
The Discrete Logarithm Problem Modulo One:
Cryptanalysing the Ariffin–Abu cryptosystem

Simon R. Blackburn
Department of Mathematics

Royal Holloway, University of London
Egham, Surrey TW20 0EX

United Kingdom
s.blackburn@rhul.ac.uk

February 26, 2010

Abstract

The paper provides a cryptanalysis the AAβ-cryptosystem recently
proposed by Ariffin and Abu. The scheme is in essence a key agree-
ment scheme whose security is based on a discrete logarithm problem
in the infinite (additive) group R/Z (the reals modulo 1). The pa-
per breaks the AAβ-cryptosystem (in a passive adversary model) by
showing that this discrete logarithm problem can be efficiently solved
in practice.

1 Introduction

Let x, y ∈ [0, 1) be real numbers with the property that the fractional part
of nx is equal to y for some integer n. We write nx = y mod 1 to express
this relationship. The discrete logarithm problem modulo 1 is defined to be
the problem of finding n when x and y are given. (So the discrete logarithm
problem modulo 1 is just the standard discrete logarithm problem in the
additive group R/Z.)

Ariffin and Abu [1] have recently described a ‘chaos-based’ public key
cryptosystem which they call the AAβ cryptosystem. It turns out that the

1

security of their scheme is based on the difficulty of the discrete logarithm
problem modulo 1. This short note shows how to solve this discrete loga-
rithm problem efficiently in practice, and so the Ariffin–Abu cryptosystem is
insecure.

We provide a description of the Ariffin–Abu cryptosystem (which is in
essence a key agreement scheme) in Section 2. Our description is rather
different from the description in [1], but our approach makes it clear that
the scheme’s security depends on the discrete logarithm problem modulo 1.
In Section 3 we show how to solve this discrete logarithm problem, thus
breaking the scheme. (We derive the shared key in polynomial time, even in
a passive adversary model.) We provide a short conclusion in Section 4.

We will use some standard material from cryptography and number the-
ory without comment. In particular, we assume knowledge of Diffie–Hellmann
key agreement (see, for example, Stinson [3]), and we assume some stan-
dard material on convergents and congruences (see, for example, Hardy and
Wright [2]).

2 The AAβ-cryptosystem

This section contains a brief description of the AAβ-Cryptosystem. Just as
in Diffie–Hellman key agreement, two parties, A and B, aim to interact to
produce a common shared key. This shared key can then be used with any
symmetric cryptosystem to encrypt and decrypt messages between the two
parties.

Let α and β be public integers. Let x ∈ [0, 1) be a public real number.
Let integer matrices A0 and A1 be defined by

A0 =

(
1 α
1 0

)
and A1 =

(
β 1
1 0

)
.

Stage 1: A calculates a private integer nA, as follows. She chooses a ran-
dom k bit binary string b1b2 · · · bk. She then calculates the integer matrix
AbkAbk−1

· · ·Ab1 , and sets nA to be the top left entry of the resulting matrix.
B calculates an integer nB in exactly the same way, by choosing his own

k-bit binary string.

Stage 2: Recall that x ∈ [0, 1) is a public real number. A calculates rA =
nAx mod 1, and sends rA to B. Similarly B sends rB = nBx mod 1 to A.

2

Stage 3: The shared key is nAnBx mod 1. Party A derives the shared
key by calculating nArB mod 1, and Party B derives the same key by calcu-
lating nBrA mod 1. The shared key can then be used with any symmetric
cryptosystem to send encrypted messages between A and B.

A numerical example taken from [1] is as follows. Let α = 2, β = 3 and
x = 0.78217087686061859 Party A chooses the binary string 10110011,
and calculates the matrix product

A1A1A0A0A1A1A0A1 =

(
2415 533
734 162

)
.

So nA = 2415. Party A calculates rA = 0.94266761839389801 . . . and sends
this value to B.

Similarly, Party B chooses the binary string 10110111. B then calculates
nB = 3725 and rB = 0.58651630580425262 . . ., and sends rB to A.

The shared key nAnBx mod 1 is 0.436878317270082

We end this section with some comments.

• The Ariffin–Abu scheme is essentially a Diffie–Hellman key agreement
scheme, but with exponentiation in a discrete group replaced by a mul-
tiplication operation in the reals modulo 1.

• In practice (as Ariffin and Abu point out) since real numbers cannot be
represented on a computer we would work with approximations in some
way (but the approximation method is immaterial to our analysis).

• If we can efficiently solve the discrete logarithm problem modulo 1, the
scheme is clearly insecure. For an eavesdropper who sees rA and rB
can solve the discrete logarithm problem nAx = rA mod 1 to find nA,
and can then calculate the shared key nArB mod 1.

3 Solving the discrete logarithm problem

This section shows how to solve the discrete logarithm problem modulo 1.
For the remainder of this section, we write DLP for the discrete logarithm
problem modulo 1. So there exist real numbers x, y ∈ [0, 1) and an integer n
with nx = y mod 1. We are given x and y, and the DLP asks us to calculate n

3

(or any other integer n with nx = y mod 1). Suppose n is a κ-bit integer.
We aim to give an algorithm for the DLP that is polynomial in κ (of low
degree).

When y = 0 we may choose n = 0 as our solution, so we may assume
that y 6= 0. In particular, this assumption implies that x cannot be written
in the form p/n for some integer p (for then nx = 0 mod 1 and so y = 0).

We may assume that n is positive. To see this note that when n is negative
the equation −nx = (1 − y) mod 1 may be solved to recover −n, provided
we can solve the DLP for positive integers.

Our algorithm for the DLP for n positive is as follows:

Input: real numbers x, y.
If y = 0, output n = 0 and halt.
Compute convergents to x, using a continued fraction algorithm.
For each convergent a/b:

Compute a′, the nearest integer to by.
Compute the unique integer n′ with n′ = a′a−1 mod b and 0 ≤ n′ < b.
If n′x = y mod 1, output n = n′ and halt.
Otherwise try the next convergent.

Consider, for example, the DLP y = rA = nAx mod 1 from the previous
section. We compute the convergents to x = 0.78217087686061859 . . . as:

0, 1,
3

4
,
4

5
,
7

9
,
18

23
,
61

78
,

79

101
,
1009

1290
,
1088

1391
,
2097

2681
,
5282

6753
,

Once we have computed the convergent a/b with a = 2097 and b = 2681,
we can recover n = nA: by rounding by = b · 0.94266761839389801 . . . to the
nearest integer, we find that a′ = 2527; we then solve n′ = 2527 ·2097−1 mod
2681, and find that n′ = 2415 = nA, as required. (Similarly, we can recover
nB = 3725 by using the convergent 5282/6753 for x, the value y = rB and
calculating a′ = 3961.)

We now justify why our algorithm is polynomial time.
Let f : [0, 1] → [0, 1] given by f(s) = ns mod 1. The map f is piecewise

linear, with points of discontinuity at points s = p/n for integers p. When

4

I ⊆ [0, 1) is any interval not containing a point of discontinuity, there exists
a fixed integer m such that f(s) = ns−m for all s ∈ I.

We first observe that after generating O(κ) convergents, we have com-
puted a rational approximation a/b to x such that b > n, such that |x −
(a/b)| < 1/(2n2), and such that x and a/b are not separated by a point of
discontinuity of f . To see this, first note that convergents a/b to x have the
property that |x− (a/b)| < 1/b2. Since the denominators in the convergents
a/b for any real number grow exponentially, after generating O(κ) conver-
gents we find one such that b > n and |x − (a/b)| < 1/(2n2). It is possible
(but rather unlikely) that x and a/b lie on opposite sides of a point of discon-
tinuity. However, in this case the next convergent will have all the properties
we need since the sign of x − (a/b) alternates as we generate convergents,
and since the points of discontinuity are at distance 1/n. Since each conver-
gent can be generated in polynomial time, we generate a convergent with the
properties we need in polynomial time.

We next show that f(a/b) = a′/b. We write a/b = x + ε, where |ε| <
1/(2n2). Since a/b and x are not separated by a point of discontinuity, there
exists an integer m such that f(x) = nx−m and f(a/b) = (na/b)−m. But
now

f(a/b) = (na/b)−m
= n(x+ ε)−m
= nx−m+ nε

= f(x) + nε

= y + nε.

Thus
|bf(a/b)− by| ≤ bn|ε| < bn/(2b2) < 1/2.

Since f(a/b) can be written as a rational number with denominator equal to
b, we have that bf(a/b) is an integer, and so the inequality above shows that
bf(a/b) is the nearest integer a′ to by. Thus f(a/b) = a′/b.

The equality f(a/b) = a′/b can be written as n(a/b) −m = a′/b (where
m is the integer defined above). Hence na = bm + a′ and so na = a′ mod b.
Since a/b is a convergent a and b are coprime, and so we may divide by a
to produce the equation n = a′a−1 mod b. The integer n′ computed by our
algorithm therefore satisfies n = n′ mod b. But since n < b and n′ < b, no
modular reduction has taken place and n = n′, as required.

5

We have now shown our algorithm is polynomial time. We end this section
with a few comments on possible modifications of the algorithm.

• In the cryptanalysis in the section above, we know a realistic upper
bound N on n. So 0 < n ≤ N , where N is known. In this application,
we could modify our algorithm to first compute the convergents a/b
to x off-line, storing the first two convergents a/b such that b >

√
2N .

Once we receive y, we only need to consider these two convergents: one
of them will return the correct value for n.

• There are other possibilities for constructing sequences of rational ap-
proximations a/b to x, that might be useful instead of convergents in
some circumstances. For example, we could construct the ith such
approximation by setting b = 2i and then setting a = bxbc when
i is odd, and a = dxbe when i is even. (Note that our condition
|x − (a/b)| < 1/2n2 for correctly deriving n means that the denom-
inators of our rational approximations would in general become much
larger than when using convergents.) In practical situations, it is quite
possible that x is represented on a computer by some rational approxi-
mation: in this case, it makes sense to use this rational approximation
rather than computing convergents!

4 Conclusion

We have shown that a cryptosystem due to Ariffin and Abu [1] is insecure,
by solving the discrete logarithm problem modulo 1. This cryptanalysis
is a good illustration of the author’s belief that using chaotic systems for
cryptography is a bad idea: chaos implies some notion of points being ‘close’
or not, and this notion of distance can be exploited by the cryptanalyst.

Acknowledgement The author would like to Fred Piper for first draw-
ing his attention to the AAβ cryptosystem, and to Kenny Paterson for his
comments on an earlier version of this paper.

References

[1] M.R.K. Ariffin and N.A. Abu, ‘AAβ-Cryptosystem: A chaos based public
key cryptosystem’, Int. J. Cryptology Research 1 (2009) 149-163.

6

[2] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers
(6th edition), Oxford University Press, Oxford, 2008.

[3] Douglas R. Stinson, Cryptography: Theory and Practice (3rd edition),
Chapman and Hall, Boca Raton, 2005.

7

