
Adaptive Concurrent Non-Malleability with Bare Public-Keys∗

Andrew C. Yao† Moti Yung‡ Yunlei Zhao§

Abstract

Concurrent non-malleability (CNM) is central for cryptographic protocols running concurrently
in environments such as the Internet. In this work, we formulate CNM in the bare public-key (BPK)
model, and show that round-efficient concurrent non-malleable cryptography with full adaptive input
selection can be established, in general, with bare public-keys (where, in particular, no trusted
assumption is made).

1 Introduction

Concurrent non-malleability is central for cryptographic protocols secure against concurrent man-in-
the-middle (CMIM) attacks. In the CMIM setting, polynomially many concurrent executing instances
(sessions) of a protocol take place in an asynchronous setting (appropriate for environments such as over
the Internet), and all the unauthenticated communication channels (among all the concurrent sessions)
are controlled by a probabilistic polynomial-time (PPT) CMIM adversary A. In this setting, honest
players are assumed oblivious of each other’s existence, nor do they generally know the topology of
the network, and thus cannot coordinate their executions. The CMIM adversary A (controlling the
communication channels) can do whatever it wishes. When CNM with adaptive input selection is
considered, A can also set input to each session.

Unfortunately, in the stringent CMIM setting, large classes of cryptographic functionalities cannot
be securely implemented round-efficiently, and even cannot be securely implemented with non-constant
round-complexity against adaptive input selecting CMIM adversaries in the plain model [13, 56, 54].
In such cases, some setup assumptions are necessary, and establishing the general feasibility of round-
efficient concurrent non-malleable cryptography with adaptive input selection, with setups as minimal
as possible, has been being a basic problem extracting intensive research efforts in the literature.

In this work, we investigate CNM security in the bare public-key model (introduced by Canetti,
Goldreich, Goldwasser and Micali [12]). A protocol in the BPK model simply assumes that all players
have each deposited a public-key in a public file before any interaction takes place among the users.
Note that, no assumption is made on whether the public-keys deposited are unique or valid (i.e., public
keys can even be “nonsensical,” where no corresponding secret-keys exist or are known) [12]. That is, no
trusted third party is assumed, the underlying communication network is assumed to be adversarially
asynchronous, and preprocessing is reduced to minimally non-interactively posting public-keys in a
public file. In many cryptographic settings, availability of a public key infrastructure (PKI) is assumed
or required and in these settings the BPK model is, both, natural and attractive (note that the BPK
model is, in fact, a weaker version of PKI where in the later added key certification is assumed). It was
pointed out by Micali and Reyzin [59] that BPK is, in fact, applicable to interactive systems in general.

∗The work described in this paper was supported in part by the National Basic Research Program of China Grant (973)
2007CB807900, 2007CB807901, and by a grant from the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project Number CityU 122105) and CityU Research Grant (9380039). The third author is also supported
by a grant from the National Natural Science Foundation of China NSFC (No. 60703091).

†Institute for Theoretical Computer Science (ITCS), Tsinghua University, Beijing, China.
andrewcyao@tsinghua.eud.cn

‡Google Inc. and Columbia University, New York, NY, USA. moti@cs.columbia.edu
§Software School, Fudan University, Shanghai 200433, China. ylzhao@fudan.edu.cn Works partially done while visiting

Tsinghua university and City University of Hong Kong.

1

1.1 Our contributions

We examine concurrent non-malleability in the BPK model, by investigating two types of protocols,
specifically, zero-knowledge (ZK) [44] and coin-tossing (CT) [9], both of which are central and funda-
mental to modern cryptography.

We show the insufficiency of existing CNM formulations in the public-key (not necessarily bare
public-key) model, reformulate CNM zero-knowledge (CNMZK) and CNM coin-tossing (CNMCT) in
the BPK model. The CNMCT definition implies, or serves as a general basis to formulate, the CNM
security for any cryptographic protocol in the BPK model against CMIM with full adaptive input selec-
tion. By CMIM with full adaptive input selection, we mean that the CMIM adversary can set inputs
to all concurrent sessions; furthermore and different from the traditional formulation of adaptive input
selection, the adversary does not necessarily set the input to each session at the beginning of the session;
Rather, the input may be set on the way of the session, and is based on the whole transcript evolution
(among other concurrent sessions and the current session). We motivate the desirability of achieving
CNM security against CMIM with full adaptive input selection, and make in-depth discussions.

We then present a constant-round CNMCT protocol in the BPK model under standard assumptions,
which is enabled by the Pass-Rosen ZK (PRZK) result [67, 68]. The importance of the CNMCT protocol
is that it can be used to transform concurrent non-malleable protocols that are originally developed in
the common random string (CRS) model into the weaker BPK model (with full adaptive input selection).
That is, round-efficient concurrent non-malleable cryptography with full adaptive input selection can
be established with bare public-keys, in general.

For space limitation, discussions on related works are given in Appendix A.

2 Preliminaries

We briefly recall the preliminaries, with details given in Appendix B and C.
The CMIM setting in the BPK model. We briefly describe the CMIM setting in the BPK model

for any two-party protocol 〈L,R〉 with players of fixed roles, where L stands for the left-player (e.g., the
prover) and R stands for the right-player (e.g., the verifier). The formalization can be directly extended
to the general case of interchangeable roles. For more details, the reader is referred to Appendix B.

Each player in the BPK model works in two stages: the key-generation stage in which it generates
and registers a public-key in a public file F ; and the proof stage between two players specified by a
key pair (PKL, PKR) in F . The file F output at the end of the key-generation stage is denoted as:
{PK

(1)
I , PK

(2)
I , · · · , PK

(poly(n))
I } that is to be used and remain intact during the proof stage, where

PK
(j)
I denotes a left-player key if I = L or a right-player key if I = R. We also denote by RI

KEY the
NP-relation validating the key pair (PKI , SKI), i.e., whether SKI is a valid secret-key corresponding
to PKI .

The CMIM adversary A. In the key-generation stage, on 1n and some auxiliary input z ∈ {0, 1}∗
and a pair of honestly generated public-keys (PKL, PKR), A outputs a set of public-keys F ′. Then the
public file F for the proof stage is set to be F ′ ∪ {PKL, PKR}.

In the proof stage, A can concurrently interact with any polynomial number of instances of the
honest left-player of public-key PKL in the left CMIM interaction part. The interactions with each
instance of the honest left-player is called a left session, in which A plays the role of the right-player
with a public-key PK

(j)
R ∈ F ; Simultaneously, A interacts with any polynomial number of instances

of the honest right-player of public-key PKR in the right CMIM interaction part. The interactions
with each instance of the honest right-player is called a right session, in which A plays the role of the
left-player with a public-key PK

(j)
L ∈ F . For CMIM-adversary with adaptive input selection, A can

further set the inputs to left sessions adaptively based on its view (besides adaptively setting inputs to
right sessions).

In all cases, the honest player instances answer messages from A promptly, and use independent
random-tapes in different sessions of the proof stage. The adversary’s goal is to complete a right session

2

such that it would not have done so without involving the CMIM interactions. A CMIM adversary is
called s-CMIM adversary, for a positive polynomial s(·), if the adversary involves, on security parameter
1n, at most s(n) concurrent sessions in each CMIM interaction part and registers at most s(n) public-
keys in F ′.

For any (PKL, SKL) ∈ RL
KEY and (PKR, SKR) ∈ RR

KEY , we denote by view
L(SKL),R(SKR)
A (1n, z, PKL,

PKR) the random variable describing the view of A specific to (PKL, PKR), which includes its random
tape, the auxiliary string z, the (specific) (PKL, PKR), and all messages it receives from the instances
of L(1n, SKL) and R(1n, SKR) in the proof stages.

Building tools. Pseudorandom functions (PRF) can be constructed under any one-way function
(OWF) [40, 38]. A OWF f : {0, 1}∗ → {0, 1}∗ is called linear, if for sufficiently large n and any
x ∈ {0, 1}n |f(x)| = O(n), where |f(x)| denotes the length of f(x).

Non-interactive statistically-binding commitments can be based on any one-way permutation (OWP)
[9, 42]. Practical perfectly-binding non-interactive (string) commitment scheme can be based on the
decisional Diffie-Hellman (DDH) assumptions [31]. A commitment scheme C is called linear, if for
sufficiently large n and any string x ∈ {0, 1}n both |C(x, s)| (i.e., the length of the commitment to x
using random coins s) and |s| (i.e., the length of s) are bounded by O(n). In particular, the perfectly-
binding commitment scheme from [31] is linear.

Very roughly, adaptive tag-based one-left-many-right non-malleable statistical zero-knowledge argu-
ment of knowledge (NMSZKAOK) is non-malleable against any one-left-many-right PPT man-in-the-
middle adversary A who involves one left session with the prover and many right sessions with verifiers;
each session is indexed by a string (called a tag) and A is allowed to set the input and tag to the
left session (besides those of right sessions). Then, the security says that for any PPT one-left-many-
right MIM adversary A, there exists an (expected) polynomial-time simulator S such that S output a
simulated transcript that is statistically indistinguishable from the real view of A; Moreover, for any
successful right session on a input in the simulated transcript w.r.t. a tag different from that of the left
session, a valid NP-witness (to the statement of this session selected adaptively by A) is also extracted.

We note that the Pass-Rosen ZK (PRZK, in short) [67, 68], with some specified length parameters
l(n) where l(·) is a positive polynomial and n is the security parameter, is the only known solution
for constant-round adaptive tag-based one-left-many-right NMSZKAOK. Furthermore, PRZK is public-
coin and can be perfect ZK. In [67, 68], the tag and input length is just specified to be the security
parameter n (in this case, the length parameter is specified to be l(n) ≥ 2n3 + n) and do not explicitly
consider adaptive input and tag selection for the one left-session. But a closer investigation shows that
the PRZK can be extended to work for tags of length O(n) (and inputs of length poly(n)) with length
parameter l(n) ≥ O(n3) (the actual length parameter l(n) is specific to the tag length), and for the
more general case of adaptive left-session tag and input selection.

3 On CMIM with Full Adaptive Input Selection

In the traditional formulation of the CMIM settings (and also the stand-alone MIM settings), there
are two levels of input-selecting capabilities for the CMIM adversary: (1) CMIM with predetermined
left-session inputs, in which the inputs to left sessions are predetermined, and the CMIM adversary
A can only set inputs to right sessions; (2) CMIM with adaptive input selection, in which A can set,
adaptively based on its view, the inputs to both left sessions and right sessions. But, in the traditional
formulation of CMIM, both for CMIM with predetermined left-session inputs and for CMIM with adaptive
input selection, the CMIM adversary A is required (limited) to set the input of each session at the
beginning of that session. We note that this requirement, on input selection in traditional CMIM
formulation, could essentially limit the power of the CMIM adversary in certain natural settings. We
give some concrete examples below.

Consider any protocol resulted from the composition of a coin-tossing protocol and a protocol in the
CRS model. In most often cases, the input to the underlying protocol in the CRS model, denoted the
CRS-protocol for notation simplicity, is also the input to the whole composed protocol. Note that the

3

input to the underlying CRS-protocol can be set after the coin-tossing phase is finished, furthermore,
can be set only at the last message of the composed protocol. We remark that it is true that for
adaptive adversary in the CRS model, it is allowed to set statements based on the CRS. In other words,
mandating the adversary to predetermine the input to the underlying CRS-protocol, without seeing the
output of coin-tossing that serves as the underlying CRS, clearly limits the power of the adversary and
thus weakens the provable security established for the composed protocol.

Another example is the Feige-Shamir-ZK-like protocol [33, 34], which consists of two sub-protocols
(for presentation convenience, we call them verifier’s sub-protocol and prover’s sub-protocol) and the
input of the protocol is only used in the prover’s sub-protocol. The prover can set and prove the
statements in the prover’s sub-protocol, only after the verifier has successfully finished the verifier’s
sub-protocol in which the verifier proves some knowledge (e.g., its secret-key) to the prover. In this
case, the adversary can take advantage of the verifier’s sub-protocol interactions to set and prove
inputs to the subsequent prover’s sub-protocol, especially when the Feige-Shamir-ZK-like protocol is
run concurrently in the public-key model [70]. Again, an adversary, as well as the honest prover, could
set the input to a session only at the last message of the session, for example, considering the prover’s
sub-protocol is the Lapidot-Shamir WIPOK protocol [51]. As demonstrated in [70, 71, 73] and in this
work, letting the adversary adaptively determine inputs, in view of the concurrent executions of the
verifier’s sub-protocol in the public-key model, renders strictly stronger power to the adversary.

In contrast, by CMIM with full adaptive input selection, we mean that a CMIM adversary can set
inputs to both left sessions and right sessions; furthermore (and different from the traditional formulation
of adaptive input selection), the adversary does not necessarily set the input to each session at the
beginning of the session; Rather, the input may be set on the way of the session, and is based on
the whole transcript evolution (among other concurrent sessions and the current session). Though the
adversary is allowed to set inputs at any points of the concurrent execution evolution, whenever at
some point the subsequent activities of an honest player in a session may utilize the input of the session
while the adversary did not provide the input, the honest player just simply aborts the session. Similar
to traditional CMIM with predetermined left-session inputs, we can define CMIM with predetermined left-
session inputs but full adaptive input selection on the right, in which the inputs to left sessions are fixed
and the CMIM adversary only sets inputs to right sessions in the above fully adaptive way.

From above clarifications, we conclude that allowing the CMIM adversary the capability of full
adaptive input selection, in particular not necessarily predetermining the inputs of sessions at the
start of each session, is a more natural formulation (and also more natural scenarios) for cryptographic
protocols to be CNM-secure against CMIM adversaries with adaptive input selection. It renders stronger
capability to the adversary, and thus allows us to achieve stronger provable CNM security. The general
CNM feasibility in the BPK model established in this work is against CMIM with the capability of full
adaptive input selection (and the capability of adaptive language selection for right sessions).

On achieving CNM with full adaptive input selection. We briefly note that no previous ZK
protocols in the BPK model or the plain model were proved to be CNM-secure against even CMIM with
predetermined left-session inputs but full adaptive input selection on the right (i.e., the inputs to left sessions
are predetermined and the CMIM adversary only sets inputs to right sessions in the fully adaptive
way), needless to say to be CNM secure against CMIM with full adaptive input selection. Specifically, the
standard simulation-extraction paradigm for showing CNM security fails, in general, when the CMIM
adversary is allowed the capability of full adaptive input selection.

In more detail, the standard simulation-extraction paradigm for establishing CNM security works
as follows: the simulator first outputs an indistinguishable simulated transcript; and then extracts the
witnesses to (different) inputs of successful right sessions appearing in the simulated transcript, one by
one sequentially, by applying some assured underlying knowledge-extractor. This paradigm can work for
CMIM adversary with the capability of traditional adaptive input selection, as the input to each right
session is fixed at the beginning of the right session; Thus, applying knowledge-extractor on the right
session does not change the statement of the session, which has appeared and is fixed in the simulated
transcript.

But, for CMIM adversary of fully adaptive input selection, the standard simulation-extraction

4

paradigm fails in general in this case. In particular, considering the adversary always sets inputs to right
sessions only at the last message of each right session, such case applies to both of the above illustrated
protocol examples: composing coin-tossing and NIZK, and the Feige-Shamir-ZK-like protocols. In this
case, when we apply knowledge-extractor on a successful right session, the statement of this session will
however also be changed, which means that the extractor may never extract the witness to the same
statement appearing and being fixed in the simulated transcript.

4 Formulating CNMZK in the Public-Key Model, Revisited

In this section, we briefly re-examine, and clarify subtleties of, the formulation of CNMZK in the
public-key model. More details are presented in Appendix D.

Traditional CNMZK formulation roughly is: for any PPT CMIM adversary A, there exists a PPT
simulator/extractor S such that: (1) S outputs a simulated transcript str indistinguishable from the
real view of A. (2) Given str, for any successful right session in str on a common input x̂ different from
those of left sessions, S will also output a valid NP-witness of x̂.

We highlight, motivated by concrete attacks against existing protocols in the BPK model, a key
difference between CNM in the standard model and CNM in the public-key model, which traditional
CNM formulation does not capture. For the CMIM setting in the standard model, honest verifiers
are PPT algorithms. In this case, traditional CNM formulation only considers the extra advantages
the CMIM can get from concurrent left sessions, as the actions of honest verifiers in right sessions can
be efficiently emulated perfectly. But, for the CMIM setting in the public-key model, honest verifiers
possess secret values (i.e, secret-keys) that can not be computed out efficiently from the public-keys.
That is, for protocols in the public-key model, the CMIM adversary can get extra advantages both
from the left sessions and from the right sessions. To emulate the actions of honest verifiers in the
public-key model, we have to allow the simulator/extractor to simulate the key-generation stages of
honest verifiers [73]. Put in other words, in its simulation/extration S actually takes the corresponding
secret-keys of honest verifiers. In this case, as clarified in [73], knowledge-extraction does not guarantee
that the CMIM adversary does indeed “know” the extracted witnesses to successful right sessions.

With the above key difference in mind, we investigate reformulating the CNM notion in the public-
key model. Above all, besides requiring the ability of simulation/extraction, we need to mandate that
for any CMIM-adversary the witnesses extracted for right sessions are “independent” of the secret-keys
used by the simulator/extractor S (who emulates honest verifiers in the simulation/extraction). Such
property is named concurrent non-malleable knowledge-extraction independence (CNMKEI). CNMKEI is
formulated by extending the formulation of concurrent knowledge-extraction (CKE) of [73] into the
more complicated CMIM setting (the CKE notion is formulated with adversaries only interacting with
honest verifiers but without interacting with provers). Roughly, the CNMKEI is formulated as follows.

CNMKEI in the public-key model: We require that for any PPT CMIM-adversary A in the
BPK model, there exists a PPT simulator/extractor S such that the following holds: Pr[R(Ŵ , SKV , str)]
= 1 is negligibly close to Pr[R(Ŵ , SK ′

V , str)] = 1 for any polynomial-time computable relationR, where
SK ′

V is some element randomly and independently distributed over the space of SV , str is the simu-
lated transcript indistinguishable from the real view of A, and Ŵ are the joint witnesses extracted to
successful right sessions in str. Here, for any right session that is aborted (due to CMIM adversary
abortion or verifier verification failure) or is of common input identical to that of one left session, the
corresponding witness to that right session is set to be a special symbol ⊥. We stress that, in the
simulation-extraction, the simulator S only simulates the pair (PKV , SKV) (that is of identical distri-
bution to that of the output of the key-generation stage of the honest verifier), it still uses the same
real public-key PKP of the honest prover without knowing the secret-key SKP (which guarantees the
concurrent ZK implication).

We also remind that our CNMKEI formulation implicitly assumes that verifier’s public-key corre-
sponds to multiple secret-keys, which however can typically be achieved with the common key-pair trick
[63]. In Appendix D.3, we show that existing CNM formulations in the public-key model do not capture

5

CNMKEI. In general, cryptography literature should welcome diversified approaches for modeling and
achieving security goals of cryptographic systems, particularly witnessed by the evolution history of
public-key encryption. The possibility of achieving CNMZK with adaptive input selection in the BPK
model turns out to be quite subtle, as it appears to be in conflict with Lindell’s impossibility results on
concurrent composition with adaptive input selection [56, 54]. A careful investigation shows CNMZK
with full adaptive input selection is still possible in the BPK model. The reader is refer to Appendix
D.3 for more details.

5 Constant-Round CNM Coin-Tossing in the BPK Model

Let 〈L,R〉 be a coin-tossing protocol between a left-player L and a right-player R. We abuse the
notations L and R in this section. Specifically, L stands for the left-player and in some context we
may explicitly indicates L to be a language, R stands for the right-player and in some context we may
explicitly indicates R to be a relation.

To formulate CNMCT in the complex CMIM setting, the rough idea is: for any CMIM adversary
A there exists a PPT simulator S such that: (1) S outputs a simulated transcript str indistinguishable
from the real view of A, together with some state information sta; (2) S can set, at its wish, “random
coin-tossing outputs” for all (left and right) sessions in str, in the sense that S learns the correspond-
ing trapdoor information (included in sta) of the coin-tossing output of each session. Intuitively, such
formulation implies the traditional simulation-extraction CNM security. But, with the goal of trans-
forming CNM cryptography from CRS model into the weaker BPK model in mind, some terms need to
be further deliberated.

Above all, we need require the combination of str and sta should be independent of the secret-key
emulated and used by the simulator. This is necessary to guarantee that A knows what it claims to
know in its CMIM attack.

Secondly, we should mandate the ability of online setting coin-tossing outputs of all sessions appear-
ing in str, in the sense that S sets the coin-tossing outputs and the corresponding trapdoor information
(encoded in sta) in an online way at the same time of forming the str. This is critical to guarantee
CNM security against CMIM with full adaptive input selection.

Finally, we need to make clear the meaning of “random coin-tossing outputs”. One formulation is to
require that all coin-tossing outputs are independent random strings. Such formalization rules out the
natural copying strategy by definition, and thus is too strong to capture naturally secure protocols. On
the other hand, in order to allow the copying strategy to the CMIM, an alternative relaxed formulation
is to only require that the coin-tossing output of each individual session is random. But, this alternative
formalization is too week to rule out naturally insecure protocols (for instance, consider that the CMIM
manages to set the outputs of some sessions to be maliciously correlated and even to be identical).
The right formulation should essentially be: the coin-tossing output of each left (resp., right) session is
either independent of the outputs of all other sessions OR copied from the output of one right (resp.,
left) session on the opposite CMIM part; furthermore, the output of each session in one CMIM part can
be copied into the opposite CMIM part at most once.

Legitimate CRS-simulating algorithm MCRS. Let (r, τr) ←− MCRS(1n), where MCRS is a
PPT algorithm. The PPT algorithmMCRS is called a legitimate CRS-simulating algorithm with respect
to a polynomial-time computable CRS-trapdoorness validating relation RCRS , if the distribution of its
first output, i.e., r, is computationally indistinguishable from Un (the uniform distribution over strings of
length n), andRCRS(r, τr) = 1 for all outputs ofMCRS (typically, τr is some trapdoor information about
r). For a positive polynomial s(·), we denote by ({r1, r2, ·, rs(n)}, {τr1 , τr2 , · · · , τrs(n)

}) ←−Ms(n)
CRS(1n) the

output of the experiment of running MCRS(1n) independently s(n) times, where for any i, 1 ≤ i ≤ s(n),
(ri, τri) denotes the output of the i-th independent execution of MCRS .

MCRS trivially achievable distribution. Let G be a set of pairs of integers {(i1, j1), (i2, j2), · · · ,
(it, jt)}, where 1 ≤ i1 < i2 < · · · < it ≤ s(n) and 1 ≤ j1, j2, · · · , jt ≤ s(n) are distinct inte-
gers, and 0 ≤ t ≤ s(n) such that G is defined to be the empty set when t = 0. Let Ms,n,G be

6

the probability distribution over ({0, 1}n)2s(n), obtained by first generating 2s(n) − t n-bit strings
{xm, yk|m ∈ {1, 2, · · · , s(n)}, k ∈ {1, 2, · · · , s(n)} − {j1, j2, · · · , jt}}, by running M(1n) independently
2s(n)− t times, and then defining yjd

= xid for 1 ≤ d ≤ t and taking (x1, x2, · · · , xs(n), y1, y2, · · · , ys(n))
as the output. A probability distribution over ({0, 1}n)2s(n) is called M-trivially achievable, if it is a
convex combination of Us,n,G over all G’s.

Definition 5.1 (concurrently non-malleable coin-tossing CNMCT) Let Π = 〈L,R〉 be a two-
party protocol in the BPK model, where L = (LKEY , LPROOF) and R = (RKEY , RPROOF). We say
that Π is a concurrently non-malleable coin-tossing protocol in the BPK model w.r.t. some key-validating
relations RL

KEY and RR
KEY , if for any PPT s(n)-CMIM adversary A in the BPK model there exists a

probabilistic (expected) polynomial-time algorithm S = (SKEY , SPROOF) such that, for any sufficiently
large n, any auxiliary input z ∈ {0, 1}∗, any PPT CRS-simulating algorithm MCRS and any polynomial-
time computable (CRS-trapdoor validating) relation RCRS, and any polynomial-time computable (SK-
independence distinguishing) relation R (with components drawn from {0, 1}∗∪{⊥}), the following hold,
in accordance with the experiment ExptCNMCT(1n, z) described below:

ExptCNMCT(1n, z)

Honest left-player key-generation:
(PKL, SKL) ←− LKEY (1n). Denote by KL the set of all legitimate public-keys generated by
LKEY (1n). Note that the execution of LKEY is independent from the simulation below. In
particular, only the public-key PKL is passed on to the simulator.

The simulator S = (SKEY , SPROOF):
(PKR, SKR, SK ′

R) ←− SKEY (1n), where the distribution of (PKR, SKR) is identical with
that of the output of the key-generation stage of the honest right-player R (i.e., RKEY),
RR

KEY (PKR, SKR) = RR
KEY (PKR, SK ′

R) = 1 and the distributions of SKR and SK ′
R are

identical and independent.

(str, sta) ←− S
A(1n, PKL, PKR, z)
PROOF (1n, z, PKL, PKR, SKR). That is, on inputs

(1n, z, PKL, PKR, SKR) and with oracle access to A(1n, PKL, PKR, z) (by providing
random coins to A and running A as a subroutine), the simulator S outputs a simulated
transcript str and some state information sta. Denote by RL = {R(1)

L , R
(2)
L , · · · , R

(s(n))
L }

the set of outputs of the s(n) left sessions in str and by RR = {R(1)
R , R

(2)
R , · · · , R

(s(n))
R } the

set of outputs of the s(n) right sessions in str. The state information sta consists, among
others, of two sub-sets (of s(n) components each): staL = {sta(1)

L , sta
(2)
L , · · · , sta

(s(n))
L } and

staR = {sta(1)
R , sta

(2)
R , · · · , sta

(s(n))
R)}. Note that S does not know secret-key SKL of honest left

player, that is, S can emulate the honest left-player only from its public-key PKL.

For any z ∈ {0, 1}∗, we denote by S(1n, z) the random variable str (in accordance with
above processes of LKEY , SKEY , and SPROOF). For any z ∈ {0, 1}∗, any PKL ∈ KL and
(PKR, SKR) ∈ RR

KEY , we denote by S(1n, z, PKL, PKR, SKR) the random variable S(1n, z)
specific to (PKL, PKR, SKR).

• Simulatability. The following ensembles are indistinguishable:
{S(1n, z, PKL, PKR, SKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗ and

{view
L(SKL),R(SKR)
A (1n, z, PKL, PKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗ (defined in accordance

with the experiment ExptACMIM (1n, z) depicted in Section 2). This in particular implies that the
probability ensembles {S(1n, z)}1n,z∈{0,1}∗ and {viewA(1n, z)}1n,z∈{0,1}∗ are indistinguishable.

• Strategy-restricted and predefinable randomness. With overwhelming probability, both the
distribution of (RL, staL) and that of (RR, staR) are identical to the distribution of Ms(n)

CRS(1n);
furthermore, the distribution of (RL, RR) is M-trivially achievable.

7

• Secret-key independence. |Pr[R(SKR, str, sta) = 1]− Pr[R(SK ′
R, str, sta) = 1]| is negligible.

The probabilities are taken over the randomness of S in the key-generation stage (i.e., the randomness
for generating (PKR, SKR, SK ′

R)) and in all proof stages, the randomness of LKEY , the randomness
of MCRS, and the randomness of A.

On the ability of online setting all coin-tossing outputs and its implication of CNM
security against CMIM of full adaptive input selection. Note that in the above CNMCT formulation,
the simulator S not only outputs a simulated transcript that is indistinguishable from the real view
of the CMIM adversary, but also, S sets and controls, at the same time in an online way, the coin-
tossing outputs of all left and right sessions in the simulated transcript (in the sense that S knows
the corresponding trapdoor information of all the coin-tossing outputs appearing in the simulated
transcript). This ability of S plays several essential roles: Firstly, setting the outputs of all CNMCT
sessions (at its wish in an online way) is essential, in general, to transform CNM cryptography in the
CRS model into the BPK model, as in the security formulation and analysis of CNM protocols in the
CRS model the simulator does control and set all simulated CRS; Secondly, such ability of S is critical
for obtaining CNM security against CMIM with full adaptive input selection, which is addressed below.

For more detailed clarifications about this issue, consider a protocol (e.g., a ZK protocol) that is
resulted from the composition of a coin-tossing protocol in the BPK model and a protocol (e.g., an
NIZK protocol) in the CRS model, and assume the CMIM adversary sets input to each session of the
composed protocol at the last message of that session. In particular, the input to each session can
be an arbitrary function of the coin-tossing output and will be different with respect to different coin-
tossing outputs. Now, suppose the simulator/extractor cannot set the coin-tossing outputs of all right
sessions in an online way ; That is, for some (at least one) successful right sessions in the simulated
transcript, the simulator fails in setting the coin-tossing outputs of these sessions, and thus learning no
trapdoor information enabling on-line knowledge-extraction. In case the inputs of these right sessions
do not appear as inputs of left sessions, then, in order to extract witnesses to the inputs of such
successful right sessions appeared in the simulated transcript, the simulator/extractor has to rewind the
CMIM adversary and manages to set, one by one sequentially, the coin-tossing outputs of these right
sessions. But, the problem is: whenever the simulator/extractor is finally able to set (if it is possible),
at its wish, the output of a right session in question, the input to that right session set by the CMIM
adversary is however changed (as it is determined by the output of coin-tossing). This means that
the simulator/extractor may never be able to extract the witnesses to all the inputs of successful right
sessions appeared in the simulated transcript. The above arguments also apply to Feige-Shamir-ZK-like
protocols as illustrated in Section 3. We remark that, it is the ability of online setting the outputs of
all coin-tossing sessions, in our CNMCT formulation and security analysis, that enables us to obtain
CNM security against CMIM of full adaptive input selection.

On the generality of CNMCT. We first note that CNMCT in the BPK model actually implies,
or serves as the basis to formulate, concurrent non-malleability with full adaptive input selection for
any cryptographic protocols in the BPK model. The reason is: concurrent non-malleability for any
functionality can be implemented in the common random string model [21, 14]. By composing any
concurrent non-malleable cryptographic protocol in the CRS model with a CNMCT protocol in the
BPK model, with the output of CNMCT serving as the common random string of the underlying
CNM-secure protocol in the CRS model, we can transform it into a CNM-secure protocol in the BPK
model. In particular, we can view the composed protocol as a special (extended) coin-tossing protocol.

With CNMZK as an illustrative example, when composed with adaptive non-malleable NIZKAOK
(e.g., the robust NIZK of [21] for NP), CNMCT implies (tag-based) CNMZKAOK (for NP) with full
adaptive input selection in the BPK model. But, we do not need to explicitly formulate the (adaptive
input-selecting) CNM security for ZK protocols in the BPK model. Specifically, we can view the
composed protocol (of CNMCT and robust NIZK) as a special version of coin-tossing and note that
in this case (str, τ) implies knowledge-extraction. Then, the properties of simulatability and strategy-
restricted and predetermined randomness of CNMCT implies simulation-extraction, by viewing MCRS

8

as the CRS simulator of the underlying NMNIZK. The secret-key independent knowledge extraction is
derived from the property of secret-key independence of CNMCT.

5.1 Implementation and analysis of constant-round CNMCT in the BPK model

High-level overview of the CNMCT implementation. We design a coin-tossing mechanism in
the BPK model, which allows each player to set the coin-tossing output whenever it learns its peers’s
secret-key. The starting point is the basic Blum-Lindell coin-tossing [9, 52]: the left-player L commits a
random string σ, using randomness sσ, to c = C(σ, sσ) with a statistically-binding commitment scheme
C; The right-player R responds with a random string rr; L sends back r = σ ⊕ rl and proves the
knowledge of (σ, sσ). To render the simulator the ability of online setting coin-tossing outputs against
malicious right-players, R proves its knowledge of its secret-key SKR (using the key-pair trick of [63]),
and L accordingly proves the knowledge of either (σ, sσ) or SKR. To render the ability of online setting
coin-tossing outputs against malicious left-players, L registers c = C(σ, sσ) as its public-key and treats
σ as the seed of a pseudorandom function PRF; L then sends r′l that commits to rl = PRFσ(r′l);
after receiving rr from R, it returns back r = rl ⊕ rr and proves the knowledge of either its secret-key
SKL = (σ, sσ) (such that r = rr ⊕ PRFσ(r′l)) or the right-player’s secret-key SKR. The underlying
proof of knowledge is implemented with PRZK. But, correct knowledge-extraction with bare public-keys
in the complex CMIM setting is quite subtle. At a very high level, the correct knowledge extraction, as
well as the CNM security, is reduced to the one-left-many-right non-malleability of PRZK.

The constant-round CNMCT protocol 〈L,R〉 in the BPK model, is depicted in Figure 1 (page 10).
Here, for presentation simplicity, we often write L and R to denote the left and right players directly
without explicitly indicating the key-generation algorithm and the proof algorithm (which are implicitly
clear from the context). Note that the PRZK is used as a building tool and is composed with other
sub-protocols in the protocol, and that the left-tag of PRZK in Stage-5 is set interactively. The actual
statements to be proved by commit-then-PRZK and PRZK (in Stage-1 and Stage-5) are got by applying
NP-reductions, while the tags remaining the same. Note that the tags of the underlying PRZK in Stage-
1 and Stage-5 can be equal, both of which are O(n) as both the OWF f and the statistically-binding
commitment scheme C are required to be linear. For PRZK to work with the CNMCT construction,
we should require the length parameter l(n) ≥ O(n3) which are specific to the underlying tools f and
C (in particular, l(n) = n4 sufficies for this work).

Theorem 5.1 Under linear OWF, (non-interactive) linear statistically-binding commitments, and PRZK,
the protocol Π = 〈L,R〉 depicted in Figure 1 is a constant-round CNMCT protocol in the BPK model.

The proof details of Theorem 5.1 is presented in Appendix E. We present the analysis outline below.
The (high-level) description of the CNM simulation. For any s-CMIM adversary A in the

BPK model, consider a mental simulator M who, on input (1n, z, PKL, PKR, SKR, F ′), additionally
knows secret-keys corresponding to all public-keys registered by A in F ′. For any i, 1 ≤ i ≤ s(n),
in the i-th left-session w.r.t. a (right-player) public-key PK

(j)
R ∈ F = F ′ ∪ {PKL, PKR}, the Stage-4

message r(i) and the state-information are set to be (S(i)
L , τ

(i)
L) by running the CRS-simulating algorithm

MCRS(1n); then M commits the secret-key SK
(j)
R (assumed known to it) to c

(i)
crs and finishes the PRZK

with SK
(j)
R as the witness in Stage-5. For the i-th right-session w.r.t. PK

(j)
L (with SK

(j)
L = (σ(j), s

(j)
σ)),

after receiving Stage-2 message r̃
(i)′
l , M runs MCRS(1n) to get the output denoted (S(i)

R , τ
(i)
R), sends

r
(i)
r = PRFσ(j)(r̃(i)′

l)⊕S
(i)
R at Stage-3. Here, the notation of m denotes a message sent by the simulator

(emulating honest players), and m̃ denotes the arbitrary message sent by A. To build up the simulator
S from scratch, we resort to the key-coverage techniques of [12, 5, 41]. Specifically, S(sb) with simulated
SKR = sb, works in at most s(n) + 1 repetitions. In each simulation repetition, it either successfully
finishes the simulation or “covers” a new public-key. But, key-coverage in the complex CMIM setting
with bare public-keys turns out to be much more complicated and subtler.

The CNM simulation is described in Figure 2 (page 34). Note that in Case-R2 of right-session
simulation w.r.t. the uncovered left-player key PK

(j)
L = PKL, S does not try to extract the secret-key

9

Right-player key registration: Let f : {0, 1}∗ → {0, 1}∗ be a linear one-way function. On a security
parameter n, the right-player R (actually RKEY) randomly selects s0, s1 from {0, 1}n, computes y0 =
f(s0), y1 = f(s1). R publishes PKR = (y0, y1) as its public-key, and keeps SKR = sb as its secret-
key for a random bit b ∈ {0, 1} while discarding SK ′ = s1−b. Define RR

KEY = {((y0, y1), x)|y0 =
f(x) ∨ y1 = f(x)}, and KR the corresponding NP-language.

Left-player key registration: Let C be a non-interactive statistically-binding linear commitment
scheme. Each left-player L (actually LKEY) selects σ ∈ {0, 1}n and sσ ∈ {0, 1}poly(n) uniformly
at random, computes c = C(σ, sσ) (i.e., committing to σ using randomness sσ). Set PKL = c
and SKL = (σ, sσ), where σ serves as the random seed of a pseudorandom function PRF . Define
KL = {c|∃(x, s) s. t. c = C(x, s)}.

Stage-1. The right-player R (actually RPROOF) computes and sends csk = C(SKR, ssk), where C is the
statistically-binding commitment scheme and ssk is the randomness used for commitment; Define
LSK = {((y0, y1), csk)|∃(ssk, SK) s.t. csk = C(SK, ssk) ∧ (y0 = f(SK) ∨ y1 = f(SK))}. Then, R
proves to the left-player L the knowledge of (SKR, ssk) such that ((PKR, csk), (SKR, csk)) ∈ RLSK

,
by running the Pass-Rosen non-malleable ZK (PRZK) for NP with the tag set to be (PKL, PKR =
(y0, y1)) that is referred to as the right tag. The composed protocol of statistically-binding commit-
ment and PRZK is called commit-then-PRZK.

Stage-2. The left player L (actually LPROOF) randomly selects r′l ← {0, 1}n, and sends r′l to R.

Stage-3. The right player R randomly selects rr ← {0, 1}n and sends rr to the left player.

Stage-4. The left player computes rl = PRFσ(r′l) (where σ is the random seed of PRF committed in L’s
public-key PKL), and sends r = rl ⊕ rr to the right player.

Stage-5. L computes and sends ccrs = C(σ||sσ, scrs), where “||” denotes the operation of string con-
catenation. Define LCRS = {(PKL = C(σ, sσ), PKR = (y0, y1), r′l, rr, r, ccrs)|∃(x, s, scrs) s.t. ccrs =
C(x||s, scrs)∧ [(PKL = C(x, s)∧PRFx(r′l) = r⊕ rr)∨y0 = f(x)∨y1 = f(x)]}. Then, L proves to R
the knowledge (σ, sσ, scrs) such that ((PKL, PKR, r′l, rr, r, ccrs), (σ, sσ, scrs)) ∈ RLCRS , by running
the PRZK for NP with the tag set to be (PKL, rr, r) that is referred to as the left tag. That is, L
proves to R that either the value committed in ccrs is SKL = (σ, sσ) such that PRFσ(r′l) = r⊕rr OR
the n-bit prefix of the committed value is the preimage of either y0 or y1. W.l.o.g., we can assume
the left-tag (PKL, rr, r) and the right-tag (PKL, y0, y1) are of the same length (e.g., f is simply a
one-way permutation).

The result of the protocol is the string r. We will use the convention that if one of the parties aborts (or
fails to provide a valid proof) then the other party determines the result of the protocol.

Figure 1: Constant-round CNMCT in the BPK model

of PKL. In the following analysis, we show that in this case, with overwhelming probability, the tag
of Stage-5 of this successful right session is identical to that of Stage-5 of a left-session. As the tag
of Stage-5 of a session consists of the session output (i.e., the coin-tossing output), this implies that
the session output of the right-session is identical to that of one of left-sessions. Moreover, we show
that with overwhelming probability each left-session output can appear, as session output, in at most
one successful right-session. In the unlikely event that A finishes a right session and the Stage-1 of
a left-session simultaneously, both of which are w.r.t. uncovered public-keys, extracting SKR in left
simulation part takes priority.

Simulatability. Assuming truly random first output of MCRS (the analysis to the pseudorandom
case is direct), there are two differences between the output of the mental simulator M and the real view
of A: (1) Truly random (in simulation) vs. pseudorandom (in real execution) Stage-4 messages of left-
sessions. The distinguishable gap caused by such difference can be ruled out, using hybrid arguments,
by the pseudorandomness of PRF and the hiding property of PKL that commits to the seed of PRF; (2)
Witness difference in Stage-5 of left sessions: M always uses the (right-player) secret-key SK

(j)
R , while

the honest left-player L always uses SKL in real execution. The second difference can be ruled out,
using hybrid arguments, by the regular WI property of commit-then-PRZK. For the simulator S(sb)
from scratch with key-coverage, the subtle point here is: the value extracted from successful Stage-5

10

External honest left-player key-generation: Let (PKL, SKL) ←− LKEY (1n), where PKL = c and
SKL = (σ, sσ) such that σ ∈ {0, 1}n and sσ ∈ {0, 1}t(n) and c = C(σ, sσ). This captures the fact that S
does not know SKL and can emulate the honest left-player with the same public-key PKL.

Public-key file generation:
SKEY (1n) perfectly emulates the key-generation stage of the honest right-player, getting PKR =
(y0 = f(s0), y1 = f(s1)) and SKR = sb and SK ′

R = s1−b for a random bit b. Then, SKEY runs
A(1n, PKL, PKR, z) to get (F ′, τ), where F ′ is a set of at most s(n) public-keys and τ is the state
information to be used by the proof stage of A. The public-key file to be used in the proof-stage is
F = F ′ ∪ {PKL, PKR}.
S ← {(PKR, SKR)} (i.e. initiate the set of covered keys S to be {(PKR, SKR)}).
On input (1n, F ′, PKL, PKR, SKR, τ) and running A(PKL, PKR, F ′, τ) as a subroutine, the fol-
lowing process is run by SPROOF repeatedly at most s(n) + 1 times. In each simulation repetition, S
uses fresh randomness and tries to either end with a successful simulation or cover a new public-key in F−S.

Straight-line left simulation:
In the i-th left concurrent session (ordered by

the time-step in which the first round of each
left-session is played) between S and A in the
left CMIM interaction part w.r.t. a public-key
PK

(j)
R = (y(j)

0 , y
(j)
1) ∈ KR, 1 ≤ i, j ≤ s(n), S acts

as follows:

In case A successfully finishes Stage-1 and
PK

(j)
R ∈ F ′ − S, the simulator ends the

current repetition of simulation trial, and
starts to extract a secret-key SK

(j)
R such that

RR
KEY (PK

(j)
R , SK

(j)
R) = 1, which is guaranteed

by the AOK property of PRZK. Then, let S ←
S ∪ {(PK

(j)
R , SK

(j)
R)}, and move to the next rep-

etition (with the accumulated covered-key set S
and the same public-key file F).

In case A successfully finishes Stage-1 and
PK

(j)
R ∈ S (i.e., S has already learnt the secret-

key SK
(j)
R), S randomly selects r

(i)′
l ← {0, 1}n

and sends r
(i)′
l to A at Stage-2. After receiv-

ing Stage-3 message, denoted r̃
(i)
r , from A, S in-

vokes MCRS(1n) and gets the output denoted
(S(i)

L , τ
(i)
L). S then sends r(i) = S

(i)
L as the

Stage-4 message (rather than sending back r(i) =
PRFσ(r(i)′

l)⊕ r̃
(i)
r as the honest left-player does),

and sets sta
(i)
L = τ

(i)
L . In Stage-5, S computes

and sends c
(i)
crs = C(SK

(j)
R ||0t(n), s

(i)
crs) to A (rather

than sending back c
(i)
crs = C(σ||sσ) as the honest

left-player does), where t(n) is the length of sσ in
SKL. Finally, S finishes the PRZK of Stage-5 with
(SK

(j)
R , s

(i)
crs) as its witness and (PKL, r̃

(i)
r , S

(i)
L) as

the tag.

Straight-line right simulation:
In the i-th right concurrent session (ordered by the
time-step in which the first round of each right-session is
played) between S and A in the right CMIM interaction
part with respect to a public-key PK

(j)
L = c(j) ∈ KL,

1 ≤ i, j ≤ s(n), S acts as follows:

S perfectly emulates honest right-player in Stage-1 of
any right session, with SKR as the witness to commit-
then-PRZK and (PK

(j)
L , PKR) as the tag.

Case-R1: If PK
(j)
L ∈ S (i.e., S has already learnt

the secret-key SK
(j)
L = (σ(j), s

(j)
σ)), after receiving r̃

(i)′
l

from A at Stage-2, S runs MCRS(1n) and gets the out-
put denoted (S(i)

R , τ
(i)
R), and then computes and sends

PRFσ(j)(r̃(i)′
l) ⊕ S

(i)
R as Stage-3 message, and goes fur-

ther as the honest right-player does.
Case-R2: If PK

(j)
L 6∈ S ∪ {PKL}, and A successfully

finishes the i-th right session (in which S just perfectly
emulates the honest right-player of PKR), then the
simulator S ends the current repetition of simulation
trial, and starts to extract a secret-key SK

(j)
L such that

RL
KEY (PK

(j)
L , SK

(j)
L) = 1. In case S fails to extract

such SK
(j)
L , S stops the simulation, and outputs a special

symbol ⊥ indicating simulation failure. Such simulation
failure is called Case-R2 failure. In case S successfully
extracts such SK

(j)
L , then let S ← S ∪{(PK

(j)
L , SK

(j)
L)},

and move to the next repetition. If PK
(j)
L = PKL, S

just works as the honest right-player does.

Setting staR: For successful i-th right session, if the
Stage-4 message r̃(i) is S

(i)
R or S

(k)
L for some k, 1 ≤ k ≤

s(n), then sta
(i)
R is set accordingly to τ

(i)
R or τ

(k)
L ; other-

wise, sta
(i)
R is set to be ⊥.

Figure 2: The CNM simulation

of a right session w.r.t. PK
(j)
L , by the argument of knowledge (AOK) of PRZK, may not necessarily

be SK
(j)
L , but may possibly be the preimage of yb = f(sb) (due to the one-wayness of y1−b, the value

extracted cannot be the preimage of y1−b). This is called key-coverage failure (i.e., the Case-R2 failure

11

Figure 3). All left is to show key-coverage failure occurs with negligible probability.
We first present some observations on commit-then-PRZK with restricted input selection and in-

distinguishable auxiliary information. Consider the following experiments: EXPT(1n, wb, auxb), where
wb ∈ {0, 1}n for b ∈ {0, 1}. In EXPT(1n, wb, auxb), the commit-then-PRZK for NP is run concurrently,
and an m-CMIM adversary A for some polynomial m(·), possessing auxiliary information auxb, can set
the inputs and tags to prover instances in left sessions with the restriction: for any xi, 1 ≤ i ≤ m(n), set
by A for the i-th left session, the fixed value wb is always a validNP-witness. Denote by transb the tran-
script of the experiment EXPT(1n, wb, auxb), and by Ŵ b = {ŵb

1, · · · , ŵb
s(n)} the witnesses encoded (de-

termined) by the statistically-binding commitments (at the beginning) of successful right sessions (of the
commit-then-PRZK) in transb with tags different from those of left-sessions. By a series of hybrid argu-
ments, we can get: if {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and {aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n are indistinguish-
able, the ensembles {(trans0, Ŵ 0)} and {(trans1, Ŵ 1)}, indexed by {n ∈ N,w0 ∈ {0, 1}n, w1 ∈ {0, 1}n},
are also indistinguishable.

Denote by Ck
b the set of covered key-pairs, corresponding to public-keys in F −{PKR}, which is used

by S(1n, sb) in its k-th simulation repetition. Note that Cb does not include the simulated (PKR, SKR)
now. The key observation here is: by viewing the messages involving SKR = sb from S in the simulation
(in Stage-1 of right sessions, or Stage-5 of left sessions in case A impersonates the honest right-player
of PKR) as from the instances of the prover P (1n, sb) of commit-then-PRZK, the k-th simulation
repetition actually amounts to the experiment of EXPT(1n, wb, auxb), with wb set to be sb and auxb

set to be Ck
b . By inductive steps, we can get {Ck

0}n,s0,s1 and {Ck
1}n,s0,s1 are indistinguishable, for any

k, 1 ≤ k ≤ s(n) + 1. Suppose key-coverage failure occurs in the successful i-th right session w.r.t. an
uncovered PK

(j)
L during the k-th simulation repetition, by the tag-setting mechanism, the Stage-5 tag

used by A in the i-th right session must be distinct (i.e., different from all tags used by the simulator
for Stage-1 of right sessions and Stage-5 of left sessions). This means that the value committed to c̃

(i)
crs,

and extracted efficiently, cannot be the preimage of yb, from which key-coverage failure is ruled out.
Secret-key independence. For any pair (s0, s1) in the (simulated right-player) key-generation

stage, denote by (strb, stab) the output of S(1n, sb) with SKR = sb. Suppose the secret-key inde-
pendence property does not hold, there must exist a bit α ∈ {0, 1} such that the difference between
Pr[R(sα, str0, sta0) = 1|S uses s0 in generating (str0, sta0)] and Pr[R(sα, str1, sta1) = 1|S uses s1 in
generating (str1, sta1)] is non-negligible. This implies (sα, str0, sta0) and (sα, str1, sta1) are distinguish-
able. But, note that the preceding analysis has already established that the ensembles {(str0, sta0)}
and {(str1, sta1)}, indexed by {n ∈ N, s0 ∈ {0, 1}n, s1 ∈ {0, 1}n}, are indistinguishable.

Strategy-restricted and predefinable randomness. This is essentially to show, with over-
whelming probability, for any i, the output of the successful i-th right session w.r.t. PK

(j)
L is either S

(i)
R

or S
(k)
L for some k, 1 ≤ i, k ≤ s(n); furthermore, any left-session output S

(k)
L can be the output for at

most one successful right session.
As key-coverage failure occurs with negligible probability, we get PK

(j)
L ∈ Cb ∪{PKR, PKL}, where

Cb is the set of extracted-keys (corresponding to public-keys in F − {PKR}) used by S(sb) in its last
simulation repetition.

If PK
(j)
L = PKL, the Stage-5 tag of the successful i-th right session must be identical to that of

Stage-5 of a left session, which means the coin-tossing output is identical to the output of the left-session
(note that each Stage-5 tag contains coin-tossing output of the session). Otherwise (i.e., the Stage-5
tag of the i-th right session is different from Stage-5 tags of all left-sessions), the Stage-5 tag of the
i-th right session is distinct, which violates one of the following (by considering the possibilities of the
value committed to c̃

(i)
crs that can be efficiently extracted): one-wayness of PKL (note S never uses SKL

in simulation), one-wayness of y1−b, the one-left-many-right non-malleability of PRZK; For the case
of PK

(j)
L 6= PKL (recall Stage-5 tags of left sessions always include PKL), similar analysis shows the

coin-tossing output is either S
(i)
R or S

(k)
L for some k.

Finally, suppose there are two successful right sessions of the same left-session output S
(k)
L , one of

the two sessions, referred to as the ib-th session, must be of distinct Stage-5 tag, which implies the

12

public-key PK
(j)
L used by A in that session is covered and is not PKL (as any right-session w.r.t. PKL

is of a tag identical to that of one left-session). For the value committed to c̃
(ib)
crs (at the beginning of

Stage-5 of the ib-th right session), we can show it is neither SK
(j)
L (as, otherwise, the NP-statement

successfully proved by PRZK in the Stage-5 of the ib-th right session is actually false) nor the preimage
of y1−b (due to the one-wayness of f); Also, the value committed to c̃

(ib)
crs cannot be the preimage of yb

(by the one-left-many-right non-malleability of PRZK). Contradiction is reached in either case.

Acknowledgments. The third author thanks Rafael Pass and Alon Rosen for many helpful discussions.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In IEEE Symposium on Founda-
tions of Computer Science, pages 106-115, 2001.

[2] B. Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realizing the Shared
Random String Model. In IEEE Symposium on Foundations of Computer Science, pages , 2002.

[3] B. Barak, R. Canetti, J. B. Nielsen and R. Pass. Universally Composable Protocols with Relaxed
Set-Up Assumptions. In IEEE Symposium on Foundations of Computer Science, pages 186-195,
2004.

[4] B. Barak and O. Goldreich. Universal Arguments and Their Applications. InIEEE Conference on
Computational Complexity, pages 194-203, 2002.

[5] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-Knowledge and Its
Applications. In IEEE Symposium on Foundations of Computer Science, pages 116-125, 2001.

[6] B. Barak, M. Prabhakaran and A. Sahai. Concurrent Non-Malleable Zero-Knowledge In IEEE
Symposium on Foundations of Computer Science, 2006.

[7] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In E. F. Brickell (Ed.): Advances
in Cryptology-Proceedings of CRYPTO 1992, LNCS 740, pages 390-420. Springer-Verlag, 1992.

[8] M. Bellare and O. Goldreich. On Probabilistic versus Deterministic Provers in the Definition of
Proofs Of Knowledge. Electronic Colloquium on Computational Complexity, 13(136), 2006.

[9] M. Blum. Coin Flipping by Telephone. In proc. IEEE Spring COMPCOM, pages 133-137, 1982.

[10] M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proceedings of the International
Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1444-1451.

[11] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
IEEE Symposium on Foundations of Computer Science, pages 136-145, 2001.

[12] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge. In ACM
Symposium on Theory of Computing, pages 235-244, 2000.

[13] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires
Ω̃(log n) Rounds. In ACM Symposium on Theory of Computing, pages 570-579, 2001.

[14] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and Multi-
Party Secure Computation. In ACM Symposium on Theory of Computing, pages 494-503, 2002.

[15] R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and Simplified Design of
Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances in Cryptology-Proceedings of CRYPTO
1994, LNCS 839, pages 174-187. Springer-Verlag, 1994.

13

[16] I. Damg̊ard. On the Existence of Bit Commitment Schemes and Zero-Knowledge Proofs. In G.
Brassard (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS 435, pages 17-27.
Springer-Verlag, 1989.

[17] I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In B. Preneel
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2000, LNCS 1807, pages 418-430.
Springer-Verlag, 2000.

[18] I. Damgard. On Σ-protocols. A lecture note for the course of Cryptographic Protocol Theory at
Aarhus University, 2003. Available from: http://www.daimi.au.dk/∼ivan/CPT.html

[19] I. Damgard and J. Groth. Non-interactive and reusable non-malleable commitment schemes. In
ACM Symposium on Theory of Computing, pages 426-437, 2003.

[20] I. Damgard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding Bit Commit-
ment Schemes and Fail-Stop Signatures. Journal of Cryptology, 10(3): 163-194, 1997. Preliminary
version appears in Crypto 1993.

[21] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-Interactive
Zero-Knowledge. In J. Kilian (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS
2139, pages 566-598. Springer-Verlag, 2001.

[22] Y. Deng, G. Di Crescenzo, and D. Lin. Concurrently Non-Malleable Zero-Knowledge in the Au-
thenticated Public-Key Model. Cryptology ePrint Archive, Report No. 2006/314, September 12,
2006.

[23] G. Di Crescenzo and I. Visconti. Concurrent Zero-Knowledge in the Public-Key Model. In L.
Caires et al. (Ed.): ICALP 2005, LNCS 3580, pages 816-827. Springer-Verlag, 2005.

[24] G. Di Crescenzo and I. Visconti. On Defining Proofs of Knowledge in the Bare Public-Key Model.
In ICTCS, 2007.

[25] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment. In
ACM Symposium on Theory of Computing, pages 141-150, 1998.

[26] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Non-Interactive Non-Malleable
Commitments. In B. Pfitzmann (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2001,
LNCS 2045, pages 40-59. Springer-Verlag, 2001.

[27] G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-Processing. In M. J.
Wiener (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1999, LNCS 1666, pages 485-502.
Springer-Verlag, 1999.

[28] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. In ACM Symposium on Theory
of Computing, pages 542-552, 1991.

[29] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Symposium on Theory of
Computing, pages 409-418, 1998.

[30] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints.
In H. Krawczyk (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1998, LNCS 1462, pages
442-457. Springer-Verlag, 1998.

[31] T. El Gamal. A Public-Key Cryptosystem and Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, 31: 469-472, 1985.

14

[32] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D. Thesis, Department
of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel,
1990. Available from: http://www.wisdom.weizmann.ac.il/∼feige.

[33] U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In G. Brassard (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS 435, pages 526-544. Springer-Verlag,
1989.

[34] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D Thesis, Weizmann
Institute of Science, 1990.

[35] U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols. In ACM Sym-
posium on Theory of Computing, pages 416-426, 1990.

[36] U.Feige, D. Lapidot and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under Gen-
eral Assumptions. SIAM Journal on Computing, 29(1): 1-28, 1999.

[37] M. Fischlin and R. Fischlin. Efficient Non-Malleable Commitment Schemes. In M. Bellare (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 2000, LNCS 1880, pages 413-431. Springer-
Verlag, 2000.

[38] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University Press, 2001.

[39] O. Goldreich. Foundations of Cryptography-Basic Applications. Cambridge University Press, 2002.

[40] O. Goldreich, S. Goldwasser and S. Micali. How to Construct Random Functions. Journal of the
Association for Computing Machinery, 33(4):792–807, 1986.

[41] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems
for NP. Journal of Cryptology, 9(2): 167-189, 1996.

[42] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or All
language in NP Have Zero-Knowledge Proof Systems. Journal of the Association for Computing
Machinery, 38(1): 691-729, 1991.

[43] S. Goldwasser, S. Micali and R. L. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen Message Attacks. SIAM Journal on Computing, 17(2): 281-308, 1988.

[44] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof System.
SIAM Journal on Computing, 18(1): 186-208, 1989.

[45] I. Haitner and O. Reingold. Statistically-Hiding Commitment from Any One-Way Function. Cryp-
tology ePrint Archive, Report No. 2006/436.

[46] I. Haitner, O. Horvitz, J. Katz, C. Koo, R. Morselli and R. Shaltiel. Reducing Complexity As-
sumptions for Statistically-Hiding Commitments. In R. Cramer (Ed.): Advances in Cryptology-
Proceedings of EUROCRYPT 2005, LNCS 3494, pages 58-77. Springer-Verlag, 2005.

[47] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes From Collision-Free
Hashing. In N. Koblitz (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1996, LNCS 1109,
pages 201-215. Springer-Verlag, 1996.

[48] J. H̊astad, R. Impagliazzo, L. A. Levin and M. Luby. Construction of a Pseudorandom Generator
from Any One-Way Function. SIAM Journal on Computing, 28(4): 1364-1396, 1999.

[49] Y. T. Kalai, Y. Lindell and M. Prabhakaran. Concurrent Composition of Secure Protocols in the
Timing Model. In ACM Symposium on Theory of Computing, pages 644-653, 2005.

15

[50] J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-party Computation with a Dishon-
est Majority. In Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656, pages
578-595, Springer-Verlag, 2003.

[51] D. Lapidot and A. Shamir. Publicly-Verifiable Non-Interactive Zero-Knowledge Proofs. In A.J.
Menezes and S. A. Vanstone (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1990, LNCS
537, pages 353-365. Springer-Verlag, 1990.

[52] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. Journal
of Cryptology, 16(3): 143-184, 2003.

[53] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assumptions. In
ACM Symposium on Theory of Computing, pages 683-692, 2003.

[54] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Computation.
In IEEE Symposium on Foundations of Computer Science, pages 394-403, 2003.

[55] Y. Lindell. Lower Bounds for Concurrent Self Composition. In Theory of Cryptography (TCC)
2004, LNCS 2951, pages 203-222, Springer-Verlag, 2004.

[56] Y. Lindell. Lower Bounds and Impossibility Results for Concurrenet Self Composition. Journal of
Cryptology, to appear. Preliminary versions appear in [53] and [55].

[57] D. Micciancio and E. Petrank. Simulatable Commitments and Efficient Concurrent Zero-
Knowledge. In E. Biham (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS
2656 , pages 140-159. Springer-Verlag, 2003.

[58] S. Micali, R. pass and A. Rosen. Input-Indistinguishable Computation. In IEEE Symposium on
Foundations of Computer Science, pages 3136-145, 2006.

[59] S. Micali and L. Reyzin. Soundness in the Public-Key Model. In J. Kilian (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 542–565. Springer-Verlag, 2001.

[60] M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology, 4(2): 151-158, 1991.

[61] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge Arguments for NP
Using Any One-Way Permutation. Journal of Cryptology, 11(2): 87-108, 1998.

[62] M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-Random Functions.
Journal of the ACM, 1(2): 231-262 (2004).

[63] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen Ciphertext
Attacks. In ACM Symposium on Theory of Computing, pages 427-437, 1990.

[64] R. Ostrovsky, G. Persiano and I. Visconti. Concurrent Non-Malleable Witness Indistinguishability
and Its Applications. Electronic Colloquium on Computational Complexity, 13(95), 2006.

[65] R. Ostrovsky, G. Persiano and I. Visconti. Constant-Round Concurrent NMWI and Its Relation
to NMZK. Revised version of [64], ECCC, March 2007.

[66] R. Pass. Personal communications, 2006.

[67] R. Pass and A. Rosen. New and Improved Constructions of Non-Malleable Cryptographic Protocols.
In ACM Symposium on Theory of Computing, pages 533-542, 2005.

[68] R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. In IEEE Symposium on Foun-
dations of Computer Science, pages 563-572, 2005.

16

[69] A. C. Yao. How to Generate and Exchange Secrets. In IEEE Symposium on Foundations of
Computer Science, pages 162-167, 1986.

[70] M. Yung and Y. Zhao. Interactive Zero-Knowledge with Restricted Random Oracles. In S. Halevi
and T. Rabin (Ed.): Theory of Cryptography (TCC) 2006, LNCS 3876, pages 21-40, Springer-
Verlag, 2006.

[71] M. Yung and Y. Zhao. Generic and Practical Resettable Zero-Knowledge in the Bare Public-Key
Model. In M. Naor (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2007, LNCS
4515, pages 116-134. Springer-Verlag, 2007.

[72] Y. Zhao, J. B. Nielsen, R. Deng and D. Feng. Generic yet Practical ZK Arguments from any
Public-Coin HVZK. Electronic Colloquium on Computational Complexity, 12(162), 2005.

[73] A. C. Yao, M. Yung and Y. Zhao. Concurrent Knowledge-Extraction in the Public-Key Model.
Electronic Colloquium on Computational Complexity (ECCC), Report No. 2007/002.

A Related Works

The concept of non-malleability is introduced by Dolve, Dwork and Naor in the seminal work of [28]. The
work of [28] also presents non-constant-round non-malleable commitment and zero-knowledge protocols.
CNMZK with a poly-logarithmic round complexity is achieved in the plain model [6]. Constant-round
non-malleable coin-tossing protocol in the plain model (and accordingly, constant-round non-malleable
zero-knowledge arguments for NP and commitment schemes by combining the result of [21]) is achieved
by Barak [2]. The non-malleable coin-tossing protocol of [2] employs non-black-box techniques (intro-
duced in [1]) in a critical way. Parallel coin-tossing , which can be viewed as a restricted version of
concurrent coin-tossing, were studied in [52, 50].

A large number of concurrent non-malleable (and the strongest, universal composable) crypto-
graphic protocols are developed in the common reference/random string model, where a common ref-
erence/random string is selected trustily by a trusted third party and is known to all players (e.g.,
[25, 37, 26, 21, 14, 19], etc). In particular, concurrent non-malleability for any functionality can be
implemented in the common random string (CRS) model [21, 14].

The situation for general adaptive CNM feasibility in the bare public-key model turns out to be quite
subtle and somewhat confused. There are several works that deal with the specific CNMZK protocols
in the BPK model [64, 22, 65]. But, as clarified in this work (in Appendix D), the CNM formulations
in existing works are incomplete or flawed. Also, no previous protocols in the BPK model or the plain
model are known to be CNM secure against CMIM with full adaptive input selection. Actually, the
possibility of CNM with adaptive input selection in the BPK model itself turns out to be a subtle issue,
and was not clarified in existing works.

B The CMIM Setting in the BPK Model for Interactive Argument
Systems

In this section, we give a detailed description of the CMIM setting in the BPK model, in accordance with
interactive argument systems with players of fixed roles. The formalization can be directly extended to
any two-party protocol with interchangeable roles.

The bare public-key (BPK) model. Let RP
KEY be an NP-relation validating the public-key and

secret-key pair (PKP , SKP) generated by honest provers, i.e., RP
KEY (PKP , SKP) = 1 indicates that

SKP is a valid secret-key of PKP . Similarly, let RV
KEY be an NP-relation validating the public-key

and secret-key pair (PKV , SKV) generated by honest verifiers, i.e., RV
KEY (PKV , SKV) = 1 indicates

that SKV is a valid secret-key of PKV . In the following formalization, we assume each honest player is
of fixed player role.

17

Then, an interactive protocol 〈P, V 〉 for an NP-language L in the BPK model w.r.t. key-validating
relations RP

KEY and RV
KEY , consists of the following:

1. The interactions between P and V can be divided into two stages. The first stage is called key-
generation stage in which each player registers a public-key in a public file F ; at the end of the
key-generation stage, the proof stage starts, where any pair of prover and verifier can interact. All
algorithms have access to the same public file F output by the key-generation stage.

2. On security parameter 1n, the public file F , structured as a collection of poly(n) records, for
a polynomial poly(·): {(id1, PKid1), (id2, PKid2), · · · (idpoly(n), PKidpoly(n)

)}. F is empty at the
beginning and is updated by players during the key-generation stage. As we assume players be of
fixed roles, for presentation simplicity, we also denote F = {PK

(1)
I , PK

(2)
I , · · · , PK

(poly(n))
I }, such

that for any i, 1 ≤ i ≤ poly(n), PK
(i)
I denotes a prover-key if I = P or a verifier-key if I = V .

The same version of the public file F obtained at the end of the key-generation stage will be used
during the proof stage. That is, the public file F to be used in proof stages remains intact with
that output at the end of key-generation stage.

3. An honest prover P is a pair of deterministic polynomial-time algorithm (P1, P2), where P1 oper-
ates in the key-generation stage and P2 operates in the proof stage. On input a security parameter
1n and a random tape rP1 , P1 generates a key pair (PKP , SKP) satisfyingRP

KEY (PKP , SKP) = 1,
registers PKP in the public file F as its public-key while keeping the corresponding secret key
SKP in secret. Denote by KP the set of all legitimate (in accordance with RP

KEY) public-keys
generated by P1(1n), that is, KP contains all possible legitimate prover public-key generated on
security parameter n. Then, in the proof stage, on inputs (PKP , SKP), and poly(n)-bit string
x ∈ L, an auxiliary input w, a public file F and a verifier public-key PK

(j)
V ∈ F , and a random

tape rP , P2 performs an interactive protocol with the verifier of PK
(j)
V in the proof stage.

4. An honest verifier V is a pair of deterministic polynomial-time algorithm (V1, V2), where V1 oper-
ates in the key-generation stage and V2 operates in the proof stage. On input a security parameter
1n and a random tape rV1 , V1 generates a key pair (PKV , SKV) satisfyingRV

KEY (PKV , SKV) = 1,
registers PKV in the public file F as its public-key while keeping the corresponding secret key SKV

in secret. Denote by KV the set of all legitimate (in accordance with RV
KEY) public-keys generated

by V1(1n), that is, KV contains all possible legitimate verifier public-key generated on security
parameter n. On inputs (PKV , SKV), the public file F and a prover public-key PK

(j)
P ∈ F , and

a poly(n)-bit x and a random tape rV2 , V2 performs the interactive protocol with (the proof stage
of) the prover of PK

(j)
P , and outputs “accept x” or “reject x” at the end of this protocol. We

stress that as the role of the honest verifier with its public-key is not interchangeable in the BPK
model, the honest verifier with its public-key may prove the knowledge of its secret-key, but will
never prove anything else.

Notes: We remark that, though each player is allowed to register public-keys in the public-file in the
original formulation of the BPK model [12], for some cryptographic tasks, e.g., concurrent and resettable
zero-knowledge, only requiring verifiers to register public-keys suffices. In these cases provers’ keys may
not be used, or KP can be just empty. Our formulation of the BPK model is for the general case, and
provers’ registered public-keys play an essential role for achieving CNM security with full adaptive input
selection (to be addressed later). Also note that in the above formulation, honest players are of fixed
roles. For protocols with players of interchangeable roles, the direct extension approach is to let each
player register a pair of public-keys (PKP , PKV) and explicitly indicate its role in protocol executions.

The CMIM adversary. The CMIM adversary A in the BPK model is a probabilistic polynomial-
time (PPT) algorithm that can act both as a prover and as a verifier, both in the key-generation stage
and in the main proof stage.

In the key-generation stage, on 1n and some auxiliary input z ∈ {0, 1}∗ and a pair of honestly
generated public-keys (PKP , PKV) generated by the honest prover and verifier, A outputs a set of

18

public-keys, denoted by F ′, together with some auxiliary information τ to be used in the proof-stage (in
particular τ can include z and a priori information about the secret-keys of honest players (SKP , SKV)).
Then the public file F used in proof state is set to be F ′ ∪ {PKP , PKV }. That is, A has complete
control of the public file F . Here, we remark that, in general, the input to A in order to generate
F ′ could be a set of public-keys generated by many honest provers and verifiers, rather than a single
pair of public-keys (PKP , PKV) generated by a single honest prover and a single honest verifier. The
formulation with a unique pair of honestly generated public-keys is only for presentation simplicity.

In the proof stage, on inputs (F, τ) A can concurrently interact with any polynomial number of
instances of the honest prover of public-key PKP in left interaction part. The interactions with each
instance of the honest prover of PKP is called a left session, in which A plays the role of verifier with
a public-key PK

(j)
V ∈ F ; Simultaneously, A interacts with any polynomial number of instances of the

honest verifier PKV in right interaction part. The interactions with each instance of the honest verifier
of PKV is called a right session, where it plays the role of prover with a public-key PK

(j)
P ∈ F . Here,

all honest prover and verifier instances are working independently, and answer messages sent by A
promptly.

Specifically, polynomially many concurrent sessions of the proof stage of the same protocol 〈P, V 〉
take place in an asynchronous setting (say, over the Internet), and all the unauthenticated communication
channels (among all the concurrently executing instances of 〈P, V 〉) are controlled by the PPT adversary
A. This means that the honest prover instances cannot directly communicate with the honest verifier
instances in the proof stages, since all communication messages are done through the adversary. The
adversary A, controlling the scheduling of messages in both parts of CMIM, can decide to simply relay
the messages between any prover instance in the left part and the corresponding verifier instance in the
right part. But, it can also decide to block, delay, divert, or change messages arbitrarily at its wish. For
CMIM-adversary with adaptive input selection, A can further set the inputs to left sessions adaptively
based on its view (besides adaptively setting inputs to right sessions). A CMIM adversary is called
s(n)-CMIM adversary, for a positive polynomial s(·), if the adversary involves at most s(n) concurrent
sessions in each part of the CMIM setting and registers at most s(n) public-keys in F ′, where n is the
security parameter.

For presentation simplicity and without loss of generality, we have made the following conventions:

• We assume all honest prover instances are of the same public-key PKP and all honest verifier
instances are of the same public-key PKV . That is, A concurrently interacts on the left with
honest prover instances of the same public-key PKP and on the right with honest verifier instances
of the same public-key PKV . And, the file F ′ generated by A is only based on {PKP , PKV }.

• The session number in left interaction part is equal to the session number in right interaction part,
i.e., both of them are s(n).

We remark that both the security model and the security analysis in this work can be easily extended to
the general case: multiple different honest prover and verifier instances with multiple different public-
keys, and different session numbers in left interactions and right interactions. We prefer the simplified
formulation for the reason that it much simplifies the presentation and security analysis.

More formally, with respect to a protocol 〈P, V 〉 for an NP-language L with NP-relation RL,
an s(n)-CMIM adversary A’s attack in the BPK model is executed in accordance with the following
experiment ExptACMIM (1n, X, W, z), where X = {x1, · · · , xs(n)} and W = {w1, · · · , ws(n)} are vectors of
s(n) elements such that xi ∈ L ∩ {0, 1}poly(n) and (xi, wi) ∈ RL, 1 ≤ i ≤ s(n):

ExptACMIM (1n, X,W, z)

Honest prover-key generation. (PKP , SKP) ←− P1(1n).

Honest verifier-key generation. (PKV , SKV) ←− V1(1n).

19

Preprocessing stage of the CMIM. A, on inputs 1n, auxiliary input z ∈ {0, 1}∗ and honest player
keys (PKP , PKV), outputs (F ′, τ), where F ′ is a list of, at most s(n), public-keys and τ is some
auxiliary information to be transferred to the proof stage of A. Then, the public file to be used
in the proof stage is: F = F ′ ∪ {PKP , PKV }.

Proof stage of the CMIM. A continues its execution by taking (F, τ) as additional input, and may
start (at most) s(n) sessions in either the left CMIM interaction part or the right CMIM interaction
part. At any time during this stage, A can do one of the following four actions.

• Deliver to V a message for an already started right session.

• Deliver to P a message for an already started left session.

• Start a new i-th left session, 1 ≤ i ≤ s(n): A indicates a key PK
(j)
V ∈ F to the honest

prover P (of public-key PKP). The honest prover P then initiates a new session with (the
predetermined) input (xi, wi) and the verifier of PK

(j)
V (pretended by A).

For CMIM-adversary with (traditional) adaptive input selection, besides PK
(j)
V the CMIM

adversary A indicates to P , adaptively based on its view, a statement x̃i ∈ {0, 1}poly(n)

as the input of as the i-th left session. In this case, we require that the membership of
x̃i ∈ L ∪ {0, 1}poly(n) can be efficiently checked, otherwise, the experiment may render an
NP-membership oracle to A. In case x̃i ∈ L ∪ {0, 1}poly(n) (that can be efficiently checked),
then a witness w̃i such that (x̃l, w̃l) ∈ RL is given to the prover instance of P ; Then, on
input (xi, wi) the honest prover P interacts with the verifier of PK

(j)
V (pretended by A).

• Start a new i-th right session: the CMIM adversary A chooses, adaptively based on its
view from the CMIM attack, a poly(n)-bit string x̂i, and indicates a key PK

(j)
P ∈ F to the

honest verifier V of public-key PKV ; Then, the honest verifier V then initiates a new session,
interacts with the prover of public-key PK

(j)
P (pretended by A) on input (1n, x̂i) in which A

is trying to convince of the (possibly false) statement “x̂i ∈ L”.

• Output a special “end attack” symbol within time polynomial in n.

We denote by viewA(1n, X, z) the random variable describing the view of A in this experiment
ExptACMIM (1n, X, W, z), which includes its random tape, the (predetermined) input vector X, the
auxiliary string z, all messages it receives including the public-keys (PKP , PKV) and all messages
sent by honest prover and verifier instances in the proof stages. For any (PKP , SKP) ∈ RP

KEY

and (PKV , SKV) ∈ RV
KEY , we denote by view

P (SKP),V (SKV)
A (1n, X, z, PKP , PKV) the random

variable describing the view of A specific to (PKP , PKV), which includes its random tape, the
auxiliary string z, the (specific) (PKP , PKV), and all messages it receives from the instances of
P (1n, SKP) and V (1n, SKV) in the proof stages.

Note that in all cases, the honest prover and verifier instances answer messages from A promptly.
We stress that in different left or right sessions the honest prover and verifier instances use independent
random-tapes in the proof stages. The adversary’s goal is to complete a right session with statement
different from that of any left session, for which the verifier accepts even if the adversary actually does
not know a witness for the statement being proved.

C Basic Definitions and Tools

Basic notation. We use standard notations and conventions below for writing probabilistic algorithms,
experiments and interactive protocols. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the
result of running A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·) denote the experiment
of picking r at random and letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is the operation
of picking an element uniformly from S. If α is neither an algorithm nor a set then x ← α is a simple
assignment statement. By [R1; · · · ; Rn : v] we denote the set of values of v that a random variable

20

can assume, due to the distribution determined by the sequence of random processes R1, R2, · · · , Rn.
By Pr[R1; · · · ; Rn : E] we denote the probability of event E, after the ordered execution of random
processes R1, · · · , Rn.

Let 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ← 〈P (x1), V (x2)〉(x)
denotes the random process of running interactive protocol 〈P, V 〉 on common input x, where P has
private input x1, V has private input x2, y1 is P ’s output and y2 is V ’s output. We assume w.l.o.g.
that the output of both parties P and V at the end of an execution of the protocol 〈P, V 〉 contains a
transcript of the communication exchanged between P and V during such execution.

The security of cryptographic primitives and tools, presented throughout this work, is defined with
respect to uniform polynomial-time algorithms (equivalently, polynomial-size circuits). When it comes
to non-uniform security, we refer to non-uniform polynomial-time algorithms (equivalently, families of
polynomial-size circuits).

On a security parameter n (also written as 1n), a function µ(·) is negligible if for every polynomial p(·),
there exists a value N such that for all n > N it holds that µ(n) < 1/p(n). Let X = {X(n, z)}n∈N,z∈{0,1}∗
and Y = {Y (n, z)}n∈N,z∈{0,1}∗ be distribution ensembles. Then we say that X and Y are computationally
(resp., statistically) indistinguishable, if for every probabilistic polynomial-time (resp., any, even power-
unbounded) algorithm D, for all sufficiently large n’s, and every z ∈ {0, 1}∗, |Pr[D(n, z, X(n, z)) =
1]− Pr[D(n, z, Y (n, z)) = 1]| is negligible in n.

Definition C.1 (one-way function) A function f : {0, 1}∗ −→ {0, 1}∗ is called a one-way function
(OWF) if the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such that on input
x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time PPT algorithm A′, every positive polyno-
mial p(·), and all sufficiently large n’s, it holds Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] < 1

p(n) , where Un

denotes a random variable uniformly distributed over {0, 1}n.

Definition C.2 (interactive argument/proof system) A pair of interactive machines, 〈P, V 〉, is
called an interactive argument system for a language L if both are probabilistic polynomial-time (PPT)
machines and the following conditions hold:

• Completeness. For every x ∈ L, there exists a string w such that for every string z,
Pr[〈P (w), V (z)〉(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P ∗, and for all sufficiently large n’s
and every x /∈ L of length n and every w and z, Pr[〈P ∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive protocol is called a proof for L, if the soundness condition holds against any (even power-
unbounded) P ∗ (rather than only PPT P ∗). An interactive system is called a public-coin system if at
each round the prescribed verifier can only toss coins and send their outcome to the prover.

Definition C.3 (witness indistinguishability WI [35]) Let 〈P, V 〉 be an interactive system for a
language L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists
a w such that (x, w) ∈ RL. We denote by view

P (w)
V ∗(z)(x) a random variable describing the transcript

of all messages exchanged between a (possibly malicious) PPT verifier V ∗ and the honest prover P
in an execution of the protocol on common input x, when P has auxiliary input w and V ∗ has aux-
iliary input z. We say that 〈P, V 〉 is witness indistinguishable for RL if for every PPT interactive
machine V ∗, and every two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L for sufficiently long x,

so that (x, w1
x) ∈ RL and (x, w2

x) ∈ RL, the following two probability distributions are computation-
ally indistinguishable by any non-uniform polynomial-time algorithm: {x, view

P (w1
x)

V ∗(z) (x)}x∈L, z∈{0, 1}∗ and

21

{x, view
P (w2

x)
V ∗(z) (x)}x∈L, z∈{0, 1}∗. Namely, for every non-uniform polynomial-time distinguishing algorithm

D, every polynomial p(·), all sufficiently long x ∈ L, and all z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| < 1
p(|x|)

It is interesting to note that the WI property preserves against adaptive concurrent composition [35,
34, 36, 21].

Definition C.4 (strong witness indistinguishability SWI [38]) Let 〈P, V 〉 and all other notations
be as in Definition C.3. We say that 〈P, V 〉 is strongly witness-indistinguishable forRL if for every PPT
interactive machine V ∗ and for every two probability ensembles {X1

n, Y 1
n , Z1

n}n∈N and {X2
n, Y 2

n , Z2
n}n∈N ,

such that each {Xi
n, Y i

n, Zi
n}n∈N ranges over (RL × {0, 1}∗) ∩ ({0, 1}n × {0, 1}∗ × {0, 1}∗), the fol-

lowing holds: If {X1
n, Z1

n}n∈N and {X2
n, Z2

n}n∈N are computationally indistinguishable, then so are
{〈P (Y 1

n), V ∗(Z1
n)〉(X1

n)}n∈N and {〈P (Y 2
n), V ∗(Z2

n)〉(X2
n)}n∈N .

WI vs. SWI: It is clarified in [39] that the notion of SWI actually refers to issues that are
fundamentally different from WI. Specifically, the issue is whether the interaction with the prover helps
V ∗ to distinguish some auxiliary information (which is indistinguishable without such an interaction).
Significantly different from WI, SWI does not preserve under concurrent composition. More details
about SWI are referred to [39]. An interesting observation, as clarified later, is: the protocol composing
commitments and SWI can be itself regular WI. Also note that any zero-knowledge protocol is itself
SWI [39].

Definition C.5 (zero-knowledge ZK [44, 38]) Let 〈P, V 〉 be an interactive system for a language
L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists a w such
that (x, w) ∈ RL. We denote by view

P (w)
V ∗(z)(x) a random variable describing the contents of the random

tape of V ∗ and the messages V ∗ receives from P during an execution of the protocol on common input
x, when P has auxiliary input w and V ∗ has auxiliary input z. Then we say that 〈P, V 〉 is zero-
knowledge if for every probabilistic polynomial-time interactive machine V ∗ there exists a probabilistic
(expected) polynomial-time oracle machine S, such that for all sufficiently long x ∈ L the ensembles
{view

P (w)
V ∗ (x)}x∈L and {SV ∗(x)}x∈L are computationally indistinguishable. Machine S is called a ZK

simulator for 〈P, V 〉. The protocol is called statistical ZK if the above two ensembles are statistically
close (i.e., the variation distance is eventually smaller than 1

p(|x|) for any positive polynomial p). The
protocol is called perfect ZK if the above two ensembles are actually identical (i.e., except for negligible
probabilities, the two ensembles are equal).

Definition C.6 (system for argument/proof of knowledge [38, 8]) Let R be a binary relation
and κ : N → [0, 1]. We say that a probabilistic polynomial-time (PPT) interactive machine V is a
knowledge verifier for the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x, w) ∈ R all possible
interactions of V with P on common input x and auxiliary input w are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every w, r ∈ {0, 1}∗, machine K satisfies
the following condition:

Denote by p(x,w, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,w,r (where P ∗
x,w,r denotes the strategy of P ∗ on common

input x, auxiliary input w and random-tape r). If p(x,w, r) > κ(|x|), then, on input x and with
oracle access to P ∗

x,w,r, machine K outputs a solution w′ ∈ R(x) within an expected number of
steps bounded by

q(|x|)
p(x,w, r)− κ(|x|)

The oracle machine K is called a knowledge extractor.

22

An interactive argument/proof system 〈P, V 〉 such that V is a knowledge verifier for a relation R and
P is a machine satisfying the non-triviality condition (with respect to V and R) is called a system for
argument/proof of knowledge (AOK/POK) for the relation R.

The above definition of POK is with respect to deterministic prover strategy. POK also can be
defined with respect to probabilistic prover strategy. It is recently shown that the two definitions are
equivalent for all natural cases (e.g., POK for NP-relations) [8].

Definition C.7 (pseudorandom functions PRF) On a security parameter n, let d(·) and r(·) be
two positive polynomials in n. We say that

{fs : {0, 1}d(n) −→ {0, 1}r(n)}s∈{0,1}n

is a pseudorandom function ensemble if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and x ∈ {0, 1}d(|s|)

returns fs(x).

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine A, every polynomial
p(·), and all sufficiently large n’s, it holds:

|Pr[AFn(1n) = 1]− Pr[AHn(1n) = 1]| < 1
p(n)

where Fn is a random variable uniformly distributed over the multi-set {fs}s∈{0,1}n, and Hn is
uniformly distributed among all functions mapping d(n)-bit-long strings to r(n)-bit-long strings.

PRFs can be constructed under any one-way function [40, 38]. The current most practical PRFs are
the Naor-Reingold implementations under the factoring (Blum integers) or the decisional Diffie-Hellman
hardness assumptions [62]. The computational complexity of computing the value of the Naor-Reingold
functions at a given point is about two modular exponentiations and can be further reduced to only two
multiple products modulo a prime (without any exponentiations!) with natural preprocessing, which is
great for practices involving PRFs.

Definition C.8 (statistically/perfectly binding bit commitment scheme) A pair of PPT in-
teractive machines, 〈P, V 〉, is called a perfectly binding bit commitment scheme, if it satisfies the fol-
lowing:

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that
Pr[(α, β) ← 〈P (b), V 〉(1n); (t, (t, v)) ← 〈P (α), V (β)〉(1n) : v = b] = 1.

Computationally hiding. For all sufficiently large n’s, any PPT adversary V ∗, the following two
probability distributions are computationally indistinguishable: [(α, β) ← 〈P (0), V ∗〉(1n) : β] and
[(α′, β′) ← 〈P (1), V ∗〉(1n) : β′].

Perfectly Binding. For all sufficiently large n’s, and any adversary P ∗, the following probability is
negligible (or equals 0 for perfectly-binding commitments): Pr[(α, β) ← 〈P ∗, V 〉(1n); (t, (t, v)) ←
〈P ∗(α), V (β)〉(1n); (t′, (t′, v′)) ← 〈P ∗(α), V (β)〉(1n) : v, v′ ∈ {0, 1}∧

v 6= v′].

That is, no (even computational power unbounded) adversary P ∗ can decommit the same tran-
script of the commitment stage both to 0 and 1.

Below, we recall some classic perfectly-binding commitment schemes.
One-round perfectly-binding (computationally-hiding) commitments can be based on any one-way

permutation OWP [9, 42]. Loosely speaking, given a OWP f with a hard-core predict b (cf. [38]), on a
security parameter n one commits a bit σ by uniformly selecting x ∈ {0, 1}n and sending (f(x), b(x)⊕σ)
as a commitment, while keeping x as the decommitment information.

23

Statistically-binding commitments can be based on any one-way function (OWF) but run in two
rounds [60, 48]. On a security parameter n, let PRG : {0, 1}n −→ {0, 1}3n be a pseudorandom generator,
the Naor’s OWF-based two-round public-coin perfectly-binding commitment scheme works as follows:
In the first round, the commitment receiver sends a random string R ∈ {0, 1}3n to the committer. In
the second round, the committer uniformly selects a string s ∈ {0, 1}n at first; then to commit a bit 0
the committer sends PRG(s) as the commitment; to commit a bit 1 the committer sends PRG(s)⊕R
as the commitment.

One-round perfectly-binding (computationally-hiding) commitments can be based on any one-way
permutation OWP. Loosely speaking, given a OWP f with a hard-core predict b, on a security parameter
n one commits a bit σ by uniformly selecting x ∈ {0, 1}n and sending (f(x), b(x)⊕σ) as a commitment,
while keeping x as the decommitment information.

For practical perfectly-binding commitment scheme, in this work we use the DDH-based ElGamal
non-interactive commitment scheme [31]. To commit to a value v ∈ Zq, the committer randomly
selects u, r ∈ Zq, computes h = gu mod p and sends (h, ḡ = gr, h̄ = gvhr) as the commitment. The
decommitment information is (r, v). Upon receiving the commitment (h, ḡ, h̄), the receiver checks that
h, ḡ, h̄ are elements of order q in Z∗p . It is easy to see that the commitment scheme is of perfectly-
binding. The computational hiding property is from the DDH assumption on the subgroup of order
q of Z∗p . We also note that Micciancio and Petrank presented another implementation of DDH-based
perfectly-binding commitment scheme with advanced security properties [57].

A commitment scheme C is called linear, if for sufficiently large n and any string x ∈ {0, 1}n both
|C(x, s)| (i.e., the length of the commitment to x using random coins s) and |s| (i.e., the length of s)
are bounded by O(n).

Commit-then-SWI: Consider the following protocol composing a statistically-binding commit-
ment and SWI:

Common input: x ∈ L for an NP-language L with corresponding NP-relation RL.

Prover auxiliary input: w such that (x,w) ∈ RL.

The protocol: consisting of two stages:

Stage-1: The prover P computes and sends cw = C(w, rw), where C is a statistically-binding
commitment and rw is the randomness used for commitment.

Stage-2: Define a new language L′ = {(x, cw)|∃(w, rw) s.t. cw = C(w, rw)∧RL(x,w) = 1}. Then,
P proves to V that it knows a witness to (x, cw) ∈ L′, by running a SWI protocol for NP.

One interesting observation for the above commit-then-SWI protocol is that commit-then-SWI is
itself a regular WI for L.

Proposition C.1 Commit-then-SWI is itself a regular WI for the language L.

Proof (of Proposition C.1). For any PPT malicious verifier V ∗, possessing some auxiliary input
z ∈ {0, 1}∗, and for any x ∈ L and two (possibly different) witnesses (w0, w1) such that (x, wb) ∈ RL for
both b ∈ {0, 1}, consider the executions of commit-then-SWI: 〈P (w0), V ∗(z)〉(x) and 〈P (w1), V ∗(z)〉(x).

Note that for 〈P (wb), V ∗(z)〉(x), b ∈ {0, 1}, the input to SWI of Stage-2 is (x, cwb
= C(wb, rwb

)),
and the auxiliary input to V ∗ at the beginning of Stage-2 is (x, cwb

, z). Note that (x, cw0 , z) is indistin-
guishable from (x, cw1 , z). Then, the regular WI property of the whole composed protocol is followed
from the SWI property of Stage-2. ¤

C.1 Adaptive tag-based one-left-many-right non-malleable statistical zero-knowledge
argument of knowledge (SZKAOK)

Let {〈PTAG, VTAG〉(1n)}n∈N,TAG∈{0,1}O(n) be a family of argument systems for an NP-language L spec-
ified by NP-relation RL. For each security parameter n and TAG ∈ {0, 1}O(n), 〈PTAG, VTAG〉(1n) is an

24

instance of the protocol 〈P, V 〉, which is indexed by TAG and works for inputs in L ∪ {0, 1}p(n), where
p(·) is some polynomial.

We consider an experiment EXPE(1n, x, TAG, z), where 1n is the security parameter, x ∈ L ∪
{0, 1}p(n), TAG ∈ {0, 1}O(n) and z ∈ {0, 1}∗. (The input (x, TAG) captures the predetermined input
and tag of the prover instance in the following left MIM part, and the string z ∈ {0, 1}∗ captures the
auxiliary input to the following MIM adversary A.) In the experiment EXPE(1n, x, TAG, z), on input
(1n, x, TAG, z), an adaptive input-selecting one-left-many-right MIM adversary A is simultaneously
participating in two interaction parts:

The left MIM part: in which A chooses (x̃l, T̃AG
l
) based on its view from both the left session and

all right sessions, satisfying that: the membership of x̃l ∈ L∪{0, 1}p(n) can be efficiently checked 1

and T̃AG
l ∈ {0, 1}O(n); In case x̃l ∈ L∪{0, 1}p(n) (that can be efficiently checked), then a witness

w̃l such that (x̃l, w̃l) ∈ RL is given to the prover instance P
T̃AG

l , and A interacts, playing the role

of the verifier V
T̃AG

l , with the prover instance P
T̃AG

l(x̃, w̃) on common input x̃l . The interactions

with P
T̃AG

l(x̃l, w̃l) is called the left session. Note that, A can just set (x̃l, T̃AG
l
) to be (x, TAG),

which captures the case of predetermined input and tag to left session.

The right CMIM part: in which A concurrently interacts with s(n), for a polynomial s(·), verifier
instances: V

T̃AG
r

1
(x̃r

1), V
T̃AG

r

2
(x̃r

2), · · · , V
T̃AG

r

s(n)
(x̃r

s(n)), where (T̃AG
r

i , x̃
r
i), 1 ≤ i ≤ s(n), are set

by A (at the beginning of each session) adaptively based on its view (in both the left session and
all the right sessions) satisfying x̃r

i ∈ {0, 1}p(n) and T̃AG
r

i ∈ {0, 1}O(n). The interactions with the
instance V

T̃AG
r

i
(x̃r

i) is called the i-th right session, in which A plays the role of P
T̃AG

r

i
.

Denote by viewA(1n, x, TAG, z) the random variable describing the view of A in the above experi-
ment EXPE(1n, x, TAG, z), which includes the input (1n, x, TAG, z), its random tape, and all messages
received in the one left session and the s(n) right sessions.

Then, we say that the family of argument systems {〈PTAG, VTAG〉(1n)}n∈N,TAG∈{0,1}O(n) is adaptive
tag-based one-left-many-right non-malleable SZKAOK with respect to tags of length O(n), if for any PPT
adaptive input-selecting one-left-many-right MIM adversary A defined above, there exists an expected
polynomial-time algorithm S, such that for any sufficiently large n, any x ∈ L ∪ {0, 1}p(n) and TAG ∈
{0, 1}O(n), and any z ∈ {0, 1}∗, the output of S(1n, x, TAG, z) consists of two parts (str, sta) such that
the following hold, where we denote by S1(1n, x, TAG, z) (the distribution of) its first output str.

• Statistical simulatability. The following ensembles are statistically indistinguishable:
{viewA(1n, x, TAG, z)}n∈N,x∈L∪{0,1}p(n),TAG∈{0,1}O(n),z∈{0,1}∗ and
{S1(1n, x, TAG, z)}n∈N,x∈L∪{0,1}p(n),TAG∈{0,1}O(n),z∈{0,1}∗

• Knowledge extraction. sta consists of a set of s(n) strings, {w1, w2, · · · , ws(n)}, satisfying the
following:

– For any i, 1 ≤ i ≤ s(n), if the i-th right session in str is aborted or with a tag identical to
that of the left session, then wi = ⊥;

– Otherwise, i.e., the i-th right session in str is successful with T̃AG
r

i 6= T̃AG
l
, then (x̃r

i , wi) ∈
RL, where x̃r

i is the input to the i-th right session in str.

Pass-Rosen ZK (PRZK). The PRZK (with some specified length parameter l(n) ≥ O(n3))
developed in [67, 68] is the only known constant-round adaptive tag-based one-left-many-right non-
malleable SZKAOK. Furthermore, PRZK is public-coin and can be of perfect ZK. We note that in

1We remark, for our purpose of security analysis in Section 5.1, it is necessary, as well as sufficient, to require the
membership of the statement x̃l chosen by A can be efficiently checked; otherwise, the experiment may render an NP-
membership oracle to A.

25

[67, 68], the tag length is just specified to be the security parameter n (in this case, the length parameter
is specified as l(n) ≥ 2n3 +n), but a closer investigation shows that the PRZK can be extended to work
for tags of length O(n) and inputs of length poly(n). The works of [67, 68] do not explicitly consider
adaptive input and tag selection for the one left-session, but a closer investigation shows that the security
analysis presented in [67, 68] works also for this more general case.

D Formulating CNMZK in the Public-Key Model, Revisited

Traditional CNMZK formulation roughly is the following: for any PPT CMIM adversaryA of traditional
input selecting capability (as clarified in Appendix B), there exists a PPT simulator/extractor S such
that S outputs the following: (1) A simulated transcript that is indistinguishable from the real view
of the CMIM adversary in its CMIM attacks. (2) For a successful right session on a common input x̂
different from those of left sessions, S can output a corresponding NP-witness of x̂.

The requirement (1) intuitively captures that any advantage of A can get from concurrent left and
right interactions can also be got by S itself alone without any interactions, i.e, A gets no extra advantage
by the CMIM attacks. The requirement (2) intuitively captures that for any different statement that
A convinces of V in one of right sessions, A must “know” a witness.

The formulations of CNM in the public-key model in existing works ([64, 22, 65]) essentially di-
rectly bring the above traditional CNM formulation into the public-key setting, but with the following
difference: S will simulate the key-generation phases of all honest verifiers. Put in other words, in its
simulation/extration S actually takes the corresponding secret-keys of honest verifiers.

We start clarifying the subtleties of CNM in the public-key model by showing a CMIM attack on
the CNMZK in the BPK model proposed in [22]. The CMIM attack allows the CMIM adversary to
successfully convince the honest verifier of some NP statements but without knowing any witness to
the statement being proved.

D.1 CMIM attacks on the CNMZK proposed in [22]

Let us first recall the protocol structure of the protocol of [22].

Key-generation. Let (KG0, Sig0, V er0) and (KG1, Sig1, V er1) be two signature schemes that secure
against adaptive chosen message attacks. On a security parameter 1n, each verifier V randomly
generates two pair (verk0, sigk0) and (verk1, sigk1) by running KG0 and KG1 respectively, where
verk is the signature verification key and sigk is the signing key. V publishes (verk0, verk1) as its
public-key while keeping sigkb as its secret-key for a randomly chosen b from {0, 1} (V discards
sigk1−b). The prover does not possess public-key.

Common input. An element x ∈ L of length poly(n), where L is an NP-language that admits Σ-
protocols.

The main-body of the protocol. The main-body of the protocol consists of the following three
phases:

Phase-1. The verifier V proves to P that it knows either sigk0 or sigk1, by executing the (partial
witness-independent) ΣOR-protocol [15] on (verk0, verk1) in which V plays the role of knowl-
edge prover. Denote by aV , eV , zV , the first-round, the second-round and the third-round
message of the ΣOR-protocol of this phase respectively. Here eV is the random challenge sent
by the prover to the verifier.
If V successfully finishes the ΣOR-protocol of this phase and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. P generates a key pair (sk, vk) for a one-time strong signature scheme. Let COM be
a commitment scheme. The prover randomly selects random strings s, r ∈ {0, 1}poly(n), and

26

computes C = COM(s, r) (that is, P commits to s using randomness r). Finally, P sends
(C, vk) to the verifier V .

Phase-3. By running a ΣOR-protocol, P proves to V that it knows either a witness w for x ∈ L
OR the value committed in C is a signature on the message of vk under either verk0 or verk1.
Denote by aP , eP , zP , the first-round, the second-round and the third-round message of the
ΣOR of Phase-3. Finally, P computes a one-time strong signature δ on the whole transcript
with the signing key sk generated in Phase-2.

Verifier’s decision. V accepts if and only if the ΣOR-protocol of Phase-3 is accepting, and δ is
a valid signature on the whole transcript under vk.

Note: The actual implementation of the DDL protocol combines rounds of the above protocol. But,
it is easy to see that round-combination does not invalidate the following attacks.

D.1.1 The CMIM attack

We show a special CMIM attack in which the adversary A only participate the right concurrent in-
teractions with honest verifiers (i.e., there are no concurrent left interactions in which A concurrently
interacts with honest provers).

The following CMIM attack enables A to malleate the interactions of Phase-1 of one session into
a successful conversation of another concurrent session for different (but verifier’s public-key related)
statements without knowing any corresponding NP-witnesses.

Let L̂ be any NP-language admitting a Σ-protocol that is denoted by ΣL̂ (in particular, L̂ can be an
empty set). For an honest verifier V with its public-key PK = (verk0, verk1), we define a new language
L = {(x̂, verk0, verk1)|∃w s.t. (x̂, w) ∈ RL̂ OR w = sigkb for b ∈ {0, 1}}. Note that for any string x̂

(whether x̂ ∈ L̂ or not), the statement “(x̂, verk0, verk1) ∈ L” is always true as PK = (verk0, verk1) is
honestly generated. Also note that L is a language that admits Σ-protocols (as ΣOR-protocol is itself a
Σ-protocol). Now, we describe the concurrent interleaving and malleating attack, in whichA successfully
convinces the honest verifier of the statement “(x̂, verk0, verk1) ∈ L” for any arbitrary poly(n)-bit string
x̂ (even when x̂ 6∈ L̂) by concurrently interacting with V (with public-key (verk0, verk1)) in two sessions
as follows.

1. A initiates the first session with V . After receiving the first-round message, denoted by a′V , of the
ΣOR-protocol of Phase-1 of the first session on common input (verk0, verk1) (i.e., V ’s public-key),
A suspends the first session.

2. A initiates a second session with V , and works just as the honest prover does in Phase-1 and
Phase-2 of the second session. We denote by C, vk the Phase-2 message of the second session,
where C is the commitment to a random string and vk is the verification key of the one-time
strong signature scheme generated by A (note that A knows the corresponding signing key sk as
(vk, sk) is generated by itself). When A moves into Phase-3 of the second session and needs to
send V the first-round message, denoted by aP , of the ΣOR-protocol of Phase-3 of the second
session on common input (x̂, verk0, verk1), A does the following:

• A first runs the SHVZK simulator of ΣL̂ (i.e., the Σ-protocol for L̂) [18] on x̂ to get a
simulated conversation, denoted by (ax̂, ex̂, zx̂), for the (possibly false) statement “x̂ ∈ L̂”.

• A runs the SHVZK simulator of the Σ-protocol for showing that the value committed in C
is a signature on vk under one of (verk0, verk1) to get a simulated conversation, denoted by
(aC , eC , zC).

• A sets aP = (ax̂, a′V , aC) and sends aP to V as the first-round message of the ΣOR-protocol
of Phase-3 of the second session, where a′V is the one received by A in the first session.

• After receiving the second-round message of Phase-3 of the second session, i.e., the random
challenge eP from V , A suspends the second session.

27

3. A continues the first session, and sends e′V = eP ⊕ ex̂ ⊕ eC as the second-round message of the
ΣOR-protocol of Phase-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Phase-1 of the first session, denoted
by z′V , A suspends the first session again.

5. A continues the execution of the second session again, sends to zP = ((ex̂, zx̂), (e′V , z′V), (eC , zC))
to V as the third-round message of the ΣOR-protocol of the second session.

6. Finally, A applies sk on the whole transcript of the second session to get a (one-time strong)
signature δ, and sends δ to V

Note that (ax̂, ex̂, zx̂) is an accepting conversation for the (possibly false) statement “x̂ ∈ L̂”,
(a′V , e′V , z′V) is an accepting conversation for showing the knowledge of either sigk0 or sigk1, (aC , eC , zC)
is an accepting conversation for showing that the value committed in C is a signature on vk under one
of (verk0, verk1). Furthermore, ex̂ ⊕ e′V ⊕ eC = eP , and δ is a valid (one-time strong) signature on the
transcript of the second session.This means that, from the viewpoint of V , A successfully convinced V
of the statement “(x̂, verk0, verk1) ∈ L” in the second session but without knowing any corresponding
NP-witness!

D.2 Reformulating CNMZK in the BPK model

In light of the above CMIM attacks, we highlight a key difference between the CMIM setting in the
public-key model and the CMIM setting in the standard model.

The key difference: For CMIM setting in the standard model, honest verifiers are PPT algo-
rithms. In this case, normal CNM formulation only considers the extra advantages the CMIM adversary
can get from concurrent left sessions, as the actions of honest verifiers in right sessions can be efficiently
emulated perfectly; But, for CMIM setting in the public-key model, the honest verifier possesses secret
value (i.e, its secret-key) that can not be computed out efficiently from the public-key. In other words,
in this case an CMIM adversary can get extra advantages both from the left sessions and from the right
sessions. This is a crucial difference between CMIM settings for standard model and public-key model,
which normal formulation of CNM does not capture. The CMIM attack on the protocol of [22] clearly
demonstrates this difference.

With the above key difference in mind, we investigate reformulating the CNM notion in the public-
key model. Above all, besides requiring the ability of simulation/extraction, we need to mandate that
for any CMIM-adversary the witnesses extracted for right sessions are “independent” of the secret-key
used by the simulator/extractor S (who emulates honest verifiers in the simulation/extraction). Such
property is named concurrent non-malleable knowledge-extraction independence (CNMKEI). CNMKEI is
formulated by extending the formulation of concurrent knowledge-extraction (CKE) of [73] into the
more complicated CMIM setting (the CKE notion is formulated with adversaries only interacting with
honest verifiers but without interacting with provers). Roughly, the CNMKEI is formulated as follows.

CNMKEI in the public-key model: We require that for any PPT CMIM-adversary A in the
BPK model, there exists a PPT simulator/extractor S such that the following holds: Pr[R(Ŵ , SKV , str)] =
1 is negligibly close to Pr[R(Ŵ , SK ′

V , str)] = 1 for any polynomial-time computable relation R, where
SK ′

V is some element randomly and independently distributed over the space of SKV , str is the simu-
lated transcript indistinguishable from the real view of A, and Ŵ are the joint witnesses extracted to
successful right sessions in str. Here, for some right session that is aborted (due to CMIM adversary
abortion or verifier verification failure) or is of common input identical to that of one left session, the
corresponding witness to that right session is set to be a special symbol ⊥.

The formal formulation of the reformulated CNMZK definition in the BPK model is presented below:

Definition D.1 (CNMZK in the public-key model) We say that a protocol 〈P, V 〉 is concurrently
non-malleable zero-knowledge in the BPK model w.r.t. a class of admissible languages L and some key-
validating relations RP

KEY and RV
KEY , if for any positive polynomial s(·), any s-CMIM adversary A

28

defined in Appendix B, there exist a pair of (expected) polynomial-time algorithms S = (SKEY , SPROOF)
(the simulator) and E (the extractor) such that for any sufficiently large n, any auxiliary input z ∈
{0, 1}∗, any NP-relation RL (indicating an admissible language L ∈ L), and any polynomial-time
computable relation R (with components drawn from {0, 1}∗ ∪ {⊥}), the following hold, in accordance
with the experiment ExptCNM(1n, X, z) described below (page 29):

ExptCNM(1n, X, z)

Honest prover key-generation:
(PKP , SKP) ←− P1(1n). Denote by KL the set of all legitimate public-keys generated
by P1(1n). Note that the execution of P1 is independent from the simulation below. In
particular, only the public-key PKP is passed on to the simulator.

The simulator S = (SKEY , SPROOF):
(PKV , SKV , SK ′

V) ←− SKEY (1n), where the distribution of (PKV , SKV) is iden-
tical with that of the output of the key-generation stage of the honest verifier V1,
RV

KEY (PKV , SKV) = RV
KEY (PKV , SK ′

V) = 1 and the distributions of SKV and SK ′
V

are identical and independent. In other words, SKV and SK ′
V are two random and

independent secret-keys corresponding to PKV .

(str, sta) ←− S
A(1n, X, PKP , PKV , z)
PROOF (1n, X, PKP , PKV , SKV , z). That is, on inputs

(1n, X, PKP , PKV , SKV , z) and with oracle access to A(1n, X, PKP , PKV , z) (defined
in accordance with the experiment ExptACMIM (1n, X, W, z) described in Appendix
B), the simulator S outputs a simulated transcript str, and some state information
sta to be transformed to the knowledge-extractor E. Note that S does not know the
secret-key SKP of honest prover, that is, S can emulate the honest prover only from
its public-key PKP .

For any X ∈ Ls(n) and z ∈ {0, 1}∗, we denote by S1(1n, X, z) the random vari-
able str (in accordance with above processes of P1, SKEY and SPROOF). For
any X ∈ Ls(n), PKP ∈ KP and (PKV , SKV) ∈ RV

KEY and any z ∈ {0, 1}∗, we
denote by S1(1n, X, PKP , PKV , SKV , z) the random variable describing the first
output of S

A(1n, X, PKP , PKV , z)
PROOF (1n, X, PKP , PKV , SKV , z) (i.e., str specific to

(PKP , PKV , SKV)).

The knowledge-extractor E:
Ŵ ←− E(1n, sta, str). On (sta, str), E outputs a list of witnesses to (different right)
statements whose validations are successfully conveyed in right sessions in str, where
each of these statements is different from the statements of left sessions.

• Simulatability. The following ensembles are indistinguishable:
{S1(1n, X, PKP , PKV , SKV , z)}X∈Ls(n),PKP∈KP ,(PKV ,SKV)∈RV

KEY ,z∈{0,1}∗ and

{view
P (SKP),V (SKV)
A (1n, X, PKP , PKV , z)}X∈Ls(n),PKP∈KP ,(PK,SK)∈RKEY ,z∈{0,1}∗ (defined in ac-

cordance with the experiment ExptACMIM (1n, X, W, z) described in Appendix B). This in particular
implies the probability ensembles {S1(1n, X, z)}X∈Ls(n),z∈{0,1}∗ and {viewA(1n, X, z)}X∈Ls(n),z∈{0,1}∗
are indistinguishable.

• Secret-key independent knowledge-extraction. E, on inputs (1n, str, sta), outputs witnesses
to all (different right) statements successfully proved in accepting right sessions in str (with each
of the statements different from those of left sessions). Specifically, E outputs a list of strings
Ŵ = (ŵ1, ŵ2, · · · , ŵs(n)), satisfying the following:

29

– ŵi is set to be ⊥, if the i-th right session in str is not accepting (due to abortion or verifier
verification failure) or the common input of the i-th right session is identical with that of one
of left sessions, where 1 ≤ i ≤ s(n).

– Correct knowledge-extraction for (individual) statements: In any other cases, with overwhelming
probability (x̂i, ŵi) ∈ RL, where x̂i is the statement selected by P ∗ for the i-th right session in
str and RL is the NP-relation for the admissible language L ∈ L set by P ∗ for right sessions
in str.

– concurrent non-malleable knowledge extraction independence (CNMKEI): Pr[R(SKV , Ŵ , str) =
1] is negligibly close to Pr[R(SK ′

V , Ŵ , str) = 1]. This in particular implies that the distribu-
tions of (PKV , SKV , str) and (PKV , SK ′

V , str) are indistinguishable (by considering PKV

encoded in Ŵ).

The probabilities are taken over the randomness of P1, the randomness of S in the key-generation
stage (i.e., the randomness for generating (PKV , SKV , SK ′

V)) and in all proof stages, the ran-
domness of E, and the randomness of A.

Note that the above CNM formulation in the public-key model implies both concurrent ZK for
concurrent prover security in the public-key model (note that S emulates the honest prover without
knowing its secret-key), and concurrent knowledge-extraction for concurrent verifier security in the
public-key model formulated in [73]. The CNM formulation follows the simulation-extraction approach
of [68], and extends the CKE formulation of [73] into the more complex CMIM setting. We remark
that, as clarified, mandating the CNMKEI property is crucial for correctly formulating CNM security
in the public-key model. We also note that the above CNMZK definition in the BPK model can be
trivially extended to a tag-based formalization version

D.3 Discussions and clarifications

Existing CNM formulations in the public-key model do not capture CNMKEI. The CNM
formulation in the work [64] uses the indistinguishability-based approach of [68]. Specifically, in the
CNM formulation of [64], two experiments are defined (page 19 of [64]): a real experiment w.r.t. a
real public-key of an honest verifier (here, denoted PKV), in which a CMIM adversary mounts CMIM
attacks; a simulated experiment run by a simulator/extractor S w.r.t. a simulated public-key (here,
denoted PKS), in which S accesses A and takes a simulated secret-key SKS . The CNM is then for-
mulated as follows: the distribution of all witnesses used by A in right sessions in the real experiment
is indistinguishable from the distribution of the witnesses used by A in right sessions in the simulated
experiment. Note that [64] does not require the simulator/extractor to output a simulated indistin-
guishable transcript. That is, the CNM formulation of [64] does not automatically imply concurrent
zero-knowledge.

It appears that the CNM formulation of [64] has already dealt with the issue of knowledge-extraction
independence. But, a careful investigation shows that it does not. The reason is as follows:

Firstly, in the real experiment the statements selected by the CMIM adversary A for both left and
right sessions can be maliciously related to PKV (e.g., some function of PKV), and thus the witnesses
extracted for right sessions of the real experiment could be potentially dependent on the secret-key SKV

used by honest players. Note that, as witnessed by the above concurrent interleaving and malleating
attack on the CNMZK protocol of [22], when extracted witnesses are maliciously dependent on SKV

knowledge-extraction does not necessarily capture the intuition that A does “know” the witnesses
extracted. Similarly, as in the simulated experiment S uses SKS in simulation/extraction, the witness
extracted in the simulated experiment could also be maliciously dependent on SKS . That is, both the
witnesses extracted in real experiment and in the simulated experiment may be maliciously dependent on
SKV and SKS respectively, but the distributions of them still can be indistinguishable as the distributions
of SKV and SKS are identical!

30

The CNMZK formulations in the subsequent works of [22, 65]formulation following the simula-
tion/extraction approach, which is incomplete for correctly capture CNM security in the public-key
model as clarified above.

CNM with full adaptive input selection. The above CNMZK formulation does not explicitly
specify the input-selecting capabilities of the CMIM adversary. According to the clarifications presented
in Section 3, there are four kinds of CNM security to be considered: CNM security against CMIM with
predetermined inputs, CNM security against CMIM with adaptive input selection, CNM security against
CMIM with predetermined left-session inputs but full adaptive input selection on the right, and CNM security
against CMIM with full adaptive input selection.

We briefly note that no previous protocols in the BPK model were proved to be CNM-secure against
even CMIM with predetermined left-session inputs but full adaptive input selection on the right (i.e., the
inputs to left sessions are predetermined and the CMIM adversary only sets inputs to right sessions
in the fully adaptive way), needless to say to be CNM secure against CMIM with full adaptive input
selection. Specifically, the standard simulation-extraction paradigm for showing CNM security fails, in
general, when the CMIM adversary is allowed the capability of full adaptive input selection.

In more detail, the standard simulation-extraction paradigm for establishing CNM security works
as follows: the simulator first outputs an indistinguishable simulated transcript; and then extracts the
witnesses to (different) inputs of successful right sessions appearing in the simulated transcript, one by
one sequentially, by applying some assured underlying knowledge-extractor. This paradigm can work for
CMIM adversary with the capability of traditional adaptive input selection, as the input to each right
session is fixed at the beginning of the right session; Thus, applying knowledge-extractor on the right
session does not change the statement of the session, which has appeared and is fixed in the simulated
transcript.

But, for CMIM adversary of fully adaptive input selection, the standard simulation-extraction
paradigm fails in general in this case. In particular, considering the adversary always sets inputs
to right sessions only at the last message of each right session, such case applies to both of the two
illustrative natural protocol examples presented in Section 3: composing coin-tossing and NIZK, and
the Feige-Shamir-ZK-like protocols. In this case, when we apply knowledge-extractor on a successful
right session, the statement of this session will however also be changed, which means that the extractor
may never extract witness to the same statement appearing and being fixed in the simulated transcript.

On the possibility of CNMZK with adaptive input selection in the BPK model. The
possibility of CNMZK with adaptive (not necessarily to be fully adaptive) input selection in the BPK
model turns also out to be a quite subtle issue. In particular, we note that (traditional) adaptive
input selection was highlighted for the CNMZK in [64], but the updated version of [65] are w.r.t.
predetermined prover inputs (such subtleties were not clarified in [64, 65]. It appears that, as noted
recently in [66], the existence of CNMZK with adaptive (needless to say fully adaptive) input selection
in the BPK model might potentially violate Lindell’s impossibility results on concurrent composition
with adaptive input selection [56, 54]. This raised the question that: whether constant-round CNMZK
protocols (particularly in accordance with our CNMZK formulation) with adaptive input selection exists
in the BPK model (or, whether it is possible at least)?

A careful investigation shows that constant-round CNMZK with adaptive input selection could still
be possible in the BPK model, and actually our work does imply such protocols with the strongest full
adaptive input selection. Below, we give detailed clarifications in view of Lindell’s impossibility results
of [56, 54]. Lindell’s impossibility results of [56, 54] hold for concurrent (self or general) composition
of protocols securely realizing (large classes of) functionalities enabling (bilateral) bit transmission.
The Zero-Knowledge functionality ((x,w), λ) 7→ (λ, (x, R(x,w))) enables unilateral bit transformation
from prover to verifier. But, when a CNMZK protocol in the plain model is considered, where the
CMIM adversary can play both the role of prover and the role of the verifier (note that the honest
verifier can be perfectly emulated by the CMIM adversary in the plain model), it actually amounts to
realize an extended version of ZK functionality with interchangeable roles that does enable bilateral bit
transformation in this case. This implies that CNMZK with adaptive input selection is impossible in
the plain model.

31

The ZK (not necessarily CNMZK) protocol for an NP-language L in the BPK model essentially
amounts to securely realizing the following functionality: ((x,w), (PKV , SKV)) 7→ ((PKV ,RV

KEY (PKV ,
SKV)), (x,RL(x, w))) that enables bilateral bit transmission. This means that when adaptive input se-
lection is allowed both for prover inputs and verifier’s keys, which implies the verifier’s keys and thus
the public file output by the key-generation stage are not fixed but are set accordingly by the CMIM
adversary in order to transmit bits from honest verifiers to honest provers, even concurrent ZK (needless
to say CNMZK) may not exist in the BPK model! We highlight some key points that still could allow
the possibilities of CNMZK with adaptive input selection in the BPK model:

• Disabling bit transformation from honest verifiers to other players: Note that: in key-
generation stage, the keys of honest verifiers are generated independently by the honest verifiers
themselves and cannot be set adaptively by the CMIM adversary; In the proof stages, the keys of
honest verifiers (actually all keys in the public file) cannot be modified by the CMIM adversary,
as we assume the public file used in the proof stages remains the same output at the end of
key-generation stage; Furthermore, in the BPK setting we assume the role of honest verifiers
with honestly generated keys is fixed. That is, honest verifiers may prove the knowledge of their
corresponding secret-keys, but they never prove anything else.

Putting all together, it means that honest verifiers instantiated with their public-keys cannot be
impersonated and emulated by the CMIM adversary, and their inputs (i.e., the keys generated in
key-generation stage and then fixed and remaining unchanged for proof stages) and their prescribed
actions and player role in the proof stages are not influenced by the CMIM adversary. This disables
bit transmission from honest verifiers to other players, which implies that the existence of CNMZK
with adaptive input selection in the BPK model could still not violate Lindell’s impossibility
results.

• Disabling bit transformation from other players to honest provers: For a protocol in the
BPK model, the public-keys registered by honest provers and the public-keys registered by honest
verifiers can be of different types, and the use of honest-prover keys and the use of honest-verifier
keys in protocol implementation can also be totally different. Such differences can be on the
purpose of protocol design, as demonstrated with our CNMCT implementation. Then, for honest
provers of fixed role in the BPK model, though the CMIM adversary can enable, by adaptive
input selection, bit transmissions from honest provers to other players, but, in the BPK model,
the CMIM adversary may not enable bit transmissions from other players to honest provers.

• Concurrent self composition vs. concurrent general composition in the BPK model:
We further consider a more general case for any two-party protocol 〈P, V 〉 in the BPK model.
Suppose there are some players of fixed role, and some players of interchangeable roles (i.e., players
who can serve both as prover and as verifier). The direct way for a player in the BPK model to
be of interchangeable roles is to register a pair of keys (PKP , PKV) and to explicitly indicate its
role, i.e., prover or verifier, in the run of each session. Then, according to the analysis of [56, 54],
the run of any arbitrary external protocol executed among players of interchangeable roles can be
emulated, by a CMIM adversary capable of adaptive input selection, in the setting of concurrent
self composition of the protocol 〈P, V 〉 among those players. But, the external protocol executions
involving honest players of fixed roles, however, are not necessarily be able to be emulated by
self-composition of the protocol involving the honest players of fixed roles. This implies that,
as long as there are honest players of fixed roles in the BPK model, concurrent self-composition
with adaptive input selection in the BPK system does not necessarily imply concurrent general
composability.

A tradeoff. The above clarifications also pose a tradeoff between players’ roles and their CNM security
levels in the BPK model: For stronger CNM security of adaptive input selection, honest players in the
BPK model need to be of fixed roles; Of course, honest players can also choose to be of interchangeable
roles for their own convenience, but with the caveat that CNM security against CMIM of adaptive

32

input selection may lose (though CNM with predetermined inputs can still remain). In other words,
whether to be of fixed role or interchangeable role can be at the discretion of each honest player in the
BPK model. If one is interested with the stronger CNM security against CMIM of (full) adaptive input
selection, it is necessary for it to be of fixed role. A typical scenario of this case is: this player is a
server, who normally plays the same role and takes higher priority of stronger security over Internet;
However, if one is interested in the convenience of interchangeable role, it can simply register a pair of
keys (PKP , PKV) and explicitly indicate its role in the run of each session, but with the caveat that
its CNM security against CMIM of adaptive input selection may lose.

E Proof of Theorem 5.1

The description of the simulator. On security parameter 1n, for any positive polynomial s(·)
and any PPT s(n)-CMIM adversary A in the BPK model with auxiliary information z ∈ {0, 1}∗, the
simulator S = (SKEY , SPROOF), with respect to the honest left-player key-registration algorithm LKEY

and a CRS simulating algorithm MCRS , is re-depicted in Figure 3 (page 34) in order to ease reference.
In the description, the notation of m denotes a message sent by the simulator (emulating honest players),
and m̃ denotes the arbitrary message sent by the CMIM-adversary A.

Notes on the CNM simulation: For any i, 1 ≤ i ≤ s(n), if in the i-th left (resp., right) session of
the simulation A does not act accordingly or fails to provide a valid proof, then S aborts that session,
and sets the output just to be S

(i)
L (resp., S

(i)
R) and the state information to be τ

(i)
L (resp., τ

(i)
R).

Note that in the right-session simulation, when a successful right-session is w.r.t. a left-player key
PK

(j)
L = PKL the simulator does not try to extract the secret-key of PKL. In the following analysis,

we show that in this case, with overwhelming probability, the tag of Stage-5 of this successful right
session is identical to that of Stage-5 of a left-session. As the tag of Stage-5 of a session consists of the
session output (i.e., the coin-tossing output), this implies that the session output of this right-session
is identical to that of one of left-sessions. Moreover, we show that with overwhelming probability each
left-session output can appear, as session output, in at most one successful right-session.

In the unlikely event that A finishes a right session and the Stage-1 of a left-session simultaneously,
both of which are w.r.t. uncovered public-keys, extracting SKR in left simulation part takes priority
(in this case, SKL extraction in right simulation part is ignored in the current simulation repetition).

During any (of the at most s(n) + 1) simulation repetition, if S does not encounter secret-key
extraction and does not stop due to Case-R1 failure or Case-R2 failure, then S stops whenever A stops,
and sets str to be F and the view of A in this simulation repetition and sta = (staL, staR) to be the
according state-information.

Analysis of the CNM simulation
In order to establish the CNM security of the coin-tossing protocol depicted in Figure 1, according to

the CNMCT definition of Definition 5.1, we need to show the following properties of the CNM simulator
S described in Figure 3:

• S works in expected polynomial-time.

• The simulatability property, i.e., the output of S is computationally indistinguishable from the view of
A in real CMIM attack.

• The property of strategy-restricted and predefinable randomness.

• The secret-key independence property.

In the following, we analyze the above four properties of the CNM simulator S case by case.

• S works in expected polynomial-time

33

External honest left-player key-generation: Let (PKL, SKL) ←− LKEY (1n), where PKL = c and
SKL = (σ, sσ) such that σ ∈ {0, 1}n and sσ ∈ {0, 1}t(n) and c = C(σ, sσ). This captures the fact that S
does not know SKL and can emulate the honest left-player with the same public-key PKL.

Public-key file generation:
SKEY (1n) perfectly emulates the key-generation stage of the honest right-player, getting PKR =
(y0 = f(s0), y1 = f(s1)) and SKR = sb and SK ′

R = s1−b for a random bit b. Then, SKEY runs
A(1n, PKL, PKR, z) to get (F ′, τ), where F ′ is a set of at most s(n) public-keys and τ is the state
information to be used by the proof stage of A. The public-key file to be used in the proof-stage is
F = F ′ ∪ {PKL, PKR}.
S ← {(PKR, SKR)} (i.e. initiate the set of covered keys S to be {(PKR, SKR)}).
On input (1n, F ′, PKL, PKR, SKR, τ) and running A(PKL, PKR, F ′, τ) as a subroutine, the fol-
lowing process is run by SPROOF repeatedly at most s(n) + 1 times. In each simulation repetition, S
uses fresh randomness and tries to either end with a successful simulation or cover a new public-key in F−S.

Straight-line left simulation:
In the i-th left concurrent session (ordered by

the time-step in which the first round of each
session is played) between S and A in the left
CMIM interaction part with respect to a public-
key PK

(j)
R = (y(j)

0 , y
(j)
1) ∈ KR, 1 ≤ i, j ≤ s(n), S

acts as follows:

In case A successfully finishes Stage-1 and
PK

(j)
R ∈ F ′ − S, the simulator ends the

current repetition of simulation trial, and
starts to extract a secret-key SK

(j)
R such that

RR
KEY (PK

(j)
R , SK

(j)
R) = 1, which is guaranteed

by the AOK property of PRZK. Then, let S ←
S∪{(PK

(j)
R , SK

(j)
R)}, and move to the next repeti-

tion with fresh randomness (but with the accumu-
lated covered-key set S and the same public-key
file F).

In case A successfully finishes Stage-1 and
PK

(j)
R ∈ S (i.e., S has already learnt the secret-

key SK
(j)
R), S randomly selects r

(i)′
l ← {0, 1}n

and sends r
(i)′
l to A at Stage-2. After receiv-

ing Stage-3 message, denoted r̃
(i)
r , from A, S in-

vokes MCRS(1n) and gets the output denoted
(S(i)

L , τ
(i)
L). S then sends r(i) = S

(i)
L as the

Stage-4 message (rather than sending back r(i) =
PRFσ(r(i)′

l)⊕ r̃
(i)
r as the honest left-player does),

and sets sta
(i)
L = τ

(i)
L . In Stage-5, S computes

and sends c
(i)
crs = C(SK

(j)
R ||0t(n), s

(i)
crs) to A (rather

than sending back c
(i)
crs = C(σ||sσ) as the honest

left-player does), where t(n) is the length of sσ in
SKL. Finally, S finishes the PRZK of Stage-5 with
(SK

(j)
R , s

(i)
crs) as its witness and (PKL, r̃

(i)
r , S

(i)
L) as

the tag.

Straight-line right simulation:
In the i-th right concurrent session (ordered by the
time-step in which the first round of each session is
played) between S and A in the right CMIM interaction
part with respect to a public-key PK

(j)
L = c(j) ∈ KL,

1 ≤ i, j ≤ s(n), S acts as follows:

S perfectly emulates honest right-player in Stage-1 of
any right session, with SKR as the witness to commit-
then-PRZK and (PK

(j)
L , PKR) as the tag.

Case-R1: If PK
(j)
L ∈ S (i.e., S has already learnt

the secret-key SK
(j)
L = (σ(j), s

(j)
σ)), after receiving r̃

(i)′
l

from A at Stage-2, S runs MCRS(1n) and gets the out-
put denoted (S(i)

R , τ
(i)
R), and then computes and sends

PRFσ(j)(r̃(i)′
l) ⊕ S

(i)
R as Stage-3 message, and goes fur-

ther as the honest right-player does.
Case-R2: If PK

(j)
L 6∈ S ∪ {PKL}, and A successfully

finishes the i-th right session (in which S just perfectly
emulates the honest right-player of PKR), then the
simulator S ends the current repetition of simulation
trial, and starts to extract a secret-key SK

(j)
L such that

RL
KEY (PK

(j)
L , SK

(j)
L) = 1. In case S fails to extract

such SK
(j)
L , S stops the simulation, and outputs a special

symbol ⊥ indicating simulation failure. Such simulation
failure is called Case-R2 failure. In case S successfully
extracts such SK

(j)
L , then let S ← S ∪{(PK

(j)
L , SK

(j)
L)},

and move to the next repetition. If PK
(j)
L = PKL, S

just works as the honest right-player does.

Setting staR: For successful i-th right session, if the
Stage-4 message r̃(i) is S

(i)
R or S

(k)
L for some k, 1 ≤ k ≤

s(n), then sta
(i)
R is set accordingly to τ

(i)
R or τ

(k)
L ; other-

wise, sta
(i)
R is set to be ⊥.

Figure 3: The CNM simulation

34

Note that S works for at most s(n) + 1 repetitions. Then, pending on the ability of S to extract
secret-key of uncovered public-keys in expected polynomial-time during each repetition (equivalently,
within running-time inversely propositional to the probability of secret-key extraction event occurs), S
will work in expected polynomial-time. The technique for covering public-keys follows that of [12, 5].
Below, we specify the secret-key extraction procedures in more details.

Right-player key coverage. Whenever S needs to extract the secret-key SK
(j)
R corresponding

to an uncovered public-key PK
(j)
R , due to successful Stage-1 of the i-th left session during the k-th

simulation repetition w.r.t. covered key set S(k), 1 ≤ i, j ≤ s(n) and 1 ≤ k ≤ s(n) + 1, we combine
the CMIM adversary A and the simulation other than Stage-1 of the i-th left session (i.e., the public
file F , the covered key set S(k), the randomness rA of A, and the randomness rS used by S except
for that to be used in Stage-1 of the i-th left session) into an imaginary (deterministic) knowledge
prover P̂

(i,j)

(S(k),rA,rS)
. Note that, by the description of the CNM simulation depicted in Figure 3, the

Stage-1 of the i-th left session is the first successful Stage-1 of a left session finished by A (during the
k-th simulation repetition) with respect to an uncovered public-key not in S(k). The knowledge-prover
P̂

(i,j)

(S(k),rA,rS)
only interacts with a stand-alone knowledge-verifier of commit-then-PRZK, by running A

internally and mimicking S with respect to S(k) but with the following exceptions: (1) the messages
belonging to the Stage-1 of the i-th left session are relayed between the internal A and the external
stand-alone knowledge-verifier of PRZK; (2) P̂

(i,j)

(S(k),rA,rS)
ignores the events of secret-key extraction in

right simulation part, i.e., successful right sessions with respect to uncovered (left-player) public-keys;
(3) whenever A (run internally by P̂

(i,j)

(S(k),rA,rS)
) successfully finishes, for the first time, Stage-1 of a left

session w.r.t. an uncovered (right-player) public-key not in S(k), P̂
(i,j)

(S(k),rA,rS)
just stops.

For any intermediate S(k) used in the k-th simulation repetition, any PK
(j)
R 6∈ S(k), any randomness

rA of A and any randomness rS used by S except for that to be used in Stage-1 of the i-th left session,
denote by p the probability (taken over the coins used by S for Stage-1 of the i-th left session) that
the public-key used by A in Stage-1 of the i-th left session is PK

(j)
R , and furthermore, the Stage-1 of

the i-th left session is the first successful execution of PRZK w.r.t. an uncovered public-key during
the simulation of S w.r.t. covered-key set S(k). That is, p is the probability, taken over the coins used
by S for Stage-1 of the i-th left session (but for fixed other coins), of the event that S needs to cover
PK

(j)
R 6∈ S(k) in the i-th left session in its simulation w.r.t. S(k). Clearly, with probability at least p, the

knowledge prover P̂
(i,j)

(S(k),rA,rS)
successfully convinces the stand-alone knowledge verifier of PK

(j)
R . By

the AOK property of PRZK and applying the knowledge-extractor on P̂
(i,j)

(S(k),rA,rS)
, the secret-key SK

(j)
R

will be extracted within running-time inversely propositional to p. Here, when p is negligible, standard
technique, originally proposed in [41] and then deliberated in [52], has to be applied here (to estimate
the value of p) in order to make sure expected polynomial-time knowledge-extraction. In more detail,
the running-time of the naive approach to directly applying knowledge-extractor whenever such events
occur is bounded by T (n) = p · q(n)

p−κ(n) , where κ(n) is the knowledge-error and q(·) is the polynomial

related to the running time of the knowledge-extractor that is q(n)
p−κ(n) . The subtle point is: when p

is negligible, T (n) is not necessarily to be polynomial in n. The reader is referred to [41, 52] for the
technical details of dealing with this issue.

Left-player key coverage.
The coverage procedure for uncovered (left-player) public-keys used by A in successful Stage-5 of

right sessions can be described accordingly, similar to above right-player key coverage. The key point
to note here is: for a successful right session with respect to an uncovered (left-player) public-key
PK

(j)
L , the value extracted in expected polynomial-time is not necessarily to be the secret-key SK

(j)
L ,

though the value extracted must be either SK
(j)
L or SKR (i.e., the preimage of either y0 or y1) , where

PKR = (y0, y1) is the simulated (right-player) public-key. That is, S may abort due to Case-R2 failure
(though it works in expected polynomial-time). We show, in the following analysis of the simulatability
property, Case-R2 failure occurs with at most negligible probability.

35

• Simulatability

For presentation simplicity, in the following analysis of simulatability we assume the first output
of MCRS is truly random string of length n, i.e., all S

(i)
L ’s and S

(i)
R ’s are truly random strings. The

extension of the simulatability analysis to the case of pseudorandom output of MCRS is direct.
Assuming truly random output of MCRS , there are three differences between the simulated tran-

script output by S and the view of A in real CMIM attack against the honest left-player of PKL and
the honest right-player of PKR:

Truly random vs. pseudorandom Stage-4 messages: In simulation, the simulator S sends truly
random string r(i) = S

(i)
L at Stage-4 of the i-th left session, for any i, 1 ≤ i ≤ s(n). But, the

honest left-player sends a pseudorandom Stage-4 message, i.e., r(i) = PRFσ(r(i)′
l) ⊕ r̃

(i)
r , where

r
(i)′
l and r̃

(i)
r are the Stage-2 and Stage-3 messages of the i-th left session.

Witness difference of Stage-5 of left sessions: For any i-th left session w.r.t. a public-key PK
(j)
R ∈

S, the witness used by S in the commit-then-PRZK of Stage-5 is always the extracted secret-key
SK

(j)
R , while the witness used by the honest left-player is always its secret-key SKL.

Case-R2 failure: S may stop with simulation failure, due to invalid secret-key extraction in Case-R2
in the right simulation part.

We first show that, conditioned on Case-R2 failure does not occur, the output of S is indistinguishable
from the real view of A. Specifically, we have the following lemma:

Lemma E.1 Conditioned on Case-R2 failure does not occur, the following ensembles are indistin-
guishable: {S(1n, z, PKL, PKR, SKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗ (defined in Definition 5.1)

and {view
L(SKL),R(SKR)
A (1n, z, PKL, PKR)}1n,PKL∈KL,(PKR,SKR)∈RR

KEY ,z∈{0,1}∗ (defined in accordance

with the experiment ExptACMIM (1n, z) depicted in Appendix B, page 19).

Proof (of Lemma E.1). We first note that, conditioned on Case-R2 failure does not occur and
assuming the truly random output of MCRS , S perfectly emulates the honest right-player of PKR in
right simulation part.

The left two differences all are w.r.t. left session simulation. Intuitively, in real interaction the seed
σ of PRF is committed into left-player public-key PKL and is re-committed and proved concurrently
in Stage-5 of left sessions, the CMIM adversary may potentially gain some knowledge about the random
seed σ by concurrent interaction, which enabling it to set its Stage-3 messages of left sessions maliciously
depending on the output of PRFσ. Note that in real interaction, the Stage-4 messages sent by honest
left-player are determined by the PRF seed and the Stage-2 messages. Thus, the Stage-4 messages of left
sessions in real interaction may be distinguishable from truly random strings as sent by the simulator
S in simulation. The still indistinguishability between the simulated transcript and the real view of A
is proved by hybrid arguments.

We consider a hybrid mental experiment H. H mimics S(1n, z, PKL, PKR, SKR), with additionally
possessing SKL = (σ, sσ) and with the following exception: At Stage-4 of any left session, H just
emulates the honest left-player by setting the Stage-4 message r(i) to be PRFσ(r(i)′

l)⊕ r̃
(i)
r (rather than

sending S
(i)
L as S does); In Stage-5 of any left session w.r.t. a covered key PK

(j)
R (for which H has

already learnt the corresponding secret-key SK
(j)
L), H still emulates S by using the extracted secret-

key SK
(j)
R as the witness (specifically, it commits to SK

(j)
R ||0t and finishes PRZK accordingly as the

simulator S does).
The difference between the view of A in H and the view of A in the simulation of S lies in the

difference of Stage-4 messages of left sessions. Suppose that the view of A in H is distinguishable from
the view of A in the simulation of S, then it implies that there exists a PPT algorithm D that, given

36

the commitment of the PRF seed, i.e., PKL = C(σ, sσ), can distinguish the output of PRFσ from truly
random strings. Specifically, on input PKL, D emulates H or S by having oracle access to PRFσ or a
truly random function; Whenever it needs to send Stage-4 message in a left session, it just queries its
oracle with the Stage-2 message. Clearly, if the oracle is PRFσ, then D perfectly emulates H, otherwise
(i.e., the oracle is a truly random function), it perfectly emulates the simulation of S.

So, we conclude that if the view of A in H is distinguishable from the view of A in the simulation
of S, then the PPT algorithm D that, given the commitment of the PRF seed σ, can distinguish the
output of PRFσ from that of truly random function. Consider the case that D, given the commitment
c = C(σ), has oracle access to an independent PRFσ′ of an independent random seed σ′ or a truly
random function. Due to the pseudorandomness of PRF , the output of D(c) with oracle access to
PRFσ′ is indistinguishable from the output of D(c) with oracle access to a truly random function. It
implies that D, given the commitment c = C(σ), can distinguish the output of PRFσ and the output
of PRFσ′ , where σ and σ′ are independent random seeds. But, this violates the computational hiding
property of the commitment scheme C. Specifically, given two random strings of length n, (s0, s1), and
a commitment cb = C(sb) for a random bit b, the algorithm D can be used to distinguish the value
committed in cb, which violates the computational hiding property of C.

Now, we consider the difference between the output of H and the view of A in real execution. Recall
that, as we have shown the view of A in H is indistinguishable from that in the simulation and we have
assumed Case-R2 failure does not occur in the simulation of S, Case-R2 failure can occur in H with
at most negligible probability. Then, the difference between the output of H and the view of A in real
execution lies in the witnesses used in Stage-5 of left sessions. Specifically, H still uses the extracted
right-player secret-keys in Stage-5 of left sessions, while the honest left-player always uses its secret-key
SKL in Stage-5 of left sessions in real execution. By hybrid arguments, the difference can be reduced to
violate the regular WI property of commit-then-PRZK. Note that commit-then-PRZK is itself regular
WI for NP (actually, any commit-then-SWI is itself regular WI).

In more detail, we consider the mental experiment Mb, b ∈ {0, 1}. On input {(PKL, SKL), (PKR, SKR)}
and public file F , and auxiliary information z to the CMIM adversary A 2, the mental Mb also takes
as input all secret-keys corresponding to right-player public-keys in the public file F (in case the corre-
sponding secret-keys exist). Mb runs the CMIM adversary A as follows:

1. Mb emulates the honest right-player of PKR (with SKR as the witness) in right sessions. In par-
ticular, M just sends truly random Stage-3 messages in all right sessions, and ignores knowledge-
extraction of left-player secret-keys in right sessions (i.e., in case A successfully finishes a right
session w.r.t an uncovered public-key PK

(j)
L , Mb ignores the need of secret-key extraction and just

moves on);

2. For any i, j, 1 ≤ i ≤ s(n) and 1 ≤ j ≤ s(n)+1, in the i-th left session w.r.t. right-player public-key
PK

(j)
R , Mb emulates the honest left-player of PKL until Stage-4 (in particular, it sets the Stage-4

message r(i) to be PRFσ(r(i)′
l)⊕ r̃

(i)
r), but with the following exception in Stage-5:

• If b = 0, then Mb just emulates the honest left-player in Stage-5 of the left session, with SKL

as its witness.

• If b = 1, Mb still emulates the simulator by using the secret-key SK
(j)
R , for which we assume

it exists and M knows, as the witness in Stage-5. Specifically, it commits to SK
(j)
R ||0t and

finishes PRZK accordingly as the simulator S does.

It’s easy to see that the output of M0 is identical to the real view of A in real execution, and the
output of M1 is indistinguishable from the output of H. Then, suppose the real view of A in real
execution is distinguishable from the output of H, by hybrid arguments we can break the regular WI
of commit-then-PRZK. ¤

2Recall that, in accordance with the definition of CNMCT, z is a priori information of A that is independent from the
public file F (in particular, PKL and PKR).

37

Now, we show that Case-R2 failure indeed occurs with negligible probability, from which the simu-
latability of the CNM simulation is established.

Lemma E.2 Case-R2 failure occurs with negligible probability.

Proof (of Lemma E.2). Suppose Case-R2 failure occurs with non-negligible probability. That is, for
some polynomial p(n) and infinitely many n’s, with probability of 1

p(n) there exist k, i, j, 1 ≤ k ≤ s(n)+1
and 1 ≤ i, j ≤ s(n), such that in the k-th simulation repetition A successfully finishes the i-th right
session with respect to an uncovered public-key PK

(j)
L 6∈ S ∪ {PKL}, furthermore, the k-th simulation

repetition is the first one encountering Case-R2 failure and the i-th right session is the first successful
session w.r.t. an uncovered public-key not in S ∪ {PKL} during the k-th simulation repetition, but the
simulator fails in extracting the corresponding secret-key SK

(j)
L . Recall that S makes at most s(n) + 1

simulation trials (repetitions) and each simulation trial uses fresh randomness in the proof stages; S
starts knowledge-extraction whenever it encounters a successful session w.r.t. an uncovered public-key
different from PKL; Whenever Case-R2 failure occurs S aborts the whole simulation, which implies
that the k-th simulation repetition is also the last simulation trial.

Note that, by the AOK property of PRZK (we can combine the k-th simulation repetition except
for the Stage-5 of the i-th right session into a stand-alone knowledge prover of the PRZK), in this case
the simulator still extracts some value that is determined by the statistically-binding commitment c̃

(i)
crs

at the start of Stage-5 of the i-th right session. According to the AOK property of PRZK, there are
two possibilities for the value committed to c̃

(i)
crs and extracted by S assuming Case-R2 failure.

Case-1. The value committed is the preimage of y1−b. Recall that PKR = (y0, y1) is the simulated
public-key of honest right player, with SKR = sb for a random bit b such that yb = f(sb).

Case-2. The value committed is the preimage of yb.

Due to the one-wayness of the OWF f , it is easy to see that Case-1 can occur only with negligible
probability. Specifically, consider the case that y1−b is given to the simulator, rather than generated by
the simulator itself.

Below, we show that Case-2 occurs also with negligible probability, from which Lemma E.2 is then
established.

We consider the following two experiments: E(1n, z, PKL, PKR, sb), where sb = SKR and b ∈ {0, 1}.
The experiment E(1n, z, PKL, PKR, sb) consists of two phases (or algorithms), denoted by E1 and E2:
In the first phase, E1 just runs S(1n, z, PKL, PKR, sb) until S stops. Denote by Cb the set of extracted-
keys, corresponding to public-keys in F−{PKR}, which are extracted and used by S in its last simulation
trial (recall that the first simulation repetition encountering Case-R2 failure is also the last simulation
repetition). Specifically, suppose S uses SKR = sb in the simulation and stops in the k-th simulation
repetition with respect to covered-key set, denoted S(k)

b , then Cb = S(k)
b − {(PKR, SKR)}. Note that

Cb does not include (PKR, SKR) now. The set Cb, the public-key file F = F ′ ∪ {PKL, PKR} and the
state information τ are passed on to E2, where (F ′, τ) is the output of (the key-generation stage of) the
underlying CMIM adversary A(1n, z, PKL, PKR) (run by S).

Then, in the second phase of the experiment E, a PPT algorithm E2(1n, Cb, F, τ) runs (the proof-
stage of) the CMIM adversary A(1n, F, τ) and (re)mimics the simulation of S (to be precise, SPROOF)
at its last simulation trial w.r.t. the set of covered-keys Cb, but with the following exceptions (note that
E2 does not take sb = SKR as input): (1) E2 externally interacts with the prover of commit-then-PRZK
P (1n, sb): Whenever S needs to give a Stage-1 proof of a right session on PKR = (y0, y1), or needs to
give a Stage-5 proof of a left session with respect to PKR

3 on input (PKL, PKR, (r(i)′
l , r̃

(i)
r , r(i))), E2

just sets the corresponding input, i.e., PKR or (PKL, PKR, (r(i)′
l , r̃

(i)
r , r

(i)
l)),4 as well as the according

3Note that left sessions may be with respect to the simulated public-key PKR, i.e., the CMIM adversary may imper-
sonate the honest right-player of PKR in left sessions.

4Actually, theNP-statements reduced from them for theNP-Complete language for which commit-then-PRZK actually
works.

38

left or right tag, to P (1n, sb), and then relays messages between P (1n, Sb) and the CMIM adversary A;
(2) In case A successfully finishes Stage-1 of a left session with respect to an uncovered public-key not
in Cb ∪ {PKR} in the run of E2(1n, Cb, F, τ), E2 just stops.

Now, suppose Case-2 of Case-R2 failure occurs with non-negligible probability. That is, with non-
negligible probability, the simulator S aborts due to Case-R2 failure in its last simulation trial with
respect to the covered public-key set Cb, and the value committed in c̃

(i)
crs (in the successful i-th right

session, for some i, 1 ≤ i ≤ s(n), w.r.t. an uncovered public-key PK
(j)
L 6∈ Cb ∪ {PKL, PKR} during the

simulation trial w.r.t. Cb) is the preimage of yb. Recall that, the successful i-th right session is also the
first successful session w.r.t. an uncovered public-key different from PKL during the simulation trial
w.r.t. Cb. It is easy to see that, with also non-negligible probability, the value committed in c̃

(i)
crs in the i-

th right successful session (which is also the first successful session w.r.t. an uncovered public-key not in
Cb∪{PKL, PKR}) under the run of E2(1n, Cb, F, τ) is the preimage of yb. We will use this fact to violate
the one-left-many-right simulation/extraction of commit-then-PRZK with adaptively setting input and
tag for the one left-session, where the simulator/extractor of commit-then-PRZK first commits to 0 and
then runs the one-left-many-right simulator/extractor of PRZK.

Before proceeding the analysis, we first present some observations on commit-then-PRZK with re-
stricted input selection and indistinguishable auxiliary information. Consider the following experiments:
EXPT(1n, wb, auxb), where wb ∈ {0, 1}n for b ∈ {0, 1}. In EXPT(1n, wb, auxb), the commit-then-PRZK
for NP is run concurrently, and a many-left-many-right CMIM adversary A, possessing auxiliary infor-
mation auxb and involving at most m(n) left-sessions and at most m(n) right-sessions simultaneously
where m(·) is a positive polynomial, can set the inputs and tags to prover instances of left sessions
with the following restriction: for any xi, 1 ≤ i ≤ m(n), set by A for the i-th left session of commit-
then-PRZK, the fixed value wb is always a valid NP-witness. In other words, although A has the
power of adaptive input selection for provers, but there exists fixed witness-pair (w0, w1) for all inputs
selected by A. Such adversary is called restricted input-selecting CMIM-adversary. Denote by transb

the transcript of the experiment EXPT(1n, wb, auxb) (i.e., the view of A in EXPT(1n, wb, auxb)), and
by Ŵ b = {ŵb

1, · · · , ŵb
m(n)} the witnesses encoded (determined) by the statistically-binding commit-

ments (at the beginning) of successful right sessions in transb (as in [68], in the unlikely event that a
statistically-binding commitment does not uniquely determine a witness, the corresponding witness is
set to be “⊥”); For a right session that aborts or the tag of the underlying PRZK is identical to that in
one of left sessions, ŵb

i is set to be a special symbol ⊥. We want to show the following proposition:

Proposition E.1 If the ensembles {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and {aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n are
indistinguishable, then the ensembles {(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n,

w0, aux0) and {(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w1, aux1) are also in-
distinguishable.

Proof (of Proposition E.1): This is established by investigating a series of experiments.
First consider two experiments EXPTn

1 (1n, wb, auxb), where b ∈ {0, 1}. In EXPTn
1 (1n, wb, auxb), a

one-left-many-right restricted input-selecting MIM adversary A, possessing auxiliary information auxb,
interacts with the prover instance of commit-then-PRZK in one left session and sets the input x of the
left session such that (x,wb) ∈ RL, and concurrently interacts with many honest verifier instances on the
right. From the one-many simulation/extraction SZKAOK property of PRZK (with adaptively setting
input and tag for the one left session) and computational-hiding property of the underlying statistically-
binding commitments, by hybrid arguments, we can conclude that if aux0 is indistinguishable from aux1,
then A’s views and the witnesses encoded (actually extracted) in the two experiments, i.e., (trans0, Ŵ 0)
and (trans1, Ŵ 1)), are indistinguishable.

In more details (as shown in [68]), due to the one-many simulation/extraction perfect ZKAOK prop-
erty of PRZK, for any bit b ∈ {0, 1} (transb, Ŵ b) in EXPTn

1 (1n, wb, auxb) is identical to (transb, Ŵ b)
in a modified version of EXPTn

1 (1n, wb, auxb), called commit(wb)-then-simulatedPRZK, in which the
one left-session and many right-sessions are emulated by a PPT algorithm (i.e., the one-left-many-right

39

simulator/extractor guaranteed by PRZK) with witness extraction for successful right-sessions of dif-
ferent tags (but the witness wb is still committed to the statistically-binding commitment of the left
session). Then, for this experiment, due to the computational hiding property of the statistically-binding
commitment scheme used in commit-then-PRZK, (transb, Ŵ b) of the commit(wb)-then-simulatedPRZK
experiment is computationally indistinguishable from that of the commit(0)-then-simulatedPRZK ex-
periment in which “0” (rather than wb) is committed to the statistically-binding commitment of the
one left session. Note that the commit(0)-then-simulatedPRZK experiment can be performed by a
merely PPT algorithm. The reader is referred to [68] for more details of the hybrid arguments of this
step. Here, we point out that the hybrid arguments of [68] is actually w.r.t. a strengthened version of
commit-then-PRZK, which is referred as signed commit-then-PRZK here. Roughly speaking, the tag
of the underlying PRZK is set to be the public-key of a signature scheme, and the protocol transcript
of commit-then-PRZK is in turn signed by the prover. Some advantages of signed commit-then-PRZK
are: it can work for tags of length poly(n) (rather than O(n) as required by the underlying PRZK), and
it can satisfy some stronger non-malleability requirements w.r.t. session transcripts (rather than only
session tags or inputs). We note this signature-based trick is unnecessary for our purpose in this work.
In particular, the tags of the underlying PRZK in our CNMCT constructions are indeed of length O(n),
and our CNM definitions (for ZK and CT) are based on the normal formulation approach that is not
w.r.t. session transcripts.5

Now we consider the following two experiments: EXPT(1n, w, auxb), where b ∈ {0, 1} and w ∈
{w0, w1}. In EXPT(1n, w, auxb), a many-left-many-right restricted input-selecting MIM adversary A,
possessing auxiliary information auxb, interacts concurrently with many prover instances on the left
(such that w is always a witness for inputs selected adaptively by A for left sessions), and interacts
with many honest verifier instances on the right. Then, the indistinguishability between the ensembles
{(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n and {(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n is direct from the indis-
tinguishability between {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and {aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n and the adap-
tive one-left-many-right simulation-extractability of PRZK. Specifically, this is derived by a simple
reduction to the above one-left-many-right case. Note that according to the definition of indistinguisha-
bility between ensembles, (w, aux0) and (w, aux1) are indistinguishable. Actually, (w0, w1, aux0) and
(w0, w1, aux1) are indistinguishable. Also, note that all sessions in EXPT(1n, w, auxb) can be emulated
internally by a PPT algorithm given (w, auxb).

In more details, we consider the experiments EXPTn
1 (1n, w, auxb), where b ∈ {0, 1} and w ∈

{w0, w1}. In the experiment EXPTn
1 (1n, w, auxb), a one-left-many-right MIM adversary A′ that on

auxiliary input (w, auxb) mimics the CMIM adversary A (of the auxiliary input auxb) in the above
experiment EXPT(1n, w, auxb), with the following modifications: all left-sessions except for the first
left-session are perfectly emulated by A′ by using w as the witness, and A′ externally interacts with
the commit-then-PRZK prover in the first left-session; A′ outputs a simulated view of A that is iden-
tical to the view of A in the experiment EXPT(1n, w, auxb). By the adaptive one-left-many-right
simulation-extractability of PRZK, the view of A and the corresponding witnesses encoded by the
statistically-binding commitments under the run of A′(w, auxb) are indistinguishable from the outputs
of the PPT simulator/extractor guaranteed by PRZK, with auxiliary input (w, auxb), in the commit(0)-
then-simulatedPRZK experiment. As (w, aux0) and (w, aux1) are indistinguishable, we conclude that
{(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with the experiment EXPT(1n, w, aux0) and
{(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w, aux1) are indistinguishable.

We return back to investigate the experiments: EXPT(1n, wb, auxb) with respect to many-left-many-
right restricted input-selecting MIM adversary A. Firstly, the distribution ensemble of
{(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w0, aux0) and the distribution en-
semble of {(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w0, aux1) are indistin-
guishable, if {aux0}n∈N,w0∈{0,1}n,w1∈{0,1}n and {aux1}n∈N,w0∈{0,1}n,w1∈{0,1}n are indistinguishable, where
EXPT(1n, w0, aux1) denotes a hybrid experiment in which the CMIM adversary possesses auxiliary in-

5The extension to session-transcript based formulations and protocol implementations of CNMCT and CNMZK are left
for future explorations.

40

formation aux1 while concurrently interacting on the left with many prover instances of the fixed
witness w0. Then, by a simple hybrid argument to the one-left-many-right case, we get that the
distribution ensemble {(trans0, Ŵ 0)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance with EXPT(1n, w0, aux1) is
indistinguishable from the distribution ensemble of {(trans1, Ŵ 1)}n∈N,w0∈{0,1}n,w1∈{0,1}n in accordance
with EXPT(1n, w1, aux1). In more detail, if the above ensembles are distinguishable, then the differ-
ence can be reduced, by hybrid arguments, to the difference of witnesses used in only one left session.
Note that, all sessions other than the one left session can be emulated internally by a PPT algo-
rithm given (w0, w1, aux1). We remark that, here, posing the restricted input selection requirement in
EXPT(1n, wb, auxb), i.e., the fixed w0 and w1 are always the valid witnesses to all statements set by
the CMIM adversary for left-sessions, is critical for the above hybrid arguments to go through.

Proposition E.1 follows. ¤
Now, we return back to the experiment E(1n, z, PKL, PKR, sb) for finishing the proof of Lemma

E.2. We first prove that {C0}n∈N,s0∈{0,1}n,s1∈{0,1}n is indistinguishable from {C1}n∈N,s0∈{0,1}n,s1∈{0,1}n

according to the analysis of Proposition E.1, where Cb, b ∈ {0, 1}, is the set of extracted-keys (corre-
sponding to public-keys in F −{PKR}) that is used by the simulator S in its last simulation repetition.
Equivalently, Cb is generated by E1 and is passed on to E2. Note that sb = SKR is the simulated
secret-key used by S (equivalently, E1). For presentation simplicity, in the following description we
simply refer to S, E1 and E2 as S(1n, sb), E1(1n, sb) and E2(1n, Cb). Actually, we can show that for
any k, 1 ≤ k ≤ s(n) + 1, if the distribution ensemble of the set of extracted-keys used in the (k − 1)-th
simulation repetition of S(1n, s0) using SKR = s0, denoted {Ck−1

0 }n∈N,s0∈{0,1}n,s1∈{0,1}n , is indistin-
guishable from that of {Ck−1

1 }n∈N,s0∈{0,1}n,s1∈{0,1}n (the set of extracted-keys used in the (k − 1)-th
simulation repetition of S(1n, s1)), then the distribution ensembles of {Ck

0}n∈N,s0∈{0,1}n,s1∈{0,1}n and
{Ck

1}n∈N,s0∈{0,1}n,s1∈{0,1}n are also indistinguishable.
We consider another PPT algorithm Ŝ(1n, Ck−1

b) that mimics E2(1n, Ck−1
b) (with externally inter-

acting with the commit-then-PRZK prover P (1n, sb)) but with the following modifications: the interac-
tions of Stage-1 of left-sessions and Stage-5 of right-sessions, in which the underlying CMIM adversary
A serves as the prover of commit-then-PRZK, are relayed by Ŝ between the underlying CMIM ad-
versary A and external commit-then-PRZK verifiers (who actually just send random coins, as PRZK
is actually public-coin). We remark that the run of Ŝ(1n, Ck−1

b) actually amounts to the experiment
EXPT(1n, wb, auxb) defined in Proposition E.1, where 2s(n) amounts to m(n) as Ŝ can involve at
most 2s(n) sessions in each (left or right) CMIM interaction part, sb amounts to wb, Ck−1

b amounts to
auxb and the interactions with the at most 2s(n) instances of the commit-then-PRZK prover P (1n, sb)
amount to the left-sessions and the interactions between Ŝ (actually A) and the at most 2s(n) in-
stances of the commit-then-PRZK verifier amount to right-sessions. Here, a point of worthy noting
is: though commit-then-PRZK is composed with other interactions (say, the interactions at Stage-2,
Stage-3 and Stage-4), all interactions other than the interactions with the prover P (sb) of commit-
then-PRZK (i.e., the left-sessions of Ŝ) can be internally emulated by Ŝ, though Stage-1 interactions
of left-sessions and Stage-5 interactions of right-sessions (which correspond to the right-sessions of Ŝ
and are just public coins) are not internally emulated by Ŝ. By applying Proposition E.1, we get
that if the ensembles {Ck−1

0 }n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck−1
1 }n∈N,s0∈{0,1}n,s1∈{0,1}n are distinguishable,

{Ck
0}n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck

1}n∈N,s0∈{0,1}n,s1∈{0,1}n are also distinguishable. Finally, note that C0
0

and C0
1 (the set of extracted-keys corresponding to F − {PKR} at the beginning of the simulation)

are identical, i.e., both of them are the empty set. By inductive steps, we get that the distribution
ensembles of {Ck

0}n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck
1}n∈N,s0∈{0,1}n,s1∈{0,1}n are indistinguishable for any k,

1 ≤ k ≤ s(n) + 1. Here, we note that the above analysis (for showing the indistinguishability between
{Ck

0}n∈N,s0∈{0,1}n,s1∈{0,1}n and {Ck
1}n∈N,s0∈{0,1}n,s1∈{0,1}n, for any k, 1 ≤ k ≤ s(n) + 1) works also for

the case that C0
0 = C0

1 = {sα}, where α ∈ {0, 1} and sα ∈ {s0, s1} is a fixed value and is independent of
sb. This property will be used in the subsequent analysis of secret-key independence.

But, suppose Case-2 of Case-R2 failure occurs with non-negligible probability. Then, with also non-
negligible probability, the value committed to the statistically-binding commitment (at the beginning)
of a (actually the first) successful right-session of commit-then-PRZK w.r.t. an uncovered public-key not

41

in Cb ∪ {PKL, PKR} under the run of the CMIM algorithm Ŝ (equivalently, E2(1n, Cb)), with auxiliary
input Cb where b ∈ {0, 1} and C0 and C1 are indistinguishable, is the preimage of yb. Suppose this right-
session is the i-th right-session run by Ŝ(1n, sb), 1 ≤ i ≤ 2s(n), it can be directly checked that, with
overwhelming probability, the tag used by Stage-5 of this i-th right session, denoted (PK

(j)
L , r

(i)
r , r̃(i))

where PK
(j)
L 6∈ Cb∪{PKL, PKR} and r

(i)
r is a random n-bit string, must be different from the tags used

by the prover P (1n, sb) of commit-then-PRZK. Recall that the tags of Stage-1 of right sessions (run
by P (sb)) is of the form (·, y0, y1) and the tags of Stage-5 of left sessions (run by P (sb)) is of the form
(PKL, ·, ·). This means that, by concurrently interacting with the prover P (sb) of commit-then-PRZK
in left-sessions and with the commit-then-PRZK verifier instances in the right-sessions, Ŝ(1n, Cb) can
successfully commit the preimage of yb in a successful right session that is of a tag different from all
the tags of the left-session interactions with P (1n, sb) and is actually the first right-session w.r.t an
uncovered public-key not in Cb ∪{PKR, PKL}, which violates Proposition E.1. This shows that Case-2
of Case-R2 failure can occur also with negligible probability. Thus, Case-R2 failure can occur with at
most negligible probability. This finishes the proof of Lemma E.2, from which the simulatability of the
CNM simulation depicted in Figure 3 is then established. ¤

Next, before proceeding the analysis of the property of strategy-restricted and pre-definable ran-
domness, we first investigate the property of secret-key independence which is essentially implied by the
above analysis of Lemma E.2 and Proposition E.1.

• Secret-key independence

Specifically, we need to show that Pr[R(SKR, str, sta) = 1] is negligibly close to Pr[R(SK ′
R, str, sta)

= 1] for any polynomial-time computable relation R. In more details, for any pair (s0, s1) in the
(simulated right-player) key-generation stage, denote by (strb, stab) the output of S(1n, sb) when it
is using SKR = sb. Then, Pr[R(SK, str, sta) = 1] = 1

2 Pr[R(s0, str
0, sta0) = 1|S uses SKR =

s0 in generating (str0, sta0)] + 1
2 Pr[R(s1, str

1, sta1) = 1|S uses SKR = s1 in generating (str1, sta1)],
and Pr[R(SK ′

R, str, sta) = 1] = 1
2 Pr[R(s0, str

1, sta1) = 1|S uses SKR = s1in generating (str1, sta1)] +
1
2 Pr[R(s1, str

0, sta0) = 1|S uses SKR = s0 in generating (str0, sta0)]. Suppose the secret-key inde-
pendence property does not hold, it implies that there exists a bit α ∈ {0, 1} such that the differ-
ence between Pr[R(sα, str0, sta0) = 1|S uses s0 in generating (str0, sta0)] and Pr[R(sα, str1, sta1) =
1|S uses s1 in generating (str1, sta1)] is non-negligible. It implies that (sα, str0, sta0) and (sα, str1, sta1)
are distinguishable. But, note that the analysis of Lemma E.2 and Proposition E.1 has already estab-
lished that the distribution ensembles of {S(1n, s0) = (str0, sta0)}n∈N,s0∈{0,1}n,s1∈{0,1}n and {S(1n, s1) =
(str1, sta1)}n∈N,s0∈{0,1}n,s1∈{0,1}n are indistinguishable. Specifically, the distribution ensembles of the
sets of extracted-keys corresponding to the public-keys in F − {PKR}, {C0}n∈N,s0∈{0,1}n,s1∈{0,1}n and
{C1}n∈N,s0∈{0,1}n,s1∈{0,1}n used by S(1n, sb) for b ∈ {0, 1} in the last simulation repetition, are indistin-
guishable, and then the indistinguishability between the ensembles {(str0, sta0)}n∈N,s0∈{0,1}n,s1∈{0,1}n

and {(str1, sta1)}n∈N,s0∈{0,1}n,s1∈{0,1}n are from Proposition E.1.

• Strategy-restricted and predefinable randomness

Now, we proceed to show the strategy-restricted and predefinable randomness property of the CNM
simulator S depicted in Figure 3. Denote by RL = {R(1)

L , R
(2)
L , · · ·R(s(n))

L } the coin-tossing outputs of
the s(n) left sessions in str (i.e., the first output of S), and by staL = {sta(1)

L , sta
(2)
L , · · · , sta

(s(n))
L }

the state information corresponding to RL included in sta (i.e., the second output of S). Similarly,
denote by RR = {R(1)

R , R
(2)
R , · · ·R(s(n))

R } the coin-tossing outputs of the s(n) right sessions in str, and
by staL = {sta(1)

R , sta
(2)
R , · · · , sta

(s(n))
R } the state information for RR. We want to show that, with

overwhelming probability, both the distribution of (RL, staL) and that of (RR, staR) are identical to that
of Ms(n)

CRS(1n). Recall that, ({r1, r2, ·, rs(n)}, {τr1 , τr2 , · · · , τrs(n)
}) ←−Ms(n)

CRS(1n) denotes the output of
the experiment of running MCRS(1n) independently s(n) times.

Note that, according to the CNM simulation described in Figure 3, for any i, 1 ≤ i ≤ s(n), the
output of the i-th left session, i.e., R

(i)
L , in the simulation is always S

(i)
L and sta

(i)
L is always τ

(i)
L , where

42

(S(i)
L , τ

(i)
L) is the output of an independent run of MCRS(1n). It is directly followed that the distribution

of (RL, staL) is identical to that of Ms(n)
CRS(1n).

The complicated point here is to show that, with overwhelming probability, the distribution of
(RR, staR) is also identical to that of Ms(n)

CRS(1n). According to the CNM simulation depicted in Figure
3, if we can prove that, with overwhelming probability, for any i, 1 ≤ i ≤ s(n), the coin-tossing
output of the successful i-th right session R

(i)
R is either S

(i)
R or R

(k)
L = S

(k)
L for some k, 1 ≤ k ≤ s(n);

furthermore, any left-session output S
(k)
L can be the coin-tossing output for at most one successful

right session (which implies the coin-tossing outputs of successful right sessions are independent), then
the distribution of (RR, staR) is also identical to that of Ms(n)

CRS(1n). In the following description, for
presentation simplicity, we sometimes omit some unlikely events occurring with negligible probability.

For any i, 1 ≤ i ≤ s(n), we consider the successful i-th right session with respect to a public-key
PK

(j)
L . As we have shown that Case-R2 failure occurs with negligible probability, we get PK

(j)
L ∈

Cb ∪ {PKR, PKL}, where Cb is the set of extracted-keys (corresponding to public-keys in F − {PKR})
used by S(sb) in its last simulation repetition.

We first observe that, if PK
(j)
L = PKL then with overwhelming probability the tag of Stage-5 of

the successful i-th right session must be identical to that of Stage-5 of a left session simulated by the
simulator S. Recall that all the Stage-5 tags of right sessions are different strings, as they contain
random Stage-3 strings sent by the simulator. This means that Stage-5 tags of right sessions are also
different from Stage-1 tags of right sessions simulated by S (note that all Stage-1 tags of right sessions
consist of the fixed PRR). Now, suppose the Stage-5 tag of the successful i-th right session is also
different from the Stage-5 tags of all left sessions simulated by S, then it implies that the tag used by
the CMIM adversary for Stage-5 of the i-th right session is different from all tags used by the simulator
(particularly, the prover P (sb) of commit-then-PRZK run by E2(1n, Cb) or Ŝ(1n, Cb) in the analysis of
Lemma E.2).

By the AOK property of PRZK, it implies that the value committed to c̃
(i)
crs (sent by A in Stage-5

of the i-th right session) can be extracted. We consider the possibilities of the value committed to c̃
(i)
crs:

• By the one-wayness of y1−b the value committed cannot be the preimage of y1−b;

• According to the analysis of Lemma E.2, the value also cannot be the preimage of yb.

Thus, the value committed (that can be extracted) will be the secret-key of PKL, which however violates
the one-wayness of PKL as the simulator never knows and uses the secret-key of PKL in its simulation.
Thus, we conclude that, if a successful right session is w.r.t. PKL, the tag used by A for commit-
then-PRZK of Stage-5 must be identical to that of one left-session simulated by S. As the Stage-5 tag
consists of the coin-tossing output, i.e., the Stage-4 message, this means that the coin-tossing output of
the i-th right session must be R

(k)
L = S

(k)
L for some k, 1 ≤ k ≤ s(n).

Now, we consider the case PK
(j)
L 6= PKL but PK

(j)
L ∈ Cb ∪ {PKR}. In this case, S has already

learnt the corresponding secret-key SK
(j)
L . Now, suppose the coin-tossing output of the successful i-th

right session is neither S
(i)
R nor R

(k)
L = S

(k)
L for all k, 1 ≤ k ≤ s(n). This implies that the Stage-5 tag

used by A in the successful i-th right session is different from Stage-5 tags of all left sessions 6 as well as
the Stage-1 tags of all right sessions simulated by S. Again, by the AOK property of PRZK, we consider
the value committed to c̃

(i)
crs: According to the simulation of S, it always sets Stage-3 message r

(i)
r of

right session to be PRF
SK

(j)
L

(r̃(i)′
l) ⊕ S

(i)
R , where r̃

(i)′
l is the Stage-2 message of the i-th right session

sent by the CMIM adversary A. Suppose the coin-tossing output of the successful i-th right session
is not S

(i)
R , then (by the AOK of PRZK) the value committed to c̃

(i)
crs cannot be SK

(j)
L , as otherwise

(with overwhelming probability) the NP-statement to be proved by PRZK in Stage-5 of the i-th right
session is false. This means that the value committed to c̃

(i)
crs will be the preimage of either y1−b or yb.

6Note that all Stage-5 tags of left sessions are of the form (PKL, ·, ·), and the Stage-5 tag of the successful i-th right

session is of the form (PK
(j)
L , ·, ·) for PK

(j)
L 6= PKL.

43

But, each case reaches the contradiction: committing to the preimage of y1−b is impossible due to the
one-wayness of y1−b; committing to the preimage of yb violates the one-left-many-right non-malleability
of PRZK as demonstrated in the analysis of Lemma E.2. So, we conclude that, with overwhelming
probability, for any successful right session the coin-tossing output is either the independent value S

(i)
R

or S
(k)
L for some k, 1 ≤ k ≤ s(n) (i.e., the coin-tossing output of one left session).
To finally establish the property of strategy-restricted and predefinable randomness, we need to

further show, for any S
(k)
L it can occur as Stage-4 message (i.e., the coin-tossing output) for at most one

successful right session. Suppose there are i0, i1, 1 ≤ i0 6= i1 ≤ s(n), such that both of the i0-th right
session and the i1-th right session are successful with the same Stage-4 message S

(k)
L . Recall that the

Stage-5 tag of each of the two right sessions includes the same S
(k)
L as well as a random Stage-3 message

sent by the simulator; Also note that the S
(k)
L can appear as a part of Stage-5 tag, as well as coin-tossing

output, for at most one left session, as all coin-tossing outputs (i.e., Stage-4 messages) of left sessions
are independent random strings output by MCRS . This implies that, with overwhelming probability,
there must exist a bit b such that the Stage-5 tag of the ib-th right session is different from all Stage-5
tags of left sessions (run by the simulator) and Stage-1 tags of right sessions (run by the simulator).
According to above clarifications and analysis, with overwhelming probability, the (left-player) public-
key PK

(j)
L used by A in the ib-th successful right session is covered and is not PKL (as any right-session

w.r.t. PKL is of tag identical to that of one left-session), and the value committed in c̃
(ib)
crs is neither

the secret-key of the covered public-key PK
(j)
L (as, otherwise, the NP-statement successfully proved

by PRZK in the Stage-5 of the ib-th right-session is actually false) nor the preimage of y1−b (due to
the one-wayness of f); Also, the value committed cannot be the preimage of yb in accordance with the
analysis of Lemma E.2. Contradiction is reached in either case.

The proof of Theorem 5.1 is finished. ¤

44

