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Abstract. The most costly operations encountered in pairing computations are those that take
place in the full extension field Fpk . At high levels of security, the complexity of operations
in Fpk dominates the complexity of the operations that occur in the lower degree subfields.
Consequently, full extension field operations have the greatest effect on the runtime of Miller’s
algorithm. Many recent optimizations in the literature have focussed on improving the overall
operation count by presenting new explicit formulas that reduce the number of subfield operations
encountered throughout an iteration of Miller’s algorithm. Unfortunately, almost all of these
improvements tend to suffer for larger embedding degrees where the expensive extension field
operations far outweigh the operations in the smaller subfields. In this paper, we propose a new
way of carrying out Miller’s algorithm that involves new explicit formulas which reduce the
number of full extension field operations that occur in an iteration of the Miller loop, resulting
in significant speed ups in most practical situations of between 5 and 30 percent.
Keywords: Pairings, Miller’s algorithm, Tate pairing, ate pairing.

1 Introduction

At the beginning of this century, pairing-based cryptography became extremely popular
after the first practical identity-based encryption scheme was constructed using the powerful
bilinearity property of pairings [13]. Accompanied by many other exciting breakthroughs
that resulted from pairings, the discovery of ID-based encryption heightened the demand
for practical pairings which can be computed efficiently. Since then, much research has been
invested towards achieving faster pairings and consequently the speed of computing Miller’s
algorithm [34] for calculating pairings has significantly increased. Initial improvements in
pairing computations were spearheaded by evidence that the Tate pairing was much more
efficient than the Weil pairing, since the final exponentiation in the Tate pairing facilitates
several clever simplifications in the Miller iterations [4, 6, 7, 35]. The continual evolution of
security requirements and standards has lead to a large emphasis being placed on obtaining
secure curve constructions for a range of embedding degrees. As a result, the construction of
pairing-friendly curves has become an active field of research in itself [5, 14, 36, 20, 8, 24, 10,
21, 30], so that cryptographers can now choose from an array of flexible curve options that
offer high levels of efficiency in pairing computations [22]. More recently, Hess, Smart and
Vercauteren [27] generalized prior work by Duursma and Lee [19] and Barreto et al. [3] to
develop the ate pairing which benefits from a truncated loop length and is usually much faster
than the Tate pairing. The ate pairing has since enjoyed its own improvements [33, 32], to the
point where ate pairing variants can now be computed with optimal loop lengths [37, 26].

In very recent times, researchers have achieved further speedups by deriving fast
explicit formulas for specific stages of a Miller iteration [15, 18, 28, 1, 16, 17], so that each
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iteration requires less subfield operations, resulting in a faster pairing. Unfortunately, such
improvements are less effective when applied to the Tate pairing because the operations that
are saved occur in the base field Fp, and as the embedding degree k gets large, the complexity
of the operations occurring in the full extension field Fpk dominates the complexity of those
operations occurring in Fp, so that the relative speedup resulting from savings in the base
field becomes much less. In the ate pairing with a twist of degree d, faster explicit formulas
save operations in the subfield Fpk/d , the complexity of which grows at the same rate as the
complexity of operations in Fpk , so that an increased embedding degree will not drastically
effect the relative speedup. Nevertheless, optimized implementations of the ate pairing make
use of the highest available twist for a given k, so that the complexity of operations in Fpk/d is
much less than those in Fpk . For example, the ate pairing computed on a BN curve [8] where
k = 12 uses a sextic twist (d = 6), so that any computations saved through faster explicit
formulas are those in the much smaller field Fp2 . An optimized construction of the extension
field [31, 9] results in the complexity of operations in Fp12 being no less than 15 times greater
than the analogous operations in Fp2 , so that any speedups that result from faster explicit
formulas are still greatly overshadowed by the expensive operations in Fp12 . At any level,
full extension field operations greatly outweigh subfield operations for both Tate-and ate-like
pairings.

Eisenträger, Lauter and Montgomery [29] managed to avoid full extension field arithmetic
in pairing computations by combining two linear Miller functions into a single function of
degree 2, which they call a parabola, and achieving a speedup by replacing two multiplications
by the two linear functions with a single multiplication by the parabola. However, the
algorithm in [29] has limited application in state-of-the-art pairing implementations because
it only applies to stages of the algorithm that require point addition, and optimized
implementations will choose loop parameters with low Hamming weight that minimize the
occurrence of these additions. Blake, Murty and Xu [12] extended the observations in [29] to
form combinations of Miller lines that apply to every iteration of the Miller loop, proposing
a version of Miller’s algorithm that is somewhat analogous to the 2n-ary windowing methods
for general exponentiation (cf. [2, §9]), using a window of size n = 2. Again, the techniques
proposed in [12] are not optimized for modern implementations of Miller’s algorithm because
the main benefit of the combined linear functions in their case was to avoid field divisions,
a problem that became obsolete after the introduction of denominator elimination in [4]. In
this paper, we extend the notion of combining Miller lines into higher degree polynomials
and present a more general approach, which we call Miller 2n-tuple-and-add. Specifically, we
show how to combine explicit formulas from n consecutive Miller double-and-add iterations
into more complicated explicit formulas for one Miller 2n-tuple-and-add iteration. The price
we pay for spending more subfield operations to evaluate these more complicated formulas is
greatly rewarded by the large savings that result from avoiding costly arithmetic in the full
extension field. For both Tate and ate-like pairings, we show that the Miller 2n-tuple-and-add
algorithm achieves significant speedups over the standard Miller double-and-add routine for
the majority of pairing-friendly embedding degrees. Our method offers (among others) the
following important advantages over the prior work in [12]:

– Our method works for general n ≥ 1. All prior work (except for n = 2 in [12]) has used
n = 1.

– Our method handles any addition steps encountered in Miller’s 2n-tuple-and-add
algorithm in exactly the same way, regardless of the 2n-ary representation of the loop
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parameter. The method in [12] for n = 2 uses formulas that differ depending on the
quarternary representation of the loop parameter. An important consequence of this is
that higher values of n do not result in more complex additions, as they do for n = 2 in
[12].

– The techniques and analyses in [12] focus on reducing the number of field divisions
(inversions) that occur in the affine representation of the Miller lines. Field inversions
are extremely costly in pairing implementations and have been phased out thanks to
denominator elimination and the application of non-affine (projective) coordinate systems
to pairing computations that eliminate field inversions altogether. The explicit formulas
herein are derived using projective coordinates, and these formulas are reduced to give
much faster operation counts.

The rest of this paper is organized as follows. Section 2 provides a brief background on pairings
and Miller’s algorithm. In Section 3 we describe the general Miller 2n-tuple-and-add algorithm,
before discussing a general strategy to obtain explicit formulas for 2n-tuple-and-add in Section
4. In Section 5, we derive explicit formulas for the cases of Miller quadruple-and-add (n = 2)
and Miller octuple-and-add (n = 3), and obtain operation counts for a typical iteration in
each scenario. In Section 6, we compare the operation counts for the quadruple-and-add and
octuple-and-add algorithm with the standard double-and-add algorithm. We draw conclusions
in the same section.

2 Background

Let E be an elliptic curve over Fp. Assume E is given by the short Weierstrass equation
y2 = x3 + ax + b and let O be the neutral element on E. For the points R,S ∈ E, let
lR,S and vR,S respectively be the sloped and vertical lines in the standard chord-and-tangent
addition of R and S, the divisors of which are div(lR,S) = (R) + (S) + (−(R + S)) − 3(O)
and div(vR,S) = (−(R + S)) + (R + S) − 2(O). When R = S, we have lR,R and vR,R as the
sloped and vertical lines in the point doubling of R. Herein we let gR,S represent the quotient
gR,S = lR,S/vR,S , with associated divisor div(gR,S) = (R) + (S)− (R + S)− (O). For v ∈ Z,
let fv,R be a function with divisor

fv,R = v(R)− ([v]R)− (v − 1)(O).

Let k be the embedding degree of E with respect to some large prime r and let E[r] denote the
group of r-torsion points on E. We use πp to denote the p-power Frobenius endormorphism
on E and we define two groups G1 and G2 using the two eigenspaces of πp as G1 = E[r] ∩
ker(πp − [1]) and G2 = E[r] ∩ ker(πp − [p]).

For two points P ∈ G1 and Q ∈ G2, the Tate pairing er : G1 × G2 → G3 is computed as
er(P,Q) = fr,P (Q)(pk−1)/r. Let T = t − 1, where t is the trace of the Frobenius on E. The
ate pairing aT : G2 × G1 → G3 is computed as aT (Q,P ) = fT,Q(P )(pk−1)/r. In the coming
sections, we treat both pairings simultaneously by letting the required pairing be computed
as fm,R(S)(pk−1)/r, where it is understood that in the Tate pairing we have m = r, R ∈ G1

and S ∈ G2, whilst in the ate pairing we have m = T , R ∈ G2 and S ∈ G1.
When counting field operations, we use M and S to denote the respective costs of a

multiplication and a squaring in the field Fpk , and we use m and s to represent the costs of
a multiplication and a squaring in the subfield Fpe , where e = 1 for Tate-like pairings and
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e = k/d for ate-like pairings with twists of degree d. In some instances it is necessary to count
operations in more than two fields, in which case we avoid ambiguities by letting mi and si

denote the costs of a multiplication and a squaring in the field Fpi . Lastly, we report the cost
of a multiplication by a curve constant (or a small power of a curve constant) as d.

Since the introduction of the original ate pairing [27], several variants with even shorter
loop lengths have emerged [33], including the R-ate pairing [32] which often achieves the
optimal loop length [37, 26]. All of these variants also take R ∈ G2 and S ∈ G1 and compute
fm,R(S), the only difference being the construction (and size) of the loop parameter m. We
refer to all such pairings collectively as ate-like pairings (a : G2×G1 → G3), and hereafter we
make no specifications regarding the loop length, since it plays no role in the results of this
paper. Identically, we put the twisted ate pairing [27] under the umbrella of Tate-like pairings
(e : G1 × G2 → G3), since the twisted ate pairing takes its respective inputs from the same
groups as the Tate pairing.

Using fi+j,R = fi,R · fj,R · g[i]R,[j]R, the usual version of Miller’s algorithm computes the
required function in blog2(m)c iterations by initializing f1,R(S) = 1 and progressively building
the functions fv,R(S) (for v < m) to approach fm,R(S) in a double-and-add-like fashion, as
summarized in Algorithm 1.

Algorithm 1 Miller double-and-add Algorithm
Input: R, S, m = (ml−1...m1,m0)2.
Output: fm,R(S).

1: T ← R, f ← 1.
2: for i = l − 2 to 0 do
3: Compute g = gT,T (S)
4: T ← [2]T .
5: f ← f2 · g.
6: if mi 6= 0 then
7: Compute g = gT,R(S)
8: T ← T +R.
9: f ← f · g.

10: end if
11: end for
12: return f .

At the beginning of an iteration of Algorithm 1, let the intermediate multiple of the point
R be T = [v]R, so that the current Miller function f relating to the point T has divisor

div(fv,R) = v(R)− ([v]R)− (v − 1)(O).

Miller’s double-and-add algorithm forms the function f2v,R relating to the point [2]T = [2v]R
as f2v,R = f2

v,R · g[2]T , where div(g[2]T ) = 2(T )− ([2]T )− (O), so that f2v,R has divisor

div(f2v,R) = div(f2
v,R · g[2]T ) = 2 · div(fv,R) + div(g[2]T )

= 2 ·
(
v(R)− ([v]R)− (v − 1)(O)

)
+ (2(T )− ([2]T )− (O))

= 2v(R)− ([2v]R)− (2v − 1)(O).

We obtain the Miller function f2v,R by squaring the Miller function fv,R and multiplying
this result by the “line” function(s) involved in the point doubling of T . In a standard
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implementation of Miller’s algorithm, the functions fv,R and gT,T are contained in the full
extension field, so that the function update (step 5 of Algorithm 1) comes at a cost of 1M+1S.
Assuming (for now) that no intermediate addition operations are required (i.e. mi = 0 for n
consecutive i’s in Algorithm 1), n consecutive iterations of Miller’s double-and-add algorithm
above transform the function fv,R into the function f2nv,R. The cost of the n function updates
that occur in n such iterations is then nM + nS.

3 2n-ary pairings: Miller 2n-tuple-and-add

In this section we generalize the above (double-and-add) method by combining n consecutive
doubling steps into one 2n-tupling step and we show that this reduces the number of expensive
function updates that occur in Fpk . For any n, we naturally refer to this process as the Miller
2n-tuple-and-add algorithm. Consider n consecutive squarings on the function fv,R, which
equates to raising fv,R to the power 2n. The divisor of the resulting function is given as

div
(
(fv,R)2n

)
= 2n · div(fv,R) = 2nv(R)− 2n([v]R)− 2n(v − 1)(O). (1)

To obtain the desired Miller function f2nv,R from fv,R, we must now find a function f∗ such
that div((fv,R)2n) + div(f∗) = div(f2nv,R) = 2nv(R)− ([2nv]R)− (2nv− 1)(O). We construct
f∗ as

f∗ =
n∏

i=1

(g[2i−1]T,[2i−1]T )2n−i , (2)

the divisor of which is

div(f∗) =
n∑

i=1

2n−i · div(g[2i−1]T,[2i−1]T ) =
n∑

i=1

2n−i · (2([2i−1]T )− ([2i]T )− (O))

= 2n(T )− ([2n]T )− (2n − 1)(O). (3)

Substituting T = [v]R into (3) and combining this with (1) reveals that div((fv,R)2n) +
div(f∗) = div(f2nv,R), so that f∗ is indeed the required function. We note that the
construction of f∗ is intuitive. Namely, f∗ is simply the product of the n different g’s that
are formed throughout each of the n equivalent double-and-add iterations, each of which
accumulates a different exponent depending on how many squarings it encounters in the
iterations that follow. In this light, Miller 2n-tuple-and-add is much the same as Miller double-
and-add; the major difference is that in Miller 2n-tuple-and-add we do not multiply the Miller
function by its update g immediately after it is squared. Rather, we form a product f∗ of n
powers of such g’s and we delay the multiplication of f∗ by f so that it occurs only once in
what is the equivalent of n double-and-add iterations.

For the addition step in the Miller 2n-tuple-and-add algorithm, we now have to consider
adding some multiple [w]R of R (w < 2n) to the intermediate point and updating the Miller
function accordingly. Suppose the intermediate point is T = [v]R and the related Miller
function prior to the addition has divisor div(fv,R) = v(R) − ([v]R) − (v − 1)(O) as before.
We require a function f+ such that div(fv,R) + div(f+) = div(f(v+w),R) = (v+w)(R)− ([v+
w]R)− (v + w − 1)(O). The straightforward way to construct such a function is

f+ =
w−1∏
i=0

gT+[i]R,R, (4)
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the divisor of which is

div(f+) =
w−1∑
i=0

div(gT+[i]R,R) =
w−1∑
i=0

[
(R) + (T + [i]R)− (T + [i+ 1]R)− (O)

]
= w(R) + (T )− (T + [w]R)− w(O).

Again, substituting T = [v]R gives div(f+) = w(R) + ([v]R) − ([v + w]R) − w(O), so that
div(fv,R) + div(f+) = div(f(v+w),R), and we see that f+ is clearly the desired function.
However, if we compute f+ in the above fashion, we have to compute the product of w
different addition lines, and since w can take any value between 1 and 2n − 1, computing the
addition step with the explicit formulas that result from the product in (4) can become quite
costly. Instead, consider an alternative method of computing the addition line as follows. Let
f+

alt be such that div(f+
alt) = div(f+) and take

f+
alt = fw,R · g[v]R,[w]R, (5)

so that div(f+
alt) = div(fw,R) + div(g[v]R,[w]R) = w(R) + ([v]R) − ([v + w]R) − w(O). The

advantage of the computation of f+
alt over the computation of f+ is that f+

alt is comprised
of only two functions, regardless of the size of w. Moreover, the function fw,R is the same
function throughout the entire Miller 2n-tupling loop and does not change depending on
where the addition/s occurs. Thus, the fw,R’s can be precomputed (for all necessary values of
w) prior to entering the Miller 2n-tupling loop so that we must only construct one new line
function (g[v]R,[w]R) at each addition stage. Importantly, this addition line is computed by
applying the standard addition formulas to the coordinates of the point [v]R, which changes
in each iteration, and the point [w]R whose coordinates can be cached initially. From here
on, the construction of f+ refers to the construction of f+

alt described in (5). We summarize
in Algorithm 2, where we note that the first value in the base 2n representation of m will
not be ml−1 = 1 in general, so that we begin with an addition before entering the loop when
ml−1 6= 1.

Algorithm 2 Miller 2n-tuple-and-add Algorithm
Input: R, S, m = (ml−1...m1,m0)2n , and the necessary precomputed values of w[R] where w < 2n.
Output: fm,R(S).

1: T ← R, f ← 1.
2: Compute function f+ as the product described in (5) with w = ml−1.
3: f ← f · f+.
4: T ← T + [ml−1]R.
5: for i = l − 2 to 0 do
6: Compute function f∗ in the 2n-tupling of T .
7: T ← [2n]T .
8: f ← f2n

· f∗.
9: if mi 6= 0 then

10: Compute function f+ as the product described in (5) with w = mi.
11: T ← T + [mi]R.
12: f ← f · f+.
13: end if
14: end for
15: return f .
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In regards to full extension field arithmetic only, one standard iteration of Algorithm 2
(which usually has mi = 0) requires 1M + nS. When n = 1, we recover the usual Miller
double-and-add algorithm which requires blog2(m)c iterations, each incurring 1M + 1S. For
n = 2, the algorithm requires half as many iterations (blog4(m)c) that each incur a cost of
1M + 2S, offering a 1M saving over two equivalent standard double-and-add iterations. For
general n, we save (n−1)M for each of the blog2n(m)c iterations of the Miller 2n-tuple-and-add
algorithm, giving a relative saving of n−1

n M over each equivalent standard double-and-add
iteration. Therefore the larger we allow n to become, the more full extension field arithmetic
we can avoid in the pairing computation.

The price we pay for increasing n is an increase in the complexity of the formulas required
to compute the function f∗. As n grows, the size of f∗ (in its explicit form) grows rapidly
so that many more operations are required to compute it. However, these operations are
performed in substantially smaller subfields of the full extension field, where the computations
are much cheaper. We can achieve significant speedups in the pairing computation if the price
we pay for computing the more complex product of line functions f∗ in the smaller subfields
of Fpk is less than the savings we obtain in Fpk itself.

In the following section we shed light on the details concerning the combination of steps
6 and 7 and the combination of steps 10 and 11 that are summarized in Algorithm 2.

4 A Strategy for Obtaining Explicit Formulas

This section provides the details for deriving explicit formulas for Miller 2n-tuple-and-add
implementations. We pay close attention to the steps in Algorithm 2 that require deeper
explanations.

Line 6 of Algorithm 2: Algorithm 3 (below) uses the standard doubling formulas to construct
the affine line product f∗ for Miller 2n-tupling in accordance with (2).

Algorithm 3 Constructing explicit formulas for f∗

Input: R = (x1, y1) and S = (xS , yS).
Output: f∗.

1: (x, y)← (x1, y1), f∗ ← 1.
2: for i = 1 to n do
3: λ← (3x2 + a)/(2y).
4: x′ ← λ2 − 2x.
5: y′ ← λ(x− x′)− y.
6: g ← λ(x− xS) + yS − y.

7: f∗ ← f∗ · g2n−i

.
8: (x, y)← (x′, y′).
9: end for

10: return f∗.

We note that Algorithm 3 computes the product g under the assumption of an even
embedding degree, so that the denominator vi of the i-th product update gi = li/vi can be
eliminated and the gi’s simply become the li’s described at the beginning of Section 2. In the
following sections we use different projections on the affine form of f∗ depending on the curve
model.
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Line 7 of Algorithm 2: Depending on the formulas derived for f∗, there are two possibilities
that need to be considered for computing the point multiplication [2n]T . The first option would
be to output the explicit formulas for x′ and y′ in Algorithm 3. These compounded formulas
would obviously be much more complicated than the standard point doubling formulas (i.e.
computing [2]T ), however the more complicated explicit formulas for computing [2n]T =
(x′, y′) may end up sharing many common subexpressions with the explicit formula for f∗ so
that the overall count would be less. The second option simply involves repeating n consecutive
doublings on the point T . The heuristic argument would suggest that optimized formulas
for computing [2n]T directly should require no more operations than those required in the
repetitive doublings, suggesting that the first option should always take preference. However,
our experiments indicated that attempts to optimize 2n-tupling formulas always tend to
reduce to the same formulas that arise from n repeated doublings. For the sake of simplicity,
we therefore opt for the latter suggestion and perform n repetitive doublings to compute [2n]T .
Furthermore, it also tends to be the case that the higher degree subexpressions obtained in the
explicit formulas for computing [2n]T directly do not appear in the simplified expressions for
f∗. However, many operations used in the very first doubling of T also appear readily in the
components of f∗ and we make use of these common subexpressions. Namely, the doubling
formulas used to compute [2]T are chosen so that the simultaneous computation of f∗ and
[2]T comes at minimal cost. Therefore, it is often the case that the formulas used to compute
[2]T may not be the same formulas as those used to compute the n− 1 doublings that follow.

Lines 10 and 11 of Algorithm 2: In the addition stage of Miller 2n-tuple-and-add, we are
required to add some multiple w[R] of R (w < 2n) to the intermediate point T . Here we simply
cache the value [w]R before the iterations start and perform a standard point addition. The
Miller function update f+ required in line 7 of Algorithm 2 requires the computation of the
product f+ = fw,R(S) · gT,[w]R(S). By definition, gT,[w]R(S) is the line function corresponding
to the addition of T to [w]R, evaluated at the point S. Therefore, the combination of lines
11 and 12 of Algorithm 2 can simply be viewed as a standard point addition between T and
[w]R, as well as the extra multiplication of gT,[w]R(S) by the cached value fw,R(S).

5 Miller Quadrupling and Octupling

In this section we focus on applying the generalized algorithm in Section 3 to the cases n = 2
and n = 3. We present reduced explicit formulas that arise for the Miller quadruple-and-add
and Miller octuple-and-add algorithms on curves of the form E : y2 = x3 + b (j(E) = 0)
and E : y2 = x3 + ax (j(E) = 1728), since these are the most efficient curve shapes used in
practice [22]. We focus solely on the 2n-tupling stage of the algorithm (i.e. steps 6 and 7 in
Algorithm 2), since optimized loop parameters will result in very few additions. We therefore
delay any discussion of the additions until the following section.

5.1 Miller Quadruple-and-add

We begin by setting n = 2 in (3) to obtain the Miller update f∗ corresponding to the
quadrupling of T as

f∗ =
2∏

i=1

(g[2i−1]T,[2i−1]T )22−i
=
(
gT,T

)2 · (g[2]T,[2]T

)
,

which has divisor 4(T )− ([4]T )− 3(O).
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Quadruple-and-add on y2 = x3 + b. We obtain f∗ as the affine output of Algorithm
3 with n = 2. For curves of this form, the fastest explicit formulas for the n = 1 case were
derived using homogeneous projective coordinates [16, 17]. Our experiments1 indicated that
these coordinates also give the fastest results for n ≥ 1, so we substitute x1 = X1/Z1 and
y1 = Y1/Z1 into f∗ to obtain the projectified version, F ∗, as

F ∗ = α · (L1,0 · xS + L2,0 · x2
S + L0,1 · yS + L1,1 · xSyS + L0,0),

where α = −Z3
1 (X1(X3

1−8bZ3
1 )−4Z1(X3

1 +bZ3
1 )·xS)2/(64Z7

1Y
5

1 (27X6
1−36X3

1Y
2

1 Z1+8Y 4
1 Z

2
1 ))

can be eliminated to give F̂ ∗ = F ∗/α, where the Li,j coefficients are

L2,0 = −6X2
1Z1(5Y 4

1 + 54bY 2
1 Z

2
1 − 27b2Z4

1 ), L0,1 = 8X1Y1Z1(5Y 4
1 + 27b2Z4

1 ),

L1,1 = 8Y1Z
2
1 (Y 4

1 + 18bY 2
1 Z

2
1 − 27b2Z4

1 ), L0,0 = 2X1(Y 6
1 − 75bY 4

1 Z
2
1 + 27b2Y 2

1 Z
4
1 − 81b3Z6

1 ).

L1,0 = −4Z1(5Y 6
1 − 75bZ2

1Y
4

1 + 135Y 2
1 b

2Z4
1 − 81b3Z6

1 ).

We let (XDn : YDn : ZDn) = [2n](X1 : Y1 : Z1) and compute the first doubling with small
extra computation as

XD1 = 4X1Y1(Y 2
1 − 9bZ2

1 ), YD1 = 2Y 4
1 + 36bY 2

1 Z
2
1 − 54b2Z4

1 , ZD1 = 16Y 3
1 Z1

The calculation of the Li,j coefficients and the intermediate point (XD1 : YD1 : ZD1) =
[2](X1, Y1, Z1) requires 11me + 11se + 3d. To calculate (XD2 : YD2 : ZD2) = [4](X1, Y1, Z1),
we double the point (XD1 : YD1 : ZD1) using the doubling formulas in [17] which cost
3me +5se +1d. The multiplication of each of the four Li,j 6= L0,0 by xi

Sy
j
S costs em1 (cf. [17]).

As discussed in Section 3, the extension field arithmetic required in line 8 of Algorithm 2 costs
1M+2S. Thus, the total cost for the quadrupling stage is 14me +16se +4em1 +4d+1M+2S
(see Appendix A.1 for the sequence of operations, and see Appendix B for a Magma script
that computes the Miller quadruple-and-add algorithm using the formulas in A.1).

Quadruple-and-add on y2 = x3 + ax. For curves of this shape, the fastest formulas for
the standard double-and-add case were derived in weight-(1, 2) coordinates in [17]. Again,
our experiments agree with these coordinates for such curves for n ≥ 1, so we subsitute
x1 = X1/Z1 and y1 = Y1/Z

2
1 into f∗ (the output of Algorithm 3) to obtain F ∗ as

F ∗ = α · (L1,0 · xS + L2,0 · x2
S + L0,1 · yS + L1,1 · xSyS + L0,0),

where α = −Z6
1 (−4X1Z1(X2

1 +aZ2
1 )xS +(X2

1 −aZ2
1 )2)2 can be eliminated to give F̂ ∗ = F ∗/α,

where the Li,j coefficients are

L1,0 = −2X1Z1(5X8
1 + 4aX6

1Z
2
1 + 38a2X4

1Z
4
1 + 20a3X2

1Z
6
1 − 3a4Z8

1 ),

L2,0 = −Z2
1 (15X8

1 + 68aX6
1Z

2
1 + 10a2X4

1Z
4
1 − 28a3X2

1Z
6
1 − a4Z8

1 ),

L0,1 = 4Y1X1Z1(5X6
1 + 13aX4

1Z
2
1 + 15a2X2

1Z
4
1 − a3Z6

1 ),

L1,1 = 4Y1Z
2
1 (X2

1 − aZ2
1 )(X4

1 + 6aX2
1Z

2
1 + a2Z4

1 ),

L0,0 = X2
1 (X8

1 − 20aX6
1Z

2
1 − 26a2X4

1Z
4
1 − 20a3X2

1Z
6
1 + a4Z8

1 ).

1 We searched through a range of different coordinate systems (cf. [11]) to find the coordinate system which
gave the most simple projectified line coefficients.
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Again, we compute the first doubling with small extra computation as

XD1 = (X2
1 − aZ2

1 )2, YD1 = 2Y1(X2
1 − aZ2

1 )(X4
1 + 6X2

1aZ
2
1 + a2Z4

1 ), ZD1 = 4Y 2
1 .

The calculation of the Li,j coefficients and the intermediate point (XD1 : YD1 : ZD1) =
[2](X1, Y1, Z1) requires 10m + 14s + 2d. To calculate (XD2 : YD2 : ZD2) = [4](X1, Y1, Z1), we
double the point (XD1 : YD1 : ZD1) using the doubling formulas in [17] which cost 1m+6s+1d.
Thus, the total cost for the quadrupling stage is 11me + 20se + 4em1 + 3d + 1M + 2S (see
Appendix A.2).

5.2 Miller Octuple-and-add

We begin by setting n = 3 in (3) to obtain the Miller update f∗ corresponding the octupling
of T as

f∗ =
3∏

i=1

(g[2i−1]T,[2i−1]T )23−i
=
(
gT,T

)4 · (g[2]T,[2]T

)2 · (g[4]T,[4]T

)
,

which has divisor 8(T )− ([8]T )− 7(O).

Octuple-and-add on y2 = x3 + b. For the octupling line product, we use homogeneous
projective coordinates to give F ∗ as

F ∗ = α · (L4,0 · x4
S + L3,0 · x3

S + L2,0 · x2
S + L1,0 · xS

+ L3,1 · x3
SyS + L2,1 · x2

SyS + L1,1 · xSyS + L0,0),

where α is again contained in a proper subfield of Fpk and can be eliminated to give F̂ ∗ =
F ∗/α. The Li,j coefficients are

L4,0 = (−9X2
1Z

2
1 ) · S4,0, L3,0 = (−12Z2

1Y
2

1 ) · S3,0, L2,0 = (−54X1Y
2

1 Z1) · S2,0

L1,0 = (−36X2
1Y

2
1 ) · S1,0, L0,0 = ((Y 2

1 + 3bZ2
1 )Y 2

1 ) · S0,0, L3,1 = (8Y1Z
3
1 ) · S3,1

L2,1 = (216X1Y1Z
2
1 ) · S2,1, L1,1 = (72X2

1Y1Z1) · S1,1, L0,1 = (8Y 3
1 Z1) · S0,1

with

Si,j =
11∑

k=0

ci,j,k · (Y 2
1 )11−k(bZ2

1 )k,

where ci,j,k is the coefficient of (Y 2
1 )11−k(bZ2

1 )k belonging to Li,j (see Appendix A.3). As an
example, we have

L0,0 = (Y 2
1 (Y 2

1 + 3bZ2
1 )) ·

(
Y 22

1 − 3375bY 20
1 Z2

1 − 262449b2Y 18
1 Z4

1 − 2583657b3Y 16
1 Z6

1

+ 47678058b4Y 14
1 Z8

1 − 40968342b5Y 12
1 Z10

1 − 272740770b6Y 10
1 Z12

1

+ 738702990b7Y 8
1 Z

14
1 − 669084219b8Y 6

1 Z
16
1 + 206730549b9Y 4

1 Z
18
1

− 23914845b10Y 2
1 Z

20
1 + 14348907b11Z22

1

)
.

We describe a general method to compute each of the terms of the form (Y 2
1 )11−k(bZ2

1 )k

that are required to compute the Li,j coefficients, where 0 ≤ k ≤ 11. In general, it is best
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to compute each one of these products rather than attempting to factorize, particular when
each of these terms is present in every Li,j . We compute every required even power of Y1 by
first repetitively squaring Y1 until we have all necessary terms of the form Y 2t

1 that are less
than the largest power of Y1 occuring in the summations of the Li,j . That is, we compute Y 2t

1

for t = 1, 2, 3, 4 since Y 22
1 is the largest power of Y1 occuring in the Li,j summations. Using

{Y 2
1 , Y

4
1 , Y

8
1 , Y

16
1 }, we can compute all other (Y 2

1 )z < (Y 2
1 )16, z 6= 2t using one squaring each

for each z. For example, we can compute Y 12
1 as Y 12

1 = Y 8
1 ·Y 4

1 = ((Y 8
1 +Y 4

1 )2−Y 16
1 −Y 8

1 )/2,
although in practice we compute 2Y 12

1 to avoid the division by 2. To compute the remaining
(Y 2

1 )t > Y 16
1 , we use a field multiplication2. We do the same for each of the (bZ2

1 )k terms.
We do not count multiplications by the ci,j,k, although we make no attempt to disguise

the extra cost that is incurred as their sizes grow. We do however, point out that it is often
the case that the ci,j,k’s for a fixed k (but different i,j’s) share large common factors so that
we need not multiply (Y 2

1 )11−k(bZ2
1 )k by each of the ci,j,k’s, but rather we combine previous

products to obtain most of these multiplications at a much smaller (mostly negligible) cost.
The total operation count for the point octupling and the computation of the octupling

line product is 40me + 31se + 8em1 + 2d + 1M + 3S (see Appendix A.3).

Octuple-and-add on y2 = x3 + ax. Following the trend of the fastest formulas for the
n = 1 and n = 2 cases for curves of this shape, we again projectify f∗ using weight-(1, 2)
coordinates to give

F ∗ = α · (L4,0 · x4
S + L3,0 · x3

S + L2,0 · x2
S + L1,0 · xS

+ L3,1 · x3
SyS + L2,1 · x2

SyS + L1,1 · xSyS + L0,0),

where we ignore the subfield cofactor α to give F̂ ∗ = F ∗/α. The Li,j coefficients are given as

L4,0 = (−4X2
1Z

4
1 ) · S4,0, L3,0 = (−16X3

1Z
3
1 ) · S3,0, L2,0 = (−8X4

1Z
2
1 ) · S2,0

L1,0 = (16X5
1Z1) · S1,0, L0,0 = (4X6

1 ) · S0,0, L3,1 = (4Y1Z
4
1 ) · S3,1

L2,1 = (4X1Y1Z
3
1 ) · S2,1, L1,1 = (4X2

1Y1Z
2
1 ) · S1,1, L0,1 = (4X3

1Y1Z1) · S0,1,

with

Si,j =
16∑

k=0

ci,j,k · (X2
1 )16−k(bZ2

1 )k,

where ci,j,k is the coefficient of (X2
1 )16−k(bZ2

1 )k belonging to Li,j (see Appendix A.4). As an
example, we have

L2,0 = −8X14Z12 · (189X32
1 + 882bX30

1 Z2
1 + 6174b2X28

1 Z4
1 − 26274b3X26

1 Z6
1 − 1052730b4X24

1 Z8
1

− 449598b5X22
1 Z10

1 − 1280286b6X20
1 Z12

1 − 1838850b7X18
1 Z14

1 − 23063794b8X16
1 Z16

1

− 1543290b9X14
1 Z18

1 + 539634b10X12
1 Z20

1 + 646922b11X10
1 Z22

1 + 1386918b12X8
1Z

24
1

+ 75846b13X6
1Z

26
1 + 17262b14X4

1Z
28
1 + 922b15X2

1Z
30
1 − 35b16Z32

1 ).

The total operation count for the point octupling and the computation of the octupling line
product is 31me + 57se + 8em1 + 5d + 1M + 3S (see Appendix A.4).
2 We point out that if higher degree terms also required computation it may be advantageous to compute Y 32

1

so that each of the terms (Y 2
1 )t > Y 16

1 can be computed using field squarings instead of multiplications. This
advantage would depend on the platform (the s:m ratio) and the number of (Y 2

1 )t > Y 16
1 terms required.
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6 Comparisons

We draw comparisons between 6 standard loops of Miller double-and-add, 3 standard loops
of Miller quadruple-and-add and 2 standard loops of Miller octuple-and-add, since each of
these equates to one 64-tuple-and-add loop, and this is the most primitive level at which a fair
comparison can be made. We note that the estimated percentage speedups in Table 1 are for
the computation of the Miller loop only and do not take into account the significant fixed cost
of final exponentiation. We neglect additions since low hamming-weight loop parameters used
in pairing implementations will result in a similar amount of additions regardless of n, and
we saw in sections 3 and 4 that additions come at approximately the same cost for different
n. The counts for n = 1 are due to the fastest formulas given for curves with j(E) = 0 and
j(E) = 1728 in [17]. We multiply these counts and those obtained for n = 2 and n = 3 in
Section 5 accordingly.

j(E) Doubling: n = 1 Quadrupling: n = 2 Octupling: n = 3
(6 loops) (3 loops) (2 loops)

0 12me + 42se + 12em1 + 6M + 6S 42me + 48se + 12em1 + 3M + 6S 80me + 64se + 16em1 + 2M + 6S

1728 12me + 48se + 12em1 + 6M + 6S 33me + 60se + 12em1 + 3M + 6S 64me + 114se + 16em1 + 2M + 6S

Table 1. Operation counts for the equivalent number of iterations of 2n-tuple and add for n = 1, 2, 3.

Table 1 shows that the number of subfield operations increases when n gets larger, whilst
the number of full extension field multiplications decreases. To determine whether these trade-
offs become favorable for n = 2 or n = 3, we adopt the standard procedure of estimating the
equivalent number of base field operations for each operation count [27, 17]. We assume that
the higher degree fields are constructed as a tower of extensions, so that for pairing-friendly
fields of extension degree z = 2i · 3j , we can assume that mz = 3i · 5jm1 [31]. We split
the comparison between pairings on G1 ×G2 (the Tate pairing, the twisted ate pairing) and
pairings on G2×G1 (the ate pairing, R-ate pairing, etc). For each pairing-friendly embedding
degree reported, we assume that the highest degree twist is utilized in both settings; the
curves with j(E) = 0 utilize degree 6 twists whilst the curves with j(E) = 1728 utilize
degree 4 twists. To compare across operations, we follow the EFD [11] and present two counts
in each scenario: the top count assumes that sz = mz, whilst the bottom count assumes
that sz = 0.8mz. When quadrupling or octupling gives a faster operation count, we provide
an approximate percentage speedup for the computation of the Miller loop, ignoring any
additions that occur.

Unsurprisingly, Table 2 illustrates that the relative speed up for pairings on G1×G2 grows
as the embedding degree grows. This is due to the increasing gap between the complexity of
operations in G1 (which is defined over Fq) and G2 (which is defined over Fqk). In this case we
see that 6 ≤ k ≤ 16 favor Miller quadruple-and-add, whilst Miller octuple-and-add takes over
for k > 16, where it is clear that it is worthwhile spending many more operations in the base
field in order to avoid costly arithmetic in Fqk . For pairings on G2×G1, we have a consistent
speed up across all embedding degrees that utilize sextic twists. This is due to the complexity
of the subfield operations in Fqe growing at the same rate as the complexity of operations in
Fqk . Table 2 indicates that Miller double-and-add is still preferred for ate-like pairings using
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Pairings on G1 ×G2 Fastest Pairings on G2 ×G1 Fastest
(Tate, twisted ate) (% speed up) (ate, R-ate) (% speed up)

k j(E) Doubling Quadrupling Octupling Doubling Quadrupling Octupling
(6 loops) (3 loops) (2 loops) (6 loops) (3 loops) (2 loops)

4 1728 180 186 266 Doubling 180 186 266 Doubling
159.6 163.2 232.4 - 159.6 163.2 232.4 -

6 0 246 237 280 Quadrupling 246 237 280 Quadrupling
219.6 209.4 249.2 5% 219.6 209.4 249.2 5%

8 1728 408 360 426 Quadrupling 528 546 782 Doubling
366 315.6 370.8 14% 466.8 477.6 681.2 -

12 0 618 519 536 Quadrupling 726 699 824 Quadrupling
555.6 455.4 469.2 18% 646.8 616.2 731.6 5%

16 1728 1080 870 890 Quadrupling 1560 1614 2314 Doubling
973.2 760.8 770 22% 1376.4 1408.8 2011.6 -

18 0 990 801 792 Octupling 1206 1161 1368 Quadrupling
891.6 701.4 689.2 22% 1074 1023 1214 5%

24 0 1722 1353 1288 Octupling 2154 2073 2440 Quadrupling
1551.6 1181.4 1113.2 28% 1916.4 1824.6 2162.8 5%

32 1728 3072 2376 2250 Octupling 4632 4794 6878 Doubling
2770.8 2072.4 1935.6 30% 4081.2 4178.4 5970.8 -

36 0 2826 2187 2040 Octupling 3582 3447 4056 Quadrupling
2547.6 1907.4 1757.6 31% 3186 3033 3594 5%

48 0 5010 3831 3512 Octupling 6414 6171 7256 Quadrupling
4515.6 3335.4 3013.2 33% 5701.2 5425.8 6424.4 5%

Table 2. Comparisons for Miller double-and-add, Miller quadruple-and-add and Miller octuple-and-add at
various embedding degrees.

quartic twists, where we could conclude that the gap between operations in Fqk/4 and those
in Fqk isn’t large enough to favor higher Miller tupling.

The large improvements in Table 2 certainly present a case for the investigation of higher
degree Miller tupling (n ≥ 4). At these levels however, the formulas become quite complex
and we have not reported any discoveries from these degrees due to space considerations.
Namely, the size of the 2n-tupling line in (2) grows exponentially as n increases (i.e. the
degree of the affine 2n-tupling line formula is twice that of the 2n−1-tupling line). The fact
that quadrupling was still preferred over octupling in most cases seems to suggest that larger
n might not result in significant savings, at least for embedding degrees of this size.

We conclude by acknowledging that (in optimal implementations) the speedups in Table
2 may not be as large as we have claimed. In generating the comparisons, we reported the
multiplication of the intermediate Miller value f by the Miller update g as a full extension
field multiplication in Fpk , with complexity M = mk = 3i · 5j for k = 2i · 3j . Although
the value f is a general full extension field element, g tends to be sparse, especially when
sextic twists are employed. For even degree twists, g takes the form g = g1α + g2β + g0,
where g ∈ Fpk , g0, g1, g2 ∈ Fpk/d and α and β are algebraic elements that do not affect
multiplication costs (cf. [17]). For sextic twists, a general element of Fpk would be written as
a polynomial over Fpe with six (rather than three) different coefficients belonging to Fpk/6 . In
this case, multiplying two general elements of Fpk would clearly require more multiplications
than performing a multiplication between a general element (like f) and a sparse element (like
g). Since the techniques in this paper gain advantage by avoiding multiplications between
f and g, reporting a lesser complexity for this multiplication would decrease the relative
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speedup. Nevertheless, Miller quadruple-and-add and Miller octuple-and-add will still strongly
outperform the standard Miller double-and-add routine if we take mk � 3i · 5j , particularly
for pairings on G1 ×G2 with large embedding degrees.
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A Explicit Formulas

In each of the following four scenarios, we provide the sequence of operations required to compute the first point doubling
and the 2n-tupling line function, followed by the additional formulae required to compute the subsequent point doublings.

A.1 Quadrupling formulas for y2 = x3 + b

A = Y
2
1 , B = Z

2
1 , C = A

2
, D = B

2
, E = (Y1 + Z1)

2 − A− B, F = E
2
, G = X

2
1 , H = (X1 + Y1)

2 − A−G,

I = (X1 + E)
2 − F −G, J = (A + E)

2 − C − F, K = (Y1 + B)
2 − A−D, L = 27b

2
D, M = 9bF, N = A · C, R = A · L,

S = bB, T = S · L, U = S · C, X
D1 = 2H · (A− 9S), Y

D1 = 2C +M − 2L, Z
D1 = 4J,

L1,0 = −4Z1 · (5N + 5R− 3T − 75U), L2,0 = −3G · Z1 · (10C + 3M − 2L), L0,1 = 2I · (5C + L), L1,1 = 2K · Y
D1 ,

L0,0 = 2X1 · (N + R− 3T − 75U). F
∗

= L1,0 · xS + L2,0 · x
2
S + L0,1 · yS + L1,1 · xSyS + L0,0, A2 = Y

2
D1 , B2 = Z

2
D1 , C2 = 3bB2,

D2 = 2X
D1 · YD1 , E2 = (Y

D1 + Z
D1 )

2 − A2 − B2, F2 = 3C2, X
D2 = D2 · (A2 − F2), Y

D2 = (A2 + F2)
2 − 12C

2
2 ,

Z
D2 = 4A2 · E2.

The above sequence of operations costs 14me + 16se + 4em1.
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A.2 Quadrupling formulas for y2 = x3 + ax

A = X
2
1 , B = Y

2
1 , C = Z

2
1 , D = aC, X

D1 = (A−D)
2
, E = 2(A +D)

2 −X
D1 , F = ((A−D + Y1)

2 − B −X
D1 ),

Y
D1 = E · F, Z

D1 = 4B, G = A
2
, H = D

2
, I = G

2
, J = H

2
, K = (X1 + Z1)

2 − A− C, L = K
2
,

M = (Y1 +K)
2 − L− B, N = ((G +H)

2 − I − J), R = aL, S = R ·G, T = R ·H, L1,1 = 2C · Y
D1 ,

L0,1 = M · (5A · (G + 3H) +D · (13G−H)), L2,0 = −C · (15I + 17S + 5N − 7T − J), L1,0 = −K · (5I + S + 19N + 5T − 3J),

L0,0 = A · (I − 5S − 13N − 5T + J). F
∗

= L1,0 · xS + L2,0 · x
2
S + L0,1 · yS + L1,1 · xSyS + L0,0, A2 = X

2
D1 , B2 = Y

2
D1 ,

C2 = Z
2
D1 , D2 = aC2, X

D2 = (A2 −D2)
2
, E2 = 2(A2 +D2)

2 −X
D2 , Z

D2 = 4B2,

F2 = ((A2 −D2 + Y
D1 )

2 − B2 −XD2 , Y
D2 = E2 · F2.

The above sequence of operations costs 11me + 20se + 4em1.

A.3 Octupling formulas for y2 = x3 + b

Y1,2 = Y
2
1 , Z1,s = Z

2
1 , Z1,2 = bZ1,s, Z1,s2 = Z

2
1,s A = X

2
1 , B = b

2
Z1,s2 C = (X1 + Y1)

2 − A− Y1,2,

D = (Y1 + Z1)
2 − Y1,2 − Z1,s, E = 9Z1,2, X

D1 = C · (Y1,2 − E), Y
D1 = (Y1,2 + E)

2 − 108B, Z
D1 = 4Y1,2 ·D, Y1,4 = Y

2
1,2,

Y1,8 = Y
2
1,4, Y1,16 = Y

2
1,8, Y1,6 = (Y1,2 + Y1,4)

2 − Y1,4 − Y1,8, Y1,10 = (Y1,8 + Y1,2)
2 − Y1,16 − Y1,4,

Y1,12 = (Y1,8 + Y1,4)
2 − Y1,16 − Y1,8, Y1,14 = (Y1,8 + Y1,6)

2 − Y1,16 − 2Y1,12, Y1,18 = Y1,16 · Y1,2, Y1,20 = Y1,16 · Y1,4,

Y1,22 = Y1,16 · Y1,6, Z1,4 = B, Z1,8 = Z
2
1,4, Z1,16 = Z

2
1,8, Z1,6 = (Z1,2 + Z1,4)

2 − Z1,4 − Z1,8,

Z1,10 = (Z1,8 + Z1,2)
2 − Z1,16 − Z1,4, Z1,12 = (Z1,8 + Z1,4)

2 − Z1,16 − Z1,8, Z1,14 = (Z1,8 + Z1,6)
2 − Z1,16 − 2Z1,12,

Z1,18 = Z1,16 · Z1,2, Z1,20 = Z1,16 · Z1,4, Z1,22 = Z1,16 · Z1,6, C
Y Z
0 = Y1,22, C

Y Z
1 = Y1,20 · Z1,2, C

Y Z
2 = Y1,18 · Z1,4,

C
Y Z
3 = Y1,16 · Z1,6, C

Y Z
4 = Y1,14 · Z1,8, C

Y Z
5 = Y1,12 · Z1,10, C

Y Z
6 = Y1,10 · Z1,12, C

Y Z
7 = Y1,8 · Z1,14, C

Y Z
8 = Y1,6 · Z1,16,

C
Y Z
9 = Y1,4 · Z1,18, C

Y Z
10 = Y1,2 · Z1,20, C

Y Z
11 = Z1,22, F = A · Z1,s, G = (Y1,2 + Z1,s)

2 − Y1,4 − Z1,s2 , H = C ·D, I = C
2

J = Y1,2 · (Y1,2 + 3Z1,2), K = D · Z1,s, L = C · Z1,s, M = A ·D, N = Y1,2 ·D,

L4,0 = −18F · (−9565938C
Y Z
10 + 95659380C

Y Z
9 − 101859525C

Y Z
8 + 14880348C

Y Z
7 + 57100383C

Y Z
6 − 52396146C

Y Z
5

+ 14332383C
Y Z
4 − 4578120C

Y Z
3 − 513162C

Y Z
2 + 15732C

Y Z
1 + 7C

Y Z
0 ),

L3,0 = −12G · (−14348907C
Y Z
11 + 239148450C

Y Z
10 − 643043610C

Y Z
9 + 350928207C

Y Z
8 − 60407127C

Y Z
7 − 8575227C

Y Z
6

− 7841853C
Y Z
5 + 12011247C

Y Z
4 − 3847095C

Y Z
3 − 1325142C

Y Z
2 + 56238C

Y Z
1 + 35C

Y Z
0 ),

L2,0 = −27H · (−54206982C
Y Z
10 + 157660830C

Y Z
9 − 120282813C

Y Z
8 + 50368797C

Y Z
7 − 25747551C

Y Z
6 + 10693215C

Y Z
5

− 3826845C
Y Z
4 + 777789C

Y Z
3 + 35682C

Y Z
2 + 4102C

Y Z
1 + 7C

Y Z
0 + 4782969C

Y Z
11 ),

L1,0 = −18I · (−4782969C
Y Z
11 + 28697814C

Y Z
10 − 129317310C

Y Z
9 + 130203045C

Y Z
8 − 48479229C

Y Z
7 + 11593287C

Y Z
6

− 619407C
Y Z
5 + 1432485C

Y Z
4 − 883197C

Y Z
3 + 32814C

Y Z
2 − 1318C

Y Z
1 + C

Y Z
0 ),

L0,0 = 2J · (14348907CY Z
11 − 47829690C

Y Z
10 + 413461098C

Y Z
9 − 669084219C

Y Z
8 + 369351495C

Y Z
7 − 136370385C

Y Z
6

− 20484171C
Y Z
5 + 23839029C

Y Z
4 − 2583657C

Y Z
3 − 524898C

Y Z
2 − 6750C

Y Z
1 + C

Y Z
0 ),

L3,1 = 8K · (−28697814C
Y Z
10 + 95659380C

Y Z
9 − 61115715C

Y Z
8 + 6377292C

Y Z
7 + 19033461C

Y Z
6 − 14289858C

Y Z
5

+ 3307473C
Y Z
4 − 915624C

Y Z
3 − 90558C

Y Z
2 + 2484C

Y Z
1 + C

Y Z
0 ),

L2,1 = 216L · (3188646CY Z
10 − 7085880C

Y Z
9 + 4546773C

Y Z
8 − 3779136C

Y Z
7 + 5084775C

Y Z
6 − 3601260C

Y Z
5

+ 1192077C
Y Z
4 − 363744C

Y Z
3 − 56610C

Y Z
2 + 1960C

Y Z
1 + C

Y Z
0 ),

L1,1 = 72M · (−9565938C
Y Z
10 + 10628820C

Y Z
9 − 11160261C

Y Z
8 + 20549052C

Y Z
7 − 24360993C

Y Z
6 + 11674206C

Y Z
5

− 2214945C
Y Z
4 + 434808C

Y Z
3 − 112266C

Y Z
2 + 8148C

Y Z
1 + 7C

Y Z
0 ),

L0,1 = 8N · (−14348907C
Y Z
11 + 28697814C

Y Z
10 − 77590386C

Y Z
9 + 208856313C

Y Z
8 − 152208639C

Y Z
7 + 87333471C

Y Z
6

− 19135521C
Y Z
5 + 543105C

Y Z
4 − 2329479C

Y Z
3 + 508302C

Y Z
2 − 4138C

Y Z
1 + 21C

Y Z
0 ),

F
∗

= α · (L4,0 · x
4
S + L3,0 · x

3
S + L2,0 · x

2
S + L1,0 · xS + L3,1 · x

3
SyS + L2,1 · x

2
SyS + L1,1 · xSyS + L0,0),

A2 = Y
2
D1 , B2 = Z

2
D1 , C2 = 3bB2, D2 = 2X

D1 · YD1 , E2 = (Y
D1 + Z

D1 )
2 − A2 − B2, F2 = 3C2, X

D2 = D2 · (A2 − F2),

Y
D2 = (A2 + F2)

2 − 12C
2
2 , Z

D2 = 4A2 · E2.

A3 = Y
2
D2 , B3 = Z

2
D2 , C3 = 3bB3, D3 = 2X

D2 · YD2 , E3 = (Y
D2 + Z

D2 )
2 − A3 − B3, F3 = 3C3, X

D3 = D3 · (A3 − F3),

Y
D3 = (A3 + F3)

2 − 12C
2
3 , Z

D3 = 4A3 · E3.

The above sequence of operations costs 40me + 32se + 8em1.
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A.4 Octupling formulas for y2 = x3 + ax

X1,2 = X
2
1 , B = Y

2
1 , Z1,s = Z

2
1 , Z1,2 = aZ1,s, X

D1 = (X1,2 − Z1,2)
2
, E = 2(X1,2 + Z1,2)

2 −X
D1 ,

F = (X1,2 − Z1,2 + Y1)
2 − B −X

D1 , Y
D1 = E · F, Z

D1 = 4B, Z1,s2 = Z
2
1,s, Z1,s4 = Z

2
1,s2 , X1,2 = X

2
1 , X1,4 = X

2
1,2,

X1,8 = X
2
1,4, X1,16 = X

2
1,8, X1,32 = X

2
1,16, X1,6 = (X1,2 +X1,4)

2 −X1,4 −X1,8, X1,10 = (X1,2 +X1,8)
2 −X1,4 −X1,16,

X1,12 = (X1,4 +X1,8)
2 −X1,8 −X1,16, X1,14 = (X1,8 +X1,6)

2 −X1,16 − 2X1,12, X1,18 = (X1,16 +X1,2)
2 −X1,32 −X1,4,

X1,20 = (X1,16 +X1,4)
2 −X1,32 −X1,8, X1,22 = (X1,16 +X1,6)

2 −X1,32 − 2X1,12, X1,24 = (X1,16 +X1,8)
2 −X1,32 −X1,16,

X1,26 = (X1,16 +X1,10)
2 −X1,32 − 2X1,20, X1,28 = (X1,16 +X1,12)

2 −X1,32 − 2X1,24,

X1,30 = (X1,16 +X1,14)
2 −X1,32 − 4X1,28, Z1,4 = a

2
Z1,s2 , Z1,8 = a

4
Z1,s4 , Z1,16 = Z

2
1,8, Z1,32 = Z

2
1,16,

Z1,6 = (Z1,2 + Z1,4)
2 − Z1,4 − Z1,8, Z1,10 = (Z1,2 + Z1,8)

2 − Z1,4 − Z1,16, Z1,12 = (Z1,4 + Z1,8)
2 − Z1,8 − Z1,16,

Z1,14 = (Z1,8 + Z1,6)
2 − Z1,16 − 2Z1,12, Z1,18 = (Z1,16 + Z1,2)

2 − Z1,32 − Z1,4, Z1,20 = (Z1,16 + Z1,4)
2 − Z1,32 − Z1,8,

Z1,22 = (Z1,16 + Z1,6)
2 − Z1,32 − 2Z1,12, Z1,24 = (Z1,16 + Z1,8)

2 − Z1,32 − Z1,16, Z1,26 = (Z1,16 + Z1,10)
2 − Z1,32 − 2Z1,20,

Z1,28 = (Z1,16 + Z1,12)
2 − Z1,32 − 2Z1,24, Z1,30 = (Z1,16 + Z1,14)

2 − Z1,32 − 4Z1,28, C
XZ
0 = X1,32, C

XZ
1 = X1,30 · Z1,2,

C
XZ
2 = X1,28 · Z1,4, C

XZ
3 = X1,26 · Z1,6, C

XZ
4 = X1,24 · Z1,8, C

XZ
5 = X1,22 · Z1,10, C

XZ
6 = X1,20 · Z1,12,

C
XZ
7 = X1,18 · Z1,14, C

XZ
8 = X1,16 · Z1,16, C

XZ
9 = X1,14 · Z1,18, C

XZ
10 = X1,12 · Z1,20, C

XZ
11 = X1,10 · Z1,22,

C
XZ
12 = X1,8 · Z1,24, C

XZ
13 = X1,6 · Z1,26, C

XZ
14 = X1,4 · Z1,28, C

XZ
15 = X1,2 · Z1,30, C

XZ
16 = Z1,32,

G = (X1,2 + Z1,s2 )
2 −X1,4 − Z1,s4 , H = (X1 + Z1)

2 −X1,2 − Z1,s, II = H
2
, J = H · II,

K = (X1,4 + Z1,s)
2 −X1,8 − Z1,s2 , L = (H +X1,4)

2 − II −X1,8, M = (Y1 + Z1,s2 )
2 − B − Z1,s4 ,

N = (Y1 + Z1,s)
2 − B − Z1,s2 , R = H ·N, S = II · Y1, T = (X1,2 + Y1)

2 −X1,4 − B, U = T ·H,

L4,0 = −2G · (63CXZ
0 + 546C

XZ
1 − 17646C

XZ
2 − 86058C

XZ
3 − 944238C

XZ
4 − 925278C

XZ
5 − 4412322C

XZ
6 − 2092730C

XZ
7

− 318342C
XZ
8 + 1595958C

XZ
9 + 2710846C

XZ
10 + 441618C

XZ
11 + 325074C

XZ
12 + 21510C

XZ
13 + 2930C

XZ
14 − 46C

XZ
15 + C

XZ
16 ),

L3,0 = −2J · (105CXZ
0 + 756C

XZ
1 − 15990C

XZ
2 − 84112C

XZ
3 − 1082058C

XZ
4 − 610644C

XZ
5 − 2610994C

XZ
6 − 2003688C

XZ
7

− 13594266C
XZ
8 − 674868C

XZ
9 + 164566C

XZ
10 + 223168C

XZ
11 + 232998C

XZ
12 − 492C

XZ
13 + 2226C

XZ
14 + 56C

XZ
15 − 7C

XZ
16 ),

L2,0 = −4K · (189CXZ
0 + 882C

XZ
1 + 6174C

XZ
2 − 26274C

XZ
3 − 1052730C

XZ
4 − 449598C

XZ
5 − 1280286C

XZ
6 − 1838850C

XZ
7

− 23063794C
XZ
8 − 1543290C

XZ
9 + 539634C

XZ
10 + 646922C

XZ
11 + 1386918C

XZ
12 + 75846C

XZ
13 + 17262C

XZ
14 + 922C

XZ
15 − 35C

XZ
16 ),

L1,0 = 4L · (9CXZ
0 − 3666C

XZ
2 + 2580C

XZ
3 + 263226C

XZ
4 + 328248C

XZ
5 + 1359882C

XZ
6 + 1017948C

XZ
7 + 11998650C

XZ
8

+ 1661904C
XZ
9 + 1958226C

XZ
10 + 178956C

XZ
11 − 315222C

XZ
12 − 39560C

XZ
13 − 4842C

XZ
14 − 252C

XZ
15 + 7C

XZ
16 ),

L0,0 = 2X1,6 · (C
XZ
0 − 42C

XZ
1 − 834C

XZ
2 − 8702C

XZ
3 − 38898C

XZ
4 + 80886C

XZ
5 + 654642C

XZ
6 + 450098C

XZ
7

+ 3346502C
XZ
8 + 450098C

XZ
9 + 654642C

XZ
10 + 80886C

XZ
11 − 38898C

XZ
12 − 8702C

XZ
13 − 834C

XZ
14 − 42C

XZ
15 + C

XZ
16 ),

L3,1 = 2M · (8CXZ
0 + 73C

XZ
1 − 2718C

XZ
2 − 12087C

XZ
3 − 110316C

XZ
4 − 143283C

XZ
5 − 603830C

XZ
6 − 159171C

XZ
7

+ 1273368C
XZ
8 + 301915C

XZ
9 + 286566C

XZ
10 + 27579C

XZ
11 + 48348C

XZ
12 + 1359C

XZ
13 − 146C

XZ
14 − CXZ

15 ),

L2,1 = R · (216CXZ
0 + 1719C

XZ
1 − 49530C

XZ
2 − 225297C

XZ
3 − 2336292C

XZ
4 − 1899741C

XZ
5 − 8313570C

XZ
6 − 3992373C

XZ
7

− 6366840C
XZ
8 + 1434309C

XZ
9 + 2776722C

XZ
10 + 427917C

XZ
11 + 107508C

XZ
12 + 10017C

XZ
13 + 2122C

XZ
14 − 7C

XZ
15 ),

L1,1 = S · (504CXZ
0 + 3055C

XZ
1 − 38146C

XZ
2 − 226593C

XZ
3 − 3358356C

XZ
4 − 982485C

XZ
5 − 3428010C

XZ
6 − 4734229C

XZ
7

− 46394904C
XZ
8 − 2925939C

XZ
9 − 560070C

XZ
10 + 510845C

XZ
11 + 849828C

XZ
12 + 15897C

XZ
13 + 3570C

XZ
14 − 7C

XZ
15 ),

L0,1 = U · (168CXZ
0 + 417C

XZ
1 + 26106C

XZ
2 + 19449C

XZ
3 − 808860C

XZ
4 − 981963C

XZ
5 − 3150686C

XZ
6 − 1673251C

XZ
7

− 16203528C
XZ
8 − 1636605C

XZ
9 − 889746C

XZ
10 + 58347C

XZ
11 + 226252C

XZ
12 + 2919C

XZ
13 + 630C

XZ
14 − CXZ

15 ).

F
∗

= α · (L4,0 · x
4
S + L3,0 · x

3
S + L2,0 · x

2
S + L1,0 · xS + L3,1 · x

3
SyS + L2,1 · x

2
SyS + L1,1 · xSyS + L0,0),

A2 = X
2
1 , B2 = Y

2
1 , C2 = Z

2
1 , D2 = aC2, X

D2 = (A2 −D2)
2
, E2 = 2(A2 +D2)

2 −X
D2 , Z

D2 = 4B2,

F2 = ((A2 −D2 + Y1)
2 − B2 −XD2 , Y

D2 = E2 · F2.

A3 = X
2
1 , B3 = Y

2
1 , C3 = Z

2
1 , D3 = aC3, X

D3 = (A3 −D3)
2
, E3 = 2(A3 +D3)

2 −X
D3 , Z

D3 = 4B3,

F3 = ((A3 −D3 + Y1)
2 − B3 −XD3 , Y

D3 = E3 · F3.

The above sequence of operations costs 32me + 57se + 8em1.
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B Explicit Formulas

The following MAGMA code is a simple implementation of the Miller quadruple-and-and and Miller octuple-and-add
algorithms. We specify curves of the form y2 = x3 + b and condense the code due to space considerations. The main
function Miller2nTuple takes as inputs the two points R and S on E, the value r which is the order of R, the two curve
constants a and b, the integer n (for 2n-tupling) and the full extension field K, so that R, S ∈ E(K). Miller2nTuple
either calls the function Quadruple or the function Octuple for n = 2 and n = 3 respectively (the call to Octuple is
currently commented out).

function Dbl(X1,Y1,Z1, xQ, yQ,b) A:=X1^2; B:=Y1^2; C:=Z1^2; D:=3*b*C; E:=(X1+Y1)^2-A-B; F:=(Y1+Z1)^2-B-C; G:=3*D; X3:=E*(B-G);

Y3:=(B+G)^2-12*D^2; Z3:=4*B*F; L10:= 3*A; L01:=-F; L00:=D-B; F:=L10*xQ+L01*yQ+L00; return X3,Y3,Z3,F; end function;

function Add(X1, Y1, Z1, X2, Y2, Z2, xQ, yQ) c1:=X2-xQ; t1:=Z1*X2; t1:=X1-t1; t2:=Z1*Y2; t2:=Y1-t2; F:=c1*t2-t1*Y2+t1*yQ; t3:=t1^2;

X3:=t3*X1; t3:=t1*t3; t4:=t2^2; t4:=t4*Z1; t4:=t3+t4; t4:=t4-X3; t4:=t4-X3; X3:=X3-t4; t2:=t2*X3; Y3:=t3*Y1; Y3:=t2-Y3; X3:=t1*t4;

Z3:=Z1*t3; return X3, Y3, Z3, F; end function;

function Quadruple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, b)

A:=Ty^2; B:=Tz^2; C:=A^2; D:=B^2; E:=(Ty+Tz)^2-A-B; F:=E^2; G:=Tx^2; H:=(Tx+Ty)^2-A-G; I:=(Tx+E)^2-F-G; J:=(A+E)^2-C-F; K:=(Ty+B)^2-A-D;

L:=27*b^2*D; M:=9*b*F; N:=A*C; R:=A*L; S:=b*B; T:=S*L; U:=S*C; X3:=2*H*(A-9*S); Y3:=2*C+M-2*L; Z3:=4*J; L10:=-4*Tz*(5*N+5*R-3*T-75*U);

L20:=-3*G*Tz*(10*C+3*M-2*L); L01:=2*I*(5*C+L); L11:=2*K*Y3; L00:=2*Tx*(N+R-3*T-75*U); F:= L10*Sx+L20*Sx2+L01*Sy+L11*SxSy+L00; A2:=Y3^2;

B2:=Z3^2; C2:=3*b*B2; D2:= 2*X3*Y3; E2:=(Y3+Z3)^2-A2-B2; F2:=3*C2; X3:= D2*(A2-F2); Y3:=(A2+F2)^2-12*C2^2; Z3:=4*A2*E2;

return X3,Y3,Z3,F;

end function;

function Octuple(X1, Y1, Z1, Sx, Sy, Sx2, SxSy, Sx3, Sx4, Sx2Sy, Sx3Sy, b)

Y12:=Y1^2; Z1s:=Z1^2; Z12:=b*Z1s; A:=X1^2; B:=3*Z12; C:=(X1+Y1)^2-A-Y12; DD:=(Y1+Z1)^2-Y12-Z1s; E:=3*B; X3:=C*(Y12-E);

Y3:=(Y12+E)^2-12*B^2; Z3:=4*Y12*DD; Xt,Yt,Zt:=Dbl(X1,Y1,Z1,Sx,Sy,b); Z14s:=Z1s^2; Y14:=Y12^2; Y18:=Y14^2; Y116:=Y18^2;

Y16:=(Y12+Y14)^2-Y14-Y18; Y110:=(Y18+Y12)^2-Y116-Y14; Y112:=(Y18+Y14)^2-Y116-Y18; Y114:= (Y18+Y16)^2-Y116-2*Y112; Y118:=Y116*Y12;

Y120:=Y116*Y14; Y122:=Y116*Y16; Z14:=b^2*Z14s; Z18:=Z14^2; Z116:=Z18^2; Z16:=(Z12+Z14)^2-Z14-Z18; Z110:=(Z18+Z12)^2-Z116-Z14;

Z112:=(Z18+Z14)^2-Z116-Z18; Z114:= (Z18+Z16)^2-Z116-2*Z112; Z118:=Z116*Z12; Z120:=Z116*Z14; Z122:=Z116*Z16; YZ0:=Y122; YZ1:=Y120*Z12;

YZ2:=Y118*Z14; YZ3:=Y116*Z16; YZ4:=Y114*Z18; YZ5:=Y112*Z110; YZ6:=Y110*Z112; YZ7:=Y18*Z114; YZ8:=Y16*Z116; YZ9:=Y14*Z118; YZ10:=Y12*Z120;

YZ11:=Z122; FF:=A*Z1s; G:=(Y12+Z1s)^2-Y14-Z14s; H:=C*DD; II:=C^2; J:=Y12*(Y12+3*Z12); K:=DD*Z1s; L:=C*Z1s; M:=A*DD; N:=Y12*DD;

F40 := -18*FF*(-9565938*YZ10+95659380*YZ9-101859525*YZ8+14880348*YZ7+57100383*YZ6-52396146*YZ5+14332383*YZ4-4578120*YZ3-513162*YZ2

+15732*YZ1+7*YZ0); F30:=-12*G*(-14348907*YZ11+239148450*YZ10-643043610*YZ9+350928207*YZ8-60407127*YZ7-8575227*YZ6-7841853*YZ5

+12011247*YZ4 -3847095*YZ3-1325142*YZ2+56238*YZ1+35*YZ0); F20:=-27*H*(-54206982*YZ10+157660830*YZ9-120282813*YZ8+50368797*YZ7

-25747551*YZ6+10693215*YZ5 -3826845*YZ4+777789*YZ3+35682*YZ2+4102*YZ1+7*YZ0+4782969*YZ11); F10 := -18*II*(-4782969*YZ11+ 28697814*YZ10

-129317310*YZ9+130203045*YZ8-48479229*YZ7+11593287*YZ6-619407*YZ5+1432485*YZ4-883197*YZ3+32814*YZ2-1318*YZ1+YZ0);

F00 :=2*J*(YZ0-6750*YZ1-524898*YZ2-2583657*YZ3 +23839029*YZ4-20484171*YZ5-136370385*YZ6+369351495*YZ7-669084219*YZ8+413461098*YZ9

-47829690*YZ10+14348907*YZ11); F31 := 8*K*(2484*YZ1-915624*YZ3-90558*YZ2-28697814*YZ10+YZ0+95659380*YZ9- 61115715*YZ8+6377292*YZ7

+19033461*YZ6 - 14289858*YZ5+3307473*YZ4); F21 := 216*L*(YZ0+1960*YZ1-56610*YZ2-363744*YZ3+1192077*YZ4-3601260*YZ5 +5084775*YZ6

-3779136*YZ7 +4546773*YZ8 -7085880*YZ9+3188646*YZ10); F11 := 72*M*(8148*YZ1-112266*YZ2+434808*YZ3-2214945*YZ4 +11674206*YZ5-24360993*YZ6

+20549052*YZ7-11160261*YZ8+10628820*YZ9-9565938*YZ10+7*YZ0); F01 :=8*N*(-14348907*YZ11+28697814*YZ10-77590386*YZ9+208856313*YZ8

-152208639*YZ7+87333471*YZ6-19135521*YZ5+543105*YZ4-2329479*YZ3 +508302*YZ2-4138*YZ1+21*YZ0);

F:=F01*Sy+F11*SxSy+F21*Sx2Sy+F31*Sx3Sy+F00+F10*Sx+F20*Sx2+F30*Sx3+F40*Sx4; Y32:=Y3^2; Z3s:=Z3^2; Z32:=b*Z3s; A:=X3^2; B:=3*Z32;

C:=(X3+Y3)^2-A-Y32; DD:=(Y3+Z3)^2-Y32-Z3s; E:=3*B; X3:=C*(Y32-E); Y3:=(Y32+E)^2-12*B^2; Z3:=4*Y32*DD; Y32:=Y3^2; Z3s:=Z3^2; Z32:=b*Z3s;

A:=X3^2; B:=3*Z32; C:=(X3+Y3)^2-A-Y32; DD:=(Y3+Z3)^2-Y32-Z3s; E:=3*B; X3:=C*(Y32-E); Y3:=(Y32+E)^2-12*B^2; Z3:=4*Y32*DD;

return X3,Y3,Z3,F;

end function;

function Miller2nTuple(R, S, r, a, b, n, K)

Rx:=R[1]; Ry:=R[2]; Rz:=R[3];

Sx:=S[1]; Sy:=S[2]; Sx2:=Sx^2; Sx3:=Sx^3; Sx4:=Sx^4; SxSy:=Sx*Sy; Sx2Sy:=Sx2*Sy; Sx3Sy:=Sx3*Sy;

Rmultiplesmatrix:=[[Rx, Ry, Rz]];

for i:=2 to (2^n-1) by 1 do

iR:=i*R;

Rmultiplesmatrix:=Append(Rmultiplesmatrix, [iR[1], iR[2], iR[3]]);

end for;

fRaddvec:=[K!1]; addproduct:=fRaddvec[1];

ptx, pty, ptz, F := Dbl(Rx,Ry,Rz,Sx,Sy,b);

addproduct*:= F;

fRaddvec:=Append(fRaddvec, addproduct);

for i:=3 to (2^n-1) by 1 do

ptx, pty, ptz, faddvalue := Add(ptx, pty, ptz, Rx, Ry, Rz, Sx, Sy);

addproduct*:=faddvalue;

fRaddvec:=Append(fRaddvec, addproduct);

end for;

Tx:=Rx; Ty:=Ry; Tz:=Rz;

f1 := 1; B := IntegerToSequence(r,2^n);

if B[#B] ne 1 then

Tx, Ty, Tz, F:= Add(Tx, Ty, Tz, Rmultiplesmatrix[B[#B]][1], Rmultiplesmatrix[B[#B]][2], Rmultiplesmatrix[B[#B]][3], Sx, Sy);

F:=F*fRaddvec[B[#B]];

f1:=f1*F;

end if;

for i:=#B-1 to 1 by -1 do

Tx, Ty, Tz, F:=Quadruple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, b);

//Tx, Ty, Tz, F:=Octuple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, Sx3, Sx4, Sx2Sy, Sx3Sy, b);

f1:=f1^(2^n)*F;

if B[i] ne 0 then

Tx, Ty, Tz, F:= Add(Tx, Ty, Tz, Rmultiplesmatrix[B[i]][1], Rmultiplesmatrix[B[i]][2], Rmultiplesmatrix[B[i]][3], Sx, Sy);

F:=F*fRaddvec[B[i]];

f1:=f1*F;

end if;

end for;

return f1;

end function;


