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Abstract

Chosen-Ciphertext (IND-CCA) security is generally considered the right notion of security
for a cryptosystem. Because of its central importance much effort has been devoted to con-
structing IND-CCA secure cryptosystems.

In this work, we consider the problem of constructing IND-CCA secure cryptosystems from
(group) homomorphic encryption. Our main results are natural and efficient constructions of
IND-CCA secure cryptosystems from any homomorphic encryption scheme that satisfies weak
cyclic properties, either in the plaintext, ciphertext or randomness space. Our results have the
added benefit of simple and elegant proofs.
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1 Introduction

Since the definition of security against a Chosen-Ciphertext Attack (IND-CCA) was given in [NY90],
[RS91], much effort has been devoted to constructing efficient IND-CCA secure cryptosystems under
a variety of cryptographic hardness assumptions.
The first construction of an IND-CCA secure cryptosystem was given by Dolev, Dwork and Naor
in [DDN91]. Their construction builds on the ideas of Naor and Yung [NY90], and relies on non-
interactive zero-knowledge proofs to prove that a ciphertext was created honestly. The generic
non-interactive zero-knowledge proofs used in [DDN91] are too inefficient for practical use, but the
idea of including some sort of “proof of validity” in the ciphertext has strongly shaped this area of
research, and many of the subsequent IND-CCA secure cryptosystems can be viewed in this light.
The first IND-CCA secure cryptosystem efficient enough to be used in practice was given by Cramer
and Shoup in [CS98], and the security of their construction rested on the Decisional Diffie-Hellman
(DDH) assumption. Since then, there have many fairly efficient IND-CCA secure schemes proposed
under a wide variety of cryptographic hardness assumptions.
Constructions based on the DDH assumption include those of [CS98],[CS02] and [PW08]. Re-
cently, new constructions were given based on the Computational Diffie-Hellman (CDH) assump-
tion [HJKS10], [CHK10]. IND-CCA secure cryptosystems based on the RSA assumption are given
in [CHK10]. Schemes based on the Quadratic Residuosity (QR) assumption are given in [CS02].
IND-CCA secure cryptosystems based on lattice assumptions like Learning With Errors (LWE) are
given in [PW08] and [Pei09]. In the pairing world, IND-CCA secure schemes can be based on the
Bilinear Diffie-Hellman (BDH) assumption [CHK04],[BK05],[BCHK07], or the Decisional Linear
(D-Lin) assumption [FGK+10]. Chosen-ciphertext secure cryptosystems have also been proposed
based on the Syndrome Decoding problem [DMQN09], [FGK+10].
For a notion as fundamental as secure encryption, it is important to consider generic constructions
as well as concrete instantiations, and in fact, many of the above constructions are best viewed as
part of general frameworks for constructing IND-CCA secure encryption. In [DDN91], IND-CCA
secure cryptosystems were built from any one-way trapdoor permutation. In [CS02], Cramer and
Shoup gave a general construction based on universal hash proof systems, which can be viewed as
an algebraic designated verifier proof system. In [CHK04],[BCHK07], Boneh, Canetti, Halevi and
Katz gave a general framework for constructing IND-CCA secure encryption from any Identity-
Based Encryption (IBE) scheme. In [PW08], Peikert and Waters created lossy trapdoor functions
(LTDFs) as a method for constructing IND-CCA secure encryption. The notion of lossy trapdoor
functions has since been relaxed to correlated product secure functions [RS09], and slightly lossy
trapdoor functions [MY09], and both relaxations were shown to still be sufficient to construct
IND-CCA secure encryption.
These frameworks provide many different constructions of IND-CCA secure encryption, and help
to locate IND-CCA secure encryption in the cryptographic landscape. Despite their utility, these
frameworks all rely on fairly complicated underlying primitives, and the search continues for the
simplest primitive that can be shown to imply IND-CCA secure encryption. Perhaps the simplest
primitive that could imply IND-CCA secure encryption is IND-CPA secure encryption. This,
however, is widely believed not to be the case, and the results of Gertner, Malkin and Myers
[GMM07] give partial results towards the impossibility of such a construction.
It is natural, then, to examine what additional properties of an IND-CPA secure cryptosystem are
sufficient to construct an IND-CCA secure cryptosystem. One natural property, is that the IND-
CPA secure cryptosystem supports a group operation on the plaintext. Such cryptosystems are
called homomorphic. Indeed, one of the main open questions concerning homomorphic encryption
is whether homomorphic encryption implies IND-CCA encryption, and this question has attracted
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much attention over the years.
In this work, we will call an encryption scheme homomorphic if the plaintexts form a group, the
ciphertexts form a group, and E(pk,m1, r1) ·E(pk,m2, r2) = E(pk,m1 +m2, r

∗). Unless explicitly
stated, we will not assume that r∗ = r1 + r2, schemes that satisfy this additional property are
said to be homomorphic over their randomness.1 Here we have written the group operation on
the ciphertexts multiplicatively and the group operations on the plaintexts additively. This is
simply a convention, but it is a natural one since it corresponds to the usual method of writing
the groups corresponding to Goldwasser-Micali [GM84], Paillier [Pai99], and (additive) El-Gamal
[Gam85]. We do not require our encryption schemes to be fully homomorphic, as constructed in
the breakthrough work of Gentry [Gen09].
The consequences of the existence of homomorphic encryption have been well studied, and many
exciting results are known. Homomorphic encryption has been show to imply Private Information
Retrieval (PIR) [KO97],[Man98],[IKO05]. Since PIR implies Collision Resistant Hash Functions
[IKO05], Oblivious Transfer [CMO00], and lossy encryption [HLOV09], we immediately have con-
structions of any of these primitives based on any homomorphic encryption.
It remains an important open question whether homomorphic encryption implies IND-CCA secure
cryptosystems, and in this work we present steps towards closing the gap.

1.1 Previous Work

Chosen-ciphertext security was introduced by Rackoff and Simon in [RS91], and the first cryptosys-
tem provably secure in this model was given in [DDN91], extending the work of [NY90]. Since that
time, there has been a vast amount of work done on the topic of IND-CCA secure encryption.
Our work draws most from the works of Cramer and Shoup on universal hash proof systems [CS02],
and Peikert and Waters on lossy trapdoor functions [PW08], and we briefly highlight some key ideas
of their constructions below.
The first practical IND-CCA secure cryptosystem was given by Cramer and Shoup in [CS98]. In
[CS02], Cramer and Shoup created Universal Hash Proof systems, generalizing their work in [CS98],
and providing a framework for creating IND-CCA secure encryption. In [CS02], Cramer and Shoup
defined a natural algebraic object called a Diverse Group System, and showed that diverse group
systems imply universal hash proof systems, and diverse group systems are implied by many natural
cryptographic hardness assumptions that occur in groups. The algebraic nature of diverse group
systems suggests a possible connection between homomorphic encryption and IND-CCA secure
encryption, and in this work we explore this connection.
A different framework for constructing IND-CCA secure cryptosystems was proposed by Peikert and
Waters in [PW08]. In their work, Peikert and Waters defined Lossy Trapdoor Functions (LTDFs),
and showed that LTDFs imply IND-CCA secure cryptosystems. Roughly, a lossy trapdoor function,
is a function that can operate in one of two computationally indistinguishable modes. In injective
mode, it is injective and has a trapdoor. In “lossy” mode, the function statistically loses information
about its input. In [PW08], Peikert and Waters leveraged the homomorphic properties of the El-
Gamal cryptosystem and the Regev cryptosystem [Reg05] to create LTDFs based on the DDH and
LWE assumptions. At the highest level, their construction proceeds as follows. The description of
an LTDF in injective mode is simply the encryption of the identity matrix using some underlying
homomorphic cryptosystem, and the description of an LTDF in lossy mode is the encryption of
the zero matrix. To evaluate a function on an input x, viewed as a bit vector, we compute the
matrix product of the ciphertext matrix with the input vector. By the homomorphic properties of

1Notice that if the map r 7→ E(pk, 0, r) is injective, then the randomness space forms a semi-group since it can be
identified with a closed subgroup of the ciphertext group.
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the underlying cryptosystem, this results in either a ciphertext vector encrypting x, or a ciphertext
vector encrypting the zero vector. It is easy to see that the IND-CPA security of the underlying
cryptosystem implies that the injective and lossy modes are indistinguishable, and the decryption
algorithm provides a trapdoor in injective mode. The difficulty lies in showing that the lossy
mode statistically loses information about its input. Let us examine this further. The output of
a lossy function is the encryption of the zero vector, so it is clear that the underlying plaintexts
are statistically independent of the input x (since they are all 0). It is, however, unclear whether
the randomness of the ciphertexts statistically encodes the vector x. The constructions of LTDFs
given by Peikert and Waters, modify the underlying homomorphic cryptosystems to ensure that
the randomness of the resulting ciphertext vector does not leak too much information about the
input x.
Both the works of [CS02] and [PW08] give an indication of the connection between homomorphic
encryption and IND-CCA secure encryption, but despite significant effort, no one has, as yet, been
able to bridge the gap.
In this work, we show that if we have a homomorphic cryptosystem with some natural cyclic
structure, we immediately have IND-CCA secure encryption.

1.2 Our Contributions

In this work, we consider the problem of constructing an IND-CCA secure cryptosystem from homo-
morphic encryption schemes. By a homomorphic encryption scheme, we mean an IND-CPA secure
cryptosystem, for which the plaintext space forms a group, the ciphertext space forms a group, and
the group operation on ciphertexts induces a group operation on plaintexts. Cryptosystems of this
type arise naturally, e.g. [Gam85],[GM84],[Pai99],[Ben94],[OU98],[NS98],[BGN05].
It has been a long standing open question whether an IND-CCA secure cryptosystem can be
constructed from any homomorphic encryption scheme. In this work, we give a number of simple
properties for a homomorphic encryption scheme, any one of which allows us to construct an IND-
CCA secure cryptosystem.
Our results can be summarized as follows:

Theorem (Cyclic Ciphertext Space Implies Chosen-Ciphertext Security). If there exists a homo-
morphic encryption with cyclic ciphertext space, then there exists universal hash proof systems,
and hence IND-CCA secure encryption.

Corollary (Cyclic Randomness Space Implies Chosen-Ciphertext Security). If there exists a ho-
momorphic encryption with cyclic randomness group, and not all prime divisors of the order of the
plaintext group are divisors of the order of the randomness group, then there exists universal hash
proof systems, and hence IND-CCA secure encryption.

Lemma (Large Cyclic Plaintext Space Implies Chosen-Ciphertext Security). If there exists a ho-
momorphic encryption with cyclic plaintext group X, and randomness space R, such that |X| > |R|,
then there exists lossy trapdoor functions, and hence IND-CCA secure encryption.

2 Preliminaries

2.1 Notation

If f : X → Y is a function, for any Z ⊂ X, we let f(Z) = {f(x) : x ∈ Z}. For example, if E
is an encryption algorithm E(pk, x,R) = {E(pk, x, r) : r ∈ R}, is the set of all encryptions of x.
Similarly, E(pk,X,R) = {E(pk, x, r) : x ∈ X, r ∈ R} is the ciphertext space of E.
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If A is a PPT machine, then we use a ← A to denote running the machine A and obtaining an
output, where a is distributed according to the internal randomness of A. If R is a set, and no
distribution is specified, we use r ← R to denote sampling uniformly from the uniform distribution
on R.
If X and Y are families of distributions indexed by a security parameter λ, we say that X is
statistically close to Y , (written X ≈s Y ) to mean that for all polynomials p and sufficiently large
λ, we have

∑
x |Pr[X = x]− Pr[Y = x]| < 1

p(λ) .

We say that X and Y are computationally close (written X ≈c Y ) to mean that for all PPT
adversaries A, for all polynomials p, and for all sufficiently large λ, we have |Pr[AX = 1]−Pr[AY =
1]| < 1/p(λ).

2.2 Homomorphic Encryption

A public key cryptosystem given by algorithms (G,E,D) is called homomorphic if

• The plaintext space forms a group X (written with group operation +).

• The ciphertexts are members of a group Y .

• For all x0, x1 ∈ X, and for all r0, r1 in the randomness space R, there exists an r∗ ∈ R such
that

E(pk, x0 + x1, r
∗) = E(pk, x0, r0)E(pk, x1, r1).

Notice that we do not assume that the encryption is also homomorphic over the randomness, as
is the case of most homomorphic encryption schemes, e.g. El-Gamal, Paillier, and Goldwasser-
Micali. We also do not assume that the image E(pk,X,R) is the whole group Y , only that
E(pk,X,R) ⊂ Y . Since the homomorphic property implies closure, we have that E(pk,X,R) is a
semi-group. Notice also, that while it is common to use the word “homomorphic” to describe the
cryptosystem, encryption is not a homomorphism in the mathematical sense (although decryption
is).
We now show some basic properties from all homomorphic encryption schemes. These facts are
commonly used but, since our definition is weaker than the (implicit) definitions of homomorphic
encryption that appear in the literature, it is important to note that they hold under this definition
as well.

• E(pk,X,R) is a semi-group.

• E(pk, 0, R) is a semi-subgroup of E(pk,X,R).

• For all x ∈ X, E(pk, x,R) is the coset E(pk, x, r)E(pk, 0, R).

• For all x0, x1 ∈ X, |E(pk, x0, R)| = |E(pk, x1, R)|.

• If y is chosen uniformly from E(pk, 0, R), then yE(pk, x, r) is uniform in E(pk, x,R).

• E(pk,X,R) is such that E(pk,X,R) ' X×E(pk, 0, R) and decryption is the homomorphism

E(pk,X,R)→ E(pk,X,R)/E(pk, 0, R) ' X.

We call a public key cryptosystem a homomorphic public key encryption scheme, if it is IND-CPA
secure and homomorphic.
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2.3 Diverse Group Systems

In [CS02], Cramer and Shoup defined diverse group systems and used them as a foundation for all
their constructions of Universal Hash Proof Systems. We review these definitions here.
Let Z,L,Π be finite abelian groups written additively, with L ( Z. Let Hom(Z,Π) be the group
of homomorphisms, φ : Z → Π. This is also clearly an abelian group under the operation (φ1 +
φ2)(x) = φ1(x) + φ2(x).

Definition 1 (Group System). Let Z,L,Π be finite abelian groups with L ( Z. Let H ⊂
Hom(Z,Π), We call

G = (H, Z, L,Π),

a group system.

Definition 2 (Diverse Group System). We call a group system G = (H, Z, L,Π) diverse if for all
z ∈ Z \ L, there exists φ ∈ H such that φ(`) = 0 for all ` ∈ L, but φ(z) 6= 0.

Now, we review some of the basic algebra that underlies group systems.

Definition 3. Let G = (H, Z, L,Π) be a group system. For Y ⊂ Z, define A(Y ) = Ann(Y ) ∩H,
i.e.

A(Y ) = {φ ∈ H : φ(y) = 0 ∀y ∈ Y }.

With this definition, it is easy to see that G is diverse if and only if for all z ∈ Z \L, A(L∪{z}) (
A(L).
We also define

Definition 4. Let G be a group system. For z ∈ Z, define I(z) to be the image of the homomor-
phisms in A(L) applied to z, i.e.

I(z) = {π ∈ Π : ∃φ ∈ A(L) s.t. φ(z) = π}.

Lemma 1. Let G = (H, Z, L,Π) be a diverse group system, and suppose p is the smallest prime
dividing |Z/L|, then p ≤ |I(z)| for all z ∈ Z \ L.

Proof. Fix z ∈ Z \ L, and let

E : A(L)→ Π

φ 7→ φ(z).

Then Ker(E) = A(L ∪ {z}), and =(E) = I(z), so the first isomorphism theorem tells us that
A(L)/A(L∪{z}) ' I(z), in particular, I(z) > 1, and |I(z)| | |A(L)|. Let q be a prime that divides

|I(z)|, then q | |A(L)|. It remains to show that q | |Z/L|. Let d = |Z/L|, then for all z ∈ Z,

dz ∈ L. Since q | |A(L)|, A(L) contains an element of order q, call it φ. But (dφ)(z) = φ(dz) = 0

for all z ∈ Z, so q | d. Thus any prime divisor of |I(z)| is a prime divisor of |Z/L|, so it must be
at least p.

In particular, Lemma 1 gives a minimum size for I(z).
Now, suppose φ ← H. If the action of φ on L is completely specified, then φ is fixed up to an
element in A(L). Thus for z ∈ Z \ L, the value of φ(z) is known up to an element in I(z). In
particular, only the coset of I(z) in Π/I(z) is fixed by the action of φ on L.
In [CS02] Cramer and Shoup show a natural method for constructing Universal Hash Proof Systems
from Diverse Group Systems.
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Definition 5 (Hash Proof System Associated to a Diverse Group System). Let G = (H, Z, L,Π)
be a diverse group system, and let g1, . . . , gd ∈ L be a set of generators for L. We define the
associated Hash Proof system UHP = (H,K,Z, L,Π, S, α),

• For uniformly chosen k ∈ K, Hk is uniform on H.
Without loss of generality, we may assume K = H, and k = φ ∈ H.
We maintain Universal Hash Proof notation to emphasize that Hk(·) that someone who can
calculate Hk(·) on elements of L may not know the underlying homomorphism φ.

• S = Πd, and

α : K → S

k 7→ (Hk(g1), . . . ,Hk(gd)).

In [CS02] Cramer and Shoup showed

Theorem ([CS02]). Let G = (H, Z, L,Π) be a diverse group system with the following properties:

• L ≈c Z,

• A set of generators for L is known,

• Elements of L can be sampled uniformly along with their decomposition over the set of
generators,

• H can be sampled uniformly.

Then the associated hash proof system derived from G provides a means of constructing IND-CCA
secure encryption.

2.4 Lossy Trapdoor Functions

We briefly review the notion of Lossy Trapdoor Functions (LTDFs) as described in [PW08].
Intuitively, a family of Lossy Trapdoor Functions is a family of functions which have two modes,
injective mode, which has a trapdoor, and lossy mode which is guaranteed to have a small image
size. In particular, the preimage of any element in the image will have a large size. Formally we
have:

Definition 6 (Lossy Trapdoor Functions). A tuple (Sltdf , Fltdf , F
−1
ltdf) of PPT algorithms is called

a family of (n, k)-Lossy Trapdoor Functions if the following properties hold:

• Sampling Injective Functions: Sltdf(1
λ, 1) outputs s, t where s is a function index, and t

its trapdoor. We require that Fltdf(s, ·) is an injective deterministic function on {0, 1}n, and
F−1ltdf(t, Fltdf(s, x)) = x for all x.

• Sampling Lossy Functions: Sltdf(1
λ, 0) outputs (s,⊥) where s is a function index and

Fltdf(s, ·) is a function on {0, 1}n, where the image of Fltdf(s, ·) has size at most 2n−k.

• Indistinguishability: The first outputs of Sltdf(1
λ, 0) and Sltdf(1

λ, 1) are computationally
indistinguishable.

In [PW08], Peikert and Waters showed
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Theorem ([PW08]). If there exists a family of (n, k)-lossy trapdoor functions, with k = ω(log n)
then there is IND-CCA secure encryption.

Building on the results of Rosen and Segev [RS09], Mol and Yilek showed

Corollary ([MY09]). If there exists a family of (n, k)-lossy trapdoor functions with k < n, the
there is IND-CCA secure encryption.

3 Implications of Homomorphic Encryption

Much effort has been devoted to studying the implications of homomorphic encryption, and many
results are now known. It is known that homomorphic encryption implies Private Information Re-
trieval (PIR) [KO97],[Man98],[IKO05], and since PIR implies Collision Resistant Hash Functions
[IKO05], Oblivious Transfer [CMO00], and lossy encryption [HLOV09], we immediately have con-
structions of these primitives based on any homomorphic encryption. It remains open, however,
whether homomorphic encryption implies IND-CCA secure cryptosystems.
Our main contributions are steps towards resolving this long-standing open question.
As in Section 2.2, throughout the following section, let (G,E,D) be a homomorphic encryption
with plaintext group X, and randomness space R. We write the group operation on X additively
and the group operation on ciphertexts multiplicatively.
We begin by noticing that the construction of lossy trapdoor functions from the Damg̊ard-Jurik
cryptosystem given by [BFO08], [RS08] and [FGK+10] generalizes easily.

Lemma 2. Let (G,E,D) be a homomorphic encryption such that the plaintext group X is cyclic,
with |X| ≥ B > |R|, for some publicly known bound B ∈ Z, then the following is a family of lossy
trapdoor functions.

• Sampling Injective Functions: Sltdf(1
λ, 1), runs (pk, sk) ← G(1λ), and chooses r ← R,

and sets e = E(pk, 1, r). The function index s = (pk, e), and the trapdoor t = sk.

• Sampling Lossy Functions: Sltdf(1
λ, 0), runs (pk, sk) ← G(1λ), and chooses r ← R, and

sets e = E(pk, 0, r). The function index s = (pk, e), and the trapdoor t = ⊥.

• Evaluation: Given s = e and an input a ∈ {0, 1, . . . , B − 1}, Fltdf(s, a) = ea.

• Inversion: Given t = sk, and a value c, set a = D(sk, c).

Proof. Correctness of inversion follows immediately from the correctness of decryption. The indis-
tinguishability of modes follows immediately from the IND-CPA security of (G,E,D). It remains
only to consider the lossiness of the lossy mode.
The output of the function in lossy mode is Fltdf(s, a) = ea, where e = E(pk, 0, r), thus Fltdf(s, a)
is a valid encryption of 0, i.e. Fltdf(s, a) ∈ E(pk, 0, R). Since the size of |E(pk, 0, R)| ≤ |R|, and
there are B choices for a, with B > |R|, the function is lossy. It is clear as well that as the ratio of
B to |R| grows, the functions become more lossy. If the size of X is efficiently computable, then it
is natural to take B = |X|.

We note that the condition that a public bound B is known seems extremely mild, since the
definition of IND-CPA security requires the plaintext space be efficiently samplable, and the group
is cyclic.
A careful look at the functions in Lemma 2 shows that the input is a ∈ {0, . . . , B − 1}, yet the
trapdoor reveals 1 · a ∈ X. If a ∈ Z can be recovered from 1 · a ∈ X (i.e. the Discrete Log
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Problem is easy in X), this will not be an issue. We emphasize, however, that we do not need to
assume the Discrete Log Problem is easy in the space X since we can still evaluate (and invert)
Fltdf(s, ·) on random elements of x by sampling a ← {0, 1, . . . , B − 1}, setting x = 1 · a ∈ X, and
setting Fltdf(s, x) = ea. With this (slightly modified) definition, Fltdf(s, ·) can only be efficiently
evaluated on random x ∈ X. This is not a serious restriction, however, since one-wayness only
makes sense when applying a function to a high min-entropy input. In particular, it is easy to see
that constructions of IND-CCA secure encryption [PW08, RS09, MY09] from LTDFs only require
Fltdf(s, ·) to be evaluated on high min-entropy inputs, all the constructions go through unchanged
if we first sample a← {0, 1, . . . , B− 1}, and then simply call x = 1 · a ∈ X then input to Fltdf(s, ·).
If B
|R| = ω(λ), then we obtain strong lossy trapdoor functions, as required for the constructions in

[PW08]. If, we only have B/|R| > 1+1/poly(λ), then we obtain slightly lossy trapdoor functions as
defined by Mol and Yilek [MY09]. The results of Mol and Yilek show that this is in fact sufficient
for constructing Correlated Product Secure Functions [RS09], and IND-CCA secure cryptosystems.
Lemma 2 has an immediate corollary, that if we assume instead that the ciphertext space is cyclic,
we obtain the same result.

Corollary 1. If (G,E,D) is a homomorphic encryption such that the group E(pk,X,R) is cyclic
and |X| ≥ B > |R|, for some publicly computable integer B, then the construction in Lemma 2 is
a family of lossy trapdoor functions.

Proof. The decryption algorithm provides an isomorphism between E(pk,X,R)/E(pk, 0, R) and
X, and since the quotient group of a cyclic group is cyclic, we conclude that X must be cyclic, and
the result follows from Lemma 2.

Remark:
The constructions IND-CCA secure encryption in [PW08, RS09] rely on applying lossy trapdoor
functions on correlated inputs, in particular, both constructions, sample x and apply Fltdf(s1, x), . . . , Fltdf(s`, x).
This could prove problematic if plaintext space X and randomness space R depend on the pub-
lic key pk. In this case, it is easy to see that as long as there is a uniform bound B such that
|Xpki | ≥ B > |R|, the constructions of [PW08, RS09, MY09] go through unchanged. This fact
seems to have been used implicitly in the constructions of LTDFs from the DCR assumption in
[BFO08, RS08, FGK+10].

The requirement that the messages be longer than the randomness in Lemma 2 is rather strong, in
the following, we show how to remove it and yet obtain a stronger result! In particular, we show
that any homomorphic encryption with cyclic ciphertext space (e.g. Goldwasser-Micali, Paillier),
immediately implies Diverse Group Systems as defined by Cramer and Shoup in [CS02].

Theorem 1. Let (G,E,D) be a homomorphic encryption with plaintext group X and ciphertext
group Y . If the group E(pk,X,R) is cyclic, then G = (H, Z, L,Π) is a Diverse Group System.
Let γ = |E(pk,X,R)|.

• Z = E(pk,X,R) ⊂ Y , is the group of all encryptions.

• H is the set of homomorphisms given by exponentiating in the group, i.e. for k ∈ {0, 1, . . . , γ},
and z ∈ Z, Hk(z) = zk. So |H| = |E(pk,X,R)| = |Z|.

• L = E(pk, 0, R) is the group of all encryptions of 0.

• Π = Z = E(pk,X,R).
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Proof. To show that G is diverse, we must show that for all z ∈ Z \ L, there exists a φ ∈ H such
that φ(L) = 〈0〉, but φ(z) 6= 0.
Let η = |L|, and γ = |Z|. Since Z was assumed to be cyclic, and L is a subgroup of Z, we know
that L is cyclic and η = |L| divides |Z| = γ. Now, it is also a basic fact about cyclic groups that
L is exactly the subgroup of elements of Z whose order divides η, i.e. L = {z : z ∈ Z, zη = 1}. For
any z ∈ Z \L, Let d be the order of z, i.e. d is the smallest positive integer such that zd = 1. Since
z 6∈ L, we know that η doesn’t divide d. Thus we may set k = η, (or any multiple of η not divisible
by d). In which case, we have Hk(z) = zη 6= 0. But Hk(`) = `η = 0 for all ` ∈ L. This shows that
any cyclic group (with a proper subgroup) gives rise to a Diverse Group System.
To prove security, however, we need to show that L and Z are indistinguishable. This follows easily,
however, since L is the set of encryptions of 0, and Z is the set of all encryptions, L and Z are
indistinguishable by the IND-CPA security of (G,E,D).

The results of [CS02], which show that Diverse Group Systems (with appropriate sampling algo-
rithms) imply universal hash proof systems, and universal hash proof systems imply IND-CCA
secure cryptosystems, In particular, we need to be able to sample k approximately uniformly
(so an approximation of γ must be known), and we must know a generator for the cyclic group
L = E(pk, 0, R). We note that these conditions are easily satisfied in all known examples of homo-
morphic encryption. If these conditions are satisfied, we arrive at the following result.

Corollary 2. Homomorphic encryption with cyclic ciphertext space E(pk,X,R), such that |E(pk,X,R)
is efficiently approximable, and a generator of the cyclic group E(pk, 0, R) is efficiently computable,
implies IND-CCA secure encryption.

Applying the results of [HO09], which show that Diverse Group Systems imply Lossy Trapdoor
Functions, we have

Corollary 3. Homomorphic encryption with cyclic ciphertext space E(pk,X,R), such that |E(pk,X,R)
is efficiently approximable, and a generator of the cyclic group E(pk, 0, R) is efficiently computable,
implies Lossy Trapdoor Functions.

Applying the results of [BFO08], we have

Corollary 4. Homomorphic encryption with cyclic ciphertext space E(pk,X,R), such that |E(pk,X,R)
is efficiently approximable, and a generator of the cyclic group E(pk, 0, R) is efficiently computable,
implies Deterministic Encryption.

We have examined the case of homomorphic encryption with cyclic plaintext space, and and cyclic
ciphertext space. It is natural, then, to consider homomorphic encryption with cyclic randomness
space. In this vein, we can extend Theorem 1.

Corollary 5. If (G,E,D) is a homomorphic encryption with cyclic randomness space, and there
is an element x0 ∈ X such that the order of x0 in the group X is relatively prime to |R|, and the
orders of x0 and R are efficiently computable, then there is an IND-CCA secure cryptosystem.

Proof. We define a new cryptosystem (G′, E′, D′), with plaintext space X ′, and randomness space
R′. We set X ′ = 〈x0〉 ⊂ X, and R′ = R. We define G′ = G, E′(pk, x, r) = E(pk, x, r), for x ∈ X ′,
and D′ = D. We claim that the ciphertext space of (G′, E′, D′) is cyclic. To see this, notice first that
the map R→ E(pk, 0, R), given by r 7→ E(pk, 0, r) is a surjective homomorphism, thus E(pk, 0, R)
is isomorphic to a quotient group of R. Since R is cyclic, all its quotient groups are cyclic, so we see
that E(pk, 0, R) is also cyclic, in addition |E(pk, 0, R)| divides |R|. Since E(pk, 0, R) = E′(pk, 0, R′),
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we have |E′(pk, 0, R′)| divides |R|, and is thus relatively prime to the order of the cyclic group |〈x0〉|,
which has size equal to the order of x0. Thus the group 〈x0〉×E′(pk, 0, R′) is cyclic, but this group
is isomorphic to E′(pk,X ′, R′), so we may apply Theorem 1 to construct an IND-CCA secure
cryptosystem.

4 Conclusion

In this work, we examined the connection between homomorphic encryption and chosen-ciphertext
(IND-CCA) secure encryption. In particular, we showed that any homomorphic encryption with a
large cyclic plaintext space implies Lossy Trapdoor Functions and hence IND-CCA secure encryp-
tion. Additionally, we showed that any homomorphic encryption with a cyclic ciphertext space
implies universal hash proof systems, and hence both Lossy Trapdoor Functions and IND-CCA
secure encryption.
Homomorphic encryption schemes arise naturally in many contexts, where the security rests on a
computational hardness assumption about groups. This makes homomorphic encryption a natural
candidate for creating more complex cryptographic primitives.
Our constructions of IND-CCA secure cryptosystems from homomorphic encryption over a cyclic
space are efficient, and have the benefit of simple proofs of security. Our results extend what is
known to follow from homomorphic encryption, and bring us one step closer to the long sought-after
goal of a generic construction of IND-CCA secure encryption from any homomorphic cryptosystem.
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