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Abstract

At the heart of many recent lattice-based cryptographic schemes is a polynomial-time algorithm that,
given a ‘high-quality’ basis, generates a lattice point according to a Gaussian-like distribution. Unlike
most other operations in lattice-based cryptography, however, the known algorithm for this task (due to
Gentry, Peikert, and Vaikuntanathan; STOC 2008) is rather inefficient, and is inherently sequential.

We present a new Gaussian sampling algorithm for lattices that is efficient and highly parallelizable.
We also show that in most cryptographic applications, the algorithm’s efficiency comes at almost no cost in
asymptotic security. At a high level, our algorithm resembles the “perturbation” heuristic proposed as part
of NTRUSign (Hoffstein et al., CT-RSA 2003), though the details are quite different. To our knowledge,
this is the first algorithm and rigorous analysis demonstrating the security of a perturbation-like technique.

1 Introduction

In recent years, there has been rapid development in the use of lattices for constructing rich crypto-
graphic schemes.1 These include digital signatures (both ‘tree-based’ [LM08] and ‘hash-and-sign’ [GPV08,
CHKP10]), identity-based encryption [GPV08] and hierarchical IBE [CHKP10, ABB10], noninteractive
zero knowledge [PV08], and even a fully homomorphic cryptosystem [Gen09].

The cornerstone of many of these schemes (particularly, but not exclusive to, those that ‘answer queries’)
is the polynomial-time algorithm of [GPV08] that samples from a so-called discrete Gaussian probability
distribution over a lattice Λ. More precisely, for a vector c ∈ Rn and a “width” parameter s > 0, the
distributionDΛ+c,s assigns a probability proportional to exp(−π‖v‖2/s2) to each v ∈ Λ+c (and probability
zero elsewhere). Given c, a basis B of Λ, and a sufficiently large s (related to the ‘quality’ of B), the GPV
algorithm outputs a sample from a distribution statistically close to DΛ+c,s. (Equivalently, by subtracting c
from the output, it samples a lattice point from a Gaussian distribution centered at −c.) Informally speaking,
the sampling algorithm is ‘zero-knowledge’ in the sense that it leaks no information about its input basis B
(aside from a bound on its quality), because DΛ+c,s is defined without reference to any particular basis. This
zero-knowledge property accounts for its broad utility in lattice-based cryptography.

While the sampling algorithm of [GPV08] has numerous applications in cryptography and beyond, for
both practical and theoretical purposes it also has some drawbacks:
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1A lattice Λ ⊂ Rn is a periodic ‘grid’ of points, or more formally, a discrete subgroup of Rn under addition. It is generated by a
(not necessarily unique) basis B ⊂ Rn×k of k linearly independent vectors, as Λ = {Bz : z ∈ Zk}. In this paper we are concerned
only with full-rank lattices, i.e., where k = n.
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• First, it is rather inefficient: on an n-dimensional lattice, a straightforward implementation requires
exact arithmetic on an n × n matrix having Ω(n)-bit entries (even ignoring some additional log n
factors). While approximate arithmetic and other optimizations may be possible in certain cases, great
care would be needed to maintain the proper output distribution, and the algorithm’s essential structure
appears difficult to make truly practical.

• Second, it is inherently sequential: to generate a sample, the algorithm performs n adaptive iterations,
where the choices made in each iteration affect the values used in the next. This stands in stark contrast
to other ‘embarrassingly parallelizable’ operations that are typical of lattice-based cryptography.

1.1 Contributions

We present a new algorithm that samples from a discrete Gaussian distribution DΛ+c,s over a lattice, given a
‘high-quality’ basis for Λ. The algorithm is especially well-suited to ‘q-ary’ integer lattices, i.e., sublattices
of Zn that themselves contain qZn as a sublattice, for some known and typically small q ≥ 2. These
include NTRU lattices [HPS98] and the family of random lattices that enjoy ‘worst-case hardness,’ as first
demonstrated by Ajtai [Ajt96]. Most modern lattice-based cryptographic schemes (including those that rely
on Gaussian sampling) are designed around q-ary lattices, so they are a natural target for optimization.

The key features of our algorithm, as specialized to n-dimensional q-ary lattices, are as follows. It is:

• Offline / online: when the lattice basis is known in advance of the point c (which is the norm in
cryptographic applications), most of the work can be performed as offline precomputation. In fact, the
offline phase may be viewed simply as an extension of the application’s key-generation algorithm.

• Simple and efficient: the online phase involves onlyO(n2) integer additions and multiplications modulo
q or q2, where the O-notation hides a small constant ≈ 4.

• Fully parallelizable: for any P up to n2, the online phase can allocate O(n2/P ) of its operations to
each of P processors.

• High-quality: for random bases that are commonly used in cryptographic schemes, our algorithm can
sample from a Gaussian of essentially the same ‘quality’ as the prior GPV algorithm; this is important
for the concrete security of applications. See Section 1.2.1 below for a full discussion.

We emphasize that for a practical implementation, parallelized operations on small integers represent
a significant performance advantage. Most modern computer processors have built-in support for “vector”
instructions (also known as “single instruction, multiple data”), which perform simple operations on entire
vectors of small data elements simultaneously. Our algorithm can exploit these operations very naturally. For
a detailed efficiency comparison between our algorithm and that of [GPV08], see Section 1.2.2 below.

At a very high level, our algorithm resembles the “perturbation” heuristic proposed for the NTRUSign
signature scheme [HHGP+03], but the details differ significantly; see Section 1.3 for a comparison. To our
knowledge, this is the first algorithm and analysis to demonstrate the theoretical soundness of a perturbation-
like technique. Finally, the analysis of our algorithm relies on some new general facts about ‘convolutions’ of
discrete Gaussians, which we expect will be applicable elsewhere. For example, these facts allow for the use
of a clean discrete Gaussian error distribution (rather than a ‘rounded’ Gaussian) in the “learning with errors”
problem [Reg05], which may be useful in certain applications.

2



1.2 Comparison with the GPV Algorithm

Here we give a detailed comparison of our new sampling algorithm to the previous one of [GPV08]. The two
main points of comparison are the width (‘quality’) of the sampled Gaussian, and the algorithmic efficiency.

1.2.1 Gaussian Width

One of the important properties of a discrete Gaussian sampling algorithm is the width s of the distribution
it generates, as a function of the input basis. In cryptographic applications, the width is the main quantity
governing the concrete security and, if applicable, the approximation factor of the underlying worst-case
lattice problems. This is because in order for the scheme to be secure, it must hard for an adversary to find a
lattice point within the likely radius s

√
n of the Gaussian (i.e., after truncating its negligibly likely tail). The

wider the distribution, the more leeway the adversary has in an attack, and the larger the scheme’s parameters
must be to compensate. On the other hand, a more efficient sampling algorithm can potentially allow for the
use of larger parameters without sacrificing performance.

The prior sampling algorithm of [GPV08], given a lattice basis B = {b1, . . . ,bn}, can sample from
a discrete Gaussian having width as small as ‖B̃‖ = maxi‖b̃i‖, where B̃ denotes the Gram-Schmidt
orthogonalization of B.2 (Actually, the width also includes a small ω(

√
log n) factor, which is also present in

our new algorithm, so for simplicity we ignore it in this summary.) As a point of comparison, ‖B̃‖ is always
at most maxi‖bi‖, and in some cases it can be substantially smaller.

In contrast, our new algorithm works for a width s as small as the largest singular value s1(B) of the
basis B, or equivalently, the square root of the largest eigenvalue of the Gram matrix BBt. It is easy to
show that s1(B) is always at least maxi‖bi‖, so our new algorithm cannot sample from a narrower Gaussian
than the GPV algorithm can. At the same time, any basis B can always be efficiently processed (without
increasing ‖B̃‖) to guarantee that s1(B) ≤ n · ‖B̃‖, so our algorithm is at worst an n factor looser than that
of [GPV08].

While a factor of n gap between the two algorithms may seem rather large, in cryptographic applications
this worst-case ratio is actually immaterial; what matters is the relative performance on the random bases
that are used as secret keys. Here the situation is much more favorable. First, we consider the basis-
generation algorithms of [AP09] (following [Ajt99]) for ‘worst-case-hard’ q-ary lattices, which are used
in most theoretically sound cryptographic applications. We show that with a minor modification, one of
the algorithms from [AP09] outputs (with overwhelming probability) a basis B for which s1(B) is only an
O(
√

log q) factor larger than ‖B̃‖ (which itself is asymptotically optimal, as shown in [AP09]). Because
q is typically a small polynomial in n, this amounts to a cost of only an O(

√
log n) factor in the width of

the Gaussian. Similarly, when the vectors of B are themselves drawn from a discrete Gaussian, as in the
basis-delegation technique of [CHKP10], we can show that s1(B) is only a ω(

√
log n) factor larger than ‖B̃‖

(with overwhelming probability). Therefore, in cryptographic applications the performance improvements
of our algorithm can come at almost no asymptotic cost in security. Of course, a concrete evaluation of the
performance/security trade-off for real-world parameters would require careful analysis and experiments,
which we leave for later work.

1.2.2 Efficiency

We now compare the efficiency of the two known sampling algorithms. We focus on the most common case of
q-ary n-dimensional integer lattices, where a ‘good’ lattice basis (whose vectors having length much less than

2In the Gram-Schmidt orthogonalization B̃ of B, the vector b̃i is the projection of bi orthogonally to span(b1, . . . ,bi−1).
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q) is initially given in an offline phase, followed by an online phase in which a desired center c ∈ Zn is given.
This scenario allows for certain optimizations in both algorithms, which we include for a fair comparison.

The sampling algorithm from [GPV08] can use the offline phase to compute the Gram-Schmidt orthogo-
nalization of its given basis; this requires Ω(n4 log2 q) bit operations and Ω(n3) bits of intermediate storage.
The online phase performs n sequential iterations, each of which computes an inner product between a
Gram-Schmidt vector having Ω(n)-bit entries, and an integer vector whose entries have magnitude at most q.
In total, these operations require Ω(n3 log q) bit operations. In addition, each iteration performs a certain
randomized-rounding operation, which, while asymptotically poly(log n)-time, is not especially practical
(nor precomputable) because it uses rejection sampling on a value that is not known until the online phase.
Lastly, while the work within each iteration may be parallelized, the iterations themselves must be performed
sequentially.

Our algorithm is more efficient and practical in the running time of both phases, and in the amount of
intermediate storage between phases. The offline phase first computes a matrix inverse modulo q2, and a
‘square root’ of a matrix whose entries have magnitude at most q; these can be computed in O(n3 log2 q) bit
operations. Next, it generates and stores one or more short integer ‘perturbation’ vectors (one per future call
to the online phase), and optionally discards the matrix square root. The intermediate storage is therefore
as small as O(n2 log q) bits for the matrix inverse, plus O(n log q) bits per perturbation vector. Optionally,
the offline phase can also precompute the randomized-rounding operations, due to the small number of
possibilities that can occur online. The online phase simply computes about 4n2 integer additions and
multiplications (2n2 of each) modulo q or q2, which can be fully parallelized among up to n2 processors.

Lastly, we mention that our sampling algorithm translates very naturally to the setting of compact q-ary
lattices and bases over certain rings R that are larger than Z, where security is based on the worst-case
hardness of ideal lattices in R (see, e.g., [Mic02, SSTX09, LPR10]). In contrast to GPV, our algorithm can
directly take advantage of the ring structure for further efficiency, yielding a savings of an Ω̃(n) factor in the
computation times and intermediate storage.

1.3 Overview of the Algorithm

The GPV sampling algorithm [GPV08] is based closely on Babai’s “nearest-plane” decoding algorithm for
lattices [Bab86]. Babai’s algorithm takes a point c ∈ Rn and a lattice basis B = {b1, . . . ,bn}, and for
i = n, . . . , 1 computes a coefficient zi ∈ Z for bi by iteratively projecting (‘rounding’) c orthogonally to the
nearest hyperplane of the form zibi + span(b1, . . . ,bi−1). The output is the lattice vector

∑
i zibi, whose

distance from the original c can be bounded by the quality of B. The GPV algorithm, whose goal is instead
to sample from a discrete Gaussian centered at c, uses randomized rounding in each iteration to select a
‘nearby’ plane, under a carefully defined probability distribution. (This technique is also related to another
randomized-rounding algorithm of Klein [Kle00] for a different decoding problem.)

In addition to his nearest-plane algorithm, Babai also proposed a simpler (but somewhat looser) lattice
decoding algorithm, which we call “simple rounding.” In this algorithm, a given point c ∈ Rn is rounded to
the lattice point BbB−1ce, where each coordinate of B−1c ∈ Rn is independently rounded to its nearest
integer. With precomputation of B−1, this algorithm can be quite practical — especially on q-ary lattices,
where several more optimizations are possible. Moreover, it is trivially parallelized among up to n2 processors.
Unfortunately, its deterministic form it turns out to be completely insecure for ‘answering queries’ (e.g.,
digital signatures), as demonstrated by Nguyen and Regev [NR06].

A natural question, given the approach of [GPV08], is whether a randomized variant of Babai’s simple-
rounding algorithm is secure. Specifically, the natural way of randomizing the algorithm is to round each
coordinate of B−1c to a nearby integer (under a discrete Gaussian distribution over Z, which can be sampled
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efficiently), then left-multiply by B as before. Unlike with the randomized nearest-plane algorithm, though,
the resulting probability distribution here is unfortunately not spherical, nor does it leak zero knowledge.
Instead, it is a ‘skewed’ (elliptical) Gaussian, where the skew mirrors the ‘geometry’ of the basis. More
precisely, the covariance matrix Ex[(x− c)(x− c)t] of the distribution (about its center c) is approximately
BBt, which captures the entire geometry of the basis B, up to rigid rotation. Because covariance can be
measured efficiently from only a small number of samples, the randomized simple-rounding algorithm leaks
this geometry.3

Our solution prevents such leakage, in a manner inspired by the following facts. Recall that ifX and Y are
two independent random variables, the probability distribution of their sum X + Y is the convolution of their
individual distributions. In addition, for continuous (not necessarily spherical) Gaussians, covariance matrices
are additive under convolution. In particular, if Σ1 and Σ2 are covariance matrices such that Σ1 + Σ2 = s2I,
then the convolution of two Gaussians with covariance matrices Σ1, Σ2 (respectively) is a spherical Gaussian
with standard deviation s.

The above facts give the basic idea for our algorithm, which is to convolve the output of the randomized
simple-rounding algorithm with a suitable non-spherical (continuous) Gaussian, yielding a spherically
distributed output. However, note that we want the algorithm to generate a discrete distribution — i.e., it
must output a lattice point — so we should not alter the output of the randomized-rounding step. Instead,
we first perturb the desired center c by a suitable non-spherical Gaussian, then apply randomized rounding
to the resulting perturbed point. Strictly speaking this is not a true convolution, because the rounding step
depends on the output of the perturbation step, but we can reduce the analysis to a true convolution using
bounds related to the “smoothing parameter” of the lattice [MR04].

The main remaining question is: for a given covariance matrix Σ1 = BBt (corresponding to the
rounding step), for what values of s is there an efficiently sampleable Gaussian having covariance matrix
Σ2 = s2I − Σ1? The covariance matrix of any (non-degenerate) Gaussian is symmetric positive definite,
i.e., all its eigenvalues are positive. Conversely, every positive definite matrix is the covariance of some
Gaussian, which can sampled efficiently by computing a ‘square root’ of the covariance matrix. Since any
eigenvector of Σ1 (with eigenvalue σ2 > 0) is also an eigenvector of s2I (with eigenvalue s2), it must be an
eigenvector of Σ2 (with eigenvalue s2 − σ2) as well. Therefore, a necessary and sufficient condition is that
all the eigenvalues of Σ1 be less than s2. Equivalently, the algorithm works for any s that exceeds the largest
singular value of the given basis B. More generally, it can sample any (possibly non-spherical) discrete
Gaussian with covariance matrix Σ > Σ1 (i.e., Σ− Σ1 is positive definite).

In retrospect, the high-level structure of our algorithm resembles the “perturbation” heuristic proposed
for NTRUSign [HHGP+03], though the details are quite different. First, the perturbation and rounding steps
in NTRUSign are both deterministic with respect to two or more bases, and there is evidence that this is
insecure [MPSW09], at least for a large polynomial number of signatures. Interestingly, randomization also
allows for improved efficiency, since our perturbations can be chosen with offline precomputation (as opposed
to the deterministic method of [HHGP+03], which is inherently online). Second, the signing and perturbation
bases used in NTRUSign are chosen independently, whereas our perturbations are carefully chosen to conceal
the statistics that would otherwise be leaked by randomized rounding.

3Given the above, one might still wonder whether the covariance BBt could be simulated efficiently (without any privileged
knowledge about the lattice) when B is itself drawn from a ‘nice’ distribution, such as a discrete Gaussian. Indeed, if the vectors of
B were drawn independently from a continuous Gaussian, the matrix BBt would have the so-called Wishart distribution, which can
be generated ‘obliviously’ (without knowledge of B itself) using the Bartlett decomposition. (See, e.g., [Ksh59] and references
therein). Unfortunately, these facts do not quite seem to carry over to discrete Gaussians, though they may be useful in another
cryptographic context.
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1.4 Organization

Section 2 reviews the necessary linear algebra and lattice background. In Section 3 we prove some general
facts about ‘convolutions’ of discrete Gaussians, which are used in the analysis of our sampling algorithm. In
Section 4 we describe new sampling algorithms and analyze their complexity under suggested optimizations.
In Section 5 we give bounds on the largest singular value of a basis relative to other important quantities,
both in general and for particular constructions of bases used in cryptographic schemes.

2 Preliminaries

2.1 Notation

For a countable set X and a real-valued function f , we write f(X) to denote
∑

x∈X f(x). A nonnegative
function f : N → R is called negligible, written f(n) = negl(n), if it vanishes faster than any inverse
polynomial, i.e., f(n) = o(n−c) for every constant c ≥ 0. A function g : N→ [0, 1] is called overwhelming
if it is 1−negl(n). The statistical distance between two distributions X and Y (or two random variables have
those distributions, respectively) is defined as ∆(X,Y ) = supA⊆D|X(A)− Y (A)|. When D is a countable
set, we have ∆(X,Y ) = 1

2

∑
d∈D|X(d)− Y (d)|.

We use bold lower-case letters (e.g., x) to denote vectors in Rn, for an undetermined positive integer
dimension n that remains the same throughout the paper. We use bold upper-case letters (e.g., B) for ordered
sets of vectors, and identify the set with the matrix having the vectors as its columns. We frequently use
upper-case Greek letters such as Σ to denote (symmetric) positive (semi)definite matrices, defined below. In
contexts where a matrix is expected, we sometimes use a scalar s ∈ R to denote s · I, where I is the identity
matrix of appropriate dimension. We let ‖B‖ = maxi‖bi‖, where ‖·‖ denotes the Euclidean norm.

2.2 Linear Algebra

A symmetric matrix Σ ∈ Rn×n is positive definite, written Σ > 0, if xtΣx > 0 for all nonzero x ∈ Rn.
Equivalently, its spectral decomposition is

Σ = QD2Q−1 = QD2Qt,

where Q ∈ Rn×n is an orthogonal matrix (i.e., one for which QtQ = QQt = I) whose columns are
eigenvectors of Σ, and D is the real diagonal matrix of the square roots of the corresponding eigenvalues,
all of which are positive. We have Σ > 0 if and only if Σ−1 > 0. We say that Σ is positive semidefinite,
written Σ ≥ 0, if xtΣx ≥ 0 for all x ∈ Rn; such a matrix may not be invertible. Positive (semi)definiteness
defines a partial ordering on symmetric matrices: we say that Σ1 > Σ2 if (Σ1 − Σ2) > 0, and likewise for
Σ1 ≥ Σ2. It is the case that Σ1 ≥ Σ2 > 0 if and only if Σ−1

2 ≥ Σ−1
1 > 0, and likewise for the analogous

strict inequalities.
For any nonsingular matrix B ∈ Rn×n, the symmetric matrix Σ = BBt is positive definite, because

xtΣx = 〈Btx,Btx〉 = ‖Btx‖2 > 0

for nonzero x ∈ Rn. We say that B is a square root of Σ > 0, written B =
√

Σ, if BBt = Σ. Every
Σ > 0 has a square root B = QD, where Σ = QD2Qt is the spectral decomposition of Σ as above.
Moreover, the square root is unique up to right-multiplication by an orthogonal matrix, i.e., B′ =

√
Σ if

and only if B′ = BP for some orthogonal matrix P. A square root of particular interest is given by the
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Cholesky decomposition Σ = LLt, where L is a (unique) lower-triangular matrix. Given Σ, its Cholesky
decomposition can be computed efficiently in fewer than n3 multiplication and addition operations (on real
numbers of sufficient precision).

For a nonsingular matrix B, a singular value decomposition is B = QDPt, where Q,P ∈ Rn×n
are orthogonal matrices, and D is a diagonal matrix with positive entries σi > 0 (called the singular
values) on the diagonal, in non-increasing order. Under this convention, D is uniquely determined, and
s1(B) = maxu‖Bu‖ = maxu‖Btu‖, where the maximum is taken over all unit vectors u ∈ Rn. Note that

Σ = BBt = QDPtPDtQt = QD2Qt,

so the eigenvalues of Σ are the squares of the singular values of B.

2.3 Lattices

A lattice Λ is a discrete additive subgroup of Rn. In this work we are only concerned with full-rank lattices,
which are generated by some nonsingular basis B ∈ Rn×n, as the set Λ = B · Zn = {Bz : z ∈ Zn}. When
n ≥ 2, every lattice has infinitely many bases, which are related by unimodular transformations: B′ and B
generate the same lattice if and only if B′ = BU for some unimodular U ∈ Zn×n.

The dual lattice of Λ, denoted Λ∗, is defined as Λ∗ = {w ∈ Rn : 〈x,w〉 ∈ Z ∀ x ∈ Λ}. (We only need
this notion for defining the smoothing parameter of a lattice; see below.)

2.4 Gaussians

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x)
∆
= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).

Applying a linear transformation given by a nonsingular matrix B yields the Gaussian function

ρB(x)
∆
= ρ(B−1x) = exp

(
−π ·

〈
B−1x,B−1x

〉)
= exp

(
−π · xtΣ−1x

)
,

where Σ = BBt > 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.
Normalizing ρ√Σ by its total measure

∫
Rn ρ√Σ(x) dx =

√
det Σ over Rn, we obtain the probability

distribution function of the (continuous) Gaussian distribution D√Σ. It is easy to check that a random
variable x having distribution D√Σ can be written as

√
Σ · z, where z has spherical Gaussian distribution D1.

Therefore, the random variable x has covariance

E
x∼D√Σ

[
x · xt

]
=
√

Σ · E
z∼D1

[
z · zt

]
·
√

Σ
t

=
√

Σ · I

2π
·
√

Σ
t

=
Σ

2π
,

by linearity of expectation. (The I
2π covariance of z ∼ D1 arises from the independence of its entries, which

are each distributed as D1 in one dimension, and have variance 1
2π .) For convenience, in this paper we

implicitly scale all covariance matrices by a 2π factor, and refer to Σ as the covariance matrix of D√Σ.
The following standard fact, which will be central to the analysis of our sampling algorithms, characterizes

the product of two Gaussian functions.

Fact 2.1. Let Σ1,Σ2 > 0 be positive definite matrices, let Σ0 = Σ1 + Σ2 > 0 and Σ−1
3 = Σ−1

1 + Σ−1
2 > 0,

let x, c1, c2 ∈ Rn be arbitrary, and let c3 ∈ Rn be such that Σ−1
3 c3 = Σ−1

1 c1 + Σ−1
2 c2. Then

ρ√Σ1
(x− c1) · ρ√Σ2

(x− c2) = ρ√Σ0
(c1 − c2) · ρ√Σ3

(x− c3).
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Proof. By the definition of ρ√Σ, it suffices to check that

(x− c1)tΣ−1
1 (x− c1) + (x− c2)tΣ−1

2 (x− c2) =

(c1 − c2)tΣ−1
0 (c1 − c2) + (x− c3)tΣ−1

3 (x− c3).

This may be verified by a routine calculation, using the matrix identity

Σ−1
3 = Σ−1

1 + Σ−1
2 = Σ−1

1 · (Σ1 + Σ2) · Σ−1
2 = Σ−1

1 · Σ0 · Σ−1
2 .

2.5 Gaussians on Lattices

Let Λ ⊂ Rn be a lattice, let c ∈ Rn, and let Σ > 0 be a positive definite matrix. The discrete Gaussian
distribution DΛ+c,

√
Σ is simply the Gaussian distribution restricted so that its support is the coset Λ + c. That

is, for all x ∈ Λ + c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x).

We recall the definition of the smoothing parameter from [MR04].

Definition 2.2. For a lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest real
s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε.

Observe that if Λ1 is a sublattice of a lattice Λ0, then ηε(Λ1) ≥ ηε(Λ0) for any ε > 0, because Λ∗0 ⊆ Λ∗1
and hence ρ1/s(Λ

∗
0 \ {0}) ≤ ρ1/s(Λ

∗
1 \ {0}) by positivity of ρ1/s.

Note that the smoothing parameter as defined above is a scalar; in this work we need to extend the notion
to positive definite matrices.

Definition 2.3. Let Σ > 0 be any positive definite matrix. We say that
√

Σ ≥ ηε(Λ) if ρ√
Σ−1(Λ∗\{0}) =

ρ(
√

Σ · Λ∗\{0}) ≤ ε, i.e., if ηε(
√

Σ−1 · Λ) ≤ 1.

The following lemma says that when the standard deviation
√

Σ exceeds the smoothing parameter of Λ,
the Gaussian measure on each coset of Λ is essentially the same.

Lemma 2.4 (Corollary of [MR04, Lemma 4.4]). Let Λ be any n-dimensional lattice. For any ε ∈ (0, 1),
Σ > 0 such that

√
Σ ≥ ηε(Λ), and any c ∈ Rn,

ρ√Σ(Λ + c) ∈ [1−ε
1+ε , 1] · ρ√Σ(Λ).

Proof. Follows directly by applying
√

Σ−1 as a linear transform to Λ, and by ηε(
√

Σ−1 · Λ) ≤ 1.

Finally, we will need the following tight bound on the smoothing parameter of the integer lattice Zn.

Lemma 2.5 (Special case of [MR04, Lemma 3.3]). For any ε > 0,

ηε(Zn) ≤
√

ln(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible ε = ε(n) such that ηε(Zn) ≤ ω(
√

log n).
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3 Analysis of ‘Convolved’ Discrete Gaussians

In this section we prove some general facts about ‘convolutions’ of (possibly non-spherical) discrete Gaussian
distributions, which are important for the conception and analysis of our sampling algorithm; we expect these
facts to have other applications as well. (Strictly speaking, the probabilistic experiments that we analyze are
not true convolutions, because we are adding random variables that are not formally independent. However,
the spirit of the experiment and its outcome are entirely ‘convolution-like.’)

Because the proof of the theorem is rather technical, the reader who is interested in applications may
wish to skip ahead to the next section after understanding the theorem statement.

Theorem 3.1. Let Σ1,Σ2 > 0 be positive definite matrices, with Σ = Σ1+Σ2 > 0 and Σ−1
3 = Σ−1

1 +Σ−2
2 >

0. Let Λ1,Λ2 be lattices such that
√

Σ1 ≥ ηε(Λ1) and
√

Σ3 ≥ ηε(Λ2) for some positive ε ≤ 1/2, and let
c1, c2 ∈ Rn be arbitrary. Consider the following probabilistic experiment:

Choose x2 ← DΛ2+c2,
√

Σ2
, then choose x1 ← x2 +DΛ1+c1−x2,

√
Σ1
.

The marginal distribution of x1 is within statistical distance 8ε of DΛ1+c1,
√

Σ. In addition, for any x̄1 ∈
Λ1 + c1, the conditional distribution of x2 ∈ Λ2 + c2 given x1 = x̄1 is within statistical distance 2ε of
c3 +DΛ2+c2−c3,

√
Σ3

, where Σ−1
3 c3 = Σ−1

1 x̄1.
If x2 is instead chosen from the continuous Gaussian distributionD√Σ2

over Rn, the marginal distribution
of x1 is as above, and the conditional distribution of x2 ∈ Rn given x1 = x̄1 ∈ Λ1 + c1 is within statistical
distance 2ε of c3 +D√Σ3

. (In this setting, the lattice Λ2 and the hypothesis
√

Σ3 ≥ ηε(Λ2) are unneeded.)

Proof. We start by analyzing the joint distribution of x1 ∈ Λ1 + c1 and x2 ∈ Λ2 + c2. Let x̄1 ∈ Λ1 + c1

and x̄2 ∈ Λ2 + c2 be arbitrary, and let Σ−1
3 c3 = Σ−1

1 x̄1. Then we have

Pr[x1 = x̄1 ∧ x2 = x̄2]

= DΛ1+c1−x̄2,
√

Σ1
(x̄1 − x̄2) ·DΛ2+c2,

√
Σ2

(x̄2) (by construction)

=
ρ√Σ1

(x̄2 − x̄1) · ρ√Σ2
(x̄2)

ρ√Σ1
(Λ1 + c1 − x̄2) · ρ√Σ2

(Λ2 + c2)
(def. of DΛ+c, symmetry of ρ√Σ1

)

∝
ρ√Σ(x̄1) · ρ√Σ3

(x̄2 − c3)

ρ√Σ1
(Λ1 + c1 − x̄2)

. (Fact 2.1) (3.1)

(The ρ√Σ2
(Λ2 + c2) term in the denominator above is the same for all x̄1, x̄2, so we can treat it as a constant

of proportionality.)
We now analyze the marginal distribution of x1. For any x̄1 ∈ Λ1 + c1, let Σ−1

3 c3 = Σ−1
1 x̄1 as above;

9



then we have

Pr[x1 = x̄1]

=
∑

x̄2∈Λ2+c2

Pr[x1 = x̄1 ∧ x2 = x̄2] (by construction)

∝ ρ√Σ(x̄1) ·
∑

x̄2∈Λ2+c2

ρ√Σ3
(x̄2 − c3)

ρ√Σ1
(Λ1 + c1 − x̄2)

(Equation (3.1))

∈ ρ√Σ(x̄1) · [1, 1+ε
1−ε ] ·

ρ√Σ3
(Λ2 + c2 − c3)

ρ√Σ1
(Λ1)

(
√

Σ1 ≥ ηε(Λ1), Lemma 2.4)

⊆ ρ√Σ(x̄1) · [1−ε
1+ε ,

1+ε
1−ε ] ·

ρ√Σ3
(Λ2)

ρ√Σ1
(Λ1)

(
√

Σ3 ≥ ηε(Λ2), Lemma 2.4)

∝ ρ√Σ(x̄1) · [1−ε
1+ε ,

1+ε
1−ε ].

It follows that

Pr [x1 = x̄1] ∈ [(1−ε
1+ε)

2, (1+ε
1−ε)

2] ·
ρ√Σ(x̄1)

ρ√Σ(Λ1 + c1)
⊆ [1− 16ε, 1 + 16ε] ·DΛ1+c1,

√
Σ(x̄1),

because ε ≤ 1/2. The claim on the marginal distribution of x1 follows by definition of statistical distance.
When x2 is chosen from the continuous Gaussian D√Σ2

, the analysis is almost identical: we simply
replace the summation over x̄2 ∈ Λ2 +c2 with integration over x̄2 ∈ Rn. Because

∫
x̄2
ρ√Σ3

(x̄2−c3) dx̄2 =√
det Σ3 is independent of c3, there is no need to invoke Lemma 2.4 a second time.

We now analyze the conditional distribution of x2 ∈ Λ2 + c2 given x1. Let x̄1 ∈ Λ1 + c1 be arbitrary
and let c3 be as above. Then for any x̄2 ∈ Λ2 + c2, we have

Pr [x2 = x̄2 | x1 = x̄1] ∝ Pr [x2 = x̄2 ∧ x1 = x̄1] (Bayes rule)

∝
ρ√Σ3

(x̄2 − c3)

ρ√Σ1
(Λ1 + c1 − x̄2)

(Equation (3.1))

∈ [1, 1+ε
1−ε ] ·

ρ√Σ3
(x̄2 − c3)

ρ√Σ1
(Λ1)

(Lemma 2.4)

∝ [1, 1+ε
1−ε ] · ρ√Σ3

(x̄2 − c3).

It follows that for any x̄′ ∈ Λ2 + c2 − c3,

Pr
[
x2 = x̄′ + c3 | x1 = x̄1

]
∈ [1−ε

1+ε ,
1+ε
1−ε ] ·

ρ√Σ3
(x̄′)

ρ√Σ3
(Λ2 + c2 − c3)

⊆ [1− 4ε, 1 + 4ε] ·DΛ2+c2−c3(x̄′),

and the claim on the conditional distribution of x2 is established. When x2 is chosen from the continuous
Gaussian D√Σ2

, the analysis for its conditional distribution proceeds essentially identically, using support
Rn instead of Λ2 + c2.

4 Discrete Gaussian Sampling Algorithms

In this section we define and analyze some new discrete Gaussian sampling algorithms. We start in Section 4.1
by defining and analyzing some important randomized-rounding subroutines. In Section 4.2 we describe a
general-purpose (but unoptimized) sampling algorithm, then in Section 4.3 we describe a highly optimized
sampling algorithm for q-ary lattices.
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4.1 Randomized Rounding

We first need to define and analyze some simple ‘randomized-rounding’ operations from the reals to lattices,
which are an important component of our sampling algorithms.

We start with a basic rounding operation from R to the integers Z, denoted bver for v ∈ R and some
positive real ‘rounding parameter’ r > 0. The output of this operation is a random variable over Z having
distribution v +DZ−v,r. Observe that for any integer z ∈ Z, the random variables bz + ver and z + bver are
identically distributed; therefore, we sometimes assume that v ∈ [0, 1) without loss of generality. We extend
the rounding operation coordinate-wise to vectors v ∈ Rn, where each entry is rounded independently. It
follows that for any v ∈ Rn and z̄ ∈ Zn,

Pr [bver = z̄] ∝
∏
i∈[n]

ρr(z̄i − vi) = exp(−π
∑
i∈[n]

(z̄i − vi)2/r2) = exp(−π‖z̄− v‖2/r2) = ρr(z̄− v).

That is, bver has distribution v +DZn−v,r, because the standard basis for Zn is orthonormal.
The next lemma characterizes the distribution obtained by randomized rounding to an arbitrary lattice,

using an arbitrary (possibly non-orthonormal) basis.

Lemma 4.1. Let B be a basis of a lattice Λ = L(B), let Σ = r2 ·BBt for some real r > 0, and let t ∈ Rn
be arbitrary. The random variable x = t−BbB−1ter has distribution DΛ+t,

√
Σ.

Proof. Let v = B−1t. The support of bver is Zn, so the support of x is t−B · Zn = Λ + t. Now for any
x̄ = t − Bz̄ where z̄ ∈ Zn, we have x = x̄ if and only if bver = z̄. As desired, this event occurs with
probability proportional to

ρr(z̄− v) = ρr(B
−1(t− x̄)−B−1t) = ρr(−B−1x̄) = ρrB(x̄) = ρ√Σ(x̄).

Efficient rounding. In [GPV08] it is shown how to sample from DZ−v,r for any v ∈ R and r > 0, by
rejection sampling. While the algorithm requires only poly(log n) iterations before terminating, its concrete
running time and randomness complexity are not entirely suitable for practical implementations.

In this work, we can sample from v + DZ−v,r more efficiently because r is always fixed, known in
advance, and relatively small (about

√
log n). Specifically, given r and v ∈ R we can (pre)compute a compact

table of the approximate cumulative distribution function of bver, i.e., the probabilities

pz̄ := Pr[v +DZ−v,r ≤ z̄]

for each z̄ ∈ Z in an interval [v − r · ω(
√

log n), v + r · ω(
√

log n)]. (Outside of that interval are the tails of
the distribution, which carry negligible probability mass.) Then we can sample directly from v + DZ−v,r
by choosing a uniformly random x ∈ [0, 1) and performing a binary search through the table for the z̄ ∈ Z
such that x ∈ [pz̄−1, pz̄). Moreover, the bits of x may be chosen ‘lazily,’ from most- to least-significant, until
z̄ is determined uniquely. To sample within a negl(n) statistical distance of the desired distribution, these
operations can all be implemented in time poly(log n).

4.2 Generic Sampling Algorithm

Here we apply Theorem 3.1 to sample from a discrete Gaussian of any sufficiently large covariance, given
a good enough basis of the lattice. This procedure, described in Algorithm 1, serves mainly as a ‘proof of

11



Algorithm 1 Generic algorithm SampleD(B1, r,Σ, c) for sampling from a discrete Gaussian distribution.
Input:

Offline phase: Basis B1 of a lattice Λ = L(B1), rounding parameter r = ω(
√

log n), and positive
definite covariance matrix Σ > Σ1 = r2 ·B1B

t
1.

Online phase: a vector c ∈ Rn.
Output: A vector x ∈ Λ + c drawn from a distribution within negl(n) statistical distance of DΛ+c,

√
Σ.

Offline phase:
1: Let Σ2 = Σ− Σ1 > 0, and compute some B2 =

√
Σ2 (e.g., using the Cholesky decomposition).

2: Before each call to the online phase, choose a fresh x2 ← D√Σ2
, i.e., let x2 ← B2 ·D1.

Online phase:
3: return x← c−B1bB−1

1 (c− x2)er.

concept’ and a warm-up for our main algorithm on q-ary lattices. As such, it is not optimized for runtime
efficiency (because it uses arbitrary-precision real operations), though it is still fully parallelizable and
offline/online.

Theorem 4.2. Algorithm 1 is correct, and for any P ∈ [1, n2], its online phase can be executed in parallel
by P processors that each perform O(n2/P ) operations on real numbers (of sufficiently high precision).

Proof. We first show correctness. Let Σ,Σ1,Σ2 be as in Algorithm 1. The output x is distributed as

x = x2 + (c− x2)−B1

⌊
B−1

1 (c− x2)
⌉
r
,

where x2 has distribution D√Σ2
. By Lemma 4.1 with t = (c − x2), we see that x has distribution

x2 + DΛ+c−x2,
√

Σ1
. Now because Λ = L(B1) = B1 · Zn, we have

√
Σ1 = rB1 ≥ ηε(Λ) for some

negligible ε = ε(n), by Definition 2.3 and Lemma 2.5. Therefore, by the second part of Theorem 3.1, x has
distribution within negl(n) statistical distance of DΛ+c,

√
Σ.

To parallelize the algorithm, simply observe that B−1
1 can be precomputed in the offline phase, and that

the matrix-vector products and randomized rounding can all be executed in parallel on P processors in the
natural way.

4.3 Efficient Sampling Algorithm for q-ary Lattices

Algorithm 2 is an optimized sampling algorithm for q-ary (integral) lattices Λ, i.e., lattices for which
qZn ⊆ Λ ⊆ Zn for some positive integer q. These include NTRU lattices [HPS98], as well as the family of
lattices for which Ajtai [Ajt96] first demonstrated worst-case hardness.

Note that Algorithm 2 samples from the coset Λ + c for a given integral vector c ∈ Zn; as we shall see,
this allows for certain optimizations. Fortunately, all known cryptographic applications of Gaussian sampling
over q-ary lattices use an integral c. Also note that the algorithm will typically be used to sample from a
spherical discrete Gaussian, i.e., one for which the covariance matrix Σ = s2I for some real s > 0. As long
as s slightly exceeds the largest singular value of B1, i.e., s ≥ r · (2s1(B1) + 1) for some r = ω(

√
log n),

then we have Σ ≥ r2 · (4B1B
t
1 + I) as required by the algorithm.

Theorem 4.3. Algorithm 2 is correct, and for any P ∈ [1, n2], its online phase can be implemented in
parallel by P processors that each perform at most dn/P e randomized-rounding operations on rational
numbers from the set {0

q ,
1
q , . . . ,

q−1
q }, and O(n2/P ) integer operations.
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Algorithm 2 Efficient algorithm SampleD(B1, r,Σ, c) for sampling a discrete Gaussian over a q-ary lattice.
Input:

Offline phase: Basis B1 of a q-ary integer lattice Λ = L(B1), rounding parameter r = ω(
√

log n), and
positive definite covariance matrix Σ ≥ r2 · (4B1B

t
1 + I).

Online phase: a vector c ∈ Zn.
Output: A vector x ∈ Λ + c drawn from a distribution within negl(n) statistical distance of DΛ+c,

√
Σ.

Offline phase:
1: Compute Z = q ·B−1

1 ∈ Zn×n.
2: Let Σ1 = 2r2 ·B1B

t
1, let Σ2 = Σ− Σ1 ≥ r2 · (2B1B

t
1 + I), and compute some B2 =

√
Σ2 − r2.

3: Before each call to the online phase, choose a fresh x2 from DZn,
√

Σ2
by letting x2 ← bB2 ·D1er.

Online phase:
4: return x← c−B1

⌊
Z(c−x2)

q

⌉
r
.

When the width of the desired Gaussian distribution is much less than q, which is the case in all known
cryptographic applications of the sampling algorithm, all the integer operations in the online phase may be
performed modulo either q or q2; see the discussion following the proof for details.

Proof. First observe that because Λ = L(B1) is q-ary, i.e., qZm ⊆ Λ, there exists an integral matrix
Z ∈ Zn×n such that B1Z = q · I. Therefore, Z = q ·B−1

1 ∈ Zn×n as stated in Step 1 of the algorithm. We
also need to verify that x2 ← bB2 ·D1er has distribution DZn,

√
Σ2

in Step 3. Let w ∈ Rn have distribution
B2 ·D1 = D√

Σ2−r2 . Then x2 has distribution

bwer = w + (−w + bwer) = w +DZn−w,r,

by Lemma 4.1 (using the standard basis for Zn). Then because r ≥ ηε(Zn) for some negligible ε = ε(n) and
B2B

t
2 + r2 = Σ2, by Theorem 3.1 we conclude that x2 has distribution DZn,

√
Σ2

as desired.
We now analyze the online phase, and show correctness. Because B−1

1 = Z/q, the algorithm’s output x
is distributed as

x2 + (c− x2)−B1bB−1
1 (c− x2)er.

We would like to apply Lemma 4.1 (with t = c − x2) and Theorem 3.1 (with Λ1 = Λ, Λ2 = Zn, c1 = c,
and c2 = 0) to conclude that x has distribution within negl(n) statistical distance of DΛ+c,

√
Σ. To do so,

we merely need to check that the hypotheses of Theorem 3.1 are satisfied, namely, that
√

Σ1 ≥ ηε(Λ) and√
Σ3 ≥ ηε(Zn) for some negligible ε = ε(n), where Σ−1

3 = Σ−1
1 + Σ−1

2 .
For the first hypothesis, we have

√
Σ1 = 2r ·B1 ≥ ηε(Λ) because Λ = B1 · Zn, and by Definition 2.3

and Lemma 2.5. For the second hypothesis, we have

Σ−1
3 = Σ−1

1 + Σ−1
2 ≤ 2 ·

(
2r2B1B

t
1

)−1
=
(
r2B1B

t
1

)−1
.

Therefore,
√

Σ3 ≥ ηε(Λ) ≥ ηε(Zn), as desired. This completes the proof of correctness.
For the parallelism claim, observe that computing Z(c − x2) and the final multiplication by B1 can

be done in parallel using P processors that each perform O(n2/P ) integer operations. (See below for a
discussion of the sizes of the integers involved in these operations.) Moreover, the fractional parts of the
n-dimensional vector Z(c−x2)

q are all in the set {0
q , . . . ,

q−1
q }, and rounding these n entries may be done

independently in parallel.
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Implementation notes. For a practical implementation, Algorithm 2 admits several additional optimiza-
tions, which we discuss briefly here.

In all cryptographic applications of Gaussian sampling on q-ary lattices, the length of the sampled vector
is significantly shorter than q, i.e., its entries lie within a narrow interval around 0. Therefore, it suffices for
the sampling algorithm to compute its output modulo q, using the integers {−b q2c, . . . , b

q−1
2 c} as the set

of canonical representatives. For this purpose, the final multiplication by the input basis B1 need only be
performed modulo q. Similarly, Z and Z(c− x2) need only be computed modulo q2, because we are only
concerned with the value of Z(c−x2)

q modulo q.
Because all the randomized-rounding steps are performed on rationals whose fractional parts are in

{0
q , . . . ,

q−1
q }, if q is reasonably small it may be worthwhile (for faster rounding) to precompute the tables

of the cumulative distribution functions for all q possibilities. Alternatively (or in addition), during the
offline phase the algorithm could precompute and cache a few rounded samples for each of the q possibilities,
consuming them as needed in the online phase.

5 Singular Value Bounds

In this section we give bounds on the largest singular value of a basis B and relate them to other geometric
quantities that are relevant to the prior sampling algorithm of [GPV08].

5.1 General Bounds

The Gram-Schmidt orthogonalization of a nonsingular matrix B is B = QG, where Q is an orthogonal
matrix and G is right-triangular, with positive diagonal entries gi,i > 0 (without loss of generality). The
Gram-Schmidt vectors for B are b̃i = gi,i · qi. That is, b̃1 = b1, and b̃i is the component of bi orthogonal
to the linear span of b1, . . . ,bi−1. The Gram-Schmidt orthogonalization can be computed efficiently in a
corresponding iterative manner.

Let B = QG be the Gram-Schmidt orthogonalization of B. Without loss of generality we can assume
that B is size-reduced, i.e., that |gi,j | ≤ gi,i/2 for every i < j. This condition can be achieved efficiently by
the following process: for each j = 1, . . . , n, and for each i = j−1, . . . , 1, replace bj by bj−bgi,j/gi,ie ·bi.
Note that the size reduction process leaves the lattice L(B) and Gram-Schmidt vectors b̃i = gi,i · qi
unchanged. Note also that ‖gi‖ ≤

√
n ·maxi gi,i, by the Pythagorean theorem.

Lemma 5.1. Let B ∈ Rn×n be a size-reduced nonsingular matrix. We have

s1(B) ≤
√
n ·
√∑
i∈[n]

‖b̃i‖2 ≤ n · ‖B̃‖.

The lemma is tight up to a constant factor, which may be seen by considering the right-triangular matrix
with 1s on the diagonal and 1/2 in every entry above the diagonal.

Proof. Let B have Gram-Schmidt orthogonalization B = QG. We have

s1(B) = max
x
‖Btx‖ = max

x
‖Gtx‖ ≤

√∑
i∈[n]

(
√
n · gi,i)2 =

√
n ·
√∑
i∈[n]

g2
i,i,

where the maxima are taken over all unit vectors x ∈ Rn, the second equality uses the fact that Q is
orthogonal, and the first inequality is by Cauchy-Schwarz.

14



5.2 Bases for Cryptographic Lattices

Ajtai [Ajt99] gave a procedure for generating a uniformly random q-ary lattice from a certain family of
‘worst-case-hard’ cryptographic lattices, together with a relatively short basis B. Alwen and Peikert [AP09]
recently improved and extended the construction to yield asymptotically optimal bounds on ‖B‖ = maxi‖bi‖
and ‖B̃‖ = maxi‖b̃i‖. Here we show that with a small modification, one of the constructions of [AP09]
yields (with overwhelming probability) a basis whose largest singular value is within an O(

√
log q) factor of

‖B̃‖. It follows that our efficient Gaussian sampling algorithm is essentially as tight as the GPV algorithm on
such bases.

Lemma 5.2. The construction of [AP09, Section 3.2] (modified as described below) outputs a basis B such
that s1(B) ≤ O(

√
log q) · ‖B̃‖ with overwhelming probability.

Proof. For concreteness, we focus on the version of the construction that uses base r = 2, though similar
bounds can be obtained for any r ≥ 2. In the construction, there are matrices G and U where the columns
of G include the columns of an (efficiently computable) ‘bad’ basis H of a certain lattice, and GU is a
rectangular 0-1 matrix containing the binary representation of H. As described in [AP09], H actually need
not be a basis; any full-rank set of lattice vectors suffices. In this case, the output is then a q-ary lattice
together with a short full-rank set of lattice vectors, which can be efficiently converted to a basis without
increasing the largest singular value (see Lemma 5.4 below).

We modify the construction so that the columns of G include all the columns of qI (rather than H),
which are a full-rank set of lattice vectors as required by the construction. Similarly, GU is rectangular
matrix containing the binary representation of qI. More formally, GU = I ⊗ qt, where ⊗ denotes the
Kronecker product and qt is the dlg qe-dimensional row vector containing the binary representation of
q. These modifications do not affect the (asymptotically optimal) bounds on ‖B‖ and ‖B̃‖ established
in [AP09].

The construction outputs a matrix B with block structure

B =

(
(G + R)U RP

U P

)
∈ Zn×n.

The exact definitions of the components are not important for our purposes; we only need the following facts:

• s1(GU) = O(
√

log q) by the description above, and s1(U) ≤ 3.

• s1(R) = O(
√

log q) · ‖R‖ = O(
√

log q) · ‖B̃‖ with all but exponentially small probability, because
R is a random {0,±1} matrix (under a certain distribution) that is a lg q factor wider than it is tall.

• s1(P) = 1 because P has at most a single 1 in each row and in each column.

By the triangle inequality and the definition of s1, the lemma follows.

5.3 Gaussian-Distributed Bases

Here we show that for a lattice basis generated by choosing its vectors from a discrete Gaussian distribution
over the lattice (following by some post-processing), the largest singular value s1(B) of the resulting basis
is essentially the same as the maximal Gram-Schmidt length ‖B̃‖ (with high probability). Such a bound
is important because applications that use ‘basis delegation,’ such as the hierarchical ID-based encryption
schemes of [CHKP10, ABB10], generate random bases in exactly the manner just described.

Algorithm 3 recalls the precise method for generating and post-processing a Gaussian-distributed basis.
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Algorithm 3 Abstract algorithm for sampling and post-processing a Gaussian-distributed basis.
Input: An arbitrary basis B of a lattice Λ, and an oracle for DΛ,s, where s ≥ ηε(Λ) for some ε = negl(n).
Output: A basis T of Λ.

1: i← 0
2: repeat
3: Draw a fresh s← DΛ,s.
4: if s is linearly independent of {s1, . . . , si} then
5: i← i+ 1, si ← s
6: end if
7: until i = n
8: return T = ToBasis(S,B).

Theorem 5.3. With overwhelming probability, Algorithm 3 outputs a basis T such that ‖T̃‖ ≥ s · Ω(
√
n),

and for any ω(
√

log n) function, s1(T) ≤ s ·O(
√
n) · ω(

√
log n). In particular, s1(T)/‖T̃‖ = ω(

√
log n).

We use the remainder of this subsection to prove the theorem. First we recall the algorithm ToBasis [MG02,
Lemma 7.1, page 129], which is used by Algorithm 3 to transform a full-rank set S of lattice vectors into a
basis T of the lattice, without increasing the Gram-Schmidt lengths of the vectors; here we show that it also
does not increase the largest singular value of the matrix either. This means that it is enough to consider the
largest singular value of S.

Lemma 5.4. There is a deterministic polynomial-time algorithm ToBasis(S,B) that, given a full-rank
set of lattice vectors S ⊂ Λ and an arbitrary basis B of Λ = L(B), outputs a basis T of Λ such that
s1(T) ≤ s1(S), and ‖t̃i‖ ≤ ‖s̃i‖ for all i.

Proof. The algorithm works as follows: write S = BZ for some nonsingular integer matrix Z. Decompose
Z = UR for a unimodular matrix U and (nonsingular) right-triangular integer matrix R. Output T = BU.

Clearly T is a basis of Λ, because U is unimodular. Observe that T = SR−1. Now because R is a
(nonsingular) triangular integral matrix, all its singular values σi(R) ≥ 1, hence every σi(R−1) ≤ 1. We
conclude that s1(T) ≤ s1(S) · s1(R−1) ≤ s1(S).

For the Gram-Schmidt lengths, let S = QG be the G-S decomposition of S, where G is right-triangular.
Then T = Q(GR−1) is the G-S decomposition of T, because R−1 is also right-triangular. The ith diagonal
entry of R−1 is r−1

i,i , hence ‖t̃i‖ ≤ ‖s̃i‖/|ri,i| ≤ ‖s̃i‖.

We next prove the lower bound on ‖T̃‖. First we claim that in the decomposition S = BUR above,
|r1,1| = 1 with overwhelming probability. This is because s1 ∈ |r1,1| · Λ, and the probability that DΛ,s

outputs an element in r · Λ for an integer r > 1 is negligible: the probability is maximized for r = 2,
and is (1 + negl(n)) · 2−n in that case because there are 2n cosets of 2Λ, and by Lemma 2.4. Therefore,
t̃1 = t1 = s1. By [MR04, Lemma 4.2], we know that s1 has length s ·Ω(

√
n) with overwhelming probability,

and hence ‖T̃‖ ≥ ‖t̃1‖ = s · Ω(
√
n).

We now work to prove the upper bound on s1(S). The next lemma bounds the singular values of a
(possibly non-square) matrix whose columns are drawn from DΛ,s.

Lemma 5.5. Let Λ ⊂ Rn be a lattice and let s ≥ ηε(Λ) for some ε = negl(n). Let S′ ∈ Rn×m be a matrix
whose m columns s′i are drawn independently from DΛ,s. Then with all but 2−Ω(n+m) probability,

s1(S′) ≤ s ·O(
√
n+
√
m).
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Proof sketch. We give an outline of the proof, whose details are standard in random matrix theory; see for
example [Ver07, Lecture 6]. Without loss of generality, assume that s = 1. The first fact we need is that the
distribution DΛ is subgaussian in every direction, i.e., for any unit vector u, we have Prx∼DΛ

[|〈x,u〉| >
t] ≤ C · exp(−πt2) for some fixed constant C and any t > 0. This fact is established in [Pei07, Lemma 5.1],
using techniques of [Ban95].

The second fact we need is that an n-by-m matrix S′ with independent subgaussian columns has largest
singular value O(

√
n +
√
m) with all but 2−Ω(m+n) probability. The largest singular value of S′ is the

maximum of utS′v over all unit vectors u ∈ Rn, v ∈ Rm. This maximum is bounded by first observing
that for any fixed u,v, the random variable utS′v is itself subgaussian, and therefore has absolute value
O(
√
n+
√
m) except with probability 2−Ω(m+n). By then taking a union bound over 2O(m+n) points in a

suitable ε-net, the bound extends to all u,v simultaneously.

Now let S′ ∈ Rn×m be the matrix consisting of every vector s ← DΛ,s chosen by Algorithm 3,
irrespective of whether it is linearly independent of its predecessors. Because S is made up of a subset of the
columns of S′, it follows immediately from the definition that s1(S) ≤ s1(S′).

It simply remains to bound the total number m of samples that Algorithm 3 draws from DΛ,s. By [Reg05,
Lemma 3.15], each sample s is linearly independent of s1, . . . , si with probability at least 1/10. Therefore, for
any ω(log n) function, the algorithm draws a total of n · ω(log n) samples, except with negligible probability.
By Lemma 5.5, we conclude that s1(S′) ≤ s · O(

√
n) · ω(

√
log n) with overwhelming probability. This

completes the proof.
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