
How to Construct Space Efficient Revocable IBE from
Non-monotonic ABE

Huang Lin, Zhenfu Cao, Muxin Zhou, Haojin Zhu

Abstract. Since there always exists some users whose private keys are stolen or
expired in practice, it is important for identity based encryption (IBE) system to
provide a solution for revocation. The current most efficient revocable IBE sys-
tem has a private key of size O(log n) and update information of size O(r log(n

r))
where r is the number of revoked users. We describe a new revocable IBE systems
where the private key only contains two group elements and the update informa-
tion size is O(r). To our best knowledge, the proposed constructions serve as the
most efficient revocable IBE constructions in terms of space cost. Besides, this
construction also provides a generic methodology to transform a non-monotonic
attribute based encryption into a revocable IBE scheme. This paper also demon-
strates how the proposed method can be employed to present an efficient revoca-
ble hierarchical IBE scheme.
Keywords. Revocable IBE, Non-monotonic, Attribute based encryption

1 Introduction

Revocation serves as a vital problem either in the setting of traditional public
key encryption or identity based encryption (IBE) [13]. Since there are always
some user whose private keys are either stolen or expired, the system has to
provide some approaches to revoke these useless keys.

In traditional public key encryption system, there exists a public key in-
frastructure (PKI) who is responsible to publish some information to verify the
mapping between user’s identities and its public keys. The encryptor has to look
up the public keys and the corresponding certificates of the receivers before
the encryption is done. Therefore, the PKI might publish some information to
inform the revocation list to the encryptor, which is how the revocation prob-
lem is usually solved in the traditional system[1, 7, 8]. However, this does not
serve as a practical way in the identity based encryption setting. The primitive
idea of IBE was proposed by Shamir [13] to eliminate the need for the verifi-
cation of the mapping between the identity and the certificate. The encryptor
only needs the public parameter and the identity of the receiver to complete en-
cryption steps under IBE system and the whole encryption is done without any
involvement of the private key generator (PKG). Therefore, this system does not
provide any channel for the PKG to deliver the revocation list to the encryptor.
When Boneh and Franklin proposed their first practical IBE solution, they also

tried to provide a solution for this revocation problem. Their basic idea is to
renew the private key of each user in the system periodically, e.g. each week,
and the senders encrypt under the receiver’s identities along with the current
time period. However, it’s easy to observe that this does not serve as an effi-
cient solution since the workload of the PKG would be linearly dependent on
the total number of the users in the system. The workload of the PKG would be
unbearable when the user number n increases. After that, several revocable IBE
constructions based on a trusted mediator [6, 5] were proposed. However, these
revocable IBE systems are not very practical since the mediator has to involve
in the decryption steps.

Recently, Boldyreva, Goyal, Kumar [3] proposed a revocable IBE system
(BGK system) with improved efficiency. Compared with the original revocation
system by Boneh and Franklin with O(n − r) key update complexity, Boldyreva
et al.’s key update information is of size O(r log(n

r)) while the size of private key
is O(log n).

The basic idea of their construction is to treat identity and time period as two
independent attributes in fuzzy identity based encryption [12]. The message is
encrypted under these two attributes. In order to successfully open the message,
the receiver should not only have the correct identity, but also the right time
period. The published key update information aims to bind the unrevoked iden-
tities with the current time period. In other words, only those unrevoked users
can use these information for the current time period to update their private key.
In order to reduce the workload of PKG, they adopt binary tree structure as their
underlying tool. Therefore, although the key update information size is saved to
O(r log(n

r)), the private key size has to be O(log n).
Another related work is proposed by Libert and Vergnaud [9]. They pro-

vided a solution with a similar performance to that of Boldyreva et al.’s con-
struction [3] while their construction is proven under an adaptive model.

1.1 Our Contribution

The above introduction shows that the update information size of the two most
efficient revocable IBE constructions is O(r log(n

r)), and the private key size of
both constructions is O(log n). An important feature shared by these two sys-
tems is that the user has to take the key update information kut for time period
t as input in order to generate the decryption key for the t-th time period. In
other words, if a user ω at the t′-th time period wants to decrypt a ciphertext
generated at a past time period, say the t′′-th (t′′ < t′) time period, the update
information for the t′′-th time period should be accessible to the user. Besides,
there is no way to guarantee that each user of the system will update his(her)
decryption key whenever the update information is published especially if the

update information is published frequently. By implication, the system has to
store the update information for all the time periods in the system lifetime and
keep them publicly accessible. Although the space cost of the current revocable
IBE schemes is low, the space cost might not be desirable when the update in-
formation or the decryption key pile up as time goes by. Hence, to further reduce
the space cost of the revocable IBE scheme remains an important issue, which
is one of the major motivation of this paper.

In this paper, we propose a new revocable IBE scheme from non-monotonic
ABE. Our revocable construction has constant size private key. The update in-
formation size of the construction is O(r) where r is the number of revoked
users. The security of the construction is reduced to Decisional BDH assump-
tion under selective-revocable-ID model as in [3]. To the best of our knowledge,
the proposed construction is the most efficient revocable IBE scheme in terms of
space cost. However, the decryption of our scheme is dominated by O(r) group
operations. The proposed constructions are especially suitable for the applica-
tion scenarios with small revocation number, i.e., r � n. It fits into the appli-
cations where the space cost rather than the decryption efficiency is a major
concern. The private storage requirement for each user is significantly reduced
since each user only needs to hold two group elements in our proposed con-
structions. The storage requirement or transmission requirement is also reduced
for the encryptor since the logarithmic factor is removed from the size of pub-
lished information. Especially, they might fit into the same application scenario
such as sensor networks mentioned in recently proposed broadcast encryption
scheme [11] since our efficiency parameters are really close to that of [11]. Be-
sides, our constructions are also fit into the systems where hybrid encryption or
key encapsulation mechanism can be adopted since in this case the decryption
efficiency is determined by the symmetric decryption algorithm after the mes-
sage encryption key is generated from the decryption algorithm of revocable
IBE scheme and therefore will not be a problem. Indeed the best revocation sys-
tem is obtained by combining the BGK system with our system, i.e., using our
system when r is really small and using BGK system when r grows to a certain
level.

Compared with the existing efficient revocable IBE constructions [3, 9] us-
ing binary tree structure and fuzzy identity based encryption as their basic tool,
this paper constructs a revocable IBE scheme from attribute based encryption
without any involvement of binary tree structure. This is considered as one of
our major novelties. Our construction provides a generic methodology to con-
struct a revocable IBE scheme from non-monotonic attribute based encryption
scheme. The proposed methodology applies to the existing two non-monotonic
attribute based encryption schemes [10, 11]. We illustrate this method by apply-

ing our method to the non-monotonic attribute based encryption proposed by
Ostrovsky [10]. Besides, we also show how our proposed methodology can be
used to construct an efficient revocable hierarchical identity based encryption
scheme.

1.2 Organization

The whole paper could be divided into the following sections: At Section 2,
we’ll first introduce the basic complexity assumption and the definition and se-
curity model for revocable IBE is also presented. In Section 3, the revocable IBE
scheme is given while the corresponding generic methodology is introduced as
the primitive idea of this construction. In Section 4, we show how to construct
an efficient revocable hierarchical IBE scheme from the proposed method. At
last, several conclusions are drawn.

2 Preliminaries

2.1 Decisional BDH assumption

The bilinear maps is crucial to our construction, some basic facts related to
bilinear maps are introduced here.

Let G1 and G2 be two multiplicative cyclic groups of prime order p. Let g
be a generator of G1 and ê be a bilinear map, ê : G1 × G1 → G2. The bilinear
map ê has the following properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab.
2. Non degeneracy: ê(g, g) , 1.

G1 is a bilinear group if the group operation in G1 and the bilinear map ê :
G1×G1 → G2 are both efficiently computable. Note that the map ê is symmetric
since ê(ga, gb) = ê(g, g)ab = ê(gb, ga).

The security proof of the proposed scheme relies on DBDH assumption, the
definition of DBDH assumption is shown as follow:

Definition 1. Decisional Bilinear Diffie-Hellman (DBDH) Assumption . Let z1, z2, z3,

z ← Zp be chosen randomly, G1 be a group of generator g. The Decisional
BDH assumption is that no probabilistic polynomial time algorithm B can dis-
tinguish the tuple (g1 = gz1 , g2 = gz2 , g3 = gz3 , ê(g, g)z1z2z3) from the tuple
(g1 = gz1 , g2 = gz2 , g3 = gz3 , ê(g, g)z) with more than a negligible advantage.
The advantage ofA is

|Pr[A(g1, g2, g3, ê(g, g)z1z2z3) = 1] − Pr[A(g1, g2, g3, ê(g, g)z)] = 1|
where the probability is taken over the random choice of the generator g, the
random choice of a, b, c, z in Zp, and the random bits consumed by B.

2.2 Definition and Security Model

De f inition The definition of revocable IBE (RIBE) is shown as follow: A re-
vocable IBE scheme is defined by seven algorithms which have their associated
message space M, identity space I and time space T. Key authority maintains
a revocation identity list rl recording all the revoked identity set R and state
st. In the following, an algorithm is called stateful only if it updates rl or st.
The life time of the system is divided into several periods during which update
information is published.

The stateful setup algorithm S (run by key authority) takes input security pa-
rameter 1κ and number of users n, and outputs public parameters PK, master
key MK, revocation list rl (initially empty) and state st.
The stateful private key generation algorithm SK (run by key authority) takes
input public parameters PK, master key MK, identity ω ∈ I and state st, and
outputs private key S Kω and an updated state st.
The key update generation algorithm KU (run by key authority) takes input
public parameters PK, master key MK, key update time t ∈ T, revocation list rl
and state st, and outputs key update KUt.
The encryption algorithm E (run by sender) takes input public parameters PK,
identityω ∈ I, encryption time t ∈ T and message m ∈M, and outputs ciphertext
c.
The deterministic decryption algorithmD (run by receiver) takes input private
key S Kω, key update information KUt and ciphertext c, and outputs a message
m ∈M or, a special symbol ⊥ indicating that the ciphertext is invalid.
The stateful revocation algorithm R (run by key authority) takes input identity
to be revoked ω ∈ I, revocation time t ∈ T, revocation list rl and state st, and
outputs an updated revocation list rl.

The consistency condition requires that for all κ ∈ N and polynomials (in κ)
n, all PK and MK output by setup algorithm S, all m ∈ M, ω ∈ I, t ∈ T
and all possible valid states st and revocation lists1 rl, if identity ω was not
revoked before or, at time t then the following experiment returns 1 with prob-
ability 1: (S Kω, st)

r←− SK(PK,MK, ω, st); KUt
r←− KU(PK,MK, t, rl, st), c

r←−
E(PK, ω, t,m); IfD(S Kω,KUt, c) = m, then return 1, else return 0.

S ecurity model In the following game, we define the selective-revocable-ID se-
curity for revocable IBE schemes. The security model imitates the definition of
the selective-ID security for traditional IBE scheme while taking into account
possible revocation. In the beginning of the game, the adversary declares the
challenge time and identity. The adversary is able to revoke users of its choices
(including the challenge identity) at any period of time and see all the key up-

date information. The adversary is also allowed to see the private key of users
including the challenge identity but when it was revoked prior or at the challenge
time.

In the following we only restrict in the security against the chosen plaintext
attack and the definition for chosen-ciphertext attack can be found in [3], which
is neglected in this paper.

The adversary first outputs the challenge identity and time, and also some
information state it wants to preserve. Later it’s given access to three oracles
that correspond to the algorithms of the scheme. The oracles share state. We
define them as follow:

– The private key generation oracle SK(·) takes input identity ω and runs
SK(pk,mk, ω, st) to return private key skω.

– The key update oracleKU(·) takes input time t and runsKU(pk,mk, t, rl, st)
to return key update kut.

– The revocation oracle R(·, ·) takes input identity ω and time t and runs
R(ω, t, rl, st) to update rl.

The following two restrictions about the above oracles must hold: first,
KU(·) and R(·, ·) can be queried on time which is greater than or equal to
the time of all previous queries i.e. the adversary is allowed to query only in
non-decreasing order of time. Also, the oracle R(·, ·) can’t be queried on time
t if KU(·) was queried on t. Second, if SK(·) was queried on identity ω∗ then
R(·, ·) must be queried on ω∗, t for any t ≤ t∗.

For adversaryA and number of users n define the following experiments:

– Init The adversary declares the challenge identity ω∗ and time t∗, that he
wishes to be challenged upon.

– Setup The challenger runs the S etup algorithm and gives the public param-
eters to the adversary.

– Phase 1 The adversary is allowed issue the aforementioned three oracles
private key generation oracle, key update oracle, and revocation oracle.

– Challenge The adversary submits two equal length message m0,m1 ∈ M.
The challenger flips a coin b ∈ {0, 1}, and runs E(pk, ω∗, t∗,mb) to generate
the challenge ciphertext c∗ and pass it to the adversary.

– Phase 2 Phase 1 is repeated
– Guess The adversary outputs a guess b′ of b.

The advantage of an adversaryA in this game is defined as Pr[b′ = b] − 1
2 .

Definition 2. The revocable IBE scheme is said to be sRID-CPA secure if all
polynomial time adversaries have at most a negligible advantage in the above
game.

3 RIBE from Non-monotonic ABE

3.1 A Generic Transformation from Non-monotonic ABE to Revocable
IBE

The BGK system can realize logarithmic efficiency since the private key as-
signment is based on a binary tree. However, the binary tree manipulation also
results in a private key of size O(log n) and a O(log n/r) factor in the key update
information, and this seems to be inevitable under the current binary-tree-based
framework [9, 3]. In order to realize a revocable IBE scheme with constant size
private key and O(r) size key update information, we have to emancipate the
construction from the restriction of binary tree. Our basic thought is to imple-
ment a revocable IBE scheme from a non-monotonic ABE scheme. We note that
although the NOT gate of non-monotonic ABE seems naturally gives capability
to exclude some users, there is no straightforward to realize this thought.

The underlying idea of BGK construction is each user fetches its private key
for its identity ω at first, and then the periodically published update information
will represent which user identities are revoked at the t-th time period. In other
words, the update information can be considered as representing a predicate
t
∧r

i=1 ω
(i) if each of the identity set {ω(i)}ri=1 is revoked at time period t. Here,

ω(i) denotes the negation of ω(i).
For any user ω, it is possible to control the user’s decryption ability at time

period t if the system can enforce him(her) to use a private key corresponding
to a predicate t

∧r
i=1 ω

(i) ∧ω to decrypt a ciphertext. We can encrypt a message
under an attribute set {ω, t}. If a user ω is revoked at time t, then there must exist
anω(j) ∈ {ω(i)}ri=1 such thatω = ω(j). In this case, this specific user will be forced
to use a private key for a predicate t

∧ j−1
i=1 ω

(i) ∧ω
∧r

i= j+1 ω
(i) ∧ω to decrypt

the ciphertext. A key policy non-monotonic attribute based encryption(ABE)
scheme (see [10] for the concrete definition of key policy non-monotonic ABE)
can be used to make sure that the decryption fails because the attribute set {ω, t}
does not satisfy the predicate t

∧i−1
j=1 ω

(j) ∧ω
∧r

j=i+1 ω
(j) ∧ω. The decryption is

also guaranteed to be successful if the attribute set {ω, t} satisfies the respective
predicate t

∧r
i=1 ω

(i) ∧ω when ω is unrevoked at time t and hence is not in the
revoked set {ω(i)}ri=1.

The tricky problem left is how we could force a user ω to use a private key
corresponding to such a predicate, i.e., t

∧r
i=1 ω

(i) ∧ω in the decryption steps.
In our construction, we divide the system master key MK = α into two parts
MK1 = λ and MK2 = α − λ, i.e., MK = MK1 + MK2. MK1 is used to distribute
private key for user identity ω. MK2 is used to generate update information,
i.e., a private key corresponding to a predicate t

∧r
i=1 ω

(i). A message will be

encrypted under a public key corresponding to the system master key MK, and
hence the decryptor has to use both private key and key update information in
order to successfully open a message. We note that collusion attack is impossible
since all the unrevoked users hold information on the same partial master key
MK1 in their own private keys. Therefore, intuitively, nothing can be done by
them to help each other obtain any useful information on the system master key
α.

We note that our proposed transformation method from non-monotonic ABE
is almost fully generic except the fact that we require the two sub master keys
for private key distribution system and key update system can be combined as
one system master key. Both of the two recently proposed non-monotonic ABE
schemes [10, 14] can be used as our underlying tool to present a secure revoca-
ble IBE scheme. We use OSW non-monotonic ABE [10] scheme as an example
to show how our transformation method works.

3.2 Revocable IBE from OSW Non-monotonic ABE

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. In
addition, let ê : G1 × G1 → G2 denote the bilinear map. A security parameter
κ will determine the size of the groups. We also define the Lagrange coefficient

∆i,J for i ∈ Zp and a set J of elements in Zp : ∆i,J(x) =
∏

j∈J, j,i

x − j
i − j

.

Setup S(1κ, n) Choose α, β uniformly at random from Z∗p. Set g1 = gα and
g2 = gβ. Choose two polynomials h(x) and q(x) of degree two at random subject
to the constraint that q(0) = β.

The public parameters PK contains (g, g1, g2 = gq(0), gq(1), gq(2); gh(0), gh(1),
gh(2)). The master key is MK = α. The public parameters define two publicly
computable functions T,V : Zp → G. The function T (x) = gx2

2 · gh(x) and
V(x) = gq(x). Besides, choose λ uniformly at random from Zp and set MK1 = λ

and MK2 = α − λ.

Private Key Generation SK(MK1, ω, PK) Choose ρω uniformly at random
from Zp. The algorithm outputs a private key for identity ω as

S Kω =
(
D(1)
ω ,D(2)

ω

)
=

(
gMK1

2 · T (ω)ρω , gρω
)

=
(
gλ2 · T (ω)ρω , gρω

)

Key Update Generation KU(MK2, PK, t, rl, st) This algorithm outputs a pri-
vate key corresponding to the access structure t

∧r
i=1 ω

(i). For each revoked user
ω(i), i ∈ [1, r], select two random values λi, ρi ∈ (Zp)2, publish the respective
update information as

Di = (D(3)
i ,D(4)

i ,D(5)
i) = (gλi+ρi

2 ,V(ω(i))ρi , gρi)

For the update time t, select ρt
r←− Zp, publish the update information as

Dt = (D(1)
t ,D(2)

t) = (gMK2−∑r
i=1 λi

2 · T (t)ρt , gρt) = (gα−λ−
∑r

i=1 λi

2 · T (t)ρt , gρt)

Return the update information as KUt =
(
{(ω(i),Di)}ri=1,Dt

)
.

Encryption E(PK, ω, t,M) Choose a random s from Zp. Generate the ciphertext
as C =

(
E(1) = Mê(g1, g2)s, E(2) = gs, E(3)

ω = T (ω)s, E(3)
t = T (t)s, E(4)

ω = V(ω)s ,

E(4)
t = V(t)s

)

Decryption D(S Kω,KUt, PK,C) If ω is not revoked at time t, then we have
ω < {ω(i)}ri=1. Using D(1)

ω and D(2)
ω from the secrete key S Kω of ω, compute the

partial decryption as

Zω = ê(D(1)
ω , E(2))/ê(D(2)

ω , E(3)
ω) = ê(gλ2·T (ω)ρω , gs)/ê(gρω , T (ω)s) = ê(g2, g)sλ

Using D(1)
t and D(2)

t from the update information Dt corresponding to update
time t, compute the partial decryption for update time t as

Zt =
ê(D(1)

t , E(2))

ê(D(2)
t , E(3)

t)
=

ê(gα−λ−
∑r

i=1 λi

2 · T (t)ρt , gs)
ê(gρt , T (t)s)

= ê(g2, g)s(α−λ−∑r
i=1 λi)

For each revoked user ω(i), i ∈ [1, r], compute Lagrangian coefficients {σx}
x∈{ω,t,ω(i)} such that

∑
x∈{ω,t,ω(i)} σxq(x) = q(0) = β. Using the update information

D(3)
i , D(4)

i , D(5)
i , compute the corresponding partial decryption as

Zi=
ê(D(3)

i , E(2))

ê
(
D(5)

i ,
∏

x∈{ω,t}
(
E(4)

x

)σx)·ê
(
D(4)

i , E(2)
)σ
ω(i) =

ê(gλi+ρi
2 , gs)

ê(gρi , V(ω)sσωV(t)sσt)·ê(V(ω(i))ρi , gs)σω(i)

=
ê(gλi+ρi

2 , gs)

ê(gρi , gs[σωq(ω)+σtq(t)])·ê(gρiσω(i) q(ω(i))
, gs)

=
ê(gλi+ρi

2 , gs)
ê(gρi , gsq(0))=ê(gλi

2 , gs)

Finally, compute

ê(g2, g)sλ · ê(g2, g)s(α−λ−∑r
i=1 λi) ·

r∏

i=1

ê(g2, g)sλi = ê(g2, g)sα = ê(g2, g1)s

and E(1)

ê(g2, g1)s = M.

In the above construction, the private key only contains two group elements
while the update information contains 3r + 2 group elements. This justifies our
efficiency claims in the introduction.

The security of this construction can be stated as the following theorem. The
proof of this theorem could be found in Appendix A.

Theorem 1. If an adversary can break the proposed scheme in the sRID model,
then a simulator can be constructed to play the Decisional BDH game with a
non-negligible advantage.

4 Extension: Revocable Hierarchical IBE from Non-monotonic
ABE

To construct a revocable hierarchical IBE scheme has been considered as an
interesting open problem in [9]. In the following section, we’ll show how our
proposed transformation method can be used to construct an efficient revoca-
ble hierarchical IBE (HIBE) scheme. The underlying HIBE is due to Boneh
and Boyen [4]. Similar to [4], we assume the identity ω of depth ` are vectors
of elements in Z`p, and also write ω = (ω1, · · · , ω`) ∈ Z`p. The j-th compo-
nent corresponds to the identity at level j. The j-bit prefix of ω is denoted by
ω| j=(ω1, · · · , ω j). The basic idea of revocable HIBE is that if an identity ω is
revoked, then all its subordinate identities should be revoked automatically. In
other words, if ω = (ω1, · · · , ω`) is revoked, then all the identities including a
prefix of ω will be revoked immediately. Instead of explicitly associate all the
revoked identities of the hierarchy to the leaf nodes of a binary tree in [2], our
scheme only needs to publish update information related to the the top-level
identity of these revoked users. Therefore, our construction achieves efficient
revocation without blowing up the number of total users n in the system and
also minimizes the revocation number r to some extent.

4.1 Concrete Construction

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. In
addition, let ê : G1 × G1 → G2 denote the bilinear map. A security parameter
κ will determine the size of the groups. We also define the Lagrange coefficient

∆i,J for i ∈ Zp and a set J of elements in Zp : ∆i,J(x) =
∏

j∈J, j,i

x − j
i − j

.

Setup S(1κ, n) Choose α, β uniformly at random from Z∗p. Set g1 = gα and g2 =

gβ. Choose a polynomial q(x) of degree ` at random subject to the constraint
that q(0) = β. Also choose h0, h1, · · · , h` randomly from Zp.

The public parameters PK contains (g, g1, g2 = gq(0), gq(1), gq(2), · · · , gq(`);
h0, h1, · · · , h`). The master key is MK = α. The public parameters define the
following publicly computable functions F j,V : Zp → G for j ∈ [0, `] as
F j(x) = gx

1h j and V(x) = gq(x). We also define a collision resistant hash H :
(Zp)` → Zp. Besides, choose λ uniformly at random from Zp and sets MK1 = λ

and MK2 = α − λ.

Private Key Generation SK(MK1, ω, PK) Choose (ρ1, · · · , ρ j) uniformly at
random from Z

j
p. For an identity ω = (ω1, · · · , ω j) ∈ Z j

p of depth j ≤ `, the
algorithm outputs a private key for identity ω as S Kω=

(
D(0)
ω ,D(1)

ω , · · · ,D(j)
ω

)
=(

gMK1
2 ·∏ j

k=1 Fk(ωk)ρk , gρ1 , · · · , gρ j)=
(
gλ2 ·

∏ j
k=1 Fk(ωk)ρk , gρ1 , · · · , gρ j). Note

that the private key for ω can be generated just given a private key for ω| j−1 =

{ω1, · · · , ω j−1} ∈ Z j−1
p . Let S Kω| j−1=

(
D(0)
ω| j−1

,D(1)
ω| j−1

, · · · ,D(j−1)
ω| j−1

)
. To generate S Kω

pick random (ρ′1, · · · , ρ′j) ∈ Z
j
p uniformly at random from Zp and output S Kω=(

D(0)
ω| j−1
·∏ j

k=1 Fk(ωk)ρ
′
k , D(1)

ω| j−1
· gρ′1 , · · · , D(j−1)

ω| j−1
· gρ′j−1 , gρ

′
j

)
.

Key Update Generation KU(MK2, PK, t, rl, st) For the revoked identities
{ω(i)}ri=1 ∈ rl, output a private key corresponding to an access structure t

∧r
i=1 ω

(i)

where {ω(i)}ri=1. 1

For each revoked user ω(i), i ∈ [1, r], select two random values λi, ρi ∈ Z2
p,

and publish the update information as Di=(D(3)
i ,D(4)

i ,D(5)
i)=(gλi+ρi

2 , V(ω(i))ρi ,
gρi) for ω(i), i ∈ [1, r]. Note that we need to map ω(i) to Zp using hash function H
before the above information can be computed. For the update time t, select ρt

r←−
Zp, publish the update information as Dt=

(
D(1)

t ,D(2)
t

)
=

(
gMK2−∑r

i=1 λi

2 · F0(t)ρt , gρt

)

=(gα−λ−
∑r

i=1 λi

2 ·F0(t)ρt , gρt). Return the update information as KUt =
(
{(ω(i),Di)}ri=1,

Dt).

Encryption E(PK, ω, t,M) Choose a random s from Zp. Generate the ciphertext

as C=

(
E(−1), E(0), E(1)

ω , E(2)
ω , · · · , E(j)

ω , Et, E
(1)
ω , E

(2)
ω , · · · , E(j)

ω , E
(j+1)
dum , · · · , E(`−1)

dum , Et

)

=
(
Mê(g1, g2)s, gs, F1(ω1)s, F2(ω2)s, · · · , F j(ω j)s, F0(t)s,V(ω|1)s,V(ω|2)s, · · · ,

V(ω| j)s,V($ j+1)s, · · · ,V($`−1)s,V(t)s
)
. {$ j+1, · · · , $`−1} are dummy identi-

ties.

Decryption D(S Kω,KUt, PK,C) If any prefix of ω=(ω1, · · · , ω j) is not re-
voked at time t, then we have ω|k = (ω1, · · · , ωk) < {ω(i)}ri=1 for each k ∈ [1, j].

Compute the partial decryption as Zω=
∏ j

k=1 ê(D(k)
ω , E(k)

ω)

ê(D(0)
ω , E(0))

=
∏ j

k=1 ê(gρk , Fk(ωk)s)

ê(gλ2 ·
∏ j

k=1 Fk(ωk)ρk , gs)
= 1

ê(gλ2 , gs)

Compute the partial decryption for update time t as:

Zt=
ê(D(2)

t , Et)

ê(D(1)
t , E(0))

=
ê(gρt , F0(t)s)

ê(g
α−λ−∑r

i=1 λi
2 ·F0(t)ρt , gs)

= 1
ê(g2, g)s(α−λ−∑r

i=1 λi)
.

For each revoked user ω(i), i ∈ [1, r], let γ={ω|1, · · · , ω| j, $ j+1, · · · , $`−1,

t, ω(i)}. The following partial decryption uses the partial ciphertext (E
(1)
ω , E

(2)
ω ,

1 We note that all the subordinate identities of an identity are revoked if this particular identity
is revoked as stated in the above, and hence {ωi}ri=1 do not necessarily include all the revoked
identities in rl.

· · · , E
(j)
ω , E

(j+1)
dum , · · · , E

(`−1)
dum , Et)= (V(ω|1)s,V(ω|2)s, · · · , V(ω| j)s, V($ j+1)s, · · · ,

V($`−1)s, V(t)s) and the update information (D(3)
i , D(4)

i , D(5)
i)=(gλi+ρi

2 , V(ω(i))ρi ,
gρi). Compute the Langrangian coefficients {σx}x∈γ such that

∑
x∈γ σxq(x) =

q(0) = β.
For each revoked user ω(i), compute

Zi=
ê(gρi , V(ω|1)sσω|1 ···V(ω| j)

sσω| j V($ j+1)
sσ$ j+1 ···V($`−1)sσ$`−1 V(t)sσt)ê(V(ω(i))σω(i) ρi ,gs)

ê(gλi+ρi
2 , gs)

=
ê(gρi , gsq(0))

ê(gλi+ρi
2 , gs)

= 1
ê(gλi

2 , gs)

Finally, compute 1
ê(g2, g)sλ · 1

ê(g2, g)s(α−λ−∑r
i=1 λi)

· 1∏r
i=1 ê(g2, g)sλi

= 1
ê(g2, g)sα

= 1
ê(g2, g1)s and E(−1)

ê(g2, g1)s =M.
The security of this construction can be stated as the following theorem, the

proof of which could be found in Appendix B.

Theorem 2. If an adversary can break the proposed scheme in the sRID model,
then a simulator can be constructed to play the Decisional BDH game with a
non-negligible advantage.

5 Conclusions

This presents a revocable IBE construction where the private key only contains
two group elements. The update information size depends on the revocation
number r. The proposed construction is the most space efficient revocable IBE
constructions to our best knowledge. This paper provides a generic way to trans-
form a non-monotonic attribute based encryption scheme into a revocable IBE
scheme. We also show how this method can be applied to construct a space
efficient revocable hierarchical IBE scheme.

References

1. W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital identity revocation (extended abstract).
In CRYPTO, pages 137–152, 1998.

2. A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient revocation.
3. A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient revocation.

In ACM Conference on Computer and Communications Security, pages 417–426, 2008.
4. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without

random oracles. In EUROCRYPT, pages 223–238, 2004.
5. D. Boneh, X. Ding, G. Tsudik, and M. Wong. A method for fast revocation of public key

certificates and security capabilities. In 10th USENIX Security Symposium, pages 297–308,
2001.

6. X. Ding and G. Tsudik. Simple identity-based cryptography with mediated rsa. In CT-RSA,
pages 193–210, 2003.

7. C. Gentry. Certificate-based encryption and the certificate revocation problem. In
EUROCRYPT, pages 272–293, 2003.

8. V. Goyal. Certificate revocation using fine grained certificate space partitioning. In Financial
Cryptography, pages 247–259, 2007.

9. B. Libert and D. Vergnaud. Adaptive-id secure revocable identity-based encryption. In
CT-RSA, pages 1–15, 2009.

10. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic
access structures. In ACM Conference on Computer and Communications Security, pages
195–203, 2007.

11. A. Sahai and B. Waters. Revocation systems with very small private keys.
http://eprint.iacr.org/2008/309.

12. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473,
2005.

13. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,
1984.

14. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and prov-
ably secure realization. http://eprint.iacr.org/2008/290.

6 Appendix

A. Proof of Theorem A

Proof. The simulator is provided a random tuple (X,Y,Z,W) which is either
g1, g2, g3, ê(g, g)z1z2z3 or a random tuple g1, g2, g3, ê(g, g)z. The simulator is given
the input tuple g1, g2, g3, ê(g, g)z1z2z3 when µ = 1 and µ = 0 otherwise.
Init The adversary declares the challenge identity ω∗, time t∗. The simulator
sets γ∗ = {ω∗, t∗}
Setup The simulator assigns the public parameters g1 = X and g2 = Y which
implicitly sets α = z1 and β = z2. It then chooses a random two-degree polyno-
mial f (x) and fixes a two-degree polynomial u(x) as follows: set u(x) = −x2 for
all x ∈ γ∗ and u(x) , −x2 for x < γ∗. Because −x2 and u(x) are two degree-2
polynomials, they will have at most two points in common or they are the same
polynomial. This construction ensures that ∀x, u(x) = −x2 iff x ∈ γ∗.

The simulator will now set the polynomials h and q as follows: first, h(x) =

βu(x) + f (x). Then, the simulator chooses two points θω∗ and θt∗ uniformly at
random from Z∗p, and implicitly sets q(x) such that q(0) = β, while q(ω∗) = θω∗

and q(t∗) = θt∗ . The simulator outputs the following group elements for the
public key: for i = 1, 2, it sets outputs V(i)=gq(i) by interpolation in the exponent
using {θω∗ , θt∗} and B. For i = 0, 1, 2, it sets gh(i) = gu(i)

2 g f (i). These values are
(jointly) distributed identically to their distribution in the actual scheme. Note
that implicitly we have T (x) = gx2+u(x)

2 g f (x).
The simulator also needs to pick up a random bit rev ∈ {0, 1} and λ ∈ Z∗p.

For rev = 1, set MK1 = λ and implicitly set MK2 = α − λ. For rev = 0, set

MK2 = λ and implicitly set MK1 = α − λ. We note that these two kinds of
choice are both well formed due to the involvement of λ.

Phase 1 Private key generation oracle SK(ω):
If rev = 1, then the private key can be provided similar to the real scenario.

Pick up a random ρω ∈ Z∗p, Dω=(Bλ · T (ω)ρω = gλ2 · T (ω)ρω , gρω).
If rev = 0 and ω = ω∗ then abort and the simulator outputs µ′ = 1.
If rev = 0 and ω , ω∗ then: let g4 = A/gλ = gα−λ. Choose ρ′ω ∈ Z∗p at

random, compute Dω as: D(1)
ω =g

− f (ω)
ω2+u(ω)
4 ·

(
gω

2+u(ω)
2 g f (ω)

)ρ′ω
, D(2)

ω =g
−1

ω2+u(ω)
4 · gρ′ω .

Let’s verify the above private key is correctly distributed. Let ρω = λ−α
ω2+u(ω) +

ρ′ω, then D(2)
ω =g

−1
ω2+u(ω)
4 ·gρ′ω=gρω , D(1)

ω =g
− f (ω)
ω2+u(ω)
4 ·

(
gω

2+u(ω)
2 g f (ω)

)ρ′ω
=g

− f (ω)
ω2+u(ω)
4 ·

(
gω

2+u(ω)
2

g f (ω)
) α−λ
ω2+u(ω) ·

(
gω

2+u(ω)
2 g f (ω)

)ρ′ω ·
(
gω

2+u(ω)
2 g f (ω)

) λ−α
ω2+u(ω)

=gα−λ2 ·
(
gω

2+u(ω)
2 g f (ω)

)ρω
=gMK1

2 ·
T (ω)ρω .
Revocation R(ω, t):

For all user ω, add (ω, t) to rl.
Key update KU(t):

If rev = 1 and we have that (ω∗, t∗) < rl, then abort and the simulator outputs
µ′ = 1.

Else if rev = 1 and t = t∗, choose λi ∈ Z∗p for each {ω(i)}r−1
i=1 and λ′r ∈ Z∗p,

ρ′r ∈ Z∗p. Wlog, we assume that ω(r) = ω∗. The update information for ω∗

can be given as D(3)
r = gρ

′
r

2 , D(4)
r = g−θω∗1 · gθω∗ ·(λ′r+ρ′r) = gθω∗ ·(−z1+λ′r+ρ′r), D(5)

r =

g−1
1 ·g(λ′r+ρ′r) = g−z1+λ′r+ρ′r . We implicitly set λr = z1−λ′r and ρr = λ′r−z1 +ρ′r=ρ′r−
λr. Therefore, we can verify the above update information is correctly formed:
D(3)

r = gρ
′
r

2 =gλr+ρr
2 , D(4)

r = gθω∗ ·(−z1+λ′r+ρ′r)=V(ω∗)ρr , D(5)
r = g−z1+λ′r+ρ′r =gρr .

For the rest update information, the generation process is similar to that of
the real scenario: for i ∈ [1, r−1], D(3)

i = gλi+ρi
2 , D(4)

i =V(ω(i))ρi , D(5)
i =gρi ; for up-

date time t∗, D(1)
t∗ =gλ

′
r−

∑r−1
i=1 λi−λ

2 ·T (t∗)ρt∗=gz1−λ−(z1−λ′r)−∑r−1
i=1 λi

2 ·T (t∗)ρt∗=gMK2−∑r
i=1 λi

2 ·
T (t∗)ρt∗ , D(2)

t∗ =gρt∗ . We have ρt∗ randomly selected from Z∗p.

If rev = 1 and t , t∗, the simulator selects {λi, ρi} r←− (Z∗p)2 for i ∈ [1, r]. The
simulator also randomly selects ρ′t and let g4 = g1 ·g−λ−

∑r
i=1 λi = gα−λ−

∑r
i=1 λi . The

update information for update time t would be publish as D(1)
t =g

− f (t)
t2+u(t)
4

(
gt2+u(t)

2 g f (t)
)ρ′t

,

D(2)
t =g

−1
t2+u(t)
4 gρ

′
t . Let ρt =

∑r
i=1 λi+λ−α
t2+u(t) +ρ′t , we can verify that D(2)

t =gρt , D(1)
t =gα−λ−

∑r
i=1 λi

2 ·(
gt2+u(t)

2 g f (t)
)ρt

=gMK2−∑r
i=1 λi

2 · T (t)ρt by the similar analysis as in the third case of

Private key generation oracle. The update information for the revoked users
ω(i), i ∈ [1, r] can be generated as: D(3)

i = gλi+ρi
2 , D(4)

i =V(ω(i))ρi , D(5)
i =gρi .

If rev = 0, the update information is given as the real scenario since MK2 =

λ is known to the simulator.

Challenge E(1) = Mb·W, E(2)=Z, E(3)=g f (ω∗)
3 , E(4)=g f (t∗)

3 , E(4)=gq(ω∗)
3 , E(5)=gq(t∗)

3 .

Phase 2 Same to Phase 1.

Guess Let nare and nara denote the events that none of the oracles abort
when µ = 1 and µ = 0 respectively, namely the simulator is given g1, g2, g3,
ê(g, g)z1z2z3 or a random tuple g1, g2, g3, ê(g, g)z respectively. It is easy to see that
Pr[nare]=Pr[nara] since the probability that the two oracles SK(ω) andKU(t)
abort depends on the bit rev which is chosen independently from whether µ = 1
or µ = 0. We’ll show that Pr[nare]≥ 1

2 . In our security model, we require that
SK(ω) oracle can be queried on ω∗ only if R(ω, t) oracle was queried on (ω∗, t)
at t = t∗. Thus, we have Pr[ω = ω∗] ≤Pr[(ω∗, t∗) ∈ rl] ⇒ 1−Pr[ω = ω∗] ≥
1−Pr[(ω∗, t∗) < rl].

We see that SK(ω) oracle aborts if rev = 0 and ω = ω∗ and KU(t) oracle
aborts if rev = 1 and (ω∗, t∗) < rl. Thus,

Pr[nare] = Pr[(rev = 0)
∧

(ω = ω∗)] + Pr[(rev = 1)
∧

(ω∗, t∗) < rl]
= Pr[rev = 0] · Pr[ω = ω∗] + Pr[rev = 1] · Pr[(ω∗, t∗) < rl]
≤ 1

2 Pr[ω = ω∗] + 1
2 (1 − Pr[ω = ω∗])

≤ 1
2

Therefore, Pr[nare] ≥ 1
2 .

Let succ = ε denote the probability that the adversary outputs a b′ = b,
and real denote the probability that the simulator outputs µ′ = 1 when µ = 1
and rand denote the probability that the simulator outputs µ′ = 1 when µ = 0.
It is easy to observe that when none of the oracles abort, then the simulator is
playing the real CPA game for the adversary when µ = 1, so

Pr[real|nare] ≥ 1
2

Pr[succ]

When µ = 0 and none of the above oracles abort then b should be information-
theoretically hidden from the adversary. So,

Pr[rand|nara] =
1
2

Also, since the simulator outputs µ′ = 1 when either of the oracles aborts,
so

Pr[real|nare] = 1
Pr[rand|nara] = 1

Let Adv denote the probability that the simulator successfully solve the de-
cisional BDH problem. We have

Adv = Pr[real] − Pr[rand]
= Pr[nare] · Pr[real|nare]

+Pr[nare] · Pr[real|nare]
−Pr[nara] · Pr[rand|nara]
−Pr[nara] · Pr[rand|nara]
≥ 1

2 · (Pr[real|nare]
−Pr[rand|nara])

≥ 1
2 (Pr(succ) − 1

2)
≥ 1

4ε

B. Proof of Theorem B

Proof. The simulator is provided a random tuple (X,Y,Z,W) which is either
g1, g2, g3, ê(g, g)z1z2z3 or a random tuple g1, g2, g3, ê(g, g)z. The simulator is given
the input tuple g1, g2, g3, ê(g, g)z1z2z3 when µ = 1 and µ = 0 otherwise.
Init The adversary declares the challenge identity ω∗ = (ω∗1, · · · , ω∗j) ∈ Z

j
p of

depth j ≤ `, time t∗. The simulator sets γ∗ = {ω∗|1, · · · , ω∗| j, $∗j+1, · · · , $∗`−1, t
∗}.

Setup The simulator assigns the public parameters g1 = X and g2 = Y which
implicitly sets α = z1 and β = z2. It then picks α0, · · · , α` ∈ Z`+1

p at random and

defines h j = g
−ω∗j
1 gα j ∈ G1 for j = 1, · · · , ` and h0 = g−t∗

1 gα0 ∈ G1. Then the

function F j : Zp → G1 is defined as: F j(x) = gx
1h j = g

x−ω∗j
1 gα j for j ∈ [1, `], and

F0(x) = gx−t∗
1 gα0 .

The simulator will now set the polynomials q as follows: the simulator
chooses ` points θω∗ |1 , · · · , θω∗ | j , θ$∗j+1

, · · · , θ$∗
`−1

, and θt∗ uniformly at random
from Z∗p, and implicitly sets q(x) such that q(0) = β, while q(ω∗|k) = θω∗ |k for
k ∈ [1, j], q($∗k) = θ$∗k for k ∈ [j + 1, ` − 1] and q(t∗) = θt∗ . The simulator
outputs the following group elements for the public key: for i = 0, · · · , `, it sets
outputs V(i)=gq(i) by interpolation in the exponent using θω∗ |1 , · · · , θω∗ | j , θ$∗j+1

,
· · · , θ$∗

`−1
, θt∗ and B. These values are (jointly) distributed identically to their

distribution in the actual scheme.
The simulator also needs to pick up a random bit rev ∈ {0, 1} and λ ∈ Z∗p.

For rev = 1, set MK1 = λ and implicitly set MK2 = α − λ. For rev = 0, set

MK2 = λ and implicitly set MK1 = α − λ. We note that these two kinds of
choice are both well formed since λ are uniformly selected at random.

Phase 1 Private key generation oracle SK(ω):
If rev = 1, then the private key can be provided exactly as the real scenario

since MK1 is known to the simulator.
If rev = 0

∧
(ω = ω∗

∨ j
k=1 ω = ω∗|k) then abort.

If rev = 0
∧

(ω , ω∗
∧ j

k=1 ω , ω∗|k) then: since ω = (ω1, · · · , ωu) ∈ Zu
p is

not a prefix of ω∗. Let j be the smallest index such that ω j , ω∗j , and hence 1 ≤
j ≤ u. To respond to this query, the simulator first derives a private key for the
identity (ω1, · · · , ω j) from which it can construct a private key for the requested
identity ω = (ω1, · · · , ω j, · · · , ωu). The simulator picks up random elements

ρ1, · · · , ρ j ∈ Z j
p and sets D(0)

ω = g

−α j
ω j−ω∗j
2 g−λ2

j∏

v=1

Fv(ωv)ρv , D(1)
ω = gρ1 , · · · , D(j−1)

ω =

gρ j−1 , D(j)
ω = g

−1
ω j−ω∗j
2 gρ j . We claim that (D(0)

ω , · · · ,D(j)
ω) is a valid private key

for (ω1, · · · , ω j). To see this, let ρ̃ j = ρ j − z2/(ω j − ω∗j). Then we have that

g

−α j
ω j−ω∗j
2 F j(ω j)ρ j=g

−α j
ω j−ω∗j
2 (g

ω j−ω∗j
1 gα j)ρ j=gz1

2 (g
ω j−ω∗j
1 gα j)

ρ j− z2
ω j−ω∗j =gz1

2 F j(ω j)ρ̃ j , hence
D(0)
ω =gz1−λ

2 · ∏ j−1
k=1 Fk(ωk)ρk F j(ω j)ρ̃ j=gMK1

2 · ∏ j−1
k=1 Fk(ωk)ρk F j(ω j)ρ̃ j , D(1)

ω =gρ1 ,
· · · , D(j−1)

ω = gρ j−1 , D(j)
ω = gρ̃ j . The provided private key is correctly distributed

since ρ1, · · · , ρ j−1, ρ̃ j are random.
Revocation R(ω, t):

For all user ω, add (ω, t) to rl.
Key update KU(t):

If rev = 1 and t = t∗ and ∀t ≤ t∗ we have that (ω∗, t) < rl
∧ j

k=1(ω∗|k, t) < rl,
then abort.

Else if rev = 1 and t = t∗, choose λi ∈ Z∗p for each revoked identity ω(i), i =

1, · · · , r − 1 and λ′r ∈ Z∗p, ρ′r ∈ Z∗p. Wlog, we assume that ω(r) = ω∗ or ω(r)

is any prefix of ω∗, and for simplicity of discussion and wlog we assume ω∗ is
the revoked identity. The update information for ω∗ can be given as D(3)

r = gρ
′
r

2 ,
D(4)

r = g−θω∗1 · gθω∗ ·(λ′r+ρ′r) = gθω∗ ·(−z1+λ′r+ρ′r), D(5)
r = g−1

1 · g(λ′r+ρ′r) = g−z1+λ′r+ρ′r .
We implicitly set λr = z1 − λ′r and ρr = λ′r − z1 + ρ′r=ρ′r − λr. Therefore, we
can verify the above update information is correctly formed: D(3)

r = gρ
′
r

2 =gλr+ρr
2 ,

D(4)
r = gθω∗ ·(−z1+λ′r+ρ′r)=V(ω∗)ρr , D(5)

r = g−z1+λ′r+ρ′r =gρr .
For the rest update information of the other revoked users i ∈ [1, r − 1], the

update information is generated exactly as the real: D(3)
i = gλi+ρi

2 , D(4)
i =V(ωi)ρi ,

D(5)
i =gρi ; for update time t∗, D(1)

t∗ =gλ
′
r−

∑r−1
i=1 λi−λ

2 · F0(t∗)ρt∗=gz1−λ−(z1−λ′r)−∑r−1
i=1 λi

2 ·

F0(t∗)ρt∗=gMK2−∑r
i=1 λi

2 · F0(t∗)ρt∗ , D(2)
t∗ =gρt∗ . We have ρt∗ randomly selected from

Z∗p.

If rev = 1 and t , t∗, the simulator selects {λi, ρi} r←− (Z∗p)2 for i ∈ [1, r]. The
simulator also randomly selects ρ′t and let g4 = g1 ·g−λ−

∑r
i=1 λi = gα−λ−

∑r
i=1 λi . The

update information for update time t would be publish as D(1)
t =g

−α0
t−t∗
2 g−λ−

∑r
i=1 λi

2 F0(t)ρt ,

D(2)
t =g

−1
t−t∗
2 gρt . Let ρ̃t = ρt − z2/(t − t∗), we can verify that D(2)

t =gρ̃t , D(1)
t =g

−α0
t−t∗
2

g−λ−
∑r

i=1 λi

2 g(t−t∗)ρt
1 gα0ρt=gα−λ−

∑r
i=1 λi

2 ·
(
gt−t∗

1 · gα0
)ρt−z2/(t−t∗)

=gα−λ−
∑r

i=1 λi

2 ·F0(t)ρ̃t .
The update information for the revoked users ωi, i ∈ [1, r] can be generated as
the real scenario since λi is known to the simulator.

If rev = 0, the update information is given as the real scenario since MK2 =

λ is known to the simulator.

Challenge
(
E(−1), E(0), E(1)

ω , E(2)
ω , · · · , E(j)

ω , Et, E
(1)
ω , E

(2)
ω , · · · , E(j)

ω , E
(j+1)
dum , · · · , E(`−1)

dum , Et

)

=
(
MbW,Z,Zα1 ,Zα2 , · · · ,Zα j ,Zα0 ,Zθω∗|1 ,Zθω∗|2 , · · · ,Zθω∗| j , Zθ$∗| j+1 , · · · ,Zθ$∗|`−1 ,Zθt∗

)

Phase 2 Same to Phase 1.

Guess Since the condition that abortion happens in the above simulation is ex-
actly the same to that of [2], therefore a similar analysis to Claim 4.4 can be
applied to the above simulation. Hence, the overall advantage of the simulator
in the Decisional BDH game is larger than 1

4` ε, where ε denotes the probability
that the adversary successfully attacks the proposed construction.

