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Abstract: A random number generator based on the operation of isogenies between elliptic curves 
over finite fields Fp is proposed. By using the proposed generator together with the isogeny 
cryptography algorithm, which is against the attack of quantum computer, we can save hardware 
and software components. Theoretical analyses show that periods of the proposed random number 
generator are sufficiently long. Moreover, the generated sequences have passed the U.S. NIST 
statistical test.   
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1. Introduction 

Security of the known public public-key cryptosystems is based on two general mathematical 
problems: determination of order and structure of a finite Abelian group, and discrete logarithm 
computation in a cyclic group with computable order. Both of the problems can be solved in 
polynomial time using Shor's algorithm for a quantum computer [1]. Thus, most of the current 
public-key cryptosystems will become insecure when size of a quantum register is sufficient. 
Development of key agreement protocols, which would be strong against a quantum computer, is 
necessary. 

A mathematical problem, which is hypothetically strong against the attack of quantum 
computer, has been proposed [2]. It consists of searching for an isogeny (an algebraic 
homomorphism) between elliptic curves over a finite field. The problem is a special case of 
morphism computation in an Abelian groups category. 

On the other hand, the security of most cryptographic systems depends upon the generation of 
unpredictable quantities that must be of sufficient size and randomness. Taking elliptic curve 
cryptosystem [3] and isogeny cryptosystem [2] as examples, we need to generate random bits in 
order to create random curves and the large secret random number. This implies that we usually 
need to implement a random number generator in a cryptographic system. A number of random 
number generators have been proposed [4-7]. However, they are usually not designed together 
with the cryptographic system and so extra design and implementation effort are required. If both 
the tasks of random number generation and encryption can be done by using the same software or 
hardware module, we can save hardware cost, memory space, and design time. 

The organization of the rest of the paper is as follows. In Section 2, the background of 
isogeny will be described. In Section 3, the proposed random number generator will be proposed. 
Periods of the proposed generator are analyzed in Section 4. The test results are reported in 
Section 5. In section 6, choice of parameter and implementation are discussed. Conclusions will 
be made in Sections 7. 
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2. Elliptic Curves over Fp and Isogeny Star 

In this section, we will give some background about prime field pF  and isogeny star. We 

refer reader to [2] for more knowledge about isogeny star. 

Let E be a elliptic curve, defined on the finite fields pF , and it’s equation is  

baxxy ++= 32
， pFba ∈, .                  (1) 

Then the map 

),(),(: pp yxyx →π                          (2) 

 
specifies the Frobenius endomorphism of the curve E. A Frobenius map satisfies its characteristic 
equation  

02 =+− pTππ ,                            (3) 

Where )(# pFEapT −−= is the Frobenius trace. Through the Hasse’s theorem, we know 

that pT 2< .                             (4) 

So the discriminant Dπ  of the Frobenius equation (3) satisfies 

2 4 0D T pπ = − < .                            (5) 

Theorem 1. Elliptic curves are isogenous over pF  if and only if they have equal number of 

points. 
Proof. See[2]. 

Theorem 2. Let an elliptic curve ( )pE F  have the Frobenius discriminant Dπ and 
D
l
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 be a 

Kronecker symbol for some l-degree isogeny. If 1D
l
π⎛ ⎞ = −⎜ ⎟

⎝ ⎠
, then there are no l-degree 

isogenies; if 1D
l
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
, then two l-degree isogenies exist; if 0D

l
π⎛ ⎞ =⎜ ⎟

⎝ ⎠
, then 2 or l + 1 l-degree 

isogenies exist and l is called Elkies prime number. 
Proof. See[2]. 

Let { })( pi FEU =  be a set of elliptic curves with equal number of points, so that each 

element of U is uniquely determined by a j-invariant of an elliptic curve. According to the theorem 



1 and the equation (4), we can consider U as a category, and the set of isogenies between elements 

of U as a set of morphisms of this category. We can compute
πDhU =# , where 

πDh is the degree 

of Hilbert polynomial [2]. According to [7], we can get ( )Dh O D
π π=  . 

Let l is Elkies prime number, we can get that there are two isogenous elliptic curves for any 
elliptic curves of U, from theorem 2. It is practically determined that, when #U is prime, all the 
elements of U form a single isogeny cycle. 

Let ll ≠1 be one more prime isogeny degree with the property that 1
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l

Dπ . In this case, 

−il degree isogenies form a cycle over U as well. Then we can put the l −  and −il degree isogeny 

cycles over each other. Same can be done for other isogeny degrees of such kind. 
Definition 1. A graph, consisted of prime number of elliptic curves, connected by isogenies of 

degrees satisfying 1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

il
Dπ , is an isogeny star. 

The example of an isogeny star is shown on the figure 1. There are 7 elliptic curves over F83 
having Frobenius trace is 9. Their j-invariants are noted in the nodes [2]. 

 
Fig. 1: 3- and 5-degree isogeny cycles, and the isogeny star 

If an isogeny star is wide enough, we can use it for crypto algorithm constructing. For that 
purpose, it is necessary to specify a direction on a cycle and route of isogeny stat. The method for 
direction determination on an isogeny cycle is mentioned in [4], we don’t give the detail here.. It 
uses impact of Frobenius endomorphism on an isogeny kernel. The definition of isogeny stat is 
following. 

Let S be an isogeny star, d is an positive integer, { } ,0iL l i d= < ≤ is a set of Elkies 

isogeny degrees being used and { } ,0iF i dπ= < ≤  is a set of Frobenius eigenvalues, which 

specify positive direction for every ,0il L i d∈ < ≤ . 

Definition 2. A set { },0iR r i d= < ≤ , where ir  is number of steps by the −il isogeny in the 

direction iπ , is a route on the isogeny star. 

For example, if we use the clockwise direction on the figure 1, then the route {2,1}R = , 



starts from the node 15, follows through 48, 23 and leads to 55. We will denote it by R(15) = 55. 
Obviously, it doesn't matter, in which order we do steps of a route. The latter route can be 
evaluated by 15→ 48→ 34→ 55 as well. 

We can define the composition [2] of routes { }iA a=  and { }iB b=  as { }i iAB a b= + . 

It’s easy to get that routes are commutative: AB = BA. 
The computation of iosgeny between elliptic curves can be done using the method in [8-10], 

we don’t give the detail here. 

3. The Proposed Random Number Generator 

In this paper we use an elliptic curve E defined over a finite field pF , whose equation is (1), 

the parameters is following. 

1) pF : the finite field; 

2) initE : an initial elliptic curve, its equation is initinit bxaxy ++= 32
， pinitinit Fba ∈, ; 

3) d: number of isogeny degrees being used; 

4) { }ilL = , di ≤≤1 : a set of Elkies isogeny degrees being used; 

5) }{ iF π= , di ≤≤1 :a set of Frobenius eigenvalues, which specify the positive 

direction for every Lli ∈ ; 

6) 1 2{ , , , }, 1, ( , ) 1d i i jk k k k k k k= > =… : a set of coprime positive integer, which is the 

limit for number of steps by one isogeny degree in a route. For any route }{ ir , numbers 

of steps are selected in i i ik r k− ≤ ≤ ; 

Let E be an elliptic curve defined over a finite field pF , equation is (1). Let EA and 

EB denote the parameter a and b of the equation of E separately. A block diagram of the 

proposed random number generator is shown in Figure 2, where ⊕  denotes the operation of 
exclusive or. 



 

Figure 2: Block diagram of the proposed random number generator. 
It’s easy to see that when these operations are done recursively, a sequence of bits can be 

obtained by collecting the nx s. 

4. Period Analysis 

The purpose of setting ( 1) ( ) mod ,1n
i n ir x n k i d+ = + ≤ ≤ is to increase the period of the 

generator. If n is not added, the bit sequence depends solely on the output of the ( )n initR E  

operation. It will start to repeat itself when there exists an elliptic curve n iE − such that 

n n n i n in E E E E n ix A B A B x
− − −= ⊕ = ⊕ = . 

In the ths cycle, 

( 1) ( ) mod ,1s
i s ir x s k i d+ ≡ + ≤ ≤            (6) 

where sx denote the output of ( )n initR E , shown in figure 2. 

In the tht cycle, 

( 1) ( ) mod ,1t
i t ir x t k i d+ ≡ + ≤ ≤            (7) 

where tx denote the output of ( )n initR E , shown in figure 2. 

Suppose that the output of the ( )n n initE R E= module in the tht  cycle is the same as that of 

the ths  cycle. 

That is, 



t sx x=                                    (8) 

If the output of the module of the ( 1)tht +  cycle is also equal to that of the ( 1)ths +  cycle, 

then ( 1) ( 1) mod ,1t s
i i ir r k i d+ +≡ ≤ ≤ . By (7) and (8), we have 

mod ,1s t ix s x t k i d+ ≡ + ≤ ≤               (9) 

By the equations (8) and (9), we can get that 

mod ,1is t k i d≡ ≤ ≤                       (10) 

Then | ( ), (1 )i ik s t k i d− ≤ ≤ . 

 Because ik  and jk  are coprime when i j≠ , we can get that 1 2 | ( )dk k k s t× × × −… . 

Hence the output will repeat after 1 2 dk k k× × ×…  cycles. In order increase the period of the 

random number generator, we just need to increase the value 1 2 dk k k× × ×…  by increasing the 

number of ik . 

5. Test Result 

The U.S. NIST statistical test suite is used to test the randomness of the generated bits. It 
includes 15 statistical tests and each of them is formulated to test a null hypothesis that the 
sequence being tested is random. There is also an alternative hypothesis which states that the 
sequence is not random. For each test, there is an associated reference distribution (typically 

normal distribution or 2χ  distribution), based on which a _P values  is computed from the 

binary sequence. If this value is greater than a pre-defined threshold α  (0.01 in default), the 
sequence passes the test. The two approaches that NIST has adopted include the examination of (1) 
proportion of sequences that pass a statistical test, and (2) uniformity of the distribution of those 

_P values . 

According to [19], if m  sequences were tested, the proportion of sequences that passed a 

specific statistical test should lie above pα : 

(1 )(1 ) 3p
mα

α αα −
= − −                    (11) 

In our experiment, m  = 1000, α  = 0.01, and pα  = 98.05%. 



To check the distribution of _P values , the interval between 0 and 1 is divided into 10 

sub-intervals. The number of _P values in each sub-interval is counted, based on which a 

_P valuesT is calculated. If _P valuesT > 0.0001 holds, the sequences are considered to be 

uniformly distributed. 
The NIST statistical test suite contains 15 tests (the Lempel-Ziv complexity test is removed 

from the test suite since Version 1.7). For the details of those tests, please refer to [19]. Some tests 
such as FT, FBT, RT, ST, AET and CST require only 100 bits for each sequence. Other tests, 
however, require more bits. Specially, the PTMT, LZCT, RET, REVT tests need about 1 M  for 
each sequence.  

In our experiment, 100 bit sequence are generated for each five parameters , ,p initF E  by 

using 100 pairs of the randomly-selected initial 1R . Because the express of the elliptic and route 

are very complicated, we just list one case here for reference.  

The curve baxxy ++= 32  is used here and the parameters are 3a = − , 

b = 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 

27D2604B, and the field size is 256 224 192 962 2 2 2 1p = − + + − [14]. 

We let d is 256, the set k is the first 256 prime, and the set is the first 256 Elkies prime. 

1R ={1,0,3,1,8,10,14,2,6,15,16,1,37,8,28,14,34,39,12,22,40,61,69,83,30,93,26,105,98,69,17, 

120,15,116,113,57,25,76,41,155,67,174,180,25,161,172,22,12,212,67,182,113,98,100,160,200,42,
16, 260,253,62,104,53,243,170,306,305,103,327,210,126,265,295,138,61,161,10,9,260,169,117, 
190, 289,431,116,0,182,427,437,227,82,164,112,125,378,255,276,139,168,488,208,364,400,12, 
354, 284,47,515,364,456,440,100,478,334,534,64,426,594,278,473,189,7,626,55,305,605,570,423, 
46, 474,564,405,343,266,553,304,769,364,56,647,290,708,545,249,297,656,82,74,282,298,121, 
446, 716,361,257,162,410,295,858,459,357,496,506,739,871,698,681,849,798,538,510,830,79, 
904, 660,515,665,464,109,121,480,198,598,951,89,835,732,217,1079,1006,516,323,1158,1175, 
846, 602,767,424,199,234,90,268,1169,373,701,269,509,513,1156,106,1071,789,821,1302,1046, 
397, 59,674,1063,134,102,425,1279,593,980,622,179,529,780,847,1177,318,616,246,1097,1308, 
1196,53,420,773,878,733,1385,758,1251,1355,125,1484,1312,686,1302,1593,204,1336,1297, 
1149}. 

In the test of _P values  uniformity for FT and CST, each sequence is set to 1024 bits by 

concatenating the output of the proposed random generator. Otherwise, the number of different 

_P values  would not be sufficient to carry out the uniformity test. As for other tests which 

require more than 100 bits for each sequence, we collect the first 256 bit for different initial 1R . 

The test results can be found in Table 1.  



Table 1.Test results for the random number generator 
Test name Proportion P_valueT 

FT 0.9901 0.1624 
FBT 0.9852 0.3781 

CST* 0.9863 0.1639 
RT 0.9942 0.1498 

LROBT 0.9875 0.1397 
AET 0.9846 0.4153 
ST* 0.9811 0.5741 

RBMRT 0.9973 0.1542 
DFTT 0.9918 0.3681 

ATMT* 0.9857 0.2456 
PTMT 0.9961 0.1572 
MUST 0.9921 0.3660 
RET* 0.9836 0.2718 

REVT* 0.9918 0.2249 
LCT 0.9826 0.1152 

It is observed from Table 1 that the proposed random number generator pass all the statistical 

tests, i.e., the passing proportions are greater than 98.05% and _P valuesT  greater than 0.0001. 

According to [19], we can conclude that the data generated by these two approaches are random. 

6. Discussions 

6.1 Choice of Parameters 

The test results indicate that all the random number sequences generated over the three fields 
have passed the SP800-22 statistical test and the FIPS 140-2 statistical tests. Therefore, the 
proposed generator can be accepted as a reliable random number generator for integrating with the 
isogeny cryptosystem to generate the dynamic private keys. 

By simply changing the seed 1R  and the initial curve initE , a different bit sequence can be 

generated. These two parameters should be kept secret for security. Basically, initE  can be any 

elliptic curve defined in finite fields pF . However, if we integrate this generator with a isogeny 

cryptosystem, initE  should not be the point used in the isogeny cryptosystem part. This is 

because those points are always treated as the parameters of public keys which are made public. 

If the # DU h
π

= is not lager enough, the number, generate by the proposed random number 



generator, may be guessed correctly. We need to select correct pF  and initE , which can 

determine the value of Dh
π

, in order to make Dh
π

 large enough. In practice, the value of Dh
π

 

can be determined using analytical methods [18]. 

6.2 Implementation 

Various implement of computation of isogenies between elliptic curves [2, 8, 9, 10]. These 
algorithms can be used to implement isogeny cryptosystem. Our proposed random number 
generator is based on the core operations of isogeny cryptosystem, so the proposed random 
generator can be designed and implemented efficiently using the existing components and the cost 
of the implementation can be reduced. 

7. Conclusion 

In this paper, a new approach for constructing a random number generator using operation of 
isogenies between elliptic curves is presented. Periods of the generator are analyzed theoretically. 
By the test results, we can draw the conclusion that the quality of random number produced by the 
proposed generator can meet the requirement of the high quality in cryptography. Since our 
proposed random number generator is based on the core operations of isogeny cryptosystem, it 
can be designed and implemented efficiently using the existing components. 
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