
An Efficient and Parallel Gaussian Sampler for Lattices

Chris Peikert∗

February 18, 2010

Abstract

At the heart of many recent lattice-based cryptographic schemes is a polynomial-time algorithm that,
given a ‘high-quality’ basis, generates a lattice point according to a Gaussian-like distribution. Unlike
most other operations in lattice-based cryptography, however, the known algorithm for this task (due to
Gentry, Peikert, and Vaikuntanathan; STOC 2008) is rather inefficient, and is inherently sequential.

We present a new Gaussian sampling algorithm for lattices that is efficient and highly parallelizable.
At a high level, the algorithm resembles the “perturbation” heuristic proposed as part of NTRUSign
(Hoffstein et al., CT-RSA 2003), though the details are quite different. To our knowledge, this is the first
algorithm and rigorous analysis demonstrating the security of a perturbation-like technique.

1 Introduction

In recent years, there has been rapid development in the use of lattices for constructing rich cryptographic
schemes.1 These include digital signatures (both ‘tree-based’ [LM08] and ‘hash-and-sign’ [GPV08, Pei09]),
identity-based encryption [GPV08] and hierarchical IBE [Pei09, CHK09], noninteractive zero knowl-
edge [PV08], and even a fully homomorphic cryptosystem [Gen09].

The cornerstone of many of these schemes (particularly, but not exclusive to, those that ‘answer queries’)
is the polynomial-time algorithm of [GPV08] that samples from a so-called discrete Gaussian probability
distribution over a lattice Λ (or a desired coset thereof). More precisely, for a vector c ∈ Rn and a
“width” parameter s > 0, the distribution DΛ+c,s assigns to each v ∈ Λ + c a probability proportional to
exp(−π‖v‖2/s2). Given c, a basis B of Λ, and a sufficiently large s (related to the ‘quality’ of B), the
GPV algorithm outputs a sample from a distribution statistically close to DΛ+c,s.2 Informally speaking, this
algorithm is ‘zero-knowledge’ in the sense that it leaks no information about its input basis B (aside from a
bound on its quality), because DΛ+c,s is defined without reference to any particular basis.

While the sampling algorithm of [GPV08] has numerous applications in cryptography and beyond, for
both practical and theoretical purposes it also has some drawbacks:
∗School of Computer Science, College of Computing, Georgia Institute of Technology. Email: cpeikert@cc.gatech.edu.

This material is based upon work supported by the National Science Foundation under Grant CNS-0716786. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

1A lattice Λ ⊂ Rn is a periodic ‘grid’ of points, or more formally, a discrete subgroup of Rn under addition. It is generated by a
(not necessarily unique) basis B ⊂ Rn×k of k linearly independent vectors, as Λ = {Bz : z ∈ Zk}. In this paper we are concerned
only with full-rank lattices, i.e., where k = n.

2Equivalently, by subtracting c from the output it samples a lattice point from a Gaussian distribution centered at −c.

1

• First, it is rather inefficient: on an n-dimensional lattice, a straightforward implementation using exact
arithmetic requires Ω(n4) bit operations. (While it might be possible to improve this running time
somewhat by using lower precision, great care would be needed to ensure a correct output distribution.)

• Second, it is inherently sequential: to generate a sample, the algorithm performs n adaptive iterations,
where the choices made in each iteration affect the values used in the next. This stands in stark contrast
to other ‘embarrassingly parallelizable’ operations that are typical of lattice-based cryptography.

1.1 Contributions

We give a new algorithm that samples from a discrete Gaussian distribution DΛ+c,s over a lattice, given a
‘high-quality’ basis for Λ. The algorithm is:

• Efficient: it requires only Õ(n2) work on a lattice of dimension n;

• Fully parallelizable: it can allocate Õ(w) work to n2/w processors, for any w ≥ 1;

• Offline / online: assuming the basis is known in advance of the point c (which is the norm), much of its
work can be performed as precomputation.

At a very high level, the algorithm resembles the “perturbation” heuristic proposed for NTRUSign [HHGP+03],
but the details differ significantly (see Section 1.2 for a comparison). To our knowledge, this is the first
algorithm and analysis to demonstrate the theoretical soundness of a perturbation-like technique. Along the
way, we also prove some general facts relating continuous and discrete Gaussians, which we expect will be
useful elsewhere.

The improved efficiency of our new algorithm does not come entirely for free: the one aspect in which
the algorithm can be inferior to that of [GPV08] is in the width s of the sampled Gaussian. Given the same
n-dimensional basis, the new algorithm may be looser than the old one by a factor of at most n in the worst
case (over the choice of basis). Fortunately, bases exhibiting such a large gap are quite rare — for bases of
‘hard’ cryptographic lattices as generated according to a method described in [AP09], we show that the gap
is only O(

√
n) with high probability. Moreover, we show that in other important cases the ratio is nearly

constant (see below for more details).
In a cryptographic application, the width s of the sampled Gaussian is the main quantity governing the

concrete security and, if applicable, the approximation factor of the underlying worst-case lattice problems
(via worst-case/average-case reductions as pioneered by Ajtai [Ajt04]). This is because for security, it
needs to be hard for an adversary to find a lattice point within the likely radius s

√
n of the Gaussian (i.e.,

after truncating its negligibly likely tail). The wider the distribution, the more leeway the adversary has
in an attack, and the larger the scheme’s parameters must be to compensate. On the other hand, a faster
and parallelizable sampling algorithm allows for the use of larger parameters without sacrificing efficiency.
Based on current estimates of the concrete security for random cryptographic lattices [GN08, MR09], we
believe that our new algorithm can offer a significant net gain in efficiency for comparable levels of security,
especially when exploiting parallelism. Of course, testing this conjecture requires careful experiments on
concrete implementations and key sizes, which we leave for later work. Even putting aside potential efficiency
improvements, our parallel sampling algorithm and its analysis also offer theoretical advantages that we
expect to be useful elsewhere.

We now describe the algorithm’s properties in more detail, in comparison with that of [GPV08]. Given a
lattice basis B, the GPV algorithm can sample from a discrete Gaussian having width as small as ‖B̃‖ =

2

maxi‖b̃i‖, where B̃ denotes the Gram-Schmidt orthogonalization of B.3 (The quantity ‖B̃‖ is at most
maxi‖bi‖, and in some cases can be substantially smaller.) In contrast, our new algorithm works for a
width as small as the largest singular value σ1(B) of the basis B, or equivalently, the square root of the
largest eigenvalue of BBt. Any basis B can always be processed (without increasing ‖B̃‖) to guarantee
that σ1(B) ≤ n · ‖B̃‖, so our algorithm is at worst an n factor looser than that of [GPV08]. However, this
bound is rather loose, and much tighter bounds can fortunately be established in important special cases.
For instance, the basis generation technique of [AP09] (following [Ajt99]) for ‘worst-case-hard’ lattices
produces a basis B for which the ratio σ1(B)/‖B̃‖ = O(

√
n) with high probability. Even better, when the

vectors of B are themselves drawn from a discrete Gaussian (e.g., as in the basis-delegating applications
of [Pei09, CHK09]), we can show that σ1(B) is only a slightly super-

√
log n factor larger than ‖B̃‖, with

high probability. In this case, the performance improvements of our algorithm therefore come at almost no
asymptotic cost in security.

1.2 Technical Overview

The GPV sampling algorithm [GPV08] is based closely on Babai’s “nearest-plane” decoding algorithm for
lattices [Bab86]. Babai’s algorithm takes a point c ∈ Rn and a lattice basis B = {b1, . . . , bn}, and for
i = n, . . . , 1 computes a coefficient zi ∈ Z for bi by iteratively projecting (‘rounding’) c orthogonally to the
nearest hyperplane of the form zibi + span(b1, . . . ,bi−1). The output is the lattice vector

∑
i zibi, whose

distance from the original c can be bounded by the quality of B. The GPV algorithm, whose goal is to
randomly sample from a discrete Gaussian centered at c, uses randomized rounding in each iteration to select
a ‘nearby’ plane, under a carefully defined probability distribution. (This technique is also related to another
randomized-rounding algorithm of Klein [Kle00] for a different problem.)

In addition to his nearest-plane algorithm, Babai also proposed a simpler (but somewhat looser) lattice
decoding algorithm, which we call “simple rounding.” In this algorithm, a given point c ∈ Rn is rounded to
the lattice point BbB−1ce, where each coordinate of B−1c ∈ Rn is independently rounded to its nearest
integer. With precomputation of B−1, this algorithm can be quite practical, and is easily parallelized among
up to n2 processors. Unfortunately, its deterministic form it turns out to be completely insecure for ‘answering
queries’ (e.g., digital signatures), as demonstrated by Nguyen and Regev [NR09].

A natural question, given the approach of [GPV08], is whether a randomized variant of the simple-
rounding algorithm is secure. Unlike with the randomized nearest-plane algorithm, in this case the resulting
probability distribution is not spherical, nor is it zero-knowledge. Specifically, the covariance matrix of the
distribution, which can be measured efficiently given a small number of samples, is approximately BBt; this
leaks the entire ‘geometry’ of the secret basis B, up to rigid rotations. One might still wonder whether BBt

can be simulated efficiently (without any privileged knowledge about the lattice) when B is itself drawn from
a ‘nice’ distribution, such as a discrete Gaussian. Indeed, when the vectors of B are drawn independently
from a continuous Gaussian, the matrix BBt has the so-called Wishart distribution, which can be generated
‘obliviously’ (without knowledge of B itself) using the Bartlett decomposition. (See, e.g., [Ksh59] and
references therein). Unfortunately, these facts do not quite seem to carry over to discrete Gaussians, though
they may be useful in another context.

Instead we take a different route, which is inspired by the following facts. Recall that if X and Y are two
independent random variables, the probability distribution of their sum X + Y is the convolution of their
individual distributions. In addition, for continuous (not necessarily spherical) Gaussians, covariance matrices

3Actually, the width also includes a small ω(
√

log n) factor, which is also present in our new algorithm, so for simplicity we
ignore it in this summary.

3

are additive under convolution. In particular, if Σ1 and Σ2 are covariance matrices such that Σ1 + Σ2 = s2I,
then the convolution of two Gaussians with covariance matrices Σ1, Σ2 (respectively) is a spherical Gaussian
with standard deviation s.

The above facts give the basic idea for our algorithm, which is simply to convolve the (randomized)
simple-rounding algorithm with a suitable non-spherical (continuous) Gaussian, yielding a spherically
distributed output. However, note that we want the algorithm to generate a discrete distribution — i.e., it
must output a lattice point — so we should not alter the output of the randomized rounding step. Instead,
we first perturb the desired center c by a suitable non-spherical Gaussian, then apply randomized rounding
to the resulting perturbed point. Strictly speaking this is not a convolution, because the rounding step now
depends on the output of the perturbation step, but we can reduce the analysis to a true convolution using
bounds related to the smoothing parameter of the lattice [MR07].

The main remaining question is: for a given covariance matrix Σ1 = BBt (corresponding to the rounding
step), for what values of s is there an (efficiently sampleable) Gaussian with covariance matrix Σ2 = s2I−Σ1?
The covariance matrix of any Gaussian is (symmetric) positive definite, i.e., all its eigenvalues are positive.4

Conversely, every positive definite matrix is the covariance of some Gaussian, which can sampled efficiently
using (for example) the Cholesky decomposition. Since any eigenvector of Σ1 (with eigenvalue σ2) is also an
eigenvector of s2I (with eigenvalue s2), it must be an eigenvector of Σ2 (with eigenvalue s2 − σ2) as well.
Therefore, a necessary and sufficient condition is that all the eigenvalues of Σ1 be less than s2. Equivalently,
the algorithm works for any s that exceeds the largest singular value of the given basis B. More generally,
our algorithm can generate any (possibly non-spherical) discrete Gaussian with covariance parameter Σ > Σ1

(i.e., Σ− Σ1 is positive definite).
In retrospect, the high-level structure of our algorithm resembles the perturbation heuristic proposed

for NTRUSign [HHGP+03], though the details are quite different. First, the perturbation and rounding
steps in NTRUSign are both deterministic with respect to two or more bases, and there is evidence that
this is insecure [MPSW09], at least for a large polynomial number of signatures. Second, the signing and
perturbation bases used in NTRUSign are chosen independently, whereas our perturbations are carefully
chosen to conceal the statistics that would otherwise be leaked by randomized rounding.

1.3 Organization

Section 2 reviews the necessary linear algebra and lattice background. In Section 3 we present the new
sampling algorithm, prove its correctness, and analyze its efficiency under suggested optimizations. In
Section 4 we give bounds on the largest singular value of a basis relative to other important quantities, both in
general and in some important special cases.

2 Preliminaries

2.1 Notation

A nonnegative function f : N → R is called negligible, written f(n) = negl(n), if it vanishes faster than
any inverse polynomial, i.e., f(n) = o(n−c) for every constant c ≥ 0. A function g : N → [0, 1] is called
overwhelming if it is 1− negl(n). We say that two probability distributions (implicitly parameterized by n)
are statistically indistinguishable if their statistical distance is negl(n).

4For simplicity, in this paper we deal only with non-degenerate (full-rank) Gaussians; degenerate Gaussians can have positive
semidefinite covariances matrices.

4

We use bold lower-case letters (e.g., x) to denote vectors in Rn, for some positive integer dimension n
that remains the same throughout the paper. We use bold upper-case letters (e.g., B) for ordered sets of
vectors, and identify the set with the matrix having the vectors as its columns. We frequently use upper-case
Greek letters (e.g., Σ) to denote (symmetric) positive definite matrices (defined below). In contexts where
a matrix is expected, we sometimes use a scalar c ∈ R to denote c · I, where I is the identity matrix of
appropriate dimension. We let ‖B‖ = maxi‖bi‖, where ‖·‖ denotes the Euclidean norm.

2.2 Linear Algebra

A symmetric matrix Σ ∈ Rn×n is positive definite, written Σ > 0, if xtΣx > 0 for all nonzero x ∈ Rn.5

Equivalently, its spectral decomposition is

Σ = QD2Q−1 = QD2Qt,

where Q ∈ Rn×n is an orthogonal matrix (i.e., one for which QtQ = QQt = I) whose columns are
eigenvectors of Σ, and D is the real diagonal matrix of the square roots of the corresponding eigenvalues,
all of which are positive. From this, we have Σ > 0 if and only if Σ−1 > 0. Positive definiteness defines a
partial ordering on symmetric matrices: we say that X > Y if (X−Y) > 0.

For any nonsingular matrix B ∈ Rn×n, the symmetric matrix Σ = BBt is positive definite, because

xtΣx = 〈Btx,Btx〉 = ‖Btx‖2 > 0

for nonzero x ∈ Rn. We say that B is a square root of Σ > 0, written B =
√

Σ, if BBt = Σ. Every Σ > 0
has a square root B = QD, where Σ = QD2Qt is the spectral decomposition of Σ as above. Moreover,
the square root is unique up to right-multiplication by an orthogonal matrix, i.e., B′ =

√
Σ if and only

if B′ = BP for some orthogonal matrix P. A square root of particular interest is given by the Cholesky
decomposition Σ = LLt, where L is a (unique) lower-triangular matrix. It can be computed efficiently in
fewer than n3 multiplication and addition operations (over the reals).

For a nonsingular matrix B, a singular value decomposition is B = QDPt, where Q,P ∈ Rn×n

are orthogonal matrices, and D is a diagonal matrix with positive entries σi > 0 (called the singular
values) on the diagonal, in non-increasing order. Under this convention, D is uniquely determined, and
σ1(B) = maxu‖Bu‖ = maxu‖Btu‖, where the maximum is taken over all unit vectors u ∈ Rn. Note that

Σ = BBt = QDPtPDtQt = QD2Qt,

so the eigenvalues of Σ are the squares of the singular values of B.

2.3 Lattices

A lattice Λ is a discrete additive subgroup of Rn. In this work we are only concerned with full-rank lattices,
which are generated by some nonsingular basis B ∈ Rn×n, as the set Λ = {Bz : z ∈ Zn}. When n ≥ 2,
every lattice has infinitely many bases, which are related by unimodular transformations: B′ and B generate
the same lattice if and only if B′ = BU for some unimodular U ∈ Zn×n.

5By relaxing the condition to xtΣx ≥ 0, we obtain the notion of a positive semidefinite matrix Σ ≥ 0. Our results can be
extended to work for this notion as well, but at the expense of technical complications that provide little concrete benefit.

5

2.4 Gaussians

The Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x) ∆= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).

Applying a linear transformation given by a nonsingular matrix B yields the Gaussian function

ρB(x) ∆= ρ(B−1x) = exp
(
−π ·

〈
B−1x,B−1x

〉)
= exp

(
−π · xtΣ−1x

)
,

where Σ = BBt > 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.
Normalizing ρ√Σ by its total measure

∫
Rn ρ√Σ(x) dx =

√
det Σ over Rn, we obtain the probability

distribution function of the (continuous) Gaussian distribution D√Σ. It is easy to check that a random
variable x having distribution D√Σ can be written as

√
Σ · z, where z has spherical Gaussian distribution D1.

Therefore, the random variable x has covariance

E
x∼D√Σ

[
x · xt

]
=
√

Σ · E
z∼D1

[
z · zt

]
·
√

Σ
t

=
√

Σ · I
2π
·
√

Σ
t

=
Σ
2π
,

by linearity of expectation. (The I
2π covariance of z ∼ D1 arises from the independence of its entries, which

are each distributed as D1 in one dimension, and have variance 1
2π .) For convenience, in this paper we

implicitly scale all covariance matrices by a 2π factor, and refer to Σ as the covariance matrix of D√Σ.
For two functions f, g : Rn → R, their convolution (f ∗ g) : Rn → R is the function

(f ∗ g)(x) =
∫

Rn

f(x− t) · g(t) dt.

It is well-known that the convolution of two Gaussian functions is another Gaussian function, whose
covariance matrix is the sum of the original covariance matrices.

Lemma 2.1. For any positive definite matrices Σ1,Σ2 ∈ Rn×n, we have (ρ√Σ1
∗ ρ√Σ2

) = ρ√Σ1+Σ2
.

An elementary (but somewhat cumbersome) proof of Lemma 2.1 can be obtained directly from the
definition of convolution, by a matrix version of ‘completing the square’ in the exponent. Alternatively, a
more concise proof may be obtained by employing the convolution theorem (which says that f̂ ∗ g = f̂ · ĝ,
where ·̂ denotes the Fourier transform) and the fact that ρ̂√Σ = ρ√

Σ−1 .

2.5 Gaussians on Lattices

Let Λ be a lattice and c be a point in Rn, and let Σ > 0 be a positive definite matrix. The discrete Gaussian
distribution DΛ+c,

√
Σ is simply the Gaussian distribution restricted so that its support is the coset Λ + c. That

is, for all x ∈ Λ + c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x).

Definition 2.2. Let Σ > 0. We say that
√

Σ ≥ ηε(Λ) if ρ√
Σ−1(Λ∗\{0}) = ρ(

√
Σ · Λ∗\{0}) ≤ ε, i.e., if

ηε(
√

Σ−1 · Λ) ≤ 1.

6

The next lemma says that when the standard deviation
√

Σ exceeds the smoothing parameter of Λ, the
Gaussian measure is essentially the same on all cosets of Λ. The lemma following that one gives a tight
bound on the smoothing parameter of the integer lattice Zn.

Lemma 2.3 (Extension of [MR07, Lemma 4.4]). Let Λ be any n-dimensional lattice. For any ε ∈ (0, 1),
Σ > 0 such that

√
Σ ≥ ηε(Λ), and c ∈ Rn,

ρ√Σ(Λ + c) ∈ [1−ε
1+ε , 1] · ρ√Σ(Λ).

Proof. Follows directly by applying
√

Σ−1 as a linear transform to Λ, and by ηε(
√

Σ−1 · Λ) ≤ 1.

Lemma 2.4 (Special case of [MR07, Lemma 3.3]). For any ε > 0,

ηε(Zn) ≤
√

ln(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible ε = ε(n) such that ηε(Zn) ≤ ω(
√

log n).

3 Discrete Gaussian Sampling Algorithm

In this section we define and analyze the new sampling algorithm. In Section 3.1 we first present an abstract
algorithm and prove its correctness. In Section 3.2 we then describe efficient and parallelizable instantiations
of each abstract step of the algorithm, for both general lattices and those used in cryptography.

3.1 Abstract Algorithm

Algorithm 1 Abstract algorithm SampleD(B1,Σ, c) for sampling from a discrete Gaussian distribution.
Input: Basis B1 of a lattice Λ = L(B1), covariance matrix Σ > Σ1 = r2 ·B1Bt

1 where r = ω(
√

log n),
and vector c ∈ Rn.

Output: Vector x ∈ Λ + c drawn from a distribution statistically close to DΛ+c,
√

Σ.
1: Let Σ2 = Σ− Σ1 > 0, and compute some B2 =

√
Σ2.

2: Let t← D√Σ2
.

3: return x← t +DΛ+c−t,
√

Σ1
.

Theorem 3.1 (Correctness of abstract algorithm). Adopt the notation from Algorithm 1. The output distri-
bution of SampleD(B1,Σ, c) is within negl(n) statistical distance of DΛ+c,

√
Σ. Moreover, the conditional

distribution of t given x = x̄ is within negl(n) statistical distance of z+D√Σ3
, where z = (I+Σ1Σ−1

2)−1 ·x̄
and Σ−1

3 = Σ−1
1 + Σ−1

2 .

7

Proof. By construction, Algorithm 1 outputs an element of Λ + c. Now for all x̄ ∈ Λ + c, we have

Pr[SampleD(B1,Σ, c) outputs x̄]

=
∫
t∈Rn

DΛ+c−t,
√

Σ1
(x̄− t) ·D√Σ2

(t) · dt (by construction)

∝
∫
t∈Rn

ρ√Σ1
(x̄− t) · ρ√Σ2

(t)
ρ√Σ1

(Λ + c− t)
· dt (def. of DΛ and D)

∈ [1, 1+ε
1−ε] ·

1
ρ√Σ1

(Λ)
·
∫
t∈Rn

ρ√Σ1
(x̄− t) · ρ√Σ2

(t) · dt (Lemma 2.3)

∝ [1, 1+ε
1−ε] · (ρ√Σ1

∗ ρ√Σ2
)(x̄) (def. of convolution)

= [1, 1+ε
1−ε] · ρ√Σ(x̄). (Lemma 2.1)

Note that we can apply Lemma 2.3 above because rB1 =
√

Σ1 ≥ ηε(Λ) for some ε(n) = negl(n), by
Lemma 2.4 and the fact that B−1

1 · Λ = Zn.
For the conditional distribution, let x̄ ∈ Λ + c be arbitrary. Then for any t ∈ Rn, we have

Pr [t = t̄ | x = x̄]
∝ Pr [t = t̄ ∧ x = x̄] (Bayes rule)

= ρ√Σ2
(t̄) ·

ρ√Σ1
(x̄− t̄)

ρ√Σ1
(Λ + c− t̄)

(by construction)

∈ [1, 1+ε
1−ε] ·

1
ρ√Σ1

(Λ)
· (ρ√Σ2

· ρ√Σ1,x̄
)(t̄), (Lemma 2.3)

where ρ√Σ1,x̄
is the Gaussian function centered at x̄. It is well-known (see, e.g., [Tou09]) that the product of

the two Gaussian functions ρ√Σ2
and ρ√Σ1,x̄

is the (centered) Gaussian function ρ√Σ3,z
, where z and Σ3 are

as in the theorem statement. The claim follows.

3.2 Efficient Instantiations

Here we describe how the abstract Algorithm 1 admits efficient implementations that can make extensive use
of preprocessing and parallelism. For the common case where Σ = s2 for some s > σ1(B1) · ω(

√
log n), we

combine all the ideas to describe a complete concrete instantiation in Algorithm 2.

3.2.1 Preprocessing Step 1

In a typical application, SampleD(B1,Σ, c) is invoked several times on the same basis B1 and covariance
matrix Σ, but different values of c. For example, in digital signature and IBE schemes [GPV08, Pei09,
CHK09], the point c varies with the message (or identity), but the secret basis B1 and covariance matrix
Σ = s2 remain the same. Therefore, Step 1 is most naturally implemented in an offline preprocessing stage,
and the output B2 can be retained for all future invocations.

There are a few ways to compute a matrix B2 =
√

Σ2. One way is to compute the Cholesky decompo-
sition Σ2 = LLt, where L is lower-triangular, and let B2 = L. This method may be preferred if space is
constrained, as L takes only about half as much storage as a dense matrix.

8

Another method, which is particularly attractive in the typical case where Σ = s2 for some real
s > r · σ1(B1), is to use the singular value decomposition of B1 = QDPt, where Q and P are orthogonal
matrices and D is a diagonal matrix having positive diagonal entries σi = σi(B1) < s. Then we may define

B2 = Q
√
s2 − (rD)2 =

√
Σ2,

because
r2 ·B1Bt

1 + B2Bt
2 = Q(rD)2Qt + Q(s2 − (rD)2)Qt = s2 ·QQt = Σ.

In particular, for the matrix square root
√
s2 − (rD)2 we can use the diagonal matrix having positive diagonal

entries
√
s2 − (rσi)2. This choice has additional benefits; see the next step.

3.2.2 Preprocessing Step 2

Given a matrix B2 =
√

Σ2 as computed in Step 1, generating t← D√Σ2
can be done simply by choosing

v ← D1 and letting t = B2v. Each coordinate of v is independently distributed as D1 in one dimension,
and the matrix-vector product B2v can be computed in parallel in the standard way.

Moreover, when B2 = Q
√
s2 − (rD)2 =

√
Σ2 as described above, the random variable t← D√Σ2

is
of the form Qv′, where the coordinates v′i are independently distributed as the one-dimensional Gaussians
D√

s2−σ2
i
, respectively.

Finally, observe that this step is independent of the input c to SampleD, so it can also be precomputed in
an offline phase. Of course, each call to SampleD must use a fresh value of t.

3.2.3 Instantiating Step 3

For this step, we first define a Gaussian ‘randomized rounding’ operation bver for arbitrary v ∈ R and real
r > 0. The output of this operation is a random variable over Z, distributed as v + DZ−v,r. We extend
this operation to vectors v ∈ Rn, where the ith coordinate of bver is independently distributed as bvier. It
follows that for any z̄ ∈ Zn, the probability that bver = z̄ is proportional to∏

i∈[n]

ρr(z̄i − vi) = exp(−π ·
∑
i∈[n]

(z̄i − vi)2/r2) = exp(−π · ‖z̄− v‖2/r2) = ρr(z̄− v).

That is, bver is distributed as v +DZn−v,r, because the standard basis for Zn is orthonormal.
In [GPV08] it is shown how to sample from DZ−v,r for any v ∈ R and r > 0, by rejection sampling. In

our setting, though, we can be more efficient by exploiting the fact that r is fixed, known in advance, and
small (slightly super-

√
log n). For instance, for any v ∈ [0, 1) we can (pre)compute a table of the cumulative

distribution function, i.e., the probabilities that v+DZ−v,r ≤ z̄ ∈ Z, for each z̄ within an interval ±ω(log n).
(Outside of that interval are the negligibly rare tails of the distribution.) Then we can directly sample from
v +DZ−v,r by choosing a uniform value in [0, 1) and performing a binary search through the table.

Finally, to perform Step 3 we can sample from DΛ+c−t,
√

Σ1
simply by invoking the following lemma

with w = c− t. Note that the randomized rounding can be performed on each coordinate in parallel.

Lemma 3.2. Let B1, Λ = L(B1), and Σ1 = r2 · B1Bt
1 be as in Algorithm 1 for any real r > 0, and let

w ∈ Rn be arbitrary. The random variable x = w −B1bB−1
1 wer has distribution DΛ+w,

√
Σ1

.

9

Proof. Let v = B−1
1 w. The support of bver is Zn, so the support of x is w −B1 · Zn = Λ + w. Now for

any x̄ = w −B1z̄ where z̄ ∈ Zn, we have x = x̄ if and only if bver = z̄. As desired, this event occurs with
probability proportional to

ρr(z̄− v) = ρr(B−1
1 (w − x̄)−B−1

1 w) = ρr(−B−1
1 x̄) = ρrB1(x̄) = ρ√Σ1

(x̄).

Algorithm 2 Concrete algorithm SampleD(B1, s, c) for sampling from a discrete Gaussian distribution.
Input: Basis B1 of a lattice Λ = L(B1), real parameter s > r · σ1(B1) where r = ω(

√
log n), and c ∈ Rn.

Output: Vector x ∈ Λ + c drawn from a distribution statistically close to DΛ+c,s.
Preprocessing phase:

1: Compute a singular value decomposition B1 = QDPt, and let D′ =
√

(s/D)2 − r2.
2: Choose a fresh y← P ·D′ ·D1 for each desired sample.

Online phase:
3: return c−B1bB−1

1 c− yer, using a fresh y from the preprocessing phase.

4 Singular Value Bounds

In this section we give bounds on the largest singular value of a basis B and relate them to other geometric
quantities that are relevant to the prior sampling algorithm of [GPV08].

4.1 General Bounds

The Gram-Schmidt orthogonalization of a nonsingular matrix B is B = QG, where Q is an orthogonal
matrix and G is right-triangular, with positive diagonal entries gi,i > 0 (without loss of generality). The
Gram-Schmidt vectors for B are b̃i = gi,i · qi. That is, b̃1 = b1, and b̃i is the component of bi orthogonal
to the linear span of b1, . . . ,bi−1. The Gram-Schmidt orthogonalization can be computed efficiently in a
corresponding iterative manner.

Let B = QG be the Gram-Schmidt orthogonalization of B. Without loss of generality we can assume
that B is size-reduced, i.e., that |gi,j | ≤ gi,i/2 for every i < j. This condition can be achieved efficiently by
the following process: for each j = 1, . . . , n, and for each i = j−1, . . . , 1, replace bj by bj−bgi,j/gi,ie ·bi.
Note that the size reduction process leaves the lattice L(B) and Gram-Schmidt vectors b̃i = gi,i · qi
unchanged. Note also that ‖gi‖ ≤

√
n ·maxi gi,i, by the Pythagorean theorem.

Lemma 4.1. Let B ∈ Rn×n be a size-reduced nonsingular matrix. We have

σ1(B) ≤
√
n ·
√∑
i∈[n]

‖b̃i‖2 ≤ n · ‖B̃‖.

The lemma is tight up to a constant factor, which may be seen by considering the right-triangular matrix
with 1s on the diagonal and 1/2 in every entry above the diagonal.

Proof. Let B have Gram-Schmidt orthogonalization B = QG. We have

σ1(B) = max
x
‖Btx‖ = max

x
‖Gtx‖ ≤

√∑
i∈[n]

(
√
n · gi,i)2 =

√
n ·
√∑
i∈[n]

g2
i,i,

10

where the maxima are taken over all unit vectors x ∈ Rn, the second equality uses the fact that Q is
orthogonal, and the first inequality is by Cauchy-Schwarz.

4.2 Bases for Cryptographic Lattices

Ajtai [Ajt99] gave a procedure for generating a lattice uniformly from a certain family of cryptographic
(or ‘worst-case-hard’) lattices, together with a relatively short basis. Alwen and Peikert [AP09] recently
improved and extended the construction. Here we show that one of the constructions of [AP09] yields (with
overwhelming probability) a basis whose largest singular value is only an O(

√
n) factor larger than the

optimal ‖B̃‖ over any basis B of the lattice. (Note that it is standard to use m as the dimension of the
cryptographic lattice, and n as the dimension of the underlying worst-case lattices. For consistency with the
rest of this paper, here we instead use n as the dimension of the random lattice.)

Our tightest bounds apply to the construction from [AP09, Section 3.2], instantiated with base r = 2, and
slightly modified to use a uniformly random ±1 (rather than 0-1) component matrix R and odd modulus q.

Lemma 4.2. The construction from [AP09, Section 3.2] (modified as described above) outputs a basis S
such that σ1(S) ≤ O(n) with overwhelming probability.

It is known that, with high probability over the random lattice Λ chosen from the hard family, ‖B̃‖ ≥
Ω(
√
n) for every basis B of Λ. This implies the claimed O(

√
n) gap.

Proof. The construction of [AP09, Section 3.2] output a basis S with block structure

S =
(

(G + R)B RP− I
B P

)
∈ Zn×n.

The exact definitions of the components are not too important for our purposes; here we only need the
following facts:

• σ1(B) ≤ 3, and σ1(GB) ≤ O(n) because GB is a 0-1 matrix.

• σ1(R) ≤ O(
√
n) with overwhelming probability, because R is a uniformly random ±1 matrix.

• σ1(P) = 1 because P has a single 1 in each column and 0s elsewhere.

By the triangle inequality and the definition of σ1, it is straightforward to verify that σ1(S) ≤ O(n).

4.3 Gaussian-Distributed Bases

Here we show that for a lattice basis generated by choosing its vectors from a discrete Gaussian distribution
over the lattice (following by some post-processing), the largest singular value σ1(B) of the resulting basis
is essentially the same as the maximal Gram-Schmidt length ‖B̃‖ (with high probability). Such a bound is
useful because applications that use ‘basis delegation,’ such as the hierarchical ID-based encryption schemes
of [Pei09, CHK09], generate random bases in exactly the manner just described. Our bounds imply that the
efficient Gaussian sampling algorithm is essentially as tight as the GPV algorithm on such bases.

Algorithm 3 recalls the precise method for generating and post-processing a Gaussian-distributed basis.

Theorem 4.3. With overwhelming probability, Algorithm 3 outputs a basis T such that ‖T̃‖ ≥ s · Ω(
√
n),

and for any ω(
√

log n) function, σ1(T) ≤ s ·O(
√
n) · ω(

√
log n). In particular, σ1(T)/‖T̃‖ = ω(

√
log n).

11

Algorithm 3 Abstract algorithm for sampling and post-processing a Gaussian-distributed basis.
Input: An arbitrary basis B of a lattice Λ, and an oracle for DΛ,s, where s ≥ ηε(Λ) for some ε = negl(n).
Output: A basis T of Λ.

1: i← 0
2: repeat
3: Draw a fresh s← DΛ,s.
4: if s is linearly independent of {s1, . . . , si} then
5: i← i+ 1, si ← s
6: end if
7: until i = n
8: return ToBasis(S,B)

We use the remainder of this subsection to prove the theorem. First we recall the algorithm ToBasis, used
by Algorithm 3 to transform a full-rank set S of lattice vectors into a basis T of the lattice, without increasing
the Gram-Schmidt lengths of the vectors; here we show that it also does not increase the largest singular
value of the matrix. This means that it is enough to consider the largest singular value of S.

Lemma 4.4. There is a deterministic polynomial-time algorithm ToBasis(S,B) that, given a full-rank
set of lattice vectors S ⊂ Λ and an arbitrary basis B of Λ = L(B), outputs a basis T of Λ such that
σ1(T) ≤ σ1(S), and ‖t̃i‖ ≤ ‖s̃i‖ for all i.

Proof. The algorithm works as follows: write S = BZ for some nonsingular integer matrix Z. Decompose
Z = UR for a unimodular matrix U and (nonsingular) right-triangular integer matrix R. Output T = BU.

Clearly T is a basis of Λ, because U is unimodular. Observe that T = SR−1. Now because R is a
(nonsingular) triangular integral matrix, all its singular values σi(R) ≥ 1, hence every σi(R−1) ≤ 1. We
conclude that σ1(T) ≤ σ1(S) · σ1(R−1) ≤ σ1(S).

For the Gram-Schmidt lengths, let S = QG be the G-S decomposition of S, where G is right-triangular.
Then T = Q(GR−1) is the G-S decomposition of T, because R−1 is also right-triangular. The ith diagonal
entry of R−1 is r−1

i,i , hence ‖t̃i‖ ≤ ‖s̃i‖/|ri,i| ≤ ‖s̃i‖.

We next prove the lower bound on ‖T̃‖. First we claim that in the decomposition S = BUR above,
|r1,1| = 1 with overwhelming probability. This is because s1 ∈ |r1,1| · Λ, and the probability that DΛ,s

outputs an element in r · Λ for an integer r > 1 is negligible: the probability is maximized for r = 2, and
is (1 + negl(n)) · 2−n in that case by the fact that there are 2n cosets of 2Λ, and by Lemma 2.3. Therefore,
t̃1 = t1 = s1. By [MR07, Lemma 4.2], we know that s1 has length s ·Ω(

√
n) with overwhelming probability,

and hence ‖T̃‖ ≥ ‖t̃1‖ = s · Ω(
√
n).

We now work to prove the upper bound on σ1(S). The next lemma bounds the singular values of a
(possibly non-square) matrix whose columns are drawn from DΛ,s.

Lemma 4.5. Let Λ ⊂ Rn be a lattice and let s ≥ ηε(Λ) for some ε = negl(n). Let S′ ∈ Rn×m be a matrix
whose m columns s′i are drawn independently from DΛ,s. Then

σ1(S′) ≤ s ·O(
√
n+
√
m)

with overwhelming probability (where O hides a universal constant).

12

Proof. We give an outline of the proof, whose details are straightforward but somewhat tedious. Without loss
of generality, assume that s = 1. The first fact we need is that projecting the distribution DΛ onto any one
dimension (specified by a unit vector u) yields a subgaussian distribution, i.e., one whose tails outside the
interval [−t,+t] carry at most C · exp(−πt2) of the probability mass, for some fixed constant C and any
t > 0. This fact is established in [Pei08, Lemma 5.1], using techniques of [Ban95].

The second fact we need is that an n-by-m matrix with independent subgaussian columns has largest
singular value O(

√
n+
√
m) with overwhelming probability. This can be established using a standard ε-net

argument; see for example [Ver07, Lecture 6].

Now let S′ ∈ Rn×m be the matrix consisting of every vector s ← DΛ,s chosen by Algorithm 3,
irrespective of whether it is linearly independent of its predecessors. Because S is made up of a subset of the
columns of S′, it follows immediately from the definition that σ1(S) ≤ σ1(S′).

It simply remains to bound the total number m of samples that Algorithm 3 draws from DΛ,s. By [Reg09,
Lemma 3.15], each sample s is linearly independent of s1, . . . , si with probability at least 1/10. Therefore,
for any ω(log n) function, the algorithm draws a total of n · ω(log n) samples with all but some negligible
probability. By Lemma 4.5, we conclude that σ1(S′) ≤ s ·O(

√
n) ·ω(

√
log n) with overwhelming probability.

This completes the proof.

References

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages 1–9, 1999.

[Ajt04] Miklós Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32,
2004. Preliminary version in STOC 1996.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In STACS,
pages 75–86, 2009.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[Ban95] Wojciech Banaszczyk. Inequalites for convex bodies and polar reciprocal lattices in Rn.
Discrete & Computational Geometry, 13:217–231, 1995.

[CHK09] David Cash, Dennis Hofheinz, and Eike Kiltz. How to delegate a lattice basis. Cryptology
ePrint Archive, Report 2009/351, July 2009. http://eprint.iacr.org/.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, pages
31–51, 2008.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[HHGP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William
Whyte. NTRUSIGN: Digital signatures using the NTRU lattice. In CT-RSA, pages 122–140,
2003.

13

http://eprint.iacr.org/

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In SODA, pages
937–941, 2000.

[Ksh59] A. M. Kshirsagar. Bartlett decomposition and Wishart distribution. The Annals of Mathematical
Statistics, 30(1):239–241, March 1959. Available at http://www.jstor.org/stable/
2237140.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital
signatures. In TCC, pages 37–54, 2008.

[MPSW09] Tal Malkin, Chris Peikert, Rocco A. Servedio, and Andrew Wan. Learning an overcomplete
basis: Analysis of lattice-based signatures with perturbations. Manuscript, 2009.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post Quantum Cryptogra-
phy, pages 147–191. Springer, February 2009.

[NR09] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. J. Cryptology, 22(2):139–160, 2009. Preliminary version in Eurocrypt 2006.

[Pei08] Chris Peikert. Limits on the hardness of lattice problems in `p norms. Computational Complex-
ity, 17(2):300–351, May 2008. Preliminary version in CCC 2007.

[Pei09] Chris Peikert. Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint
Archive, Report 2009/359, July 2009. http://eprint.iacr.org/.

[PV08] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs for
lattice problems. In CRYPTO, pages 536–553, 2008.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), 2009. Preliminary version in STOC 2005.

[Tou09] Marc Toussaint. Lecture notes: Gaussian identities, 2009. Available at user.cs.
tu-berlin.de/˜mtoussai/notes/gaussians.pdf, last accessed 17 Feb 2010.

[Ver07] Roman Vershynin. Lecture notes on non-asymptotic theory of random matrices,
2007. Available at http://www-personal.umich.edu/˜romanv/teaching/
2006-07/280/, last accessed 17 Feb 2010.

14

http://www.jstor.org/stable/2237140
http://www.jstor.org/stable/2237140
http://eprint.iacr.org/
user.cs.tu-berlin.de/~mtoussai/notes/gaussians.pdf
user.cs.tu-berlin.de/~mtoussai/notes/gaussians.pdf
http://www-personal.umich.edu/~romanv/teaching/2006-07/280/
http://www-personal.umich.edu/~romanv/teaching/2006-07/280/

	Introduction
	Contributions
	Technical Overview
	Organization

	Preliminaries
	Notation
	Linear Algebra
	Lattices
	Gaussians
	Gaussians on Lattices

	Discrete Gaussian Sampling Algorithm
	Abstract Algorithm
	Efficient Instantiations
	Preprocessing Step 1
	Preprocessing Step 2
	Instantiating Step 3

	Singular Value Bounds
	General Bounds
	Bases for Cryptographic Lattices
	Gaussian-Distributed Bases

