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Abstract. We propose a simple and efficient construction of CCA- se-
cure public-key encryption scheme based on lattice. Our construction
needs an encryption scheme, which we call “matrix encryption”, as build-
ing block, and requires the underlying matrix encryption scheme to sat-
isfy only a relatively weak notion of security which can be achievable
without random oracles. With the pseudohomomorphism property of
mR04 of [3], which is the multi-bit version of single-bit cryptosystems
R04 [1], we design a matrix encryption scheme which satisfies the above
requirements, thus, our construction provides a new approach for con-
structing CCA-secure encryption schemes in the standard model. So far
as we know, our construction is the first CCA-secure cryptosystem which
is directly constructed from lattice and whose security is based on the
unique shortest vector problem (uSVP).

In addition, the method designing the matrix encryption scheme from
mR04 also adapts to mR05, mA05, mADGGH of [3], which are the multi-
bit versions of single-bit cryptosystems R05 [2], A05 [5], and ADGGH [7],
respectively, since they have the same pseudohomomorphism property as
mR04. This result makes our approach constructing CCA-secure cryp-
tosystem become generic and universal.

Keywords. Lattice, CCA-security , Matrix encryption, Pseudohomo-
morphism

1 Introduction

The design of a secure encryption scheme is central to any system that strives
to provide secure communication using an untrusted network. To captures the
intuition that an adversary should not be able to obtain any partial information
about a message given its encryption, Goldwasser and Micali [15] defined the
notion of semantic security (also sometimes referred to as security under chosen-
plaintext attack, i.e., CPA-security). However, this guarantee of secrecy is only
valid when the adversary is completely passive, i.e., can only eavesdrop. Indeed,
semantic security offers no guarantee of secrecy at all if an adversary can mount
an active attack, for example, if an adversary can inject messages into a network,
these messages may be encryptions, and the adversary may be able to extract



partial information about the corresponding cleartexts through its interactions
with the parties in the network. To deal with active attacks, Rackoff and Simon
[16] modeled this type of attacks by simply allowing an adversary to obtain
decryptions of its choice, i.e., the adversary has access to a “decryption oracle”,
and defined the notion of security against adaptive chosen ciphertext attacks.
Now, security against adaptive chosen-ciphertext attacks (i.e., “CCA-security”)
has become the de facto level of security for public-key encryption schemes.

Nevertheless, only a relatively small number of encryption schemes have been
rigorously proven secure against adaptive chosen-ciphertext attacks in the stan-
dard model, i.e., the security of schemes does not rely on the Random Oracle
model, and there are the following approaches which are known for constructing
these CCA-secure cryptosystems. The first follows the paradigm introduced by
Naor and Yung [17] to achieve non-adaptive chosen-ciphertext security, later ex-
tended to the case of adaptive chosen-ciphertext security by [18–20], but these
rely on generic non-interactive zero-knowledge proofs [21, 22] and do not cur-
rently lead to practical solutions. The second technique is based on the “smooth
hash proof systems”of Cramer and Shoup [23], and has led to a number of
practical schemes [23–26]. The third, and more recent, method [27] constructs
a CCA-secure encryption scheme from any identity-based encryption (IBE) se-
cure in selective-ID model [28] with a one-time signature. Boneh and Katz [29]
further improve the efficiency of this scheme by using a MAC instead of a one-
time signature and Boyen et al. [30] show that for some concrete identity-based
encryption schemes (e.g., the one of Waters [31]) a more efficient and direct
construction of a CCA-secure encryption scheme is possible.

In this work, we put forward a new approach for constructing CCA-secure
encryption scheme which is based on lattice.

1.1 Background and Related Work

The constructions of public key encryption based on lattices have attracted con-
siderable interest in recent years. The main reason is that, unlike many other
cryptographic constructions, lattice based constructions can be based on the
worst-case hardness of a problem. That is, breaking them would imply a solu-
tion to any instance of a certain lattice problem. Now, the lattice-based cryp-
tosystems can be roughly classified into two types: (A) those who are efficient
on the size of their keys and ciphertexts and the speed of encryption/decryption
procedures, but have no security proofs based on the hardness of well-known
lattice problems, for example, [9, 10] and their improvements [13, 11, 12]; (B)
those who have security proofs based on the lattice problems but are inefficient,
for example, [1, 2, 5–8]. Lattice-based cryptosystems, which belong to the type
(A), are efficient multi-bit cryptosystems, however, those in the type (B) gen-
erally are single-bit cryptosystems. Therefore, it is important to improve their
efficiency for secure lattice-based cryptosystems in the this type (B). Akinori
Kawachi et al. [3] extended single-bit cryptosystems R04 [1], R05 [2], A05 [5],
and ADGGH in [7] to their multi-bit versions mR04, mR05, mA05, mADGGH with
security proofs and without increase in the size of ciphertexts. Their technique



requires precise evaluation of trade-offs between decryption errors and hardness
of underlying lattice problems in the original lattice-based cryptosystems and
simultaneously also reveals an algebraic property, named pseudohomomorphism,
of the lattice-based cryptosystems.

Although Lattice-based cryptosystems in the type (B) and their multi-bit
versions [3] have security proofs, they are semantic security. It wasn’t until fairly
recently that Chris Peikert et al. [4] designed an encryption scheme that was both
relative to lattice and provably secure against chosen ciphertext attacks. Chris
Peikert et al.’s construction of CCA-secure cryptosystem is based on a collection
of lossy trapdoor functions (lossy TDFs) and a collection of all-but-one trapdoor
functions (ABO TDFs), where lossy TDF is a new general primitive proposed
by them and ABO TDF can be constructed from a collection of sufficiently lossy
TDFs. In [4], Chris Peikert presented the concrete realization of lossy and all-
but-one TDFs based on on the “learning with errors”(LWE) problem. The LWE
problem can be seen as an average-case “unique decoding”problem on a certain
family of random lattices, and is believed to be hard. Moreover, Regev [2] gave a
reduction showing that LWE is hard on the average if standard lattice problems
are hard in the worst case for quantum algorithms.

1.2 Our Contribution

In this work, we propose a construction of CCA-secure cryptosystem which is
based on lattice and which we call CR04. Before sketching our construction, we
first recall the notion of pseudohomomorphism which was introduced by Aki-
nori Kawachi et al. [3]. We know that the homomorphism of ciphertexts is quite
useful for many cryptographic applications [32]. Lattice-based Cryptosystems
mR04, mR05, mA05, mADGGH implicitly have a similar property to the ho-
momorphism, which is called pseudohomomorphism, i.e., given plaintexts m1,
m2 ∈ {0, 1, . . . , p − 1}, where p is a small integer, and let E(m1) and E(m2) be
ciphertexts of m1, m2, respectively. Then, we can decrypt E(m1) + E(m2) to
m1 + m2 by the original private key of the original cryptosystem with a small
decryption error. The pseudohomomorphism property of mR04, mR05, mA05,
mADGGH plays an important role in our construction. In fact, Goldwasser and
Kharchenko made use of a similar property to construct the plaintext knowledge
proof system for the Ajtai-Dwork cryptosystem [33].

In the construction of CR04, we make use of the pseudohomomorphism of
mR04 and propose a matrix encryption scheme which is used as building block
of CR04. In order to make CR4 be CCA-secure, we only require that this matrix
encryption scheme satisfies restricted CPA-security which is a weak notion of
security and is defined in Section 3.2. Briefly and somewhat informally, CR04
proceeds as follows: CR04’s public and private key pair is generated with key
generation algorithm. To encrypt a message, the sender first generates a string
str which generates the public and private key pair of the matric encryption
scheme with CR04’s public and private key pair, then encrypts a matrix X
and generates c with the matric encryption scheme, and next, encrypts the
message in the secrete key which is generated with the matrix X and generate



c0, finally, The resulting ciphertext is (str, c, c0, tag), where tag is now a message
authentication code computed on (str, c, c0) using key X. To decrypt a ciphertext
(str, c, c0, tag), the receiver first gets X with str and c, and then verifies the
correctness of tag, outputs ⊥ if the verification fails. Otherwise, the receiver
decrypts c0.

Security of CR04 against adaptive chosen-ciphertext attacks can be sim-
ply and informally understood as follows: we first reduce the indistinguishable
pseudohomomorphism property of mR04, which is based on the unique shortest
vector problem (uSVP), to the restricted CPA-security of the matrix encryption
scheme, then reduce the restricted CPA-security of the matrix encryption scheme
to CCA-security of CR04. So far as we know, CR04 is the first CCA-secure cryp-
tosystem which is directly constructed from lattice and whose security is based
on uSVP. Since lattice-based Cryptosystems mR05, mA05, mADGGH like mR04
have the pseudohomomorphism property, the method, with which we construct
CCA-secure CR04, adapts to mR05, mA05, mADGGH, i.e., we can construct CCA-
secure cryptosystems from mR05, mA05, mADGGH, respectively.

1.3 Organization

The rest of this paper is organized as follows. We describe basic notions and
notations in Section 2. In Section 3, we first definite matrix encryption and
a weaker notion of security on matrix encryption scheme, then we review the
pseudohomomorphism property of ciphertexts, and presents a generic approach
constructing matrix encryption scheme from mR04, which adapts to constructing
matrix encryption scheme from mR05, mA05, mADGGH. In Section 4, we present a
CCA-security cryptosystem (CR04) from meR04. Section 5 concludes this paper.

2 Preliminary

2.1 Notation

We denote set of real numbers by by R, positive real numbers by R+, the in-
tegers by Z, and positive integers by Z+. For a positive integer n, [n] denotes
{1, 2, . . . , n}. For any x, y ∈ R with y > 0 we define x mod y to be x−bxcy. For
x ∈ R, bxe = bx + 1/2c denotes the nearest integer to x (with ties broken up-
ward). We define T = R/Z, i.e., the group of reals [0, 1) with modulo 1 addition,
and let frc(x) be the distance from x to the closest integer.

The n-dimensional Euclidean space is denoted Rn. We use bold lower-case
letters (e.g., x) to denote vectors in column form and bold capital letters (e.g.,
X) to denote matrices. The ith component of x will be denoted by xi. The
Euclidean norm of a vector x ∈ Rn is ‖x‖=

√∑n
i=1 x

2
i . We also use matrix

notation to denote sets of vectors. For example, matrix B ∈ Rn×m represents
the set of n-dimensional vectors {b1, . . . ,bm}, where b1, . . . ,bm are the columns
of B. We denote by ‖B‖ the maximum length of a vector in B. The linear space
spanned by a set of m vectors B is denoted span(B)={

∑
i xibi : xi ∈ R, i ∈ [m]}.



The natural security parameter throughout the paper is n, and all other
quantities are implicitly functions of n. We use standard O, Ω, o, and w no-
tation to classify the growth of functions, and say that f(n) = Õ(g(n)) if
f(n) = O(g(n) · logcn) for some fixed constant c. We let poly(n) denote an
unspecified function f(n) = O(nc) for some constant c. A negligible function,
denoted generically by negl(n), is an f(n) such that f(n) = o(n−c) for every
fixed constant c. We say that a probability (or fraction) is overwhelming if it is
1− negl(n).

The statistical distance between two distributions X and Y over a countable
domain D is defined to be ∆(X,Y ) = 1

2

∑
v∈D |X(v) − Y (v)|. We say that

two distributions (formally, two ensembles of distributions indexed by n) are
statistically close if their statistical distance is negligible in n. Two ensembles of
distributions {Xn} and {Yn} are computationally indistinguishable if for every
probabilistic poly-time machine A, |Pr[A(1n, Xn) = 1] − Pr[A(1n, Yn) = 1]| is
negligible (in n). The definition is extended to non-uniform families of poly-sized
circuits in the standard way.

2.2 Cryptosystems and Security Notion

We review the definitions of public-key encryption schemes and their security
against adaptive chosen-ciphertext attacks.

Definition 1. (Public-key encryption) A public-key encryption scheme PKE
is a triple of PPT algorithms (G, E, D) such that:

– The randomized key generation algorithm G takes as input a security pa-
rameter 1n and outputs a public key pk and a secret key sk. We write (pk,
sk)← G(1n).

– The randomized encryption algorithm E takes as input a public key pk and a
message m ∈ {0, 1}∗, and outputs a ciphertext C. We write C = Epk(m).

– The decryption algorithm D takes as input a ciphertext C and a secret key
sk. It returns a message m ∈ {0, 1}∗, or the distinguished symbol ⊥. We
write m = Dsk(C).

The standard completeness requirement is that, for all (pk, sk) output by G, all
m ∈ {0, 1}∗, and all C output by Epk(m), we have Dsk(C) = m. We relax this
notion to require that decryption is correct with overwhelming probability over
all the randomness of the algorithms.

Definition 2. (CCA Security). A public-key encryption scheme PKE is se-
cure against adaptive chosen-ciphertext attacks (i.e., is “CCA-secure”) if the
advantage of any PPT adversary A in the following game is negligible in the
security parameter n:

– G(1n) outputs (pk, sk). Adversary A is given 1n and pk.
– The adversary may make polynomially-many queries to a decryption oracle
Dsk(·).



– At some point, A outputs two messages m0, m1 with |m0| = |m1|. A bit b ∈
{0, 1} is randomly chosen and the adversary is given a challenge ciphertext
C∗ ← Epk(mb).

–A may continue to query its decryption oracle Dsk(·) except that it may not
request the decryption of C∗.

–Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by
PrA,PKE[Succ]. The adversary’s advantage is defined as |PrA,PKE[Succ]− 1/2|.

In the above game, we limit adversary, i.e., it cannot issue decryption queries
while attacking the challenge public key, thus, a public key system is said to be
semantically secure if no polynomial time adversary can win the game with a
non-negligible advantage. As shorthand we say that a semantically secure public
key system is CPA-security.

2.3 Message Authentication

We view a message authentication code as a pair of ppt algorithms ( Mac, Vrfy ).
The authentication algorithm Mac takes as input a key sk and a message M, and
outputs a string tag. The verification algorithm Vrfy takes as input a key sk, a
message M, and a string tag; it outputs either 0 (”reject”) or 1 (”accept”). We
require that for all sk and M we have Vrfysk(M ; Macsk(M ))=1. For simplicity,
we assume that Mac and Vrfy are deterministic. We give a definition of security
tailored to the requirements of our construction; in particular, we require only
”one-time” security for our message authentication code.

Definition 3. ( Message authentication ) A message authentication code
(Mac, Vrfy) is secure against a one-time chosen-message attack if the success
probability of any ppt adversary A in the following game is negligible in the
security parameter n:

1. A random key sk ∈ {0, 1}n is chosen.
2. A(1n) outputs a message M and is given in return tag=Macsk(M).
3. A outputs a pair (M ′, tag′). We say that A succeeds if (M, tag) 6= (M ′, tag′)

and Vrfysk(M ′, tag′) = 1.

In the above, the adversary succeeds even if M = M ′ but tag 6= tag′. Thus, the
definition corresponds to what has been termed ”strong” security in the context
of signature schemes.

2.4 Universal One-way Hash Function

The notion of universal one-way hash function UOWHF was introduced by Naor
and Yung [35] and is defined as follow.

Definition 4. A family of UOWHFs is a collection of keyed hash functions
{Hk}k∈K with the following property: if an adversary chooses a message x, and
then a key k is chosen at random and given to the adversary, it is hard for he
adversary to find a different message y 6= x such that Hk(x) = Hk(y).



As a cryptographic primitive, a UOWHF is an attractive alternative to the
more traditional notion of a collision-resistant hash function (CRHF) ( which
is characterized by the following property: given a random key k, it is hard to
find two different messages x and y such that Hk(x) = Hk(y).) because (1) in
the complexity theoretic view, Simon [34] that shows that there exists an oracle
relative to which UOWHFs exist but CRHFs do not, i.e., CRHFs cannot be
constructed based on an arbitrary one-way permutation, whereas Naor and Yung
[35] show that a UOWHF can be so constructed, and (2) in many applications,
most importantly for building digital signature schemes, a UOWHF is sufficient.

2.5 Lattice and Relative Problems

Let B={b1, . . . ,bn}⊂Rn consist of n linearly independent vectors. The n-dimensional
lattice Λ generated by the basis B is

Λ = L(B) = {Bz : z ∈ Zn}

A lattice is a discrete additive subgroup of Rn. The minimum distance λ1(Λ)
of a lattice Λ is the length of its shortest nonzero vector: λ1(Λ)=min06=x∈Λ ‖x‖.
More generally, the i-th successive minimum λi(Λ) is the smallest radius r such
that Λ contains i linearly independent vectors of norm at most r.

A central problem in the computational study of lattices is the Shortest
Vector Problem (SVP): given a lattice basis B, find a nonzero lattice vector
Bx 6= 0 achieving the minimum distance ‖Bx‖=λ1(L(B)). A γ-approximate
solution to the shortest vector problem (SVPγ) is defined as follows, where γ =
γ(n) is the approximation factor as a function of the dimension.

Definition 5. (SVPγ). Given a lattice basis B, find a nonzero lattice vector v
such that ‖v‖≤ γλ1(L(B)).

The problem underlying public key cryptosystems, e.g, R04, A05, and ADGGH can
be described as a restriction of SVPγ to a special class of lattices, namely lattices
such that λ2(L(B)) > γλ1(L(B)), The restriction of SVPγ to such lattices is
usually referred to as the unique shortest vector problem (uSVPγ).

Definition 6. (uSVPγ). Given a lattice basis B such that λ2(L(B)) > γλ1(L(B)),
find a nonzero lattice vector v ∈ L(B) of length λ1(L(B)).

The name of this problem is motivated by the fact that in such lattices the
shortest nonzero vector v is unique, in the sense that any vector of length less
than γλ1(L(B)) is parallel to v . It is also easy to see that for such lattices,
finding a γ-approximate solution to SVPγ is equivalent to finding the shortest
nonzero lattice vector exactly.

2.6 Probability Distributions

Here, we give several useful distributions on the segment [0, 1). For α ∈ R+, the

distribution Qα is a normal distribution with mean 0 and variance α2

2π reduced



modulo 1 (i.e., a periodization of the normal distribution):

Qα(r) =

∞∑
k=−∞

1

α
e−π(

r−k
α )2

Apparently, one can efficiently sample from Qα by sampling a normal variable
and reducing the result modulo 1. Another distribution is Φµ,α, where µ ∈ N
and α ∈ R+. Its density function is defined as:

Φµ,α(r) = Qα(rµ mod 1) =

∞∑
k=−∞

1

α
e−π(

rµ−k
α )2

By adding a normalization factor we can extend the definition of Φµ,α to non-
integer µ. So in general,

Φµ,α(r) =
1∫ 1

0
Qα(rµ mod 1)dx

Qα(rµ mod 1)

Here, we recall a sampling procedure which was proposed in [1] and which
is used later, i.e., for a real µ, we can sample values according to Φµ,α by using
samples from Qα: (1) We sample x ∈ {0, . . . , dµe} uniformly at random; (2)
Then, sample y according to Qα; (3) If 0 ≤ (x + y)/µ < 1, we then take the
value as a sample. Otherwise, we repeat (1) and (2).

3 Matrix Encryption

This section defines the notion of matrix encryption (ME) and presents a con-
struction of MB scheme based on lattice.

3.1 Notion of Matrix Encryption

Matrix encryption plays an important role in constructing a CCA-security cryp-
tosystem later. Here, we give a formal definition to it as follows:

Definition 7. A matrix encryption scheme ( ME ) is a triple of PPT algorithms
(G, E, D) such that:

– The randomized key generation algorithm G takes as input a security pa-
rameter 1n and outputs a public key pk and a secret key sk. We write (pk,
sk)← G(1n).

– The randomized encryption algorithm E takes as input a public key pk and a
message X ∈ Zh×w2 , and outputs a ciphertext c. We write c = Epk(X).

– The decryption algorithm D takes as input a ciphertext c and a secret key sk.
It returns a message X ∈ Zh×w2 , or the distinguished symbol ⊥. We write
X = Dsk(c).



Generally, the standard completeness requirement is that, for all (pk, sk) output
by G, all X ∈ Zh×w2 , and all c output by Epk(X), we have Dsk(c) = X. We relax
this notion to require that decryption is correct with overwhelming probability
over all the randomness of the algorithms.

For a secure ME scheme, we present the following the definition. While this
definition is a weaker notion of security, it suffices for our applications.

Definition 8. (Restricted CPA Security ). A matrix encryption scheme as Def-
inition 7 is secure against restricted chosen plaintext attacks (i.e., is “RCPA-
secure”) if the advantage of any PPT adversary A in the following game is neg-
ligible in the security parameter n:

– G(1n) outputs (pk, sk). Adversary A is given 1n and pk.
– A outputs two different messages X0 = (x10, . . . ,xw0), X1 = (x11, . . . ,xw1) ∈

Zh×w2 with ‖xi0‖=‖xi1‖, i ∈ [w]. A bit b ∈ {0, 1} is randomly chosen and the
adversary is given a challenge ciphertext c∗ ← Epk(Xb).

–Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by
PrA,ME[Succ]. The adversary’s advantage is defined as |PrA,ME[Succ]− 1/2|.

3.2 Pseudohomomorphism

In [3], Akinori Kawachi et al. proposed multi-bit lattice-based cryptosystems
mR04, mR05, mA05, mADGGH based on R04 [1], R05 [2], A05 [5], and ADGGH [7],
respectively. These four multi-bit lattice-based cryptosystems have a common
property, i.e., pseudohomomorphism. This pseudohomomorphism of ciphertexts
is just crucial to the construction of matrix encryption scheme based on mR04,
mR05, mA05, mADGGH. We will show this property with mR04.

The cryptosystem mR04 can be parameterized by three integers m, N , p, a
density function Φµ,α, and a real r ∈ (0, 1) which controls the trade-off between
the size of plaintext space and the hardness of underlying lattice problems. A
setting of these parameters that guarantees both security and correctness is the
following. Choose p to be some prime number between 2 and nr, let N = 28n

2

,
m = c0n

2 where c0 is a sufficiently large constant, and δ(n) = ω(n1+r
√

log n).
mR04 proceeds as follows.

• Common Parameter: Given security parameter n, parameters m, N , p,
r, δ(n), and the density function Φµ,α are taken according the description of
Section 2.6.
• Key Generation: Let Ur = {µ ∈ [

√
N, 2
√
N) : frc(µ) < 1/(8nrm)}.

We choose µ ∈ Ur uniformly at random and set d = N/µ. Choosing α
∈ [2/δ(n),(2

√
2)/δ(n)), we sample m values z1, . . ., zm from the distribution

Φµ,α by choosing x1, . . ., xm and y1, . . ., ym as described in Section 2.6.
Let ai = dNzie, i ∈ [m]. Additionally, we choose an index i0 uniformly at
random from {i : xi 6= θp, θ ∈ Z}. Then, we compute k ≡ xi0modp. The
private key is (d, k) and the public key is (a1, . . . , am, i0).



• Encryption: Choose a uniformly random subset S of {1, . . . ,m}. For a

plaintext M ∈ {0, 1, . . . , p− 1} the ciphertext is c = dMai0
p c+

∑
i∈S ai.

• Decryption: For a received ciphertext c, compute τ = c/dmod1, decrypt
the ciphertext c to dpτck−1modp, where k−1 is the inverse of k in Zp.

Thus, the following two theorems show the pseudohomomorphism property
of mR04. On the pseudohomomorphism property of other three multi-bit en-
cryption schemes, please refer for [3].

Theorem 1. Let δ(n) = ω(n1+r
√

log n). Also let p(n) be a prime and κ be an
integer such that κp ≤ nr for any constant 0 < r < 1. For any κ plaintexts σ1, .
. . ,σκ (0 ≤ σi ≤ p−1), we can decrypt the sum of κ ciphertexts

∑κ
i=1 EmR04(σi)

into
∑κ
i=1(σi)mod p with decryption error probability at most 2−Ω(δ(n)2/n2rm).

Theorem 2. ( Indistinguishable Pseudohomomorphism ) If there exist two se-
quences of plaintext σ1, . . ., σκ and σ′1, . . ., σ′κ (0 ≤ σi, σ

′
i ≤ p − 1) and a

polynomial time algorithm D1 that distinguishes between (
∑κ
i=1 EmR04(σi), pk)

and (
∑κ
i=1 EmR04(σ′i), pk), then there exists a probabilistic polynomial-time algo-

rithm A that solves the worst case of uSVPÕ(δ(n)
√
n) in the case of mR04.

3.3 Construction of ME

In this subsection, we give an matrix encryption (meR04) from mR04.
Before giving this matrix encryption, we introduce two operators which will

be needed. Given matrices B = (b1, . . . ,bw) ∈ Zh×wp , X = (x1, . . . ,xw) ∈ Zh×w2 ,

V = (v1, . . . ,vh×w) ∈ Zm×(h×w)
2 and a ∈ ZmN , we define:

B ∗X : = (< x1,b1 >, . . . , < xw,bw >)

a⊗V : = (wij) ∈ Zh×wN ,where wij =< v(i−1)w+j ,a >

The matrix encryption scheme meR04 proceeds as follows.

• Common Parameter: Given security parameter n, parameters m, N , r,
δ(n), and the density function Φµ,α are taken as mR04, except that p be
a prime such that blg pcp ≤ nr = o(n), h = blg pc. In addition, let B =
(b1, . . . ,bw) and bi = (b1i, . . . , bhi)

T = (1, 2, . . . , 2h−1)T , i ∈ [w].
• Key Generation: Let Ur = {µ ∈ [

√
N, 2
√
N) : frc(µ) < 1/(8nrm)}.

We choose µ ∈ Ur uniformly at random and set d = N/µ. Choosing α
∈ [2/δ(n),(2

√
2)/δ(n)), we sample m values z1, . . ., zm from the distribution

Φµ,α by choosing x1, . . ., xm and y1, . . ., ym as described in Section 2.6.
Let ai = dNzie, i ∈ [m]. Additionally, we choose an index i0 uniformly at
random from {i : xi 6= θp, θ ∈ Z}. Then, we compute k ≡ xi0modp, and let
a = (a1, . . . , am). The private key sk is (d, k) and the public key pk is (a, i0).

• Encryption: To encrypt X = (xij) = (x1, . . . ,xw) ∈ Zh×w2 , do the follow-
ing:

1. Generate the matrix V = (v1, . . . ,vh×w) ∈ Zm×(h×w)
2 , where each vi

(i ∈ [h×w]) is chosen independently and uniformly from Zm2 at random.



2. Compute U = (uij), where uij = d 2
iai0
p c, i ∈ [h], j ∈ [w].

3. Compute C = (cij) = a⊗V+U, where cij=EmR04
pk (2i)=(< v(i−1)w+j ,a >

+uij).
4. Compute

c=C∗X=(c1, . . ., cw)=(
∑h
i=1xi1EmR04

pk (2i), . . .,
∑h
i=1xiwEmR04

pk (2i)).

• Decryption: For a received ciphertext c, do the following:
1. Compute B ∗X = (DmR04

sk (c1), . . . ,DmR04
sk (cw)),

2. compute X from B ∗X.

Theorem 3. Let δ(n) = ω(n1+r
√

log n). Also let p(n) be a prime such that
blg pcp ≤ nr = o(n) for any constant 0 < r < 1. If there exists an adver-
sary A that breaks meR04 under restrictedly chosen plaintext attack, then there
exists a probabilistic polynomial-time algorithm C that solves the worst case of
uSVPÕ(δ(n)

√
n) in the case of meR04.

Proof. See Appendix A.
By the above description of meR04, it is evident that we mainly make use

of the pseudohomomorphism property of mR04 whether in the construction of
meR04 or in the security proof of meR04. Likwise, the above method of con-
structing meR04 adapts to mR05, mA05, mADGGH, i.e., we can simply construct
matrix encryption scheme from mR05, mA05, mADGGH, rescpectively, since these
three multi-bit lattice-based cryptosystems also have the pseudohomomorphism
property. Because of the limited length of paper, we do not discuss the ME
construction from them, respectively.

4 Construction of CCA-Security Cryptosystem

In this section, we present a CCA-security cryptosystem (CR04) from meR04.
Likewise, we can also construct a CCA-security cryptosystem from the matrix
encryption which is designed from any of mR04, mR05, mA05, mADGGH and
which is secure against restricted chosen plaintext attack ( RCPA-security ).

4.1 Description of CR04

We now describe our construction of CCA-security cryptosystem

• Common Parameter: Given security parameter n, parameters m, N , r,
δ(n), and the density function Φµ,α are taken as mR04, except that p be a
prime such that blg pcp ≤ nr = o(n), h = blg pc. Let B = (b1, . . . ,bw) and
bi = (b1i, . . . , bhi)

T = (1, 2, . . . , 2h−1)T , i ∈ [w]. Let H1 : {0, 1}` → Zq is
a hash function which is chosen from the family of universal one-way hash
functions H1. Let H2 : {0, 1}h×w → {0, 1}k is a hash function which is
chosen from the family of universal one-way hash functions H2. Let (Mac,
Vrfy) be a message authentication code. Let a ∈ Zq chosen uniformly at
random. Define f : Zq × Zq → {0, 1} as follows:



f(x, y) =

{
0 if x = y,

1 if x 6= y.

• Key Generation: Let Ur = {µ ∈ [
√
N, 2
√
N) : frc(µ) < 1/(8nrm)}. We

choose µ0, µ1 ∈ Ur uniformly at random and set d0 = N/µ0, d1 = N/µ1.
Choosing α0, α1 ∈ [2/δ(n),(2

√
2)/δ(n)), we sample m values z01 , . . ., z0m from

the distribution Φµ0,α0
and m values z11 , . . ., z1m from the distribution Φµ1,α1

as meR04, respectively. Let a0i = dNz0i e, a1i = dNz1i e, i ∈ [m]. Additionally,
we choose two indices i0, i1 uniformly at random from {i : x0i 6= θp, θ ∈ Z}
and {i : x1i 6= θp, θ ∈ Z}, respectively. Then, we compute k0 ≡ xi0modp and
k1 ≡ xi1modp, and let a0 = (a01, . . . , a

0
m) and a1 = (a11, . . . , a

1
m). The private

key sk is (d00, k00; d11, k11) = (d0 − d1, k0 − k1; d1, k1) and the public key pk
is (a00, i00; a11, i11) = (a0 − a1, i0 − i1; a1, i1).
• Encryption: E takes as input (pk,M) where pk = (a00, i00; a11, i11) is the

public key and M ∈ {0, 1}k is the message.
1. Choose a str ∈ {0, 1}` uniformly at random and compute t = H1(str).
2. Compute pkmeR04 = (a11 + f(t, a)a00, i11 + f(t, a)i00)
3. Choose X = (xij) = (x1, . . . ,xw) ∈ Zh×w2 at random and compute

c = EmeR04
pkmeR04

(X), c0 = H2(X)
⊕

M.

4. Using X as a key for a message authentication code; i.e., computes tag =
MacX(str, c, c0).

5. The ciphertext c is output as c = (str, c, c0, tag).
• Decryption: D takes as input (sk, c) where sk = (d00, k00; d11, k11) is pri-

vate key and c = (str, c, c0, tag).
1. Compute H1(str) = t, and skmeR04 = (d11 + f(t, a)d00, k11 + f(t, a)k00)
2. Compute X = DmeR04

skmeR04
(c).

3. Check that VrfyX(str, c, c0, tag) = 1; if not, it output ⊥
4. Output c0 ⊕H1(X).

4.2 Analysis of RC04

Given a ciphertext c = (str, c, c0, tag)=(str, EmeR04
pkmeR04

(X), H2(X)
⊕
M , MacX

(str, c, c0)), if DmeR04
skmeR04

(c) 6= X, the message authentication code tag can not
be passed, i.e., VrfyX(str, c, c0, tag) 6= 1. Thus, RC04 has not the error of
decryption. Since B ∗ X = (DmR04

skmeR04
(c1), . . . ,DmR04

skmeR04
(cw)) and c = C ∗ X =

(c1, . . . , cw), we know that the decryption error probability of DmR04
skmeR04

(ci) , i ∈
[w], is at most 2−Ω(δ(n)2/n2rm) with Theorem 1. In other words, RC04 possibly
refuse a correct ciphertext and the rejective probability of a correct ciphertext
is at most (1− (1− 2−Ω(δ(n)2/n2rm))w).

On the security of RC04, we have the following result.

Theorem 4. If ( Mac, Vrfy) is a strong one-time message authentication code,
and hash functions H1 and H2 are universal one-way hash function, the above
cryptosystem is secure against adaptive chosen ciphertext attack assuming that
meR04 is secure against restrictedly chosen plaintext attack (i.e., RCPA-security).



Proof. See Appendix B.

5 Conclusion

In this work, we present a CCA-secure cryptosystem CR04 and definite ma-
trix encryption and a weaker notion of security, i.e., RCAP-security. Security of
CR04 against adaptive chosen-ciphertext attacks is based on the restricted CPA-
security of the matrix encryption scheme, then we reduce the indistinguishable
pseudohomomorphism property of mR04 , which is based on the unique shortest
vector problem (uSVP), to the restricted CPA-security of the matrix encryp-
tion scheme. So far as we know, CR04 is the first CCA-secure cryptosystem
which is directly constructed from lattice and whose security is based on uSVP.
Since lattice-based Cryptosystems mR05, mA05, mADGGH like mR04 have the
pseudohomomorphism property, the method, with which we construct CCA-
secure CR04, adapts to mR05, mA05, mADGGH, i.e., we can construct CCA-secure
cryptosystems from mR05, mA05, mADGGH, respectively. This results make our
method constructing CR04 become generic and universal.
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A The Proof of Theorem 3

Proof. Given any adversary A that breaks meR04 in restricted chosen plaintext
attacks, we show how to construct an adversary B that successfully attacks the
indistinguishable pseudohomomorphism property of mR04. The game between
the challenger and the adversary B starts with the challenger first generating
the public parameters of mR04 param = (N,m, r,B, δ(n), Φµ,α) and the public
and corresponding private key pairs (pk, sk). The challenger gives param and pk
to the adversary B. The adversary B interacts with the adversary A as follows:

1. The adversary B relays param and pk to the adversary A.
2. The adversaryA outputs two different messages X0 = (x0

1, . . . ,x
0
w), X1=(x1

1,
. . ., x1

w) ∈ Zh×w2 with ||x0
i || = ||x1

i ||, where x0
i = (x01i, . . . , x

0
hi)

T , and x1
i =

(x11i, . . . , x
1
hi)

T ∈ Zh2 , i ∈ [w]. Without loss of generality, we assume that
x0
1 6= x1

1. The adversary A gives X0 and X1 to the adversary B.
3. The adversary B relays x0

1 and x1
1 to the challenger.

4. The challenger generates ciphertexts c0 = EmeR04
pk (x0

1) =
∑h
i=1 x

0
i1EmR04

pk (2i−1)

and c1 = EmeR04
pk (x1

1) =
∑h
i=1 x

1
i1EmR04

pk (2i−1), and gives them to the adver-
sary B.

5. The adversary B chooses a cg from {c0, c1} and a bit b ∈ {0, 1} uniformly at
random, respectively, and generates the following ciphertext

cb = (cg,

h∑
i=1

xbi2EmR04
pk (2i−1), . . . ,

h∑
i=1

xbiwEmR04
pk (2i−1))

and gives it to A.
6. Finally, A output a bit b′. B concludes its own game by outputting a guess as

follows. If b = b′, then B outputs 1 meaning cg = cb =
∑h
i=1 x

b
i1EmR04

pk (2i−1),

otherwise, it outputs 0 meaning cg 6= cb.

In the above game, let Succ denote the event that B outputs 1, Event denote
the event that cg = cb. If cg = cb, B provides a perfect simulation for A and
succeeds with whenever A succeeds, i.e., the view of the adversary A is identical
to its view in the real attack game. Therefore, in the case, A must satisfies
|Pr[b = b′]−1/2| > ε (Assuming that the adversaryA breaks the our construction



with at least advantage ε in restricted chosen plaintext attacks). On the other
hand, if cg 6= cb, ciphertext cb is independent of b in the view of adversary A,
then Pr[b = b′] = 1/2. Then we have

|Pr[B(param, pk, c0) = 1]− Pr[B(param, pk, c1) = 1|
= |Pr[ Succ|Event ]− Pr[ Succ| Event ]|
≥ |1/2± ε− 1/2| = ε

Thus, B can distinguish c0 =
∑h
i=1 x

0
i1EmR04

pk (2i−1) and c1 =
∑h
i=1 x

1
i1EmR04

pk (2i−1)
with non-negligible advantage. According to Theorem 2 (i.e., the indistinguish-
able pseudohomomorphism property of mR04 ), we can construct an algorithm
C that uses the adversary B to solve the worst case of uSVPÕ(δ(n)

√
n).

B The Proof of Theorem 4

Proof. Given any adversary A that breaks our construction in adaptive chosen
ciphertext attacks, we show how to construct an adversary B that successfully
breaks meR04 in restricted chosen plaintext attacks.

The game between the challenger and B starts with the challenger first gen-
erating the public parameters of meR04 param =< N,m, r, p, B, δ(n), Φµ,α >,
and the public key pk = (a0, i0) and the corresponding private key sk = (d0, k0).
The challenger interacts with the adversary B as follows:

1. The challenger gives param and pk to B.
2. B outputs two different messages X0 = (x0

1, . . . ,x
0
w), X1=(x1

1, . . ., x1
w) ∈

Zh×w2 with ||x0
i || = ||x1

i ||, where x0
i=(x01i, . . ., x

0
hi)

T , and x1
i=(x11i, . . ., x

1
hi)

T∈
Zh2 , i ∈ [w], and gives X0 and X1 to the challenger.

3. The challenger randomly chooses a bit b ∈ {0, 1} and generates ciphertext
c∗b = EmeR04

pk (Xb) and gives it to B.

Next, B uses param and (pk, sk) which are given by the challenger and gen-
erates the parameters param∗ and the public and corresponding private key
pair(pk∗, sk∗) of our construction as follows.

1. Let Ur = {µ ∈ [
√
N, 2
√
N) : frc(µ) < 1/(8nrm)}, choose µ1 ∈ Hr uniformly

at random and set d1 = N/µ1.
2. Choose α1 ∈ [2/δ(n),(2

√
2)/δ(n)), and sample m values z11 , . . ., z1m from the

distribution Φµ1,α1
by choosing x11, . . ., x1m and y11 , . . ., y1m as described in

Section 2.6.
3. Let a1i = dNz1i e, i ∈ [m], choose an index i1 uniformly at random from
{i : x1i 6= θp, θ ∈ Z}, compute k1 ≡ xi1modp, and let a1 = (a11, . . . , a

1
m).

4. The private key sk∗ is (d00, k00; d11, k11) = (d1 − d0, k1 − k0; d0, k0) , where
B does not know d0 and k0, and the public key pk∗ is (a00, i00; a11, i11) =
(a1 − a0, i1 − i0; a0, i0).

5. Choose two hash functions H1 : {0, 1}` → Zq and H2 : {0, 1}h×w → {0, 1}k
from the family of universal one-way hash functions H1 and from the family
of universal one-way hash functions H2, respectively, and define the function
f : Zq × Zq → {0, 1} as follows:



f(x, y) =

{
0 if x = y,

1 if x 6= y.

.

6. Choose a str∗ ∈ {0, 1}`, compute a = H1(str∗), let (Mac, Vrfy) be a
message authentication scheme, and set the parameters of our construction
param∗ =< param, H1, H2, a, f, (Mac, Vrfy) >.

Then, B interacts with A as follows.

1. Give the param∗ and pk∗ to A
2. When A makes decryption oracle query D(c), where c = (str, c, c0, tag),

the adversary B proceeds as follows:

1. Compute H1(str) = a′. If a′ = a, aborts and output ⊥.

2. Compute skmeR04 = (d11 + f(a′, a)d00, k11 + f(a′, a)k00)

2. Compute X = DmeR04
skmeR04

(c).

4. Check that VrfyX(str, c, c0, tag) = 1; if not, it output ⊥
5. Output c0 ⊕H1(X).

3. At some point, A outputs two equal-length messages m0 and m1 ∈ {0, 1}k
on which it wishes to be challenged. The adversary B responds as follows:

(1) Randomly choose g, g0 ∈ {0, 1}, and compute c∗0 = H2(Xg)⊕mg0

(2) Using Xg as a key for a message authentication code; i.e., computes
tag∗ = MacXg

(str∗, c∗b , c
∗
0).

(3) Return ciphertext c∗ = (str∗, c∗b , c
∗
0, tag

∗) to A.

4. Finally, A outputs a bit g′0. If g0=g′0, B outputs a guessing bit b′=g; other-
wise, outputs a guessing bit b′=1− g.

In B’s interaction with A, let Succ denote the event that b = b′, Succ0 denote
the event that b = g, Fail denote the event that A issues a decryption query for
c = (str, c, c0, tag) with H1(str) = a. Apparently, if the event Succ0 occurs, B
provides a perfect simulation for A, thus B succeeds with whenever A succeeds
unless that the event Fail occurs, however, the probability that the above case
happens is negligible, since H1 is a universal one-way hash function, in which
case |Pr[g0 = g′0]− 1/2| > ε (Assuming that A breaks the our construction with
at least advantage ε in adaptive chosen cipherext attacks ). If the event Succ0
occurs, that g0 is independent of the adversary’s view, since the ciphertext c∗ is
invalid with overwhelming probability, and H2 is the universal one-way hash, in
which case Pr[g0 6= g′0] = 1/2. Thus, we have the following result:



|Pr(Succ)− 1

2
| = |Pr(Succ ∧ Succ0) + Pr(Succ ∧ Succ0)− 1

2
|

= |Pr(Succ|Succ0)Pr(Succ0) + Pr(Succ|Succ0)Pr(Succ0)− 1

2
|

= |1
2
Pr(Succ|Succ0) +

1

2
Pr(Succ|Succ0)− 1

2
|

≥ |1
2

[Pr(g0 = g′0|Succ0)− Pr(Fail|Succ0) + Pr(g0 6= g′0|Succ0)]− 1

2
|

≥ |1
2

[
1

2
± ε− Pr(Fail|Succ0)− 1

2
]− 1

2
|

≥ |1
2

[ε− Pr(Fail|Succ0)]|

Since Pr(Fail|Succ0) is negligible, |Pr(Succ)− 1
2 | >

1
4ε.


