matrix A (which is the
description of the function) and a short vector x (the input).

For our bilinear based constructions, we consider matrix-vector multiplication “in the expo-
nent”, i.e. taking gA and gx (the vector x needs not be short here) and outputting gAx, where g
is a generator of the group. While this function is hard to compute, it is easy to verify given a
bilinear map on our group. We show that it is CDH-hard to find gx such that gAx = gy, given
gA, gy. This follows by presenting the CDH problem as a set of linear equations. If we are given
ga, gb and we wish to compute gab,3 we can consider the linear equations (in the exponent) gx1 = ga

and gx2 = gbx1 . Given gx1 , gx2 that solve this set of equations, it holds that gx2 = gab. We use
random self reducibility to show that solving a set of random equations is also sufficient.

1.3 Paper Organization

Section 2 contains preliminaries and definitions. Section 3 contains our security reductions and
constructions for standard signature schemes. In Section 4 we define the notion of ring trapdoor
functions and show that it implies ring signatures. The details and proofs of the security reductions
for ring signatures are deferred to Appendix A. Section 5 contains our construction of identity based
encryption from encryption augmented ring signatures (defined there). In Section 6 we show how
to construct ring trapdoor functions and encryption-augmented ring signature schemes based on
specific cryptographic assumptions.

3Note that for this simplified explanation, g is some fixed generator, which is not the case in the CDH problem
where g is random, but this issue can be overcome.
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2 Preliminaries

We denote scalars in plain lowercase (x ∈ {0, 1}), vectors in bold lowercase (x ∈ {0, 1}k) and
matrices in bold uppercase (X ∈ {0, 1}k×k). All vectors are column vectors by default, a row
vector is denoted xT . The ith coordinate of x is denoted xi.

For a scalar (usually a group element) g and a matrix X ∈ Zk×n (or a vector, as a special case),
we let gX denote a k × n matrix such that (gX)i,j = g(X)i,j .

Consider a bit-string x ∈ {0, 1}n, for some n ∈ N. We use xi to denote ith bit of x, and x≤i to
denote the ith prefix of x, i.e. x≤i = x1 · · ·xi. We let ei denote the ith unit string, i.e. ei = 0i−110n−i.
We use ⊕ to denote the bitwise XOR operation between strings.

Let X be a probability distribution over a domain S, we write x
$← X to indicate that x is

sampled from the distribution X. The uniform distribution over a set S is denoted U(S). We use
x

$← S as abbreviation for x
$← U(S). For any function f with domain S we let f(X) denote the

random variable (or corresponding distribution) obtained by sampling x
$← X and outputting f(x).

The min-entropy of a (discrete) random variable X is H∞(X) = minx∈S{− log Pr[X = x]}.
We write negl(k) to denote an arbitrary negligible function, i.e. one that vanishes faster than

the inverse of any polynomial.
The statistical distance between two distributions X, Y (or random variables with those distri-

butions) over a common domain S is defined as maxA⊆S |Pr[X ∈ A]− Pr[Y ∈ A]|. Two ensembles
X = {Xk}k, Y = {Yk}k are ε = ε(k)-close if the statistical distance between them is at most
ε(k). They are called statistically indistinguishable if ε(k) = negl(k). An ensemble X = {Xk}k over
domains S = {Sk}k is ε = ε(k)-uniform in S if it is ε-close to the uniform ensemble over S (we
sometimes omit S when it is clear from the context). X = {Xk}k, Y = {Yk}k are computationally
indistinguishable if every poly(k)-time adversary A has negligible distinguishing advantage:

DistX,Y Adv[A] = |Pr[A(Xk) = 1]− Pr[A(Yk) = 1]| = negl(k) .

We often abbreviate and write DistAdv[A] when X, Y are clear from the context.

2.1 Collision Resistance and Chameleon Hash Functions

Collision resistant functions. A family of collision resistant hash functions is a family H =
{Hk}k∈N of collections Hk = {h : Xk → Yk} (we sometimes omit the subscript when it is clear from
the context), such that

1. There exists a distribution over Hk, which we will slightly abuse notation and denote by Hk

as well, such that it is efficient to sample a description h of a function distributed according
to Hk. We denote this process by h

$← Hk and associate the function with its description.

2. Given a description h as described above, it is efficient to compute the associated function on
any input. Namely, for all x ∈ Xk, it is efficient to compute h(x).

3. It is hard to find collisions in a function that was properly sampled. Namely, for any polyno-
mial time adversary A it holds that

ColHAdv[A] = Pr
h

$←Hk

[(h(x1) = h(x2)) ∧ (x1 6= x2) : (x1, x2) ← A(1k, h)] = negl(k) .
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Chameleon hash functions. A family of chameleon hash functions [KR00] is a family H =
{Hk}k∈N of collections of functions Hk = {h : Mk ×Rk → Yk} (the subscripts will sometimes be
omitted), mapping a message µ ∈Mk and randomness r ∈ Rk to a range Yk. Intuitively, this is a
family of collision resistent hash functions with trapdoor: it is possible to sample a function from
the family together with a trapdoor. Given an input to the function, the trapdoor enables to find
another input that collides with it. Furthermore, it can even do so when the Mk part of the new
input is given. Formally, we require that the following hold.

1. The family H is collision resistent as described above, over the domain Xk = Mk ×Rk.

2. There exists a distribution over Rk, which we will slightly abuse notation and denote by Rk

as well, such that for all µ ∈ Mk, the distributions (h, h(m, r)) and (h, y) are statistically
indistinguishable, where h

$← Hk, r
$←Rk and y is uniform in Yk.

3. Chameleon property: There is an efficient sampling algorithm that outputs a pair (h, h−1)
such that

(a) The marginal distribution of h is statistically indistinguishable from Hk.

(b) The value h−1 is a description of an efficiently computable function (again, we associate
the function with its description) such that for all µ, µ′ ∈ Mk, r ∈ Rk it holds that
h−1(µ′, µ, r) is statistically indistinguishable from the distribution r′ $← Rk|(h(µ′, r′) =
h(µ, r)).

In this work we require a slightly different (seemingly stronger, though syntactically incompa-
rable) flavor of the chameleon property. Intuitively, we can think of the trapdoor of the standard
chameleon hash as a pre-image sampling algorithm, sampling a value r′ such that h(m′, r′) = y,
which only works given another pre-image (m, r) of y. Our new requirement is that the trapdoor
works a little differently: in order to sample a pre-image for y, it may still require some “witness”
w, which is related to the way that y was generated, but now w (or rather, the relation between
y and w) is “global” and is not specific to one function. Formally, we replace property 3 of the
standard definition with the following.

3′. Chameleon property with witness sampling:4 There is an efficient sampling algorithm
that outputs a pair (h, h−1) such that

(a) The marginal distribution of h is statistically indistinguishable from Hk.

(b) There exists a relation Valid ⊆ Yk × {0, 1}∗, and an efficient algorithm that samples
(y, w) ∈ Valid such that the marginal distribution of y is statistically indistinguishable
from U(Yk). If (y, w) ∈ Valid we say that w is a valid witness for y.

(c) The value h−1 is a description of an efficiently computable function (again, we associate
the function with its description) such that for all µ′ ∈ M, y ∈ Yk and a valid witness
w for y, it holds that h−1(µ′, y, w) is statistically indistinguishable from the distribution
r′ $←Rk|(h(µ′, r′) = y).

4We also call this “the gecko property”, see Figure 1 in page 34 for illustration.

7



(d) The family remains hard to invert, even given a witness. Namely, for any polynomial
time A and for h

$← Hk and (y, w) that are sampled as described above, it holds that

Inv′HAdv[A] = Pr
h,(y,w)

[h(µ, r) = y : (µ, r) ← A(1k, h, y, w)] = negl(k) .

Implementations. We sketch two implementations of chameleon hash functions with witness
sampling, that are variants of previous constructions of chameleon hash functions.

• Based on lattice assumptions. In the lattice-based chameleon hash function, defined
in [GPV08, Pei09], a function is represented by matrices A ∈ Zk×m1

q ,B ∈ Zk×m2
q , where k

is the security parameter, q is an odd prime and m1,m2 À k log q (the exact values of the
parameters are related to the lattice reduction, see [Pei09] for details). The message space is
M = {x ∈ Zm1

q : ‖x‖2 ≤ β1}, the randomness domain is R = {r ∈ Zm2
q : 0 < ‖r‖2 ≤ β2},

and the randomness distribution is a discrete Gaussian over Zm2
q . The range is Y = Zk

q . A
function in the family is defined by hA,B(x, r) = A · x + B · r. The hardness of collision
follows from the short integer solution (SIS) assumption, that is related to approximating the
short vector problem in lattices (see Section 6.1). The trapdoor is a short basis for the lattice
whose parity-check matrix is B.

In this case h−1, does not require m, r, only the value y. This immediately implies our witness
sampling variant, where the empty string (or any other string) can be used as a valid witness.
For details on this function, see [GPV08, Pei09].

• Based on the discrete logarithm assumption. The discrete logarithm assumption in a
cyclic group G of prime order p, with a canonical generator g for G, is that given a random
element g′ ∈ G, it is hard to compute x such that g′ = gx.5 Under this assumption, [KR00]
showed how to construct “standard” families of chameleon hash functions. We present a
variant with witness sampling defined as follows.

Let M = R = Zp and Y = G. To sample a function in the family, sample g1, g2
$← G and

define the function hg1,g2(µ, r) = gµ
1 · gr

2. To sample a value-witness pair, sample w
$← Zp and

set y = gw, where g is a canonical generator for G.

To sample a function in the family together with a trapdoor, we sample x1, x2
$← Zp and set

the description of the function to be (g1, g2) = (gx1 , gx2), and the trapdoor to be (x1, x2).
Given the trapdoor (x1, x2) and input (µ′, w, y = gw), we can find r′ such that x1µ

′+x2r
′ = w,

and thus output an appropriate pre-image.

Hardness to invert, even given a witness follows by the following argument. Assume there
exists an invertor-with-witness A for our function family. Given an input g′ = gx for the
discrete logarithm problem (where x is unknown), we sample w

$← Zp, set y = gw and
consider the function h described by (g1, g2) = (g′, g′t), for t

$← Zp. Given a pre-image µ, r,
it holds that x(µ + tr) = w (mod p), where x is the discrete logarithm of g′. It is easy to
extract x from this equation and solve the discrete logarithm problem.

5In another flavor of the assumption, g is a random generator and not a canonical one. It is immediate that our
assumption is no stronger than this.

8



2.2 Signature Schemes

A signature scheme is a tuple S = (Gen, Sign, Ver) of ppt algorithms such that

• Gen(1k) (k is the security parameter) outputs a verification key vk and a signing key sk.

• Sign(sk, µ), given a signing key sk and a message µ ∈ M, where M is the message space of
the scheme, outputs a signature σ ∈ {0, 1}∗.

• Ver(vk, µ, σ), given a verification key vk, a message µ and a signature σ, either accepts or
rejects, we often interpret these as values in {0, 1}.

Correctness. The correctness requirement of a signature scheme is that for any µ ∈ M, setting
(vk, sk) ← Gen(1k), σ ← Sign(sk, µ), it holds that Ver(vk, µ, σ) accepts with all but negligible
probability (over all randomness in the experiment).
Security. In this work, we consider several notions of security for signature schemes, the strongest
and most desirable being existential unforgeability under adaptive chosen message attacks (e-cma).
We present a generic transformation for converting schemes that adhere to weaker security notions
into e-cma-secure signature schemes. All of the security notions that we consider are defined by
an interactive experiment conducted between a challenger and a forger. The forger’s goal is to
win in the experiment (the definition of winning is part of the definition of the experiment). For
a signature scheme S, a security notion sec, and a forger F , the sec-advantage of F , denoted by
Forgesec

S Adv[F ], is the probability that F wins in the sec-experiment. The advantage is a function
of the security parameter k. The scheme S is sec-secure if for any polynomial time forger F it
holds that Forgesec

S Adv[F ] = negl(k).

• Existential unforgeability under (adaptive) chosen message attack (e-cma). This
notion is defined by the following experiment. First, the challenger runs (vk, sk) ← Gen(1k)
to obtain a key pair for the signature scheme, and sends vk to the forger. The forger can
then make polynomially many (adaptive) queries of the form µi ∈M to which the challenger
answers with σi

$← Sign(sk, µi). Finally the forger outputs (µ∗, σ∗). The forger wins if both
Ver(vk, µ∗, σ∗) = 1 and µ∗ 6∈ {µi}.6

• Existential unforgeability under static chosen message attack (e-scma). In this
experiment, the forger first specifies a list of messages {µi} and only then the challenger
samples (vk, sk), computes {σi} and sends (vk, {σi}) to the forger. Finally, the forger sends
(µ∗, σ∗). The event of the forger winning in the experiment is defined in the same way.
Namely, the forger wins if Ver(vk, µ∗, σ∗) = 1 and µ∗ 6∈ {µi}.

• A-priori-message unforgeability under static chosen message attack (a-scma). In
this experiment, the challenger first samples µ∗ $← M and sends it to the forger. Then the
e-scma-experiment is conducted, where the forger is required to sign the message µ∗. Namely,
upon receiving a message µ∗, the forger sends {µi}, the challenger sends (vk, {σi}), and the
the forger returns σ∗. The forger wins if Ver(vk, µ∗, σ∗) = 1 and µ∗ 6∈ {µi}.7

6We remark that the condition Ver(vk, µ∗, σ∗) = 1 is not well defined if Ver is randomized. To make the definition
precise, we have the challenger also sample a random tape with which Ver(vk, µ∗, σ∗) is executed.

7We remark that the selective-message variant, where the forger defines µ∗ at the beginning of the experiment,
rather than having to forge on a random message, is easily reducible to the a-priori case. The reduction will augment
a random string to the verification key, and XOR any message with that string prior to signing.
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2.3 Ring Signatures

A ring signature scheme is a tuple R = (Gen, Sign, Ver) of ppt algorithms such that

• Gen(1k) (k is the security parameter) outputs a verification key vk and a signing key sk.

• Sign(sk, T, µ), given a signing key sk, a set of verification keys T and a message µ ∈ M,
where M is the message space of the scheme, outputs a signature σ ∈ {0, 1}∗.

• Ver(T, µ, σ), given a set of verification keys T , a message µ and a signature σ, either accepts
or rejects (we often interpret these as values in {0, 1}).

Correctness. The correctness requirement of a ring signature scheme is that for any µ ∈ M
and any polynomial t ∈ N, setting (vki, ski) ← Gen(1k) for all i ∈ [t], T = {vki}i∈[t], and
σ ← Sign(sk1, T, µ), it holds that Ver(T, µ, σ) accepts with all but negligible probability (over
all randomness in the experiment).8

Anonymity. The anonymity requirement is that for any µ ∈ M and any polynomial t ∈ N,
setting (vki, ski) ← Gen(1k) for all i ∈ [t], T = {vki}i∈[t], and signatures σ1 ← Sign(sk1, T, µ),
σ2 ← Sign(sk2, T, µ), it holds that the distributions ({ski}, T, µ, σ1) and ({ski}, T, µ, σ2) are com-
putationally indistinguishable (where all of our constructions in fact achieve statistical indistin-
guishability).9

Security. Similar to the case of signatures (see Section 2.2), we consider several notions of security
for ring signature schemes. The definitions, again, use the notion of challenger-forger games.

• Existential ring unforgeability under (adaptive) chosen message attack (er-cma).
This notion is defined by the following experiment. First, the forger sends a unary value 1t to
the challenger. We assume for simplicity and w.l.o.g. that t is a deterministic function of the
security parameter. Then, the challenger runs (vk`, sk`) ← Gen(1k) for all ` ∈ [t] to obtain
key pairs for the signature scheme, and sends {vk`}`∈[t] to the forger. The forger can then
make polynomially many (adaptive) queries of the form (µi, Ii, ji) where µi ∈ M, Ii ⊆ [t],
ji ∈ Ii, to which the challenger answers with σi ← Sign(skji , Ti, µi), where Ti = {vk`}`∈Ii

.
Finally the forger outputs (µ∗, I∗, σ∗).

We consider two flavors of this attack: full -existential unforgeability (fer-cma) and weak -
existential unforgeability (wer-cma). The two flavors differ in the definition of the forger
winning event. In both we require that Ver(T ∗, µ∗, σ∗) = 1, where T ∗ = {vk`}`∈I∗ , but while
for fer-cma we require that (µ∗, I∗) 6∈ {(µi, Ii)}, for wer-cma we require that µ∗ 6∈ {µi}.
By definition, the wer-cma-advantage of any forger is no more than its fer-cma-advantage,
thus constructing a fer-cma-secure scheme is at least as hard as constructing a wer-cma-secure
one. We show in Appendix A that in fact a wer-cma-secure scheme implies a fer-cma-secure
one.

• Existential ring unforgeability under static chosen message attack (er-scma). This
notion is similar to the e-scma notion in standard signatures. The experiment is defined

8Notice that the set T = {vki}i∈[t] is an unordered set, and therefore it suffices to require correctness only when
signing with sk1.

9As in the correctness requirement, the fact that the set T = {vki}i∈[t] is an unordered set, implies that it suffices
to require anonymity only with respect to sk1 and sk2.
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as follows. The forger first sends 1t and {µi}. The challenger sends {vk`}`∈[t], which are
obtained by running (vk`, sk`) ← Gen(1k) for all ` ∈ [t]. Then the forger can adaptively select
(Ii, ji) and the challenger answers with σi ← Sign(skji , Ti, µi), where Ti = {vk`}`∈Ii . The final
message of the forger is (µ∗, I∗, σ∗), and it wins if Ver(T ∗, µ∗, σ∗) = 1, where T ∗ = {vk`}`∈I∗ ,
and µ∗ 6∈ {µi}. Note that we only consider the “weak” variant of this notion.

• A-priori-message ring unforgeability under static chosen message attack (ar-scma).
This notion is similar to the a-scma notion in standard signatures. The difference between this
and er-scma is that µ∗ $←M is sampled by the challenger and sent to the forger in the begin-
ning of the experiment. Again, only the weak variant of this notion is considered. Explicitly,
in this experiment, the forger first sends 1t; then the challenger samples µ∗, and sends it to
the forger; the forger sends {µi}; the challenger sends {vk`}`∈[t]; then the forger is allowed to
make t queries of the form (Ii, ji), and the challenger answers with σi ← Sign(skji , Ti, µi); at
the end the forger outputs (I∗, σ∗), and it wins if Ver(T ∗, µ∗, σ∗) = 1 and µ∗ 6∈ {µi}.

2.4 Public-Key Encryption and Identity Based Encryption

2.4.1 Public-Key Encryption

A public-key encryption scheme is a tuple E = (Gen, Enc, Dec) of ppt algorithms such that

• Gen(1k) (k is the security parameter) outputs a public (encryption) key pk and a secret
(decryption) key sk.

• Enc(pk, µ), given a public-key pk and a message µ ∈ M, where M is the message space of
the scheme, outputs a ciphertext c ∈ {0, 1}∗.

• Dec(sk, c), given a secret-key sk and a ciphertext c, outputs a message µ ∈M.

Correctness. The correctness requirement for a public-key encryption scheme is that for any
µ ∈ M, setting (pk, sk) ← Gen(1k), c ← Enc(pk, µ), µ′ ← Dec(sk, c), it holds that µ′ = µ with all
but negligible probability (over all randomness in the experiment).
Security. The only security notion for public-key encryption that we discuss in this work is indistin-
guishability under chosen plaintext attacks (CPA), defined by the following interactive experiment
played between a challenger and an adversary. The challenger first computes (pk, sk) ← Gen(1k)
and sends pk to the adversary. The adversary then chooses two messages m0 and m1 fromM,10 and
sends m0,m1 to the challenger. The challenger flips a coin b

$← {0, 1}, computes c ← Enc(pk, mb),
and sends c to the adversary. Finally, the adversary answers with a “guess” b′, and it wins if b′ = b.

The scheme is CPA-secure if for any polynomial time adversary A it holds that

CPAEAdv[A] =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ = negl(k) .

10Our definition has the flavor of “block-by-block” encryption, where the message space is bounded, as will be the
case in the schemes we discuss. An alternative definition considers a message space M = {0, 1}∗ and thus additionally
requires that |m0| = |m1|.
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2.4.2 Identity Based Encryption

An identity-based encryption scheme is a tuple IBE = (Setup, Extract, Enc,Dec) of ppt algorithms
such that

• Setup(1k) (k is the security parameter) outputs public-parameters pp and master secret-key
msk.

• Extract(pp,msk, id), given public parameters pp, a master secret-key msk and an identity
id ∈ ID, where ID is identity space of the scheme, outputs skid, a secret-key for identity id.

• Enc(pp, id, µ), given public parameters pp, an identity id and a message µ ∈ M, where M is
the message space of the scheme, outputs a ciphertext c ∈ {0, 1}∗.

• Dec(pp, skid, c), given the public parameters pp, a secret-key skid and a ciphertext c, outputs
a message µ ∈M.

Correctness. The correctness requirement for identity-based encryption is that for any id ∈ ID
and µ ∈ M, setting (pp,msk) ← Setup(1k), c ← Enc(pp, id, µ), skid ← Extract(pp,msk, id), µ′ ←
Dec(pp, skid, c), it holds that µ′ = µ with all but negligible probability (over all randomness in the
experiment).
Security. In this work we consider two notions of security, both of which are defined by an
interactive experiment played between a challenger and an adversary. In the beginning of the
experiment, the challenger flips a hidden coin b

$← {0, 1} before the experiment begins, which
affects its behavior in the game. The goal of the adversary is to guess the value of b: its final
message is a bit b′ ∈ {0, 1} which can be interpreted as its guess as to the value of b, it wins if
b′ = b. An IBE scheme IBE is sec-secure if for any polynomial time adversary A it holds that

IBEsec
IBEAdv[A] =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣ = negl(k) .

• Selective-identity (sel) security (against chosen plaintext attacks). Before the ex-
periment, the challenger first flips the hidden coin b

$← {0, 1}. The first message is sent by
the adversary and contains an identity id∗ ∈ ID. Then the challenger computes (pp,msk) ←
Setup(1k) and sends pp to the adversary. The adversary can then make polynomially many
(adaptive) queries of the form id ∈ ID. If id 6= id∗, the challenger runs skid ← Extract(pp,msk, id)
and sends skid to the adversary (otherwise it returns ⊥). After this phase, the adver-
sary computes m0,m1 ∈ M and sends them to the challenger. The challenger computes
c ← Enc(pp, id∗, mb) and sends c to the adversary. The adversary can make additional
id ∈ ID queries which are answered as before. Finally the adversary outputs its guess b′.

• Adaptive-identity (ad) security (against chosen plaintext attacks). Before the ex-
periment, the challenger first flips the hidden coin b

$← {0, 1}. The challenger then computes
(pp,msk) ← Setup(1k) and sends pp to the adversary. The adversary can then make poly-
nomially many (adaptive) queries of the form id ∈ ID. For each query, the challenger
runs skid ← Extract(pp,msk, id) and sends skid to the adversary. The adversary then com-
putes id∗ ∈ ID and m0,m1 ∈ M and sends them to the challenger. If id∗ 6∈ {id}, where
{id} is the set of identities that the adversary queried before, then the challenger computes
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c ← Enc(pp, id∗,mb) and sends c to the adversary (otherwise it sends ⊥). The adversary
can make additional id ∈ ID queries which are answered by skid ← Extract(pp,msk, id) if
id 6= id∗ (and by ⊥ otherwise). Finally the adversary outputs its guess b′.

3 A New Perspective on Recent Signature Schemes

In this section, we introduce a general method for amplifying security of signature schemes. More
specifically, our method converts any signature scheme that is a-priori-message unforgeable under
static chosen message attacks (a-scma) into one that is existentially unforgeable under adaptive
chosen message attacks (e-cma). This method uses a family of chameleon hash functions.11 In fact,
we only show how to convert the a-scma-secure scheme into one that is existentially unforgeable
under static chosen message attack e-scma (this part does not require the chameleon hash), and
then use the known reduction from e-cma to e-scma and chameleon hash, presented in [KR00].

We present an overview of our transformation in Section 3.1 and provide the actual construction
in Section 3.2. Section 3.3 provides simple constructions of signature schemes based on the above
methodology.

3.1 Overview of Our Transformation

As mentioned above, we are given a signature scheme that is a-priori-message unforgeable (under
static chosen message attacks), and we wish to transform it into scheme which is existentially
unforgeable (under static chosen message attacks). The idea, abstracted from the construction of
Hohenberger and Waters [HW09b], is as follows.

The first attempt, is to sign a message µ of length m by considering all m prefixes of µ, and
signing each of them separately. The new signature for µ is thus composed of m signatures of
the m prefixes. Intuitively, the reason why this should be secure is that when the forger (for the
existential attack) specifies the messages he wishes to get signatures for (recall that this is done
before seeing the public-key), it actually “commits” to forging a signature for one of polynomially
many messages. This is because the message it forges the signature of, must contain a prefix that
only differs in the last bit from one of the prefixes of one of the messages it specified, and there
are only polynomially many options for that. Therefore, the message that it forges a signature of
is determined before the key generation, and thus is “a-priori” in some weak sense.

We would like to claim that our a-priori-message is contained in this polynomial-sized set, and
that the forger cannot tell which one it is. In our second attempt, therefore, we add a random
string α to the verification-key of the scheme, and require that the prefixes are XORed with α
prior to being signed (this can be seen as applying a universal hash function to the prefixes). This
enables us to choose α wisely so as to embed the a-priori message as a random element in the said
polynomial-sized set.

A final delicate point that we need to address is the following. We explained that we sign by
taking all prefixes, XORing them with α and signing each one separately. But α is m bits long,
which is significantly longer than many of the prefixes. We, therefore, need to concatenate zeros to
the end of the prefix before XORing with α, which leads to the following problem.

11Here the original notion of chameleon hash is sufficient and our new flavor is not required, though it is also
useable.
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Consider a forger that only queries a single message, one whose last bit is 1. Namely, it queries
µ ∈ {0, 1}m such that µm = 1. A forgery for µ∗ = µ1 · · ·µm−10 can be obtained as follows: the
forger already has signatures for all prefixes of length (m − 1) or less. In addition, the mth prefix
(containing the entire message) is identical to the (m−1)th (since we concatenated a zero bit to the
end of the prefix to make it m bit long), so it can just use the same signature for this prefix as well,
forging a signature for µ∗. To solve this problem, we will sign not only the string resulting from
the XOR operation, but also the length of the prefix this string originated from. Thus preventing
this sort of “cut and paste” attacks.

The formal reduction and proof are provided below.

3.2 The Construction and Security Reduction

We present a reduction that given a signature scheme S = (Gen,Sign,Ver) that is a-scma-secure,
produces a scheme S ′ = (Gen′, Sign′,Ver′) that is e-scma-secure. The message space of S ′ is {0, 1}m,
and we require that the message space of S can be parsed as M = [m]×{0, 1}m. The reduction is
defined as follows.

• Gen′(1k). Generate (vk, sk) ← Gen(1k) and sample α
$← {0, 1}m. Return the verification key

vk′ = (vk, α) and the signing key sk′ = sk.

• Sign′(sk′, µ). Recall that sk′ = sk, a signing key for the scheme S, and denote u(i) = µ≤i‖0m−i

(recall that µ≤i = µ1 · · ·µi). The signing algorithm computes σ(i) ← Sign(sk, (i, u(i)⊕α)) for
all i ∈ [m] and outputs σ = {σ(i)}i∈[m].

• Ver′(vk′, µ, σ). Recall that vk′ = (vk, α) and parse σ as {σ(i)}i∈[m]. Then Ver′ runs Ver(vk, (i, u(i)⊕
α), σ(i)) for all i ∈ [m] and accepts if and only if all of them accepted.

The reduction incurs a factor m overhead in the computational complexity and in the length
of the signature. Note, however, that the added computation is parallelizeable so a circuit for Sign′

has the same depth as one for Sign, but m times the size.
The completeness of the reduction is immediate. The following theorem states its security

properties.

Theorem 3.1. For any forger F ′, there exists a forger F such that

Forgee-scma
S′ Adv[F ′] ≤ mq · Forgea-scma

S Adv[F ] .

Where q is a polynomial upper bound on the number of queries made by F ′ in a e-scma experiment.

Proof. The forger F simulates F ′ as follows.

1. F gets a random message (i∗, µ∗) ∈ [m]× {0, 1}m from its challenger.

2. F simulates F ′ to obtain the list of messages {µj}j∈[q] that F ′ wishes to get signatures for,

and computes the prefixes {u(i)
j }(i,j)∈[m]×[q].

3. F samples j∗ $← [q] and sets α = µ∗ ⊕ u
(i∗)
j∗ ⊕ ei∗ , where ei∗ = 0i∗−110m−i∗ is the i∗th unit

bit-vector (note that α is uniformly distributed since µ∗ is).

Intuitively, it is here that F guesses a prefix that F ′ is going to sign, and embeds his challenge
(i∗, µ∗) in α accordingly.
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4. F sends {(i, u(i)
j ⊕ α)}(i,j)∈[m]×[q] to the challenger as the list of messages to be signed. The

challenger returns a verification key vk and signatures {σ(i)
j }(i,j)∈[m]×[q].

5. F sends vk′ = (vk, α) to F ′, along with the signatures {σ(i)
j }(i,j)∈[m]×[q] (note that these are

distributed exactly as the output of Sign′ on {µj}j∈[q]).

6. When F ′ returns µ̂, σ̂ = {σ̂(i)}i∈[m], F returns σ∗ = σ̂(i∗).

To analyze the performance of F , consider a case where F ′ wins in the simulated a-scma
experiment. Since µ̂ 6∈ {µj}j∈[q], there exists i′ ∈ [m] such that û(i′−1) ∈ {u(i′−1)

j }j∈[q] but û(i′) 6∈
{u(i′)

j }j∈[q]. Since the view of F ′ is independent of (i∗, j∗), it holds that

Pr[(i∗ = i′) ∧ (û(i′−1) = u
(i′−1)
j∗ )] ≥ 1/(mq) .

Consider the case where indeed i∗ = i′ and û(i′−1) = u
(i′−1)
j∗ . Note that in such case

û(i∗) = u
(i∗)
j∗ ⊕ ei∗ = µ∗ ⊕ α.

By definition,
Ver(vk, µ∗, σ∗) = Ver(vk, û(i∗) ⊕ α, σ̂(i∗)) = 1.12

Further, the fact that û(i∗) 6∈ {u(i∗)
j }j∈[q] implies that (i∗, µ∗) 6∈ {(i, u(i)

j ⊕ α)}(i,j)∈[m]×[q]. We
conclude that in this case, F wins in the a-scma experiment, and the result follows.

3.3 Instantiations

In this section, we show that the reductions presented above capture a significant part of the
complication in constructing efficient signature schemes based on standard assumptions. This
suggests that the conceptual framework of first constructing an a-scma-secure scheme and then
applying our reduction, can be beneficial for future constructions. Our first example shows that, in
a sense, the recent scheme of [HW09b] can be interpreted as applying the above framework to the
signature scheme of Gennaro, Halevi, and Rabin [GHR99], which results in reducing the required
assumption.13 We also briefly explain how this framework can be employed to obtain signature
schemes based on lattice assumptions or based on the CDH assumption over bilinear groups, using
ideas from Section 4 as building blocks.

We start with a construction based on the RSA assumption [RSA78]: Let k be the security
parameter. Let p, q be uniformly sampled k-bit primes, and define N = pq. Let e be a uniformly
sampled element in ZN , where ϕ(N) = (p − 1)(q − 1). The RSA assumption is that given (N, e)
and g

$← Z∗N , it is computationally hard to compute g1/e (mod N).
We next give a high level description of a signature scheme S = (Gen, Sign,Ver), which is

a-scma-secure under the RSA assumption. We note that this scheme is very similar to the scheme
12To be precise, in the case where Ver is probabilistic we need to assume w.l.o.g. that the executions of Ver in both

experiments run with the same random tape.
13The actual scheme of [HW09b] is much more efficient than the one obtained here, but this is achieved using

specific properties of the assumption.
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of [GHR99], which is proven there to be e-scma-secure (a stronger notion than our a-scma-security)
under the strong-RSA assumption (a stronger assumption than standard RSA that we use here).

One ingredient that we use, and was used in [GHR99, HW09b], is a family of efficiently com-
putable hash functions that map the message space to uniformly distributed prime numbers in
Z∗N .14 We require that collisions in h (chosen randomly from in the family) do not exist or are hard
to find. In addition, we require that given a uniform prime e in the range, it is possible to sample
a function h and an input x that are uniformly distributed such that h(x) = e. The details of the
implementation are not essential to this example and are omitted.15

• Gen(1k). Generate two random k-bit safe primes p, q ∈ {0, 1}k, let N = pq, and sample
g

$← Z∗N . In addition, sample a hash function h as described above. Set the verification key
to be vk = (N, g, h), and the signing key to be sk = (p, q).

• Sign(sk, µ). The signing algorithm first computes e = h(µ). Then, using the factorization
of N , the algorithm computes σ = g1/e (mod N), and outputs σ as the signature for µ.

• Ver(vk, µ, σ). Recall that vk = (N, g, h). Accept if and only if σe = g (mod N), where
e = h(µ).

Completeness is immediate. We next claim that the signature scheme S = (Gen, Sign, Ver),
described above, is a-scma secure under the RSA assumption. The proof is very similar to the
proof in [GHR99], and we sketch it here for the sake of completeness.

Suppose that there exists a ppt forger F that succeeds in the a-scma experiment with non-
negligible probability. Consider a ppt algorithm A, described below, that makes use of F and
attempts to break the RSA assumption, for the case that the exponent e is a random prime in
ZN .16 The algorithm A takes as input a triplet (N, g, e), where N is a product of two random k-bit
primes, g is a random element in Z∗N , and e is a random prime in ZN , and attempts to compute
g1/e (mod N), as follows.

1. Sample h, µ∗ such that h(µ∗) = e, and send µ∗ as the challenge to the forger F .

2. Upon receiving a list of messages µ1, . . . , µ` from the forger F , let ei = h(µi), and use the
extended gcd algorithm to compute a, b ∈ Z such that a · e + b ·∏i ei = 1. Let t = ga·e1···e` ,
and feed the forger F with the verification key vk = (N, t), and with signatures σ1, . . . , σ`,
where

σi = ga
∏

j 6=i ej (mod N) .

Note that σ
h(µi)
i = t (mod N), as required.

3. Upon receiving a signature σ∗ from F , check whether σ∗ = t1/e. If this is not the case (i.e.,
if F failed to forge a signature on µ∗), then abort. Otherwise,

σ∗ = t1/e = g
a·e1···e`

e = g
1−be

e = g1/eg−b ,

14The work of [GHR99, HW09b] used a chameleon hash function for this purpose, however to get security based on
the standard RSA assumption (as opposed to the strong RSA assumption), one needs to use a family of deterministic
functions, as was done in [HW09b].

15As was mentioned above, in [GHR99] the function h is a chameleon hash function; in [HW09b] it is a pseudoran-
dom function, XORed with a random value, with the restriction that the output is prime.

16It is sufficient to prove for this case, see [HW09b].
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where a, b are the numbers obtained from the extended gcd algorithm above. Output g1/e =
σ∗ · gb.

The following two facts establish the result. First, we note that A simulates the a-scma experi-
ment in a statistically-close manner; and second that A succeeds in breaking the RSA assumption
whenever the forger F succeeds in forging a signature in the a-scma experiment simulated by A.
We refer the reader to [GHR99] for a more detailed proof.

So far, we presented an a-scma-secure signature scheme based on the RSA assumption, where
both the scheme and the proof were relatively simple. We also construct a simple a-scma-secure
signature scheme based on the existence of ring trapdoor functions, a primitive formally defined
in Section 4.1 below. We note that ring trapdoor functions can be easily instantiated based on
the lattice-related ISIS assumption and based on the CDH assumption over bilinear groups (see
Section 6 for details). Again, both the scheme and the proof are relatively simple. However, we
omit the construction here, since in Section 4.3, we construct ring signature schemes based on the
existence of ring trapdoor functions (without significant complications). The standard signature
scheme is very similar (simply taking the ring of verification keys to be the single verification key
of the user). We refer the reader to Section 4.3 for details.

4 Ring Signatures in the Standard Model

In this section we show how to construct ring signature schemes in the standard model (namely,
without random oracles). Our main tool is a new primitive that we call ring trapdoor functions
and is presented in Section 4.1. We construct ring signature schemes from ring trapdoor functions
in two steps. We first reduce the “ultimate” er-cma security notion to the weak ar-scma notion.
This reduction is very similar to the reduction for standard signatures (given in Section 3.2), and
is formally stated and proven in Appendix A. Then we construct an ar-scma-secure scheme based
on ring trapdoor functions. This construction is formally stated and proven in Section 4.3. In
Section 4.2 we provide a high level description of both steps.

4.1 Ring Trapdoor Functions

In this section we define the notion of ring trapdoor functions. We defer the instantiations to
Section 6, where we show how to construct such a family of ring trapdoor functions under the (in-
homogenous) short integer solution (ISIS) assumption, or under the computational Diffie-Hellman
assumption in bilinear groups. We refer the reader to Sections 6.1 and 6.2, respectively, for the
definitions of these assumptions.

Intuitively, the notion of ring trapdoor functions is a generalization of the standard notion of
trapdoor functions: It is not only required that given f, y it is hard to find x such that f(x) =
y, but it is also hard, given f1, . . . , ft, y to find x1, . . . , xt such that

∑t
i=1 fi(xi) = y, for any

polynomial t. However, given a trapdoor for any of the functions fi, one can efficiently generate
such x1, . . . , xt, and furthermore, it is impossible to tell, looking at x1, . . . , xt, which of the t
trapdoors was used generate them. Note that this definition requires that the range of all the
functions can be interpreted as a group, so that the addition is well defined (we also need a neutral
element as demonstrated in the formal definition).

In addition, we relax the standard definition of trapdoor functions and only require that given
f, x, y, one can efficiently verify that f(x) = y, we do not require that f is efficiently computable.
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Essentially, the relation of ring trapdoor functions to ring signatures is as follows: think of the
function as the verification key and the trapdoor as the signing key; given a set of functions and
a target value y, each of the trapdoors can be used to generate (essentially) the same distribution,
which is otherwise hard to generate. Of course many details are missing from this intuitive idea,
such as the relation to the message to be signed. (More details can be found in Section 4.2, and a
formal exposition (construction and proof) can be found in Section 4.3).

Definition 4.1 (ring trapdoor functions). A family of (one-way) ring trapdoor functions is a
collection of functions T = {Tk}k∈N, where Tk = {f : Xk → Gk}, X = {Xk}k∈N is a collection
of efficiently recognizable sets, and G = {Gk}k∈N is a collection of commutative groups (in this
definition we use additive notation for operations in Gk) where group operations can be performed
efficiently, such that

1. Sampling. Given 1k, one can efficiently sample f ∈ Tk. We abuse notation and also denote
by Tk the distribution induces by this sampling algorithm.

We stress that f may not be efficiently computable.

2. Zero. For every k ∈ N there exists an efficiently recognizable element ξk ∈ Xk, such that for
all f ∈ Tk it holds that f(ξk) = 0. We will use 0 to denote both the identity element of Gk

and ξk, so this requirement will be written as f(0) = 0. The distinction between the two will
be clear from the context.

3. Verifiability. For every k ∈ N and every polynomial t, given any f1, . . . , ft ∈ Tk, any
x1, . . . , xt ∈ Xk, and any y ∈ Gk, one can efficiently verify that

∑
i∈[t] fi(xi) = y. Note that

we do not require that f is efficiently computable.

4. Ring one-way. For every polynomial t, given f1, . . . , ft ← Tk and y
$← Gk, it is computa-

tionally hard to find x1, . . . , xt ∈ Xk such that
∑

i∈[t] fi(xi) = y. Formally, we require that
for any polynomial time adversary A, any polynomial t, it holds that

RingInvt
T Adv[A] = Pr


∑

i∈[t]

fi(xi) = y : f1, . . . , ft ← Tk, y
$← Gk

(x1, . . . , xt) ← A(1k, f1, . . . , ft, y)


 = negl(k) .

5. Trapdoor. Given 1k one can efficiently sample a function-trapdoor pair (f, td) such that
the marginal distribution of f is statistically indistinguishable from Tk and such that the
following holds:17 For any polynomial t, given any f1, . . . , ft ∈ Tk, together with a trapdoor
tdi for fi, and given any y ∈ Gk, one can efficiently sample x1, . . . , xt ∈ Xk such that∑

i∈[t] fi(xi) = y. Furthermore, using tdj that corresponds to fj instead of tdi will result in a
statistically indistinguishable distribution of (td1, . . . , tdt, x1, . . . , xt).18

17Note the function-trapdoor sampler can be used to sample functions and satisfy the sampling property above.
However, there may exist a more efficient implementation for a function sampler with no trapdoor.

18In fact, computational indistinguishability suffices for our purposes, but our implementations have the statistical
property which makes the proof slightly simpler.
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4.2 Overview of Our Construction

Our construction has two main components. The first is a reduction of er-cma security to ar-scma
security (this reduction is formally presented in Appendix A) and the second is a construction of
ar-scma-secure ring signatures from ring trapdoor functions (this construction is formally presented
in Section 4.3 below).

4.2.1 The Security Reduction

The reduction from er-cma to ar-scma is similar to the respective e-cma to a-scma reduction in
“standard” signatures (presented in Section 3.2), but requires attention to a few additional issues.

First of all, we reduce full er-cma security to weak er-cma security. In the former, the forger is
successful even if it forges a signature for a message that it queried before, so long as the queried
subset of users is different from the set of users it forges on. In the latter, the forger must forge a
signature for a message that it did not query before. This reduction is quite straightforward: given
a ring signature scheme with weak er-cma security, we create a scheme with full er-cma security by
making the signing algorithm sign a tuple containing the message and all verification keys in the
user set. Therefore signing a message that was previously queried, without using the same user set,
corresponds to signing a new tuple, which is assumed to be hard. This reduction is formalized in
Appendix A.1.

We then reduce weak er-cma security to (weak) er-scma-security, where in er-scma, the attack is
static; namely the forger needs to specify all of its queries in advance. This is done using (our variant
of) chameleon hash functions (see Section 2.1). Given an er-scma secure scheme, we augment the
verification key with a chameleon hash function. To sign, we first apply the hash function to the
message, using some randomness r, and then sign the output and return the signature and the value
of r used. This is secure since we can sample our chameleon hash function along with a trapdoor
and generate r in an a-posteriori manner as is done in [KR00] for standard signatures. A delicate
point, however, is which hash function should be used in the signing process (recall that the ring
signing algorithm takes a number of verification keys, each having its own hash function). One
solution is to use one hash function as a “public parameter” for all users, but in ring signatures we
usually wish to avoid public parameters (as this requires trusting the entity that generates them).
We show that taking any deterministic function of the set of verification keys suffices to achieve
security. It is here that we need to rely on our variant of chameleon hash, and cannot simply use
the original definition. This reduction is formalized in Appendix A.2.

The final step is going from er-scma security to ar-scma security, in which the challenge message
is a-priori determined, and randomly chosen by the challenger. This reduction is very similar to
the reduction for the case of standard signature schemes, as presented in Section 3. Namely, the
idea is to apply a universal hash function to each prefix of the message and then sign each of these
separately. Here, again, there is an issue of which universal hash function to use (in case we wish
to sign w.r.t. more than one verification key). This is resolved similarly to the previous reduction,
by taking an arbitrary deterministic function of the set of verification keys. This reduction is
formalized in Appendix A.3.

4.2.2 Our Construction

We construct ar-scma-secure ring signatures from ring trapdoor functions. This construction re-
sembles the selective-identity IBE constructions of [CHK09, AB09, Pei09]. First, let us consider the
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simpler case of ar-scma-security for a message space that only contains one message (i.e.M = {0}).
Note that in this case, there is no query phase. Consider the ring signature scheme whose key gen-
eration samples a functions-trapdoor pair (f, td) and an element y

$← G and sets the signing key to
be td and the verification key to be (f, y). To sign the message µ = 0 w.r.t. some set of t verification
keys, we select one of the y components using an arbitrary (but fixed) deterministic function of the
set of verification keys, and use the one trapdoor we have to sample a vector (x1, . . . , xt) such that∑

fi(xi) = y, and use this vector as the signature. Completeness, anonymity and security follow
from the properties of the ring trapdoor function.

Going from message space M = {0} to M = {0, 1}m, for a polynomial m, is done as follows.
Instead of sampling just one function per user, we sample 2m+1 functions per user: f0 and fi,b for
i ∈ [m] and b ∈ {0, 1}. Each message µ specifies a set of m + 1 messages, containing f0 and fi,µi .
To sign a message µ w.r.t. a set of t verification keys, gather the functions that are relevant to µ
from all verification keys, a total of t · (m+1) functions, and sample an input vector corresponding
to the output y (where y is determined the same way as before). Note that it is always sufficient
to have a trapdoor for f0 because it is always included in the set, therefore fi,b can be sampled
without a trapdoor.19 Security follows since once the message µ∗ is determined, it defines a set of
functions for which the forger needs to find appropriate inputs, which would break the ring one-way
property. The formal construction and proof can be found in Section 4.3 below.

4.3 Ring Signatures from Ring Trapdoor Functions

Consider the following signature scheme R[T ,m], whose ar-scma-security we will establish below.

• Parameters. The scheme is parameterized by a collection T = {Tk}k∈N of ring trapdoor
functions and by a polynomial parameter m = m(k). The message space is M = {0, 1}m.

• Key generation. Gen(1k) samples a pair (f0, td0) from Tk and additional 2m functions
(that can be sampled without a trapdoor) 〈fi,b〉i∈[m],b∈{0,1} from Tk. It additionally samples

y
$← Gk. It sets sk = td0 and vk = (f0, 〈fi,b〉(i,b)∈[m]×{0,1}, y).

• Signing. Sign(sk, T, µ) runs as follows. Recall that T is a set of verification-keys of the form
vk` = (f (`)

0 , 〈f (`)
i,b 〉(i,b)∈[m]×{0,1}, y`) for ` ∈ [τ ] where τ = |T |. Let y = y` for ` for which f

(`)
0 is

lexicographically first.20

By the trapdoor property of T , we can use sk = td
(`)
0 (for some ` ∈ [τ ]) to sample 〈x(`)

i 〉`∈[τ ],i∈{0}∪[m]

such that ∑

`∈[τ ]

f `
0(x

(`)
0 ) +

∑

`∈[τ ]
i∈[m]

fi,µi(x
(`)
i ) = y .

The signature returned is σ = 〈x(`)
i 〉`∈[τ ],i∈{0}∪[m].

• Verifying. Ver(T, µ, σ = 〈x(`)
i 〉`∈[τ ],i∈{0}∪[m]) runs as follows. It automatically rejects if

x
(`)
i 6∈ Xk for some i, `. Otherwise it takes the value of y from the lexicographically first f0

19We note that the function f0 is added only for the sake of efficiency. By adding f0, each user can store only td0

as its secret key, and always use td0 to sample the relevant inputs.
20This choice of y is arbitrary, any deterministic selection from {y`}`∈[τ ] will do.
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and accepts if and only if
∑

`∈[τ ]

f `
0(x

(`)
0 ) +

∑

`∈[τ ]
i∈[m]

fi,µi(x
(`)
i ) = y .

This can be done efficiently using the verifiability property of T .

Completeness follows from the verifiability property of T . Anonymity follows from the trapdoor
property. Security is proven in the following lemma.

Lemma 4.1. Let F be a forger for the ar-scma-experiment of R[T ,m]. Then there exists an
adversary A such that

Forgear-scma
R Adv[F ] ≤ t · RingInv(m+1)t

T Adv[A] + negl(k) ,

Where 1t is the value of the first message of F (recall that we assume that this is a deterministic
function of k).

Proof. The adversary A takes as input (m + 1)t functions from Tk and a value y ∈ Gk. Let us
denote these functions by f̂i,` for i ∈ {0} ∪ [m] and ` ∈ [t]. The adversary A runs as follows.

1. A simulates the first round of F to obtain 1t.

2. A samples µ∗ $← {0, 1}m and interprets f̂i,` for ` ∈ [t] as either f
(`)
0 (if i = 0) or f

(`)
i,µ∗i

(if i 6= 0).

3. A samples (f (`)
i,1−µ∗i

, td
(`)
i,1−µ∗i

) for all (`, i) ∈ [t]× [m]. It also samples `∗ $← [t] and sets y`∗ = y

and y`
$← Gk for all ` 6= `∗.

4. A sends µ∗ to F and gets the list of queries {µ} from F . If µ∗ appears in the list then A
halts. Note that in such case F cannot win in the experiment since success in the ar-scma
experiment was defined w.r.t. weak forgery, in which µ∗ 6∈ {µi} (see Section 2.3).

5. A sends the verification keys vk1, . . . , vkt to F , where vk` = (f (`)
0 , 〈f (`)

i,b 〉(i,b)∈[m]×{0,1}, y`).

6. A simulates the query phase of F : for a query (I, j) related to a message µ, A chooses an
index i for which µi 6= µ∗i and uses td

(j)
i,1−µ∗i

to sample 〈x(`)
i 〉`∈I,i∈{0}∪[m] such that

∑

`∈I

f `
0(x

(`)
0 ) +

∑

`∈I
i∈[m]

fi,µi(x
(`)
i ) = y ,

where y is y` for ` with the lexicographically first f0.

7. At the end, F outputs (I∗, σ∗ = 〈x∗(`)i 〉`∈I∗,i∈{0}∪[m]).

8. A outputs x̂i,` as follows. For all ` ∈ I∗ and i ∈ {0} ∪ [m], set x̂i,` = x
∗(`)
i . For all other `, i

set x̂i,` = 0.
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The above simulates the actual ar-scma-experiment up to a negligible statistical distance, except
when µ∗ ∈ {µ}, in which case F cannot win in the experiment. Consider the case where F wins in
the experiment. Then

∑

i∈{0}∪[m]
`∈[t]

f̂i,`(x̂i,`) =
∑

i∈{0}∪[m]
`∈I∗

f̂i,`(x̂i,`) +
∑

i∈{0}∪[m]
` 6∈I∗

f̂i,`(x̂i,`)︸ ︷︷ ︸
0

=
∑

`∈I∗
f `
0(x

∗(`)
0 ) +

∑

i∈[m]
`∈I∗

f `
i,µ∗i

(x∗(`)i ) = y′ ,

where y′ is y` for ` with the lexicographically first f0 (inside I∗). Since the view of F is independent
of `∗, it holds that y′ = y`∗ with probability 1/t, and the result follows.

We remark that the scheme in fact adheres to a somewhat stronger security definition: one in
which µ∗ is defined by the forger (before seeing the verification keys) rather than being randomly
selected by the challenger. This requires only a slight modification to the security proof. We
further remark that the scheme R[T ,m] can actually be proven to be er-scma-secure, thus saving
the overhead of using the reduction in Appendix A.3. However, this seems to require a significantly
more complicated proof, similar to the proof of the static signature scheme in [Pei09]. Our goal in
this work is partially to simplify and abstract the ideas in [Pei09].

5 Identity Based Encryption in the Standard Model

In this section, we present a generic method for constructing identity based encryption (IBE)
schemes in the standard model (namely, without random oracles), using encryption-augmented
ring signature schemes - a new notion we define below. The recent constructions of IBE schemes
from lattice assumptions [CHK09, AB09, Pei09] can be seen as following this approach. This
establishes a connection between ring signature schemes and IBE schemes.

In Section 5.1 we present the new notion (we give instantiations under cryptographic assump-
tions in Section 6). We give an outline of our selective-identity IBE scheme in Section 5.2 and
provide a formal description of the scheme in Section 5.3. In Section 5.4 we explain how to use
known techniques from [BB04a, BB04b] to get adaptive-identity IBE.

5.1 Encryption-Augmented Ring Signatures

In what follows, we present the notion of encryption-augmented ring signature schemes. Intuitively,
this is a ring signature scheme for which any set of verification keys can be used as a public-key for
an encryption scheme, whose secret key is a ring signature of some (arbitrary) message w.r.t. this
set.

Definition 5.1 (encryption-augmented ring signatures). A ring signature schemeR = (GenR,SignR, VerR)
is encryption-augmented if there exists a semantically secure public-key encryption scheme
ER[t] = (GenE , EncE , DecE) whose key-generation procedure GenE(1k) runs as follows: It generates
(vki, ski) ← GenR(1k) for all i ∈ [t] and sets the public-key to pk = {vki}i∈[t] and the secret-key to
sk = σ ← SignR(sk1, {vki}i∈[t], 0), where 0 is some (arbitrary) fixed message.
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We note that it is conceivable that an encryption-augmented ring signature scheme has a mes-
sage space containing only a single message 0.
Remark. Interestingly, we only need to explicitly require the anonymity property from R, we do
not even use the verification algorithm VerR. he correctness and security of the encryption scheme
can be used to define a verification algorithm for which correctness and (some notion of) security
hold. Consider VerR(T, 0, σ) that verifies a signature by running r′ ← DecE(σ,EncE(T, r)) and
checking whether r′ = r, for random values of r, and accepting if they all accept. This verification
algorithm is obviously correct (by correctness of E) and it is also secure (in some sense) since
forging a signature for an unseen message implies generating a proper secret-key for a given public-
key (a slightly more complicated argument is required to formally prove this, but for this informal
discussion we do not get into more details).

5.2 Overview of Our IBE Scheme

Constructing selective-identity IBE from encryption-augmented ring signatures is quite straight-
forward. The public parameters are a set of 2d + 1 verification keys vk0 and vki,b for i ∈ [d] and
b ∈ {0, 1}, where {0, 1}d is the identity space. The master secret key is the signing key sk0 that
corresponds to vk0. Each identity id is associated with the subset {vk0} ∪ {vki,idi : i ∈ [d]} of
the verification keys (one can intuitively think of this set as the public key of id). The respec-
tive secret-key is generated by using sk0 to sign the message 0 w.r.t. the set of verification keys
{vk0} ∪ {vki,idi

: i ∈ [d]} corresponding to id.
Selective-identity security follows since the adversary commits to the identity id∗ before it sees

the public-parameters, thus one can generate them in such a way that the verification keys for id∗

correspond to the public-key for the encryption scheme ER, while the secret-keys for all the other
public-keys can be computed.

5.3 Identity Based Encryption from Encryption-Augmented Ring Signatures

Let R = (GenR, SignR, VerR) be a ring signature scheme that is augmented with the encryption
scheme ER[n] = (GenE , EncE ,DecE). Consider the following scheme IBE [R, d] whose identity space
is {0, 1}d.

• Setup(1k). Sample (vk0, sk0) ← GenR(1k) and additional 2d verification keys 〈vki,b〉i∈[d],b∈{0,1}
for R.21 Set msk = sk0 and pp = (vk0, 〈vki,b〉(i,b)∈[d]×{0,1}).

• Extract(pp,msk, id). For id ∈ {0, 1}d, consider the set vkid = {vk0, {vki,idi}i∈[d]}. Use sk0 to
generate skid ← SignR(sk0, vkid, 0). Return skid, a ring signature of the message 0 w.r.t. the
set of verification keys vkid.

• Enc(pp, id, µ). Encrypt a message µ by running the encryption algorithm of ER[d + 1] with
the public-key pk = vkid, and output c ← EncE(vkid, µ).

• Dec(pp, skid, c). Run the decryption algorithm of ER[d + 1] with secret-key skid and cipher-
text c. Output µ ← DecE(skid, c).

21Similarly to our construction of ring signatures, vki,b can be generated without a signing key if such process is
more efficient.
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Correctness follows from the correctness of ER[d + 1]. We next prove the security of IBE [R, d].
In the following lemma we prove selective-identity security. Standard techniques can be used to
achieve full security and extend the identity space to {0, 1}∗. See Section 5.4 for details.

Lemma 5.1. For any adversary A there exists an adversary B such that

IBEsel
E Adv[A] ≤ CPAER[d+1]Adv[B] + negl(k) .

Proof. Given a public-key {v̂k0, {v̂ki}i∈[d]} for ER[d + 1], the adversary B runs as follows.

1. It simulates A to obtain id∗.

2. It sets vk0 = v̂k0, vki,id∗i = v̂ki, and samples (vki,1−id∗i , ski,1−id∗i ) ← GenR(1k) for all i ∈ [d].
It sends the public parameters pp = (vk0, 〈vki,b〉(i,b)∈[d]×{0,1}) to A.

3. For each query id 6= id∗ made by A, B finds i ∈ [d] for which idi 6= id∗i and uses ski,1−id∗i to
compute skid ← Sign(ski,idi , vkid, 0), and returns it to A.

4. When A decides on messages m0 and m1, B forwards them to the CPA challenger. The
challenge ciphertext c is forwarded from the challenger back to A.

5. Additional skid queries are answered exactly as before.

6. When A returns a bit b′, B forwards b′ to the challenger.

The analysis is straightforward. The distributions of pp and skid returned by B are computationally
indistinguishable from the real selective-IBE experiment (this follows from the anonymity of the
ring signature scheme). Whenever A wins in the selective-IBE experiment, B wins in the CPA
experiment by definition. The result follows.

5.4 From Selective Security to Adaptive Security

In the previous section, we presented a construction of selective-identity secure IBE scheme with
identity space {0, 1}d, for a polynomially bounded d. In this section we explain how to use known
techniques to overcome two drawbacks of such schemes: selective-identity security and bounded
identity space. We explain below how to achieve an adaptive-identity secure scheme using tech-
niques from [BB04a, BB04b]. Going from bounded to unbounded identity space can be done using
the standard technique of adding a collision resistent hash function to the public parameters and
hashing the identities into the bounded message space; we omit the details.

From here on we focus on achieving adaptive-identity IBE security (see Section 2.4.2 for def-
inition). We discuss two possible methods. The first method, first used in [BB04a], incurs a 2d

decrease in the security guarantee and therefore requires that the original scheme has 2−d · negl(k)
security. The second, introduced in [BB04b], does not require changing the assumption, but incurs
an efficiency loss in the construction.

• Exponential reduction. Since the message space of our scheme is {0, 1}d, one can simply
guess the value of the target identity id∗ with probability 2−d, thus enabling to achieve
adaptive security with a loss of 2−d. Namely, it holds that IBEad

E Adv[A] ≤ 2d · IBEsel
E Adv[A].

Thus if IBEsel
E Adv[A] ≤ 2−d · negl(k), which in our case depends on the parameters of the

ring signature scheme and the augmented encryption scheme, then full security follows. We
refer the reader to [BB04a] for more details.
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• Using admissible hash functions. In [BB04b] a primitive called “admissible biased binary
hash function” is introduced, and is shown to exist if collision resistent hash functions exist.
This primitive can be used to transform selective-identity secure schemes of certain structure
into adaptive-identity secure ones. The required structure is exactly the one our reduction
from encryption-augmented ring-signature scheme has: each bit of the identity chooses be-
tween two optional “challenges” in the public-parameters, and the “combined challenge” of
these d challenges is used for the encryption. Knowing a trapdoor for at least one of the
challenges suffices as a trapdoor for the combined challenge, but if no such trapdoor is known
then the combined challenge is hard. We refer the reader to [BB04b] for more details.

6 Instantiations

We present constructions of ring trapdoor functions and encryption-augmented ring signature
schemes under lattice assumptions and under assumptions in bilinear groups. Specifically, in the
lattice domain, we present a family of ring trapdoor functions under a short integer solution assump-
tion (defined below), and show that the resulting ring signature scheme is encryption-augmented
under the learning with errors (LWE) assumption. In the bilinear groups domain, we present a
family of ring trapdoor functions under the computational Diffie-Hellman assumption in bilinear
groups (defined below), and then show how to augment the resulting ring signature scheme with a
secure encryption scheme under the d-linear assumption in bilinear groups (for any d ≥ 2).

6.1 Lattice Assumptions

Let q ∈ N, m ∈ N, β ∈ Z be functions of the security parameter k. The inhomogenous short
integer solution (ISISq,m,β) assumption is that given A $← Zk×m

q , v $← Zk
q , finding x ∈ Zm

q such that
A · x = v and ‖x‖2 ≤ β is computationally hard. The short integer solution (SIS) assumption is
almost identical, only we set v ← 0, instead of sampling a random vector, and disallow x = 0 as a
valid solution. Note that the SIS assumption immediately implies ISIS. These assumptions are both
related to worst-case lattice problems. Specifically, if q is an odd prime such that q ≥ β ·ω(

√
k log k),

then SISq,m,β and ISISq,m,β, for a polynomial m, are at least as hard as approximating the decision
shortest vector problem to within a worst-case factor of Õ(β

√
k) [MR07, GPV08].

In this section we show how to construct ISIS-based ar-scma-secure ring trapdoor functions. In
order to obtain full er-cma-security we require our flavor of chameleon hash, which is based on SIS.
Thus the resulting ring signature scheme is SIS-based.22

6.1.1 Ring Trapdoor Functions

We define a family T = {Tk}k∈N of ring trapdoor functions (recall Definition 4.1) as follows.

• Parameters. For every k ∈ N the construction of Tk is parameterized by an odd prime
modulus q ∈ N, such that q is super-polynomial in the security parameter k.23 In addition

22In fact, in our range of parameters, the SIS and ISIS assumptions can be shown to be equivalent, so this point is
of marginal importance.

23The requirement on q is due to our security reduction. We remark that if there is a known polynomial upper
bound on the number of functions t for which the ring one-way property needs to hold, then we can use a polynomial
value for q (which depends on the bound for t).
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we set m = (5 + δ)k log q (for some real value δ > 0). We also define s = L ·ω(
√

log k), where
L = O(

√
k log q) is a value taken from previous work.

The function family domain is Xk = {x ∈ Zm
q : ‖x‖2 ≤ s · √m} with zero element ξ = 0m

and its range is Zk
q , with standard vector addition as group operation.

• Sampling. Given 1k, sampling a function in Tk is done by sampling a random matrix
A $← Zk×m

q . The function fA is defined by fA(x) = A · x.

Sampling a function-trapdoor pair is done using the procedure of [AP09, Theorem 3.2]. They
show that for our parameter range, it is efficient to sample (A,S) ∈ Zk×m

q × Zm×m
q such

that A is statistically indistinguishable from uniform and such that S is a trapdoor for A.24

The verifiability property follows immediately since fA is efficiently computable.

• Trapdoor property. In [GPV08, Section 5.3.2] the following is shown. There exists a family
of efficiently samplable distributions X = {Xk}k∈N (parameterized by q,m, s, all which are
functions of k),25 such that

1. Prx←Xk
[‖x‖2 ≤ s · √m] = 1− negl(k).

2. For any k ∈ N, any v ∈ Zk
q , and any function trapdoor pair (A,S), obtained using

the sampling algorithm above, one can efficiently sample from the distribution x ← X
conditioned on A · x = v (up to a negligible statistical distance).

Therefore, given any A1, . . . ,At ∈ Zk×m
q , together with a trapdoor Si for Ai, and given

any value v ∈ Zk
q , one can sample xj ← X for all j 6= i, and then use Si to sample xi

from (a distribution that is statistically close to) the distribution X conditioned on Ai · xi =
v −∑

j 6=i Aj · xj . Clearly using Sj for j 6= i will result in a negligibly close distribution.

• Ring one-way. The ring one way property is proven via the following lemma.

Lemma 6.1. Let A be a ring invertor for T . Then there exists an adversary B such that

RingInvt
T Adv[A] ≤ ISISq,tm,s

√
tmAdv[B] .

Recall that solving ISISq,tm,s
√

tm is at least as hard as approximating the (decision) short-
est vector problem in the worst case to within a factor of Õ(s

√
tm
√

k), namely, a poly(k)
approximation factor.

Proof. The adversary B gets as input A $← Zk×tm
q and v $← Zk

q . It parses A as A1‖ · · · ‖At

where Ai ∈ Zk×m
q and sends A1, . . . ,At and v to A. Upon receiving x1, . . . ,xt from A, it

returns x = x1‖ · · · ‖xt.

The analysis is straightforward. If A succeeds then ‖x‖2 =
√∑

i∈[t] ‖xi‖2
2 ≤ s

√
tm and

A · x =
∑

i∈[t] Ai · xi = v. The result follows.

24We hide lattice-related terms that are not necessary to understand our construction, and may unnecessarily
complicate our presentation. For the sake of completeness, we mention that the trapdoor S is a basis for the lattice
defined by the parity check matrix A, where the length of the orthogonalization of S is at most L.

25The distribution X is a “discrete Gaussian” distribution of appropriate parameters; we refer the reader to [GPV08]
for details.
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6.1.2 Encryption-Augmented Ring Signatures

Consider the ring signature scheme presented in Section 4, instantiated with the family of ring
trapdoor functions T described above. In order to augment this scheme with public-key encryption,
we recall the “dual” scheme of [GPV08, Section 7.1], which is based on the learning with errors
(LWE) assumption, whose public key is a matrix A $← Zk×m′

q (for some polynomial m′) and a value

v $← Zk
q and whose secret key is a vector x ∈ Zm′

q of “small enough” norm such that A · x = v. It
follows that R[T ] can be augmented with this scheme (where the vector v is selected to be vi of
the lexicographically first verification key). For the details of the scheme and the exact parameters
we refer the reader to [GPV08].

6.2 Bilinear Group Assumptions

Consider two multiplicative groups G, G1 of prime order p and let g be a generator of G. A bilinear
map e : G × G → G1 has the following properties. Bilinearity: for all x, y ∈ G, a, b ∈ Z it holds
that e(xa, yb) = e(x, y)ab; Non-degeneracy: e(g, g) 6= 1.

We note that bilinear maps can be defined more generally. Specifically one could consider a
mapping G×G′ → G1 where G, G′ have an efficiently computable isomorphism. Our results extend
to this case as well.

Let G = {Gk}k∈N be a family of groups, where each group Gk is of order p, and where p is a
k-bit prime. The computational Diffie-Hellman (CDH) assumption on G = {Gk}k∈N is that given
a random generator h for Gk and random elements ha, hb, it is hard to compute hab. Namely, for
any polynomial time A it holds that

CDHAdv[A] = Pr
h

$←Gk,a,b
$←Zp

[A(1k, h, ha, hb) = hab] = negl(k) .

This is assumed to hold even in some groups with bilinear maps (where e(h, h)ab is easy to compute).
In this section we show how to construct CDH-based ar-scma-secure ring trapdoor functions. In

order to obtain full er-cma-security we require our flavor of chameleon hash, based on the discrete
logarithm assumption. Since discrete logarithm is implied by CDH, the resulting er-cma-scheme is
secure under CDH (in bilinear groups).

The d-linear (dLIN) assumption was first introduced in [BBS04] for d = 2 and was later extended
to a family of assumptions parameterized by d [Kil07, Sha07]. A matrix form of these assumptions
was introduced in [NS09] and it was proven ([NS09, Lemma A.1]) that the matrix form is implied
by the standard form. In this work we only refer to the matrix form of this family of assumptions.

Let G = {Gk}k∈N be a family of groups as above, and fix an (arbitrary) generator g = gk in each
group Gk (in what follows we omit the subscript k from gk to avoid cluttering of notation). The
d-linear problem over G = {Gk}k∈N is the following: Given gA, where A ∈ Z(d+1)×(d+1)

p , distinguish
between the case that A $← Rkd(Z

(d+1)×(d+1)
p ) and the case that A $← Rkd+1(Z

(d+1)×(d+1)
p ) (where

Rki(S) is the set of rank i matrices over the set S). The dLIN assumption is that for any polynomial
time adversary A it holds that

LindAdv[A] =

∣∣∣∣∣ Pr
A

$←Rkd(Z(d+1)×(d+1)
p )

[A(1k, gA) = 1]− Pr
A

$←Rkd+1(Z(d+1)×(d+1)
p )

[A(1k, gA) = 1]

∣∣∣∣∣ = negl(k) .
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The 1-linear assumption is identical to the decisional Diffie-Hellman (DDH) assumption, which is
false in groups with bilinear maps. It is widely assumed, however, that there exist groups with
bilinear maps where the dLIN assumption holds, even for d = 2. We further remark that for any
polynomial d, the d-linear assumption in a group with bilinear map implies the CDH assumption
in that group (i.e. the CDH assumption is no stronger than the dLIN assumption).

We will also use the following simple lemma.

Lemma 6.2. Consider a finite field F of order q. For any n,m ∈ N such that m ≥ n, the distance
between the distributions U(Fn×m) and U(Rkn(Fn×m)) is at most 1/(qm−n · (q − 1)).

Proof. Consider sampling the matrix row by row. The probability that row i is a linear combination
of previous rows is at most q−m · qi−1. Applying the union bound gives the result.

6.2.1 Ring Trapdoor Functions

We define a family T = {Tk}k∈N of ring trapdoor functions (recall Definition 4.1), as follows.

• Parameters. For every k ∈ N, consider groups G, G1 of order p, where p is a k-bit prime,
with an efficiently computable bilinear map e : G×G→ G1. Fix an arbitrary generator g for
G; it follows that e(g, g) is a generator for G1.

An additional parameter is a polynomially bounded integer d ≥ 2, which affects the repre-
sentation size and computational complexity of the function family. For improved efficiency,
we want to take d to be as small as possible. Indeed, for the construction of ring trapdoor
functions, d = 2 is sufficient to achieve security under the CDH assumption. However, when
constructing an encryption-augmented ring signature scheme (in Section 6.2.2) we rely on
the d-linear assumption with possibly larger values of d, which results in a (possibly) weaker
assumption. We therefore present a family of ring trapdoor functions parameterized by d.

The function domain is X = Gd, with zero element ξ = g0, and its range is Gd as well (which
forms a group using coordinate-wise group operations).

• Sampling. Given 1k, sampling a function in Tk is done by sampling a matrix gA $← Gd×d

(note that A is not known explicitly). The function fgA is defined by fgA(gx) = gA·x. We
note that this function is hard to compute under the CDH assumption.

Sampling a function-trapdoor pair is done by sampling A $← Zd×d
p and returning (f, td) =

(gA,A−1) (if A is not invertible, the sampler fails). Clearly, the marginal distribution of f is
statistically close to sampling a uniform function in Tk, e.g. by Lemma 6.2.

The verifiability property follows using the bilinear mapping. Given g, gA, gx, gv, one can
efficiently compute e(g, g)A·x and check whether the result is equal to e(g, g)v.

• Trapdoor property. Given any gA1 , . . . , gAt , together with a trapdoor A−1
i , and given

any gv, we show how to sample gx1 , . . . , gxt such that
∑

i∈[t] Ai · xi = v, thus proving the

trapdoor property. The sampler will sample xj
$← Zd

q for all j 6= i and then set gxi =

gA−1
i ·(v−∑

j 6=i Aj ·xj). Note that this is efficiently computable since A−1
i and xj are explicitly

known.
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The resulting distribution of gx1 , . . . , gxt is independent of i, up to a negligible statistical
distance. This can be seen by considering the case where all Ai’s are invertible, in which case
the vectors x1, . . . ,xt are uniformly distributed in the solution space of

∑
i∈[t] Ai · xi = v.

• Ring one-way. The ring one-way property is proven by the following lemma.

Lemma 6.3. Let A be a ring invertor for T . Then if d = 2 then there exists an adversary B such
that (

RingInvt
T Adv[A]

)2 ≤ CDHAdv[B] + O(1/p) .

and if d ≥ 3 then there exists an adversary B such that

RingInvt
T Adv[A] ≤ CDHAdv[B] + O(1/p) .

Proof. We recall that the adversary A gets as input gA, gv where A $← Zd×td
p , v $← Zd

p and outputs
(when successful) gx ∈ Gtd such that A · x = v.

Given an input h, ha, hb for CDH, let r ∈ Zp be such that h = gr (recall that g is a known
canonical generator and h is a uniformly selected generator); we stress that r is not explicitly
known. Using this notation, we can write the input as (gr, gra, grb) and the required output is
hab = grab.

We start by giving a proof for the case d = 3, which immediately extends to all d ≥ 3. The
case of d = 2 requires a slightly more delicate treatment, and is addressed last.

For d = 3, consider

C =




1 0 0
−rb 1 0
0 1 −r


 ∈ Z3×3

p and z =




ra
0
0


 ∈ Z3

p .

Note that gC, gz are explicitly known. In addition, since C is invertible (r 6= 0 since h is a
generator), there exists a unique x ∈ Z3

p such that C · x = z, specifically this vector is

x = C−1 · z = [ra, r2ab, rab]T .

If our ring trapdoor function invertor A was guaranteed to find gx for any gA, gv, then we
would be done, since we could have fed it with gC, gz and find grab as required. However, this will
not work since C, z are not uniformly distributed and since C does not have the right dimensions
(A expects gA ∈ G3×3t).

To overcome this, the CDH adversary B runs as follows. It samples L $← Rk3(Z3×3
p ), R $←

Rk3(Z3×3t
p ). It sets gA = gL·C·R and gv = gL·z and applies A to gA, gv to obtain gx. If A succeeded,

then A · x = v, i.e. L · C · R · x = L · z and thus R · x = [ra, r2ab, rab]T and ge3·R·x = grab as
required.

This approach can be extended to d > 3 in a straightforward manner, we define

C′ =
[

C 03×(d−3)

0(d−3)×3 I(d−3)

]
and z′ =

[
z

0(d−3)

]

so that C′−1 · z′ = [ra, r2ab, rab, 0, . . . , 0]T . The adversary B will sample L $← Rkd(Zd×d
p ), R $←

Rkd(Zd×dt
p ) and proceed exactly as before.
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Since the matrix A and vector v are (jointly) O(1/p)-uniform by Lemma 6.2, then the success
probability of A on these inputs is at least RingInvt

T Adv[A] − O(1/p) and the claim (for d ≥ 3)
follows.

For d = 2, we take a similar approach, but this time we need a two-step process. We define

C =
[

1 0
−rb 1

]
∈ Z2×2

p and z =
[

ra
0

]
∈ Z2

p ,

and note that C−1 ·z = [ra, r2ab]T . As above, B randomizes C and z, by sampling L $← Rk2(Z2×2
p ),

R $← Rk2(Z2×2t
p ), and applies A to gA = gL·C·R and gv = gL·z to obtain gx. In this case, if A

succeeds then ge2
T ·R·x = gr2ab.

Next B considers

D =
[

1 0
1 −r

]
∈ Z2×2

p and w =
[

r2ab
0

]
∈ Z2

p

Conditioned on A’s success previously, gD, gw are explicitly known. As before, B samples L′ $←
Rk2(Z2×2

p ), R′ $← Rk2(Z2×2t
p ) and applies A to gA = gL′·D·R′ and gv = gL′·w to obtain gx′ . Again,

if A is successful then L′ ·D ·R′ · x′ = L′ ·w. Using the same reasoning above, if A is successful
then ge2

T ·x′ = grab as required.
Here, again, the inputs to A in both times are (jointly) O(1/p)-uniform, and therefore the

probability that A succeeds in both times is at least
(
RingInvt

T Adv[A]
)2 − O(1/p) and the result

follows.

6.2.2 Encryption-Augmented Ring Signatures

Consider the following public-key encryption scheme E , which is described, for the sake of simplicity,
as a bit-encryption scheme (a scheme whose message space contains only one bit), but can be
extended to multiple bit messages.

• Parameters. For every security parameter k ∈ N, consider groupsG, G1 of order p, where p is
a k-bit prime, with an efficiently computable bilinear map e : G×G→ G1. Fix an arbitrary
generator g for G. Fix additional parameters d ≥ 2 and t, both which are polynomially
bounded.

• Key generation. Sample gA $← Gd×dt, x $← Zdt
p , compute gv = gA·x and output pk =

(gA, gv), sk = gx.

• Encryption. To encrypt a bit b, sample r $← Zd
p and output ciphertext c = (grT ·A, h · grT ·v),

where h = gb.

• Decryption. On ciphertext c = (gwT
, gz), compute e(g, g)z−wT ·x. Output the bit b such

that e(g, g)z−wT ·x = e(g, g)b.

Correctness follows since for a proper ciphertext e(g, g)z−wT ·x = e(h, g). Let us give an informal
explanation on how the above scheme can be extended to a key-encapsulation mechanism of ap-
proximately log p bits. The encryption algorithm will sample h uniformly from G and in addition it
will sample a seed s for a randomness extractor. The new ciphertext will be c = (grT ·A, h · grT ·v, s)
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and the encapsulated key will be exts(e(h, g)). Clearly this value can be retrieved in the decryption.
The same security proof (see below) works in this case as well.

Consider the ring signature scheme presented in Section 4, instantiated with the family of ring
trapdoor functions T described above (in Section 6.2.1). If E is indeed secure, then it can trivially
be augmented to the ring signature scheme (for the value of v just use the “lexicographically first”
vi).

The proof of CPA security follows.

Lemma 6.4. Consider a CPA adversary A for E, there exists an adversary B for dLIN such that

CPAEAdv[A] ≤ LindAdv[B] + O(1/p) .

Proof. Given a matrix gM such that M $← Rkd′(Z
(d+1)×(dt+1)
p ), d′ ∈ {d, d + 1} (note that distin-

guishing in this case is no harder than in the (d + 1) × (d + 1) case). Define A ∈ Zd×dt
p , v ∈ Zd

p,
w ∈ Zdt

p , z ∈ Zp such that [
A v
wT z

]
= M .

The adversary B simulates the CPA game for A. First it sends pk = (gA, gv) and when A sends
messages m0,m1, it computes the corresponding h0, h1, then flips a coin b

$← {0, 1} and sends
c = (gw, hb · gz) to A. When A returns b′, B returns 1 if and only if b′ = b.

We prove by a series of hybrids (experiments).

• Hybrid H0. In this hybrid we run A with A $← Zd×dt
p , v $← Zd

p and wT = rT ·A, z = rT · v
for r $← Zd

p. Then CPAEAdv[A] =
∣∣PrH0 [b

′ = b]− 1
2

∣∣.
• Hybrid H1. We now change the distribution of M (which is composed of A,v,w, z) and let

M $← Rkd(Z
(d+1)×(dt+1)
p ). It holds that |PrH1 [b

′ = b]− PrH0 [b
′ = b]| ≤ O(1/p).

• Hybrid H2. We now let M $← Rkd+1(Z
(d+1)×(dn+1)
p ). By definition |PrH2 [b

′ = b]− PrH1 [b
′ = b]| =

LindAdv[B].

• Hybrid H3. We now let M $← Z(d+1)×(dt+1)
p . Then |PrH3 [b

′ = b]− PrH2 [b
′ = b]| ≤ O(1/p).

In addition, in this hybrid A’s view is independent of b and thus PrH3 [b
′ = b] = 1/2.

Combining the above, we conclude that

CPAEAdv[A] ≤ LindAdv[B] + O(1/p),

as desired.
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Figure 1: Illustrations of a Chameleon (1) and a Gecko (2).
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A Security Reductions for Ring Signatures

We present the formal reductions between notions of security of ring signatures and their proof.
For overview of all steps below, see Section 4.2.

A.1 From Weak Unforgeability to Full Unforgeability

We show that weak unforgeability (wer-cma-security) is sufficient in order to obtain full fer-cma-
security (see Section 2.3 for definitions).

Let R = (Gen, Sign,Ver) be a wer-cma-secure ring signature scheme with message space M =
{0, 1}∗. We construct a scheme R′ = (Gen′, Sign′, Ver′) with message space M′ = {0, 1}∗ as follows.

• Gen′(1k) runs (vk, sk) ← Gen(1k) and outputs (vk, sk) (namely, the key generation doesn’t
change).

• Sign′(sk, T, µ) runs σ ← Sign(sk, T, (T, µ)) and outputs σ.

• Ver′(T, µ, σ) runs Ver(T, (T, µ), σ) and outputs the result.

The correctness and anonymity of T ′ follow immediately from those of T . The security reduction
follows.

Lemma A.1. Let F ′ be a forger for the fer-cma-experiment, there exists a forger F for the wer-cma-
experiment such that

Forgeer-cma
R′ Adv[F ′] ≤ Forgewer-cma

R Adv[F ] .

Proof. Given access to F ′, the forger F runs as follows.

1. F obtains value 1t from F ′ and send it to the challenger.

2. Upon receiving the set {vki}i∈[t] from the challenger, F forwards this set to F ′.
3. Simulate the queries of F ′: when F ′ makes a (µ, I, j), F sends the query ((µ, T ), I, j), where

T = {vk`}`∈I , to the challenger and forwards its response σ back to F ′.
4. When F ′ returns a forgery (µ∗, I∗, σ∗), F returns ((µ∗, T ∗), I∗, σ∗), where T ∗ = {vk`}`∈I∗ .

By definition, if F ′ wins then (µ∗, I∗) 6∈ {(µ, I)}, which implies that (µ∗, T ∗) 6∈ {(µ, T )}. Further-
more, Ver′(µ∗, T ∗, σ∗) = Ver((µ∗, T ∗), T ∗, σ∗) = 1. Thus F wins as well.

A.2 From Static to Adaptive Chosen Message Attack

We now show that using chameleon hash functions, we can use an er-scma-secure ring signature
scheme to construct an er-cma-secure one. The reduction is quite similar to the one presented
in [KR00] in the context of standard signatures.

Let H ⊆ M × Q → Y be a family of chameleon hash functions with witness sampling, as
defined in Section 2.1. Let R = (Gen,Sign, Ver) be a er-scma-secure ring signature scheme with
message space Y. Fix a deterministic and efficiently computable mapping ϕ such that for any set
of verification keys T = {vk`}, vk∗ ← ϕ(T ) is such that vk∗ ∈ T . We somewhat abuse notation
and write ` ← ϕ(T ) where the elements of T are assumed to be indexed in some way. We note that
one simple instantiation of ϕ is taking the lexicographically first element in T .

We construct a scheme R′ = (Gen′, Sign′, Ver′) with message space M as follows.
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• Gen′(1k) runs (vk, sk) ← Gen(1k) and also samples h
$← H. It sets vk′ = (vk, h) and sk′ = sk

and outputs (vk′, sk′).

• Sign′(sk, T, µ) first computes ` ← ϕ(T ). It then samples r
$← R and computes y ← h`(µ, r).

It then runs σ ← Sign(sk, T, y) and outputs σ′ = (r, σ).

• Ver′(T, µ, σ′) computes ` = ϕ(T ). It parses σ′ as (r, σ) and computes y ← h`(µ, r). It then
returns Ver(T, y, σ).

The correctness and anonymity properties of T ′ follow in a straightforward manner from those
of T .

Lemma A.2. Let F ′ be a forger for the er-cma-experiment, there exists a forger F for the er-scma-
experiment and adversaries A, B for H such that

Forgeer-cma
R′ Adv[F ′] ≤ Forgeer-scma

R Adv[F ] + t · ColHAdv[A] + qt · Inv′HAdv[B] ,

where 1t is F ′’s first message and q is a polynomial upper bound on the number of queries F ′ makes.

Proof. The forger F is defined as follows.

1. F gets the value 1t from F ′ and sends it to the challenger.

2. F samples (h`, h
−1
` ) from H for all ` ∈ [t].

3. F samples value-witness pairs (yi, wi) for all i ∈ [q]. It sends {yi}i∈[q] to the challenger.

4. The challenger sends {vk`}`∈[t] to F , that sets vk′` = (vk`, h`) and sends {vk′`}`∈[t] to F ′.
5. Upon receiving (µi, Ii, ji) from F ′, F forwards (Ii, ji) to the challenger and gets a signature

σi = Sign(skji , Ti, yi) in response, where Ti = {vk′`}`∈Ii . F computes `i ← ϕ(Ti) and samples
ri ← h−1

`i
(µi, yi, wi). Then F returns σ′i = (ri, σi) to F ′.

6. When F ′ concludes and returns (µ∗, I∗, σ′), F parses σ′ = (r∗, σ∗), it finds T ∗ = {vk′`}`∈I∗

and computes `∗ ← ϕ(T ∗) and y∗ = h`∗(µ∗, r∗). It eventually outputs (y∗, I∗, σ∗).

Consider a case where F ′ wins in the experiment. If y∗ 6∈ {yi}i∈[q], then F described above also
wins. Consider the case where F ′ wins and y∗ ∈ {yi}i∈[q]. First, consider the case where y∗ = yi for
some i ∈ [q] and in addition `∗ = `i, this will enable us to find a collision in h`∗ using the adversary
A defined below. Otherwise, in the case where y∗ = yi for some i ∈ [q] but `∗ 6= `i, we will be able
to invert h`∗ using the adversary B defined below.

The collision finding adversary A for the case (y∗ = yi)∧(`∗ = `i) is defined as follows. On input
h, A simulates the er-cma experiment for F ′ as follows. It simulates the first message to obtain
1t and then samples ˆ̀ $← [t]. It then sets hˆ̀ = h and samples all other values according to their
intended distributions. During the execution, A saves all values (µ, r, y) such that yi = hˆ̀(µ, r)
that is computed in order to answer the messages µ (note that it only needs to save the values on
which it executed the input function h = hˆ̀). Upon receiving (µ∗, I∗, σ′), it checks whether `∗ = ˆ̀
and in such case it searches the list for an entry (µ, r, y) with y = y∗. If such is found, A outputs
(µ∗, r∗) and (µ, r). Recall that since F ′ wins in the experiment, then µ∗ 6= µ and thus the collision
is not trivial.
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Note that the view of F ′ in the simulation is independent of ˆ̀, therefore in the case where F ′
wins in the experiment and (y∗ = yi) ∧ (`∗ = `i) for some i ∈ [q], A wins with probability 1/t.

The inverting adversary B for the case (y∗ = yi) ∧ (`∗ 6= `i) is defined as follows. On inputs
h, y, w, B simulates the er-cma experiment for F ′. It gets 1t and samples ˆ̀ as A does, but samples
all other hi’s together with h−1

i . Furthermore it samples î
$← [q]. For all queries except for the îth,

B simulates the experiment as prescribed. In the îth it checks whether ˆ̀i = ˆ̀. If this is indeed the
case, then this query is again simulated as prescribed. If ˆ̀i 6= ˆ̀, however, then B sets yî = y and
samples rî ← h−1

`î
(µî, y, w), and uses these to sign. In the end of the simulation, B checks if `∗ = ˆ̀

and if h(µ∗, r∗) = y, if this is the case, it returns (µ∗, r∗).
The view of F ′ is independent of ˆ̀, î and therefore if F ′ wins and (y∗ = yi)∧ (`∗ 6= `i) for some

i ∈ [q], then B succeeds in inverting with probability at least 1/(qt).

Note that the transformation in Appendix A.1 assumed that the scheme R we start with has
message space {0, 1}∗. On the other hand, the reduction in this section may produce schemes with
bounded message space (depending on the domain of the family H). This gap can be bridged by
using a family of collision resistent hash functions using a “hash and sign” paradigm. We omit the
details.

A.3 From Existential Unforgeability to A-Priori-Message Unforgeability

We now show that similar to the reduction in Section 3.2, we can use an ar-scma-secure ring
signature scheme to construct an er-scma-secure one.

Let R = (Gen, Sign, Ver) be an ar-scma-secure signature scheme with message space M =
[m] × {0, 1}m. We consider a mapping ϕ as in Section A.2 above, and construct a scheme R′ =
(Gen′, Sign′, Ver′) with message space M′ = {0, 1}m as follows.

• Gen′(1k). Generate (vk, sk) ← Gen(1k) and sample α
$← {0, 1}m. Return the verification key

vk′ = (vk, α) and the signing key sk′ = sk.

• Sign′(sk′, T, µ). Recall that sk′ = sk, a signing key for the scheme R, and denote u(s) =
µ≤s‖0m−s. Let ` ← ϕ(T ). The signing algorithm computes σ(s) ← Sign(sk, T, (s, u(s) ⊕ α`))
for all s ∈ [m], and outputs σ = {σ(s)}s∈[m].

• Ver′(T, µ, σ). Let ` ← ϕ(T ) and parse σ as {σ(s)}s∈[m]. Then Ver′ runs Ver(T, (s, u(s) ⊕
α`), σ(s)) for all s ∈ [m], and accepts if and only if all of them accepted.

Correctness and anonymity of R′ follow immediately from those of R. Security is proven in the
following lemma.

Lemma A.3. For any forger F ′, there exists a forger F such that

Forgeer-scma
S′ Adv[F ′] ≤ mqt · Forgear-scma

S Adv[F ] + qt · 2−m .

Where q is a polynomial upper bound on the number of queries made by F ′ and 1t is the value of
F ′’s first message.

Proof. The forger F simulates F ′ as follows.
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1. F simulates F ′ to obtain the value 1t and forwards it to the challenger.

2. F gets a random message (s∗, µ∗) ∈ [m]× {0, 1}m from its challenger.

3. F simulates F ′ to obtain the list of messages {µi}i∈[q] that F ′ wants to get signatures for,

and computes the prefixes {u(s)
i }(s,i)∈[m]×[q].

4. F samples î
$← [q], ˆ̀ $← [t] and sets αˆ̀ = µ∗⊕u

(s∗)
î

⊕es∗ (note that αˆ̀ is uniformly distributed

since µ∗ is). For all ` ∈ [t] \ {ˆ̀}, it samples α`
$← {0, 1}m.

5. F sends {(s, u(s)
i ⊕ α`)}(i,s,`)∈[q]×[m]×[t] to the challenger as the list of messages to be signed.

Note that we XOR all prefixes with all possible αs.

6. The challenger sends the verification keys {vk`}`∈[t]. F sends {vk′` = (vk`, α`)}`∈[t] to F ′.
7. When F ′ makes a query (Ii, ji), F makes the following m · t queries to the challenger: for

each message {(s, u(s)
i ⊕α`)}(s,`)∈[m]×[t] (note that i is fixed at this point), F sends the query

(ji, Ii) and receives {σ(s)
i,` }s,`. Then F computes `i = ϕ(Ti) and sends σ′i = {σ(s)

i,`i
}s∈[m] as a

response to F ′.
8. When F ′ returns (µ′, I ′, σ′ = {σ′(s)}s∈[m]), F returns (I∗ = I ′, σ∗ = σ′(s∗)).

The analysis is similar to that of Theorem 3.1. Consider a case where F ′ wins in the simulated
experiment. Since µ′ 6∈ {µi}i∈[q], there exists s′ ∈ [m] such that u′(s′−1) ∈ {u(s′−1)

i }i∈[q] but

u′(s′) 6∈ {u(s′)
i }i∈[q]. Since the view of F ′ is independent of (s∗, î, ˆ̀), it holds that

Pr[(ϕ(T ∗) = ˆ̀) ∧ (s′ = s∗) ∧ (u′(s
′−1) = u

(s′−1)

î
)] ≥ 1/(mqt) .

Consider the case where the above occurs, note that in such case u′(s∗) = u
(s∗)
î

⊕ eî = µ∗ ⊕ αˆ̀.
Since Ver′(T ′, µ′, {σ′(s)}s∈[m]) = 1, then, by definition, also Ver(T ′, (s∗, µ∗), σ′(s∗)) = 1. We need to
make sure that F didn’t “accidentally” make the query (s∗, µ∗) in the query phase. Recall that the
set of queries that F makes is {(s, u(s)

i ⊕ α`)}(i,s,`)∈[q]×[m]×[t]. For the queries where s 6= s∗, clearly

there is no risk. For the set of queries where s = s∗ but ` = ˆ̀, it holds that u′(s∗) 6∈ {u(s∗)
i }i∈[q] and

therefore (s∗, µ∗) 6∈ {(s∗, u(s∗)
i ⊕αˆ̀)}i∈[q]. It is left to check what happens when s = s∗ and ` 6= ˆ̀, i.e.

whether (s∗, µ∗) ∈ {(s, u(s)
i ⊕α`)}(s,i)∈[m]×[q] for such `. Since all such α` are sampled uniformly and

independently of u
(s)
i , then for all ` 6= ˆ̀, i ∈ [q] it holds that Pr[(s∗, µ∗) = (s∗, u(s∗)

i ⊕ α`)] = 2−m.
Applying the union bound, the result follows.
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