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Abstract. We propose a simple construction of CCA- secure public-
key encryption scheme based on lattice in the standard model. Our con-
struction regards lattice-based cryptosystem mR05 of [21], which is the
multi-bit version of single-bit cryptosystems R05 [20], as building block
and makes use of its indistinguishable pseudohomomorphism property
which is known to be achievable without random oracles and which is
the crux that we can construct a public key encryption scheme which is
CCA-secure in standard model. This makes our construction approach
quite different from existing ones. So far as we know, our construction
is the first CCA-secure cryptosystem which is directly constructed from
lattice and whose security is directly based on the standard lattice prob-
lem which is hard in the worst case for quantum algorithms.
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1 Introduction

The design of a secure encryption scheme is central to any system that strives to
provide secure communication using an untrusted network. Following the seminal
work of Goldwasser and Micali [1], increasingly strong security definitions have
been formulated. The strongest notion to date is that of security against adaptive
chosen-ciphertext attack (CCA-security) [2], which protects against an adversary
that is given access to decryptions of ciphertexts of her choice and which has
become the de facto level of security for public-key encryption schemes.

Constructions of public-key encryption schemes, which are secure against
adaptive chosen ciphertext without resorting to heuristics such as the random
oracle methodology, have followed several structural approaches. The first ap-
proach follows the paradigm introduced by Naor and Yung [3] to achieve non-
adaptive chosen-ciphertext security, later extended to the case of adaptive chosen-
ciphertext security by [4–6]. However, this approach relies on generic non-interactive
zero-knowledge proofs [7, 8], and encryption schemes resulting from this ap-
proach are somewhat complicated and impractical due to the use of generic
NIZK proofs. The second approach is based on the “smooth hash proof sys-
tems”of Cramer and Shoup [9], and has led to a number of practical schemes
[9–12]. The third approach was suggested by Canetti, Halevi and Katz [13] (fol-
lowed by [15, 16]) who constructed a CCA-secure public-key encryption scheme
based on any identity-based encryption (IBE) scheme in selective-ID model [14]



with a one-time signature. Their construction is elegant, black-box, and essen-
tially preserves the efficiency of the underlying IBE scheme. However, IBE is
a rather strong cryptographic primitive, which is currently realized only based
on a small number of specific number-theoretic assumptions. Recently, Peikert
and Waters [22] introduced the intriguing notion of lossy trapdoor functions,
and demonstrated that such functions can be used to construct a CCA-secure
public-key encryption scheme in a black-box manner. In addition, Chris Peikert
[22] also presented the concrete realization of lossy trapdoor functions.

In 1996, Ajtai [18] established a remarkable connection between the worst-
case and average-case complexity of certain computational problems on lattices.
This result opened the door to basing cryptography on a worst-case assump-
tion. Ajtai and Dwork [24] constructed the first public-key cryptosystem whose
security is based on the worst-case hardness of a lattice problem. Several cryp-
tosystems were given in subsequent works, e.g, R04 [19], R05 [20], A05 [23], and
ADGGH [25]. Compared with other lattice-based cryptosystems [27, 28] and their
improvements [31, 29, 30], which have not security proofs, although the aforemen-
tioned lattice-based cryptosystems are provable security, they are unfortunately
quite inefficient and are signle-bit cryptosystrems. Akinori Kawachi et al. [21]
have tried to remedy this and extended single-bit cryptosystems R04, R05, A05,
and ADGGH to their multi-bit versions mR04, mR05, mA05, mADGGH with security
proofs and without increase in the size of ciphertexts, respectively.

The Ajtai-Dwork cryptosystem [18], as well as subsequent works [25, 19, 23,
20, 21], are not secure against chosen ciphertext attacks. Indeed, it is not too
difficult to see that one can extract the private key given access to the decryption
oracle. In practice, there are known methods to deal with this issue. It would
be interesting to find an (efficient) solution with a rigorous proof of security in
the standard model. It wasn’t until fairly recently that Chris Peikert et al. [22]
designed an encryption scheme that was both relative to lattice and provably
secure against chosen ciphertext attacks without the random oracle model. In
Chris Peikert et al.’s construction of CCA-secure cryptosystem, they made use of
lossy trapdoor functions, TDFs. In order to implement their construction, Chris
Peikert et al. also presented the concrete realization of lossy TDFs based on on
the “learning with errors”(LWE) problem. The LWE problem can be seen as an
average-case “unique decoding”problem on a certain family of random lattices,
and is believed to be hard. Moreover, Regev [20] gave a reduction showing that
LWE is hard on the average if standard lattice problems are hard in the worst
case for quantum algorithms.

In this work, our goal is to construct a simple CCA-secure public-key encryp-
tion scheme based on lattice in the standard model.

1.1 Our Contribution

In this work, we propose a construction of CCA-secure cryptosystem which is
based on mR05. Before sketching our construction, we first recall the notion
of pseudohomomorphism which was introduced by Akinori Kawachi et al. [21].



We know that the homomorphism of ciphertexts is quite useful for many cryp-
tographic applications [33]. Lattice-based Cryptosystems mR04, mR05, mA05,
mADGGH implicitly have a similar property to the homomorphism, which is called
pseudohomomorphism, i.e, given plaintexts m1, m2 ∈ {0, 1, . . . , p−1}, where p is
a small integer, and let E(m1) and E(m2) be ciphertexts of m1, m2, respectively.
Then, we can decrypt E(m1) + E(m2) to m1 +m2 by the original private key of
the original cryptosystem with a small decryption error.

In our construction, the pseudohomomorphism property of mR05 plays an
important role, we make use of it to finish the encryption of matrix X ∈ Zh×w2

which is regarded as an encryption witness, this idea stemms from Chris Peikert
et al.’s construction of CCA-secure encryption [22]. Our construction also uses
a one-time signature scheme (Gen, Sign, Ver). We require that this scheme be
secure in the sense of strong unforgeability (i.e., an adversary is unable to forge
even a new signature on a previously-signed message). The use of one-time signa-
ture for CCA-security inherits from the work of D. Dolev, C. Dwork, and M. Naor
[4] and is similar to the methods of [13, 22] constructing CCA-secure cryptosys-
tems. Briefly and somewhat informally, this new encryption scheme proceeds as
follows: To encrypt a message, the sender first generates a key-pair (vk, skσ) for
a one-time strong signature scheme, then, chooses a matrix X ∈ Zh×w2 , encrypts
it with mR05 and its pseudohomomorphism and gets c, and next, encrypts the
message in the secrete key which is generated with the matrix X and generates
c0, finally, The resulting ciphertext is (vk, c, c0, σ), where σ = Signskσ (c, c0,X).
To decrypt a ciphertext (vk, c, c0, σ), the receiver first gets X with vk and c,
and then verifies whether V er(vk, c, c0,X, σ) = 1, outputs ⊥ if the verification
fails. Otherwise, the receiver decrypts c0.

Security of the new scheme against adaptive chosen-ciphertext attacks can
be informally understood as follows. Consider a challenge ciphertext c∗ = (vk∗,
c∗, c∗0, σ∗) given to the adversary. Any ciphertext c = (vk, c, c0, σ) submitted by
the adversary to a decryption oracle (implying c 6= c∗), must have vk∗ 6= vk by
the (strong) security of the one-time signature scheme. The crux of the security
proof then involves showing that the indistinguishable pseudohomomorphism
property of mR05 implies that decrypting c does not give the adversary any
further advantage in decrypting the challenge ciphertext. So far as we know,
this new scheme is the first CCA-secure cryptosystem based on lattice and whose
security is directly based on the standard lattice problem which is hard in the
worst case for quantum algorithms.

1.2 Organization

The rest of this paper is organized as follows. We describe basic notions and
notations in Section 2. In Section 3, we review lattice-based encryption scheme
and its pseudohomomorphism property. In Section 4, we present a CCA-security
cryptosystem from mR05, analysize its security and reduce its security to the
LWE problem. Section 5 concludes this paper.



2 Preliminary

2.1 Notation

We denote set of real numbers by by R, positive real numbers by R+, the in-
tegers by Z, and positive integers by Z+. For a positive integer n, [n] denotes
{1, 2, . . . , n}. For any x, y ∈ R with y > 0 we define x mod y to be x−bxcy.
For x ∈ R, bxe = bx + 1/2c denotes the nearest integer to x (with ties bro-
ken upward). We define T = R/Z, i.e., the group of reals [0, 1) with modulo 1
addition.

The n-dimensional space is denoted Rn. We use bold lower-case letters (e.g.,
x) to denote vectors in column form and bold capital letters (e.g., X) to denote
matrices. The ith component of x will be denoted by xi. The norm of a vector
x ∈ Rn is denoted as ‖x‖. We also use matrix notation to denote sets of vectors.
For example, matrix B ∈ Rn×m represents the set of n-dimensional vectors
{b1, . . . ,bm}, where b1, . . . ,bm are the columns of B. We denote by ‖B‖ the
norm of longest vector in B. The linear space spanned by a set of m vectors B
is denoted span(B)={

∑
i xibi : xi ∈ R, i ∈ [m]}.

The natural security parameter throughout the paper is n, and all other
quantities are implicitly functions of n. We use standard O, Ω, o, and w no-
tation to classify the growth of functions, and say that f(n) = Õ(g(n)) if
f(n) = O(g(n) · logcn) for some fixed constant c. We let poly(n) denote an
unspecified function f(n) = O(nc) for some constant c. A negligible function,
denoted generically by negl(n), is an f(n) such that f(n) = o(n−c) for every
fixed constant c. We say that a probability (or fraction) is overwhelming if it is
1− negl(n).

The statistical distance between two distributions X and Y over a countable
domain D is defined to be ∆(X,Y ) = 1

2

∑
v∈D |X(v) − Y (v)|. We say that

two distributions (formally, two ensembles of distributions indexed by n) are
statistically close if their statistical distance is negligible in n. Two ensembles of
distributions {Xn} and {Yn} are computationally indistinguishable if for every
probabilistic poly-time machine A, |Pr[A(1n, Xn) = 1] − Pr[A(1n, Yn) = 1]| is
negligible (in n). The definition is extended to non-uniform families of poly-sized
circuits in the standard way.

2.2 Cryptosystems and Security Notion

We review the definitions of public-key encryption schemes and their security
against adaptive chosen-ciphertext attacks.

Definition 1. (Public-key encryption) A public-key encryption scheme PKE
is a triple of PPT algorithms (G, E, D) such that:

1. The randomized key generation algorithm G takes as input a security pa-
rameter 1n and outputs a public key pk and a secret key sk. We write (pk,
sk)← G(1n).



2. The randomized encryption algorithm E takes as input a public key pk and
a message m ∈ {0, 1}∗, and outputs a ciphertext C. We write C = Epk(m).

3. The decryption algorithm D takes as input a ciphertext C and a secret key
sk. It returns a message m ∈ {0, 1}∗, or the distinguished symbol ⊥. We
write m = Dsk(C).

The standard completeness requirement is that, for all (pk, sk) output by G, all
m ∈ {0, 1}∗, and all C output by Epk(m), we have Dsk(C) = m. We relax this
notion to require that decryption is correct with overwhelming probability over
all the randomness of the algorithms.

Definition 2. (CCA Security). A public-key encryption scheme PKE is se-
cure against adaptive chosen-ciphertext attacks (i.e., is “CCA-secure”) if the
advantage of any PPT adversary A in the following game is negligible in the
security parameter n:

1. G(1n) outputs (pk, sk). Adversary A is given 1n and pk.
2. The adversary may make polynomially-many queries to a decryption oracle
Dsk(·).

3. At some point, A outputs two messages m0, m1 with |m0| = |m1|. A bit b ∈
{0, 1} is randomly chosen and the adversary is given a challenge ciphertext
C∗ ← Epk(mb).

4. A may continue to query its decryption oracle Dsk(·) except that it may not
request the decryption of C∗.

5. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by
PrA,PKE[Succ]. The adversary’s advantage is defined as |PrA,PKE[Succ]− 1/2|.

2.3 Strongly Unforgeable One-Time Signatures

We review the standard definition for signature schemes, followed by a definition
of strong one-time security appropriate for it.

Definition 3. A signature scheme consists of three PPT algorithms Gen, Sign,
and Ver such that:

1. Gen takes as input the security parameter 1n and outputs a verification key
vk and a signing key skσ. We assume for simplicity that the length of vk is
fixed for any given value of n.

2. Sign takes as input a signing key skσ and a message M (in some implicit
message space), and outputs a signature σ.

3. Ver takes as input a verification key vk, a message M , and a signature σ,
and outputs a bit b ∈ {0, 1} (where b = 1 signifies acceptance and b = 0
signifies rejection). We write this as b := Ver(vk,M, σ) .

Here, we give a definition of security tailored to the requirements of our con-
struction, i.e., we require only ”one-time” security for our message signature.



Definition 4. A signature scheme Sig is a strong one-time signature scheme if
the success probability of any ppt adversary A in the following game is negligible
in the security parameter n:

1. Gen(1n) outputs (vk, skσ) and the adversary is given 1n and vk
2. A may do one of the following:

(a) A may output a pair (M∗, σ∗) and halt. In this case (M,σ) are undefined.
(b) A may output a message M , and is then given in return σ ← Signskσ (M).

Following this, A outputs (M∗, σ∗).

We say the adversary succeeds if Ver(vk,M∗, σ∗) = 1 but (M∗, σ∗) 6= (M,σ).

Strongly unforgeable one-time signatures can be constructed from any one-way
function [34] and and from collision-resistant hash functions [35].

2.4 Universal One-way Hash Function

The notion of universal one-way hash function UOWHF was introduced by Naor
and Yung [37] and is defined as follow.

Definition 5. A family of UOWHFs is a collection of keyed hash functions
{Hk}k∈K with the following property: if an adversary chooses a message x, and
then a key k is chosen at random and given to the adversary, it is hard for he
adversary to find a different message y 6= x such that Hk(x) = Hk(y).

As a cryptographic primitive, a UOWHF is an attractive alternative to the
more traditional notion of a collision-resistant hash function (CRHF) ( which
is characterized by the following property: given a random key k, it is hard to
find two different messages x and y such that Hk(x) = Hk(y).) because (1) in
the complexity theoretic view, Simon [36] that shows that there exists an oracle
relative to which UOWHFs exist but CRHFs do not, i.e, CRHFs cannot be
constructed based on an arbitrary one-way permutation, whereas Naor and Yung
[37] show that a UOWHF can be so constructed, and (2) in many applications,
most importantly for building digital signature schemes, a UOWHF is sufficient.

2.5 Lattice

Let B={b1, . . . ,bn}⊂Rn consist of n linearly independent vectors. The n-dimensional
lattice Λ generated by the basis B is

Λ = L(B) = {Bz : z ∈ Zn}

A lattice is a discrete additive subgroup of Rn. The minimum distance λ1(Λ)
of a lattice Λ is the length of its shortest nonzero vector: λ1(Λ)=min06=x∈Λ ‖x‖.
More generally, the i-th successive minimum λi(Λ) is the smallest radius r such
that Λ contains i linearly independent vectors of norm at most r.

We recall two standard worst-case approximation problems on lattices, i.e.,
the shortest vector problem (SVPγ), whose decision version (GapSVPγ) is com-
mon to be considered, and the shortest independent vectors problem which is
given in its search version, where γ = γ(n) is the approximation factor as a
function of the dimension n.



Definition 6. ( GapSVPγ ). An input to GapSVPγ is a pair (B, d) where B
is a basis for a full-rank n-dimensional lattice and d ∈ R. It is a YES instance
if λ1(L(B)) ≤ d, and is a NO instance if λ1(L(B)) > γ(n)d

Definition 7. ( SIVPγ ). An input to SIVPγ is a full-rank basis B of an n-
dimensional lattice. The goal is to output a set of n linearly independent lattice
vectors S ⊂ L(B) such that ‖S‖≤ γ(n)λn(L(B)).

Probability distributions The normal (Gaussian) distribution with mean 0
and variance σ2 (or standard deviation σ ) is the distribution on R having density
function 1

σ
√
2π

exp(−x2/2σ2). The sum of two independent normal variables with

mean 0 and variances σ2
1 and σ2

2 (respectively) is a normal variable with mean
0 and variance σ2

1 + σ2
2 . We will also need a standard tail inequality: a normal

variable with variance σ2 is within distance tσ (i.e., t standard deviations) of its
mean, except with probability at most 1

t exp(−t2/2).

For α ∈ R+, Ψα is defined to be the distribution on T of a normal variable with
mean 0 and standard deviation α/

√
2π, reduced modulo 1. For any probability

distribution φ over T and an integer q ∈ Z+ (often implicit) its discretization φ
is the discrete distribution over Zq of the random variable qXφ mod q, where
Xφ has distribution φ.

For an integer q ≥ 2 and some probability distribution χ over Zq, an integer
dimension n ∈ Z+ and a vector s ∈ Znq , define As,χ as the distribution on

Znq × Zq of the variable (a,aT s + x) where a ∈ Znq is uniform and x ← χ are
independent, and all operations are performed in Zq.

Learning with errors (LWE) . For an integer q = q(n) and a distribution
χ on Zq, the goal of the (average-case) learning with errors problem LWEq,χ
is to distinguish (with non-negligible probability) between the distribution As,χ
for some uniform (secret) s← Zqn and the uniform distribution on Znq × Zq (via
oracle access to the given distribution). In other words, if LWE is hard, then the
collection of distributions As,χ is pseudorandom.

Regev demonstrated that for certain moduli q and Gaussian error distribu-
tions χ, LWEq,χ is as hard as solving several standard worst-case lattice problems
using a quantum algorithm.

Proposition 1. ([20]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such
that αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that

solves LWEq,Ψα , then there exists an efficient quantum algorithm for approxi-

mating SIVP and GapSVP in the `2 norm, in the worst case, to within Õ(n/α)
factors.

This result was subsequently extended to hold for SIVP and GapSVP in any `p
norm, 2 ≤ p ≤ ∞, for essentially the sames Õ(n/α) approximation factors [32].



3 mR05 and its pseudohomomorphism

In this section, we review the mR05 and its pseudohomomorphism, which are
used in our construction.

The cryptosystem mR05 proposed in [21] can be parameterized by three
integers m, q, p , a probability distribution χ on Zq , and a real r ∈ (0, 1) which
controls the trade-off between the size of plaintext space and the hardness of
underlying lattice problems. A setting of these parameters that guarantees both
security and correctness is the following. Choose q to be some prime number
between n2 and 2n2, let m = 5(n + 1)(2 log n + 1). Let also p be an integer
such that p ≤ nr = o(n), which is the size of the plaintext space in mR05. The
probability distribution χ is taken to be Ψβ where the parameter β = β(n) =
α/nr = o(1/(n0.5+r log n)) is used to control the distribution instead of α in R05
[20] and satisfies β(n)q(n) > 2

√
n. mR05 proceeds as follows.

• Common Parameter: Given security parameter n, parameters m, q, p, r,
β are taken according the above description.

• Key Generation: The private key s is chosen uniformly at random from Znq .
m vectors a1, . . . , am chosen from Znq uniformly at random and ei (i ∈ [m])is

also chosen according to the distribution Ψβ . Let bi =< ai, s > +ei. The
public key is {ai, bi}mi=1.

• Encryption: Choose a uniformly random subset S of {1, . . . ,m}. For a
plaintext m ∈ {0, 1, . . . , p− 1} the ciphertext is (

∑
i∈S ai, q

m
p +

∑
i∈S bi ).

• Decryption: Decrypt a received ciphertext (a, b) to b(b− < a, s >)p/qe)modp.

Here, we only introduce the results about the pseudohomomorphism of mR05.

Theorem 1. (Pseudohomomorphism) Let β=β(n)=α/nr=o(1/(n0.5+r log n)).
Also let p(n) be an integer and κ be an integer such that κp ≤ nr for any constant
0 < r < 1. For any κ plaintexts σ1, . . . ,σκ (0 ≤ σi ≤ p− 1), we can decrypt the
sum of κ ciphertexts

∑κ
i=1 EmR05(σi) into

∑κ
i=1(σi)mod p with decryption error

probability at most 2−Ω(1/mβ2(n)n2r), where the addition is defined over Znq ×Zq.

Theorem 2. (Indistinguishable Pseudohomomorphism) If there exist two
sequences of plaintext σ1, . . . ,σκ and σ′1, . . . ,σ′κ (0 ≤ σi, σ′i ≤ p−1) and a poly-
nomial time algorithm D1 that distinguishes between (

∑κ
i=1 EmR05(σi), pk) and

(
∑κ
i=1 EmR05(σ′i), pk), then there exists a polynomial-time quantum algorithm for

the worst case of SVPÕ(n/β(n)) and SIVPÕ(n/β(n)) in the case of mR05.

4 CCA-security Cryptosystem

In this section, we presents a CCA-secure encryption scheme based on mR05.



4.1 Our Construction

Before giving our construction, we introduce a operator which will be needed.
Given two matrices B = (b1, . . . ,bw) ∈ Zh×wp , X = (x1, . . . ,xw) ∈ Zh×w2 , we
define:

B ∗X : = (< x1,b1 >, . . . , < xw,bw >)

We now describe our CCA-secure cryptosystem.

• Common Parameter: Given security parameter n, let r ∈ (0, 1) be any
constant, β = o(1/(n0.5+r log n)), p be an integer such that blg pcp ≤ nr =
o(n), h = blg pc, q be a prime such that qβ > 2

√
n. Let H1 : {0, 1}` →

Zd is a hash function which is chosen from the family of universal one-
way hash functions H1, where d ≥ q is an integer. Let H2 : {0, 1}h×w →
{0, 1}k is a hash function which is chosen from the family of universal one-
way hash functions H2. Let B = (b1, . . . ,bw) and bi = (b1i, . . . , bhi)

T =
(1, 2, . . . , 2h−1)T , i ∈ [w]. Let (Gen, Sign, Ver) be a strongly unforgeable one-
time signature where the public verification keys are in {0, 1}`. Let a ∈ Zq
chosen uniformly at random. Define f : Zd × Zd → {0, 1} as follows:

f(x, y) =

{
0 if x = y,

1 if x 6= y.

• Key Generation:

1 Private key generation: For i = 1, . . . , w, choose w vectors s1, . . . , sw ∈
Znq and w vectors s′1, . . . , s

′
w ∈ Znq uniformly at random. The private key

generation is S= (s1, . . . , sw) and S′ = (s′1, . . . , s
′
w).

2 Public key generation:

(1) For i = 1, . . . ,m, choose m vectors a1, . . . ,am ∈ Znq uniformly at
random, and let A = (a1, . . . ,am).

(2) Choose eij , e
′
ij (i ∈ [m] and j ∈ [w]) according to the distribution Ψβ .

Let yij =< ai, sj > +eij and y′ij =< ai, s
′
j > +e′ij (i ∈ [m] and j ∈

[w]).
(3) Let yj = (y1j , . . . , ymj)

T , ej = (e1j , . . . , emj)
T , gj = (< a1, sj >

, . . . , < am, sj >)T and y′j = (y′1j , . . . , y
′
mj)

T , j ∈ [w].

(4) Let Y = (y1+e1−y′1, . . . ,yw+ew−y′w) and Y′ = (y′1+g1, . . . ,y
′
w+

gw). The public key is < A,Y,Y′ >.

• Encryption: E takes as input (pk,M) where pk =< A,Y,Y′ > is the public
key and M ∈ {0, 1}k is the message.

1. Firstly generate a keypair for one-time signature (vk, skσ)← Gen.
2. Compute r = H1(vk) and t = f(r, a).
3. Generate the matrix V = (v1, . . . ,vh) ∈ Zm×h2 , where each vi = (v1i, . . .,
vmi)

T , i ∈ [h], is chosen independently and uniformly from Zm2 at ran-
dom.

4. Compute PKmR05 = (Y′ + tY)/2t = (pk1, . . . ,pkw).



5. Compute C = (AV,C′) = (cij), where cij = (Avi, < vi,pkj > +bq bijp e) =

EmR05
pkj

(bij)

6. Choose X = (xij) = (x1, . . . ,xw) ∈ Zh×w2 at random and compute

c1 = (AVX,C′ ∗X) = (

h∑
i=1

xi1ci1, . . . ,

h∑
i=1

xiwciw) = (c1, . . . , cw)

= (EmR05
pk1

(

h∑
i=1

xi1bi1), . . . , EmR05
pkw

(

h∑
i=1

xiwbiw))

c2 = H2(X)
⊕

M.

6. Sign the tuple (c1, c2,X) as σ ← Signskσ (c1, c2,X)
7. The ciphertext c is output as c = (vk, c1, c2, σ).

• Decryption: D takes as input (sk, c) where sk =< S,S′ > is private key
and c = (vk, c1, c2, σ).
1. ComputeH1(vk) = a′, and SKmR04 = S+(1−f(a′, a))S′ = (sk1, . . . , skw)
2. Compute

B ∗X = (DmR05
sk1

(c1), . . . ,DmR05
skw (cw)) = (< x1,b1 >, . . . , < xw,bw >)

= (

h∑
j=1

xj1D
mR05
sk1

(cj1), . . . ,

h∑
j=1

xjwDmR05
skw (cjw)).

3. Compute X from B ∗X
4. Check that Ver(vk, c1, c2,X, σ) = 1; if not, it output ⊥
5. Output c2 ⊕H1(X).

4.2 Proof of Security

Given a ciphertext c = (vk, c1, c2, σ) = (vk, (AVX,C′∗X),H2(X)
⊕
M , Signskσ

( c1, c2, X)). If X′ which we get by c with mR05 is not equal to X, Ver(vk,
c1, c0, X′, σ) 6= 1. Thus, the above cryptosystem has not the error of decryp-
tion. Since B ∗X = (DmR05

sk1
(c1), . . . ,DmR05

skw
(cw)) and c = C ∗X = (c1, . . . , cw),

we know that the decryption error probability of DmR05
ski

(ci) , i ∈ [w], is at

most 2−Ω(1/mβ2(n)n2r) with Theorem 1. In other words, our construction possi-
bly refuse a correct ciphertext and the rejective probability of a correct ciphertext
is at most (1− (1− 2−Ω(1/mβ2(n)n2r))w).

In the section, we will mainly prove the following theorem

Theorem 3. If ( Gen, Sign, Ver) is a strong one-time signature scheme and the
hash functions H1 and H2 are the universal one-way hash function, if there exist
a PPT adversary Athat breaks the above cryptosystem in adaptive chosen cipher-
text attacks. then there exists a polynomial-time quantum algorithm for the worst
case of SVPÕ(n/β(n)) and SIVPÕ(n/β(n)) in the case of the above cryptosystem.



Proof. To prove the theorem, we will assume that there is an adversary, A, that
can break the cryptosystem and show how to use this adversary, A, to construct
a statistical test for the decisional LWE problem, i.e, distinguish (with non-
negligible probability) the distribution As,Ψβ for some uniform (secret) s← Zqn
from the uniform distribution U on Znq × Zq.

For the statistical test, we are given a distribution R that is either U or As,Ψβ .

At a high level, our construction works as follows. We build a simulator, S, that
simulates the joint distribution consisting of adversary’s view in its attack on the
cryptosystem, and the hidden bit b generated uniformly at random by the the
simulator, S (which is not a part of the adversary’s view). We will show that if the
input comes from As,Ψβ , the simulation is nearly perfect, and so the adversary

will have a non-negligible advantage in guessing the hidden bit b. We will also
show that if the input comes from U , then the adversary’s view is essentially
independent of b, and therefore the adversary’s advantage is negligible. This
immediately implies a statistical test distinguishing the distribution As,Ψβ for

some uniform (secret) s← Zqn from the uniform distribution on Znq × Zq.
We now give the details of the simulator, S. The input to the simulator is the

a distribution R that is either U or As,Ψβ
on Znq ×Zq. The simulator constructs

the cryptosystem parameters and runs the key generation algorithm, using the
given distribution R. More specifically,

1. Given a distribution R that is either U or As,Ψβ for some uniform (secret)

s ← Zqn, S generates public parameters {m, q, p, r, β H1, H2, h, f,B}, takes
a one-time signature scheme (Gen, Sign, Ver), takes m samples (ai, yi)

m
i=1

from R, and choose sj ← Zqn uniformly at random, compute yij =< ai, sj >
+eij , where eij is taken according to Ψβ (i ∈ [m] and j ∈ [w]). Let y =
(y1, . . . , ym)T , yj = (y1j , . . . , ymj)

T , ej = (e1j , . . . , emj)
T , and gj = (<

a1, sj >, . . . , < am, sj >)T , j ∈ [w]. Let Y = (y1 + e1 − y, . . . ,yw + ew − y)
and Y′ = (y + g1, . . . ,y + gw).

2. The public key is < Y,Y′ >, and that < s, s1, . . . , sw > is the corresponding
and possible private key.

3. Generate a keypair for one-time signature (vk∗, sk∗σ) ← Gen and Compute
a = H1(vk∗).

4. Let the set of public parameters param={m, q, p, r, β H1, H2, a, h, f,B, (Gen,
Sign, Ver)}.

Then, the simulator, S, interacts with adversary A as follows:

1. Send system parameters param and the public key < A,Y,Y′ > to A.
2. When A makes decryption oracle query D(c), where c = (vk, c1, c2, σ), the

simulator, S, proceeds as follows:
(1) Compute a′ = H1(vk), if a′ = a, the simulator, S, halts and outputs ⊥.
(2) Let SKmR05 = (s1+(1−f(a′, a))s, . . ., sw+(1−f(a′, a))s)=(sk1, . . . , skw)
(3) Then compute B ∗ X = (DmR05

sk1
(c1), . . . ,DmR05

skw
(cw)) = (< x1,b1 >

, . . . , < xw,bw >)
(4) Compute X from B ∗X



(5) Check that Ver(vk, c1, c2,X, σ) = 1; if not, it output ⊥
(6) Output c2 ⊕H1(X).

3. At some point, A outputs two equal-length messages M0 and M1 ∈ {0, 1}k
on which it wishes to be challenged. The simulator, S, responds as follows:
(1) Choose X∗ ∈ Zh×w2 at random and V∗ = (v∗1, . . . ,v

∗
h) ∈ Zm×h2 , where

each v∗i = (v∗1i, . . . , v
∗
mi)

T , i ∈ [h], and compute

c1∗ = (((AV∗)X∗),C′∗ ∗X∗), c2∗ = H2(X∗)
⊕

Mb.

where C′∗ = (c∗ij) = (< v∗i ,y + gj > +bq bijp e).
(2) Sign the tuple (c1∗, c2∗,X∗) as σ∗ ← Signsk∗σ

(c1∗, c2∗,X∗)

(3) Return ciphertext c∗ = (vk∗, c1∗, c2∗, σ∗) to A.
Hence, if the simulator’s input comes from As,Ψβ

on Zq, then c∗ is a valid

encryption of Mb under public key (Y′ + f(H1(vk∗), a) Y)/2f(H1(vk
∗),a) =

(y+g1, . . . ,y+gw). However, corresponding to the public key (y+g1, . . . ,y+
gw), the private key is < s1 + s, . . . , sw + s >. On the other hand, when
the simulator’s input comes from uniform distribution U on Zq, then c∗ is
independent of b in the adversary’s view, since sj , i ∈ [w], is chosen uniformly
at random from Zqn, and H1 is the universal one-way hash.

4. A may continue to make decryption oracle queries, and these are answered
as before, except that A makes decryption oracle query D(vk, c1, c2, σ) with
H1(vk) = H1(vk∗). Under the case of H1(vk) = H1(vk∗), the simulator, S,
halts and outputs ⊥.

5. Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′ then S outputs 1 meaning
that R is the distribution As,Ψβ

on Znq ×Zq, Otherwise, it outputs 0 meaning

that R is uniform distribution U on Znq × Zq.
That completes the description of the simulator. If the distribution R is the
uniform distribution U on Znq × Zq, we showed that b is independent of the
adversary’s view, then Pr[b = b′] = 1/2. When the distribution R is the dis-
tribution As,Ψβ

on Znq × Zq, we analyze the advantage that the simulator, S,

outputs 1. If S outputs 1 successfully, A does not issue a decryption query
for c = (vk, c1, c2, σ) with H1(vk) = a, and A’s view is identical to its view
in a real attack game under the above case. Let Success denote the event
that A attacks successfully our construction, NoFailure denote the event that
S is not failed. Therefore |Pr[b = b′] − 1/2| = Pr[Success ∧ NoFailure] =
Pr[Success | NoFailure]× Pr[NoFailure]. By the description of the simulator,
S, the case, which leads to the failure of simulator S, is that A issues a de-
cryption query for c = (vk, c1, c2, σ) with H1(vk) = a, however, the probability
the the above case happens is negligible, since H1 is a universal one-way hash
function. Assuming A breaks our construction with probability at least ε, then
|Pr[b = b′] − 1/2| > ε × Pr[NoFailure] > ε/2. Thus, the advantage that S dis-
tinguishs the distribution As,Ψβ from the uniform distribution U on Znq × Zq is

|Pr[S(1n, As,Ψβ ) = 1]−Pr[S(1n, U) = 1]| ≥ |1/2±ε/2−1/2| = ε/2. According to

Proposition 1, we can construct a polynomial-time quantum algorithm C, which
uses S, for the worst case of SVPÕ(n/β(n)) and SIVPÕ(n/β(n)) in the case of the

above cryptosystem.



5 Conclusion

We propose a simple construction of CCA- secure public-key encryption scheme
based on lattice. Our construction approach is similar to the one in [22] and
also uses a one-time signature scheme (Gen, Sign, Ver). We require that this
scheme be secure in the sense of strong unforgeability. Our construction regards
lattice-based cryptosystem mR05 of [21] as building block and makes use of its in-
distinguishable pseudohomomorphism property which is known to be achievable
without random oracles and which is the crux that we construct CCA-secure pub-
lic key encryption scheme. This makes our construction approach quite different
from existing ones. So far as we know, our construction is the first CCA-secure
cryptosystem which is directly constructed from lattice and whose security is di-
rectly based on the standard lattice problems SVPÕ(n/β(n)) and SIVPÕ(n/β(n))

which are hard in the worst-case for quantum algorithms.
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