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Abstract
We study the problem of authenticating an n-index dynamic table in the authenticated data structures

model, which is related to memory checking. We present the first lattice-based authenticated structure
for this problem, which is update-optimal. In specific, the update time is O(1), improving in this way
the “a priori” logarithmic limit (in n) of Merkle tree constructions. Moreover, the space is maintained
to be O(n), while other logarithmic bounds for other complexities (e.g., proof size) are still in place.
To achieve this result, we exploit the “linearity” of lattice-based hash functions and show how necessary
properties —for security—of lattice-based digests can be guaranteed under updates. This is the first con-
struction achieving constant update bounds without causing other time complexities to increase beyond
logarithmic. All previous solutions enjoying such an update complexity have (sub)linear proof or query
bounds. As an application of our lattice-based authenticated structure, we provide the first construction
of an authenticated Bloom filter, an update-intensive data structure that falls into our model.

Keywords: Authenticated data structures, lattice-based cryptography.

1 Introduction
Increasing interest in online data storage and processing has recently led to the establishment of the field of
cloud computing [23]. Files can be outsourced to service providers that offer huge capacity and fast network
connections (e.g., Amazon S3) as a means of mitigating maintenance and storage costs. In this way, clients
create virtual hard drives consisting of online storage units that are operated by remote and geographically
dispersed servers. In such settings, the ability to check the integrity of remotely stored data is an important
security property, or otherwise a faulty or malicious server can lose or tamper with the client’s data (e.g.,
deleting or modifying a file). In order to solve the problem of efficiently checking the integrity of outsourced
data, the model of authenticated data structures (see, e.g., [28, 41]) has been developed, which is closely
related to memory checking [7]. In an authenticated data structure, untrusted servers answer queries on a
data structure on behalf of a trusted source and provide a proof of validity of each answer to the user.

In specific, the authenticated data structures model involves three participating entities. The owner of
the data, called source, outsources its data to multiple untrusted sites, called servers. The clients, due to
scalability issues can only send queries to the servers and wish to verify answers received by the servers,
based only on the trust they have to the source. This trust from the source to the clients is usually conveyed
through a time-stamped signature on the data structure digest, a collision resistant succinct representation of
the data structure (e.g., the root hash of a Merkle tree). Moreover, updates are issued by the source and are
performed both by the source and by the server, since the data structure is replicated at both those entities
(see source update time and server update time in Table 1).

In the study of authenticated data structures, apart from achieving provable security under a well-
accepted assumption (e.g., strong RSA assumption), it is important to achieve small asymptotic bounds
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for relevant complexity measures, which are listed in the first column of Table 1 (also explained in more
detail at the end of Section 2). Therefore, there is typically a challenging trade-off between security and
efficiency. In this work we show that the cryptographic primitive used can have a significant impact on the
efficiency of the structure. Towards this goal, we employ lattices, a mathematical tool that was shown to
have many applications in cryptography after Ajtai’s seminal result [1] and we provide the first constant
complexity bounds for the source update time of a lattice-based authenticated structure.

The motivation for this work stems from the absence in the literature of an authenticated structure where
an efficient update (e.g., in O(1) or O(log log n) time) does not cause other complexity measures to “blow
up” to sublinear or linear1. For example, although updates are optimally performed in O(1) time in [4], the
size of the proof implied with such an authenticated structure isO(n), i.e., to prove an element that has been
accumulated to an optimally updatable digest, all the elements have to be communicated. Similarly, in [34],
while more optimal bounds due to the use of accumulators are achieved, there is a sublinear complexity
O(nε) for query or update time, a trade-off that was also observed in [15]. Therefore, if one wishes to
avoid (sub)linear complexities, one has to resort to the extensively used, both in theory and practice, Merkle
tree [29], or various alternations of it [7, 21]. However, all solutions based on Merkle trees and use “generic
collision resistance2” (see Table 1) as a hardness assumption, inherently enforce logarithmic complexities
on all the complexity measures. In this paper we combine the merits of a Merkle tree (a binary tree is
used in our construction) and the convenient “linearity” of lattice-based hash functions [19] towards con-
structing a constant-update authenticated structure, while keeping other complexity measures logarithmic.
Moreover, we base the security of our construction on a well-accepted cryptographic assumption (hardness
of the GAPSVPγ problem in lattices), which has its own significance given recent attacks on collision-
resistant functions such as MD-5 [40], a function widely used in practical deployments of authenticated data
structures.

In this work, we use a model similar to that of memory checking [7]. The structure we wish to authen-
ticate is a dynamic table of size n, accessed through indices 1, . . . , n. The table is dynamic and each index
can take one of C different values, e.g., for C = 2 we have a boolean table (not that the table can reach Cn

states). The value C is not dependent on n, i.e., C = O(1) (it can also be poly(k), where k is the security
parameter).

Related work. Lattice-based cryptography began with Ajtai’s first construction of an one-way hash func-
tion based on hard lattice problems [1]. This function was shown to be collision resistant by Goldreich [19]
and further generalizations of it were given by Micciancio [30]. Other hash functions based on lattices with
reduced public key size are due to Micciancio [27] and Peikert [35]. Recently, trapdoor functions based on
lattices were introduced in [18].

In the field of data integrity checking, several authenticated data structures based on cryptographic hash-
ing have been developed, beginning with the well-known Merkle trees [7, 29, 31] and modifications of
it [21]. Lower bounds for hashing-based methods in the authenticated data structures model are shown
in [42], and in the context of memory checking in [15, 32]. Authenticated data structures using other crypto-
graphic primitives, such as one-way accumulators [2, 5, 10] are presented in [20], achieving O(nε) bounds.
Bilinear pairings accumulators, the security of which is based on the strong Diffie-Hellman assumption, are
introduced in [33]. Authenticated hash tables proved secure under the strong RSA assumption or the strong
Diffie-Hellman assumption are presented in [34], where, however, the update or query time is sublinear.
Finally we note that constant complexities, but in the parallel model of computation, are achieved in [22].

We observe that all of the above constructions belong to one of the following two categories: either
1All asymptotic complexities presented in this paper (e.g., Table 1) refer to the size of the structure n, and not to the security

parameter k. The security parameter in this line of research is considered to be a constant in relation to n, i.e., k = O(1).
2We call generic collision resistant functions (Generic CR in Table 1) those functions that are believed to be collision resistant

in practice (e.g., SHA-256).
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Table 1: Asymptotic complexity of previous solutions and of our work for the problem of authenticating a
dynamic table of size n. Parameter 0 < ε < 1 is a constant that can be arbitrarily chosen. Also, “D. Log”
stands for “Discrete Logarithm”, “Generic CR” stands for “Generic Collision Resistance”, GAPSVPγ is the
gap version of the shortest vector problem in lattices (see Definition 1), where γ = 14πnk

√
k and where

k is the security parameter. In all constructions the space at the client is O(1). Note that the O(.) notation
refers to the size of the structure n and not to the security parameter k, which is taken to be a constant in
relation to n.

[7, 31] [4] [33] [10, 39] [20] [34] this work
source update O(log n) O(1) O(1) O(1) O(nε) O(1) O(1)
server update O(log n) O(1) O(n) O(n log n) O(nε) O(1) O(log n)
server query O(log n) O(n) O(1) O(1) O(nε) O(nε) O(log n)
verification O(log n) O(n) O(1) O(1) O(1) O(1) O(log n)
proof size O(log n) O(n) O(1) O(1) O(1) O(1) O(log n)

update info. O(1) O(1) O(1) O(1) O(nε) O(1) O(1)
source space O(n) O(n) O(n) O(n) O(n) O(n) O(n)
server space O(n) O(n) O(n) O(n) O(n) O(n) O(n)
assumption Generic CR D. Log Strong DH Strong RSA GAPSVPγ

(a) they have logarithmic source update complexity, with all the other complexity measures being also
logarithmic, e.g., [7, 21, 31]; or (b) they have sublogarithmic source update complexity (e.g., constant) but
at least one of the other complexities is (sub)linear, e.g., [4, 33, 34]. A summary and comparison of our work
with previous constructions in the literature can be found in Table 1. We note that, to our knowledge, this is
the first construction that enjoys a constant update time complexity, without an increase in other complexity
measures. We are able to achieve these bounds by exploiting the “linearity” of lattice-based hash functions,
which other primitives such as generic collision resistant functions (used in [7, 21, 31]) and exponentiation
functions (used in [4, 33, 34]) lack. We note however that achieving this asymptotic bound for the update
time comes at a practical cost: The constants involved are rather high, due to the use of lattices, making
our result interesting mainly from a theoretical point of view (for a detailed analysis of the constants see
Table 2).

Contributions. Our main contribution is the construction of an update-optimal authenticated data struc-
ture for an n-index table based on lattices. The update time of the authenticated structure is O(1) per update
and the space complexity is O(n). Our authenticated structure is update-optimal: The update complexity is
constant, i.e., not dependent on n, while logarithmic costs for other complexity measures are still in place.
This is the first lattice-based authenticated structure and the first one to achieve constant update bounds.
All previous solutions enjoying such an update complexity have (sub)linear proof or query bounds. As an
application of our lattice-based structure, we provide the first construction of an authenticated Bloom filter.

Solution at a glance. Our solution can be regarded as a generalization of Merkle tree constructions [7, 21,
31]. It exploits a special feature of lattice-based hash functions, i.e., their linearity, in the following sense:
While functions that are used in Merkle tree constructions (e.g., MD-5 or SHA-2) have been traditionally
taken as a black box, this work employs a function that retains the interface of this black box—i.e., the
digest of an internal node of the Merkle tree can be computed as the application of a collision-resistant hash
function on the digests of the children of the node— and which at the same time presents some interesting
properties: Namely, the digest of an internal node can also be expressed as the “sum” of well-defined
functions of data lying at the leaves of the subtree rooted on this specific node (see Figure 1). The systematic
application of this property—which lies at the crux of our construction—, without violating security has
many technical and algorithmic implications and eventually enables constant-time updates.
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2 Preliminaries
We start with some preliminary notions that are important in our main construction. In the following, we use
k to denote the security parameter (we do not use n as is usually done in lattice-related bibliography) and n
to denote the size of the table to be authenticated. We use upper case bold letters to denote matrices, e.g., B,
lower case bold letters to denote vectors, e.g., b and lower case italic letters to denote scalars. Finally, for a
vector x = [x1 x2 . . . xk]T , ‖x‖ denotes the Euclidean norm of x.

Lattices. Given the security parameter k, a full-rank k-dimensional lattice is the infinite-sized set of
all vectors produced as the integer combinations {

∑k
i=1 xibi : xi ∈ Z, 1 ≤ i ≤ k}, where B =

{b1,b2, . . . ,bk} is the basis of the lattice and b1,b2, . . . ,bk are linearly independent, all belonging to
Rk. We denote the lattice produced by B (i.e., the set of vectors) with L(B).

A well-known difficult problem in lattices is the approximation within a polynomial factor of the shortest
vector in a lattice (SVP problem). Namely, given a lattice L(B) produced by a basis B, approximate up to
a polynomial factor in k the shortest (in an Euclidean sense) vector in L(B), the length of which we denote
with λ(B). A similar problem in lattices is the “gap” version of the shortest vector problem (GAPSVPγ),
the difficulty of which is going to be useful in our context.

Definition 1 (Problem GAPSVPγ) Let k be the security parameter. An input to GAPSVPγ is a k-dimensional
lattice basis B and a number d. In YES inputs λ(B) ≤ d and in NO inputs λ(B) > γ × d, where γ ≥ 1.

Concerning the complexity of the above problem, we note that, for exponential values of γ, i.e, γ =
2O(k), one can use the LLL algorithm [26] and produce a solution in polynomial time. Therefore the dif-
ficult version of the problem arises for polynomial γ, for which no efficient algorithm is known to date,
even for factors slightly smaller than exponential [36], i.e., very big polynomials. Moreover, for polyno-
mial factors, there is no proof that this problem is NP-hard3, which makes the polynomial approximation
cryptographically interesting as well.

Reductions. After Ajtai’s seminal work [1] where an one-way function based on hard lattices problem is
presented, Goldreich et al. [19] presented a variation of the function, providing at the same time collision
resistance. Based on this collision resistant hash function, Micciancio [30] described a generalized version
of it, a modification of which we are using in our construction. The security of the hash function is based on
the difficulty of the small integer solution problem (SIS):

Definition 2 (Problem SISp,m,β) Let k be the security parameter. Given an integer p, a matrix F ∈ Zk×mp

and a real β, find a non-zero integer vector z ∈ Zm\{0} such that Fz = 0 mod p and ‖z‖ ≤ β.

Note that at least one solution to the above problem exists when β ≥
√
mpk/m and m > k [30].

Moreover, if p ≥ 4
√
mk1.5β, we will see that such a solution is difficult to find. We continue with the

definition of SIS′, where the solution vector is required to have at least one odd coordinate:

Definition 3 (Problem SIS′p,m,β) Let k be the security parameter. Given an integer p, a matrix F ∈ Zk×mp

and a real β, find an integer vector z ∈ Zm\2Zm such that Fz = 0 mod p and ‖z‖ ≤ β.

Micciancio [30] showed that if p is odd, there is a polynomial time reduction from SIS′p,m,β to SISp,m,β:

Lemma 1 (Reduction from SIS′p,m,β to SISp,m,β [30]) For any odd integer p ∈ 2Z + 1, and SIS′ instance
I = (p,F, β), if I has a solution as an instance of SIS, then it also has a solution as an instance of SIS′.
Moreover, there is a polynomial time algorithm that on input a solution to a SIS instance I , outputs a
solution to the same SIS′ instance I .

As proved by Micciancio [30], under a certain choice of parameters, GAPSVPγ can be reduced to SIS′

(this can be derived as a combination of Lemma 5.22 and Theorem 5.23 of [30]):

3In specific, as outlined in [36], the current state of knowledge indicates that for factors beyond
p

k/ log k, it is unlikely that
this problem is NP-hard and no efficient algorithm is known to date.
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Lemma 2 (Reduction from GAPSVPγ to SIS′p,m,β [30]) For any polynomially bounded β,m, p = kO(1),
with p ≥ 4

√
mk1.5β and γ = 14π

√
kβ, there is a probabilistic polynomial time reduction from solving

GAPSVPγ in the worst case to solving SIS′p,m,β on the average with non-negligible probability.

A direct application of Lemma 1 and Lemma 2 gives the following result.

Theorem 1 Let p = kO(1) be an odd positive integer. For any polynomially bounded β,m = kO(1),
with p ≥ 4

√
mk1.5β and γ = 14π

√
kβ, there is a probabilistic polynomial time reduction from solving

GAPSVPγ in the worst case to solving SISp,m,β on the average with non-negligible probability.

In other words, Theorem 1 states that if there is an algorithm that solves an average instance of SISp,m,β
(an average instance refers to the fact that the matrix M ∈ Zk×mp is chosen uniformly at random), for an
odd p, p ≥ 4

√
mk1.5β and γ = 14π

√
kβ, then, this algorithm can be used to produce a solution to any (the

worst) instance of GAPSVPγ .

Lattice-based hash function. Let m = 2k2 and β = δ
√
m where δ is poly(k) and p be a polynomially

bounded odd integer such that p ≥ 4
√
mk1.5β. It is easy to see that given k and δ there is always a

p = O(k3.5δ) to satisfy the above constraints. The collision resistant hash function that we are using is a
generalization of the function presented in [30], where δ = O(1) (in the security parameter) is used instead.
In our construction we use bigger values for δ. Namely the value that we use to bound the norm of the vector
can be up to poly(k). This was observed in the original definition of Ajtai’s one-way function [1], i.e., that
the input vector can contain larger values (but not so large), and was also noted in its extension that achieves
collision resistance [19]. This remark is very useful in our context and implies that, the larger value one
picks for β, the larger the modulus p should be so that security is guaranteed.

Our hash function construction, however, uses a different modulus q (not p) that has k bits instead (note
that that p has O(log k log δ) bits): Let q be a k-bit modulus that is divided by p, i.e., q = Θ(2k) and p|q.
Let also λ be a value satisfying

λ =
q

p
= Θ

(
2k

k3.5δ

)
. (1)

We sample a matrix F ∈ Zk×mp uniformly at random. After that we compute the matrix M = λF. Note that
the elements of matrix M have entries in Zq. Also note that λ defines an injective homomorphism from Zp
to Zq. We can now define the function hM : Zm → Zkq as hM(x) = Mx mod q, where ‖x‖ ≤ β and the
modulo operation is taken component-wise. The above function can be proved to be collision resistant (with
some constraint on the input’s coordinates) based on the difficulty of the problem GAPSVP14π

√
kβ:

Theorem 2 (Strong collision resistance) Let m = 2k2, β = δ
√
m and p ≥ 4

√
mk1.5β be an odd positive

integer. Let also F ∈ Zk×mp be a k × m matrix that is chosen uniformly at random and M = λF ∈
Zk×mq where q and λ are defined in Equation 1. If there is an algorithm that finds two vectors x, y ∈
{0, 1, . . . , δ}m and x 6= y such that Mx = My mod q, then there is an algorithm to solve any instance of
the GAPSVP14πδ

√
km problem.

Proof: Suppose there is an algorithm that finds x, y ∈ {0, 1, . . . , δ}m with x 6= y such that Mx = My
mod q ⇒M(x− y) = 0 mod q. This, by the definition of q and M can be written as

λF(x− y) = 0 mod λp⇒ ∃r ∈ Zk : λF(x− y) = rλp⇒ F(x− y) = rp⇒ F(x− y) = 0 mod p .

Therefore the non-zero vector z = x − y, which also has norm ‖z‖ ≤ β, since its coordinates are between
−δ and +δ, comprises a solution to the problem SISp,m,β (note that matrix F by construction is chosen
uniformly at random). By Theorem 1, this can be used to solve GAPSVPγ for γ = 14π

√
kβ. Setting

β = δ
√
m we get the desired result. 2

Therefore we have just presented a collision-resistant hash function the security of which is based on
the difficulty of the problem GAPSVPγ . Note that as long as δ = poly(k), γ is also poly(k) and therefore
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the hash function is secure since for polynomial γ (even for γ slightly smaller than exponential), no efficient
algorithm to solve GAPSVPγ is known to date [36].

We can now extend the function h to accept two inputs as follows: Denote with Tδ,+ the set of all m×1
(m = 2k2) vectors such that their last k2 entries are zero and the remaining entries are in {0, 1, . . . , δ} and
analogously with Tδ,− the set of all m× 1 vectors such that their first k2 entries are zero and the remaining
entries are in {0, 1, . . . , δ}. For a k×m matrix M sampled uniformly at random we can define the function
h : Tδ,+ × Tδ,− → Zkq

hM(x, y) = M(x + y) mod q , (2)

where x, y ∈ {0, 1, . . . , δ}m. Similarly as in Theorem 2, this function is strong collision resistant, i.e., if
someone can find (x1, y1) ∈ (Tδ,+ × Tδ,−) and (x2, y2) ∈ (Tδ,+ × Tδ,−) with (x1, y1) 6= (x2, y2) such that
M(x1 + y1) = M(x2 + y2) mod q then one can solve the problem GAPSVPγ for polynomial γ. To see
that, note that the vector x1 − x2 + y1 − y2 has coordinates in {0, 1, . . . , δ}, since, by the definition of Tδ,+
and Tδ,−, the entries of x1 − x2 and y1 − y2 do not overlap.

Complexity of hash function. Due to the way the k-bit modulus q of our construction is defined, the
complexity of our hash function does not depend on δ at all, but only on k. As we show below, the complexity
is polynomial in k, but still, in our framework a constant quantity (i.e., independent of n). First of all, our
hash function is described with a k × 2k2 matrix of k-bit entries. Therefore the space complexity is O(k4).
Given now an input x ∈ {0, 1, . . . , δ}2k2

, we can compute hM(x) in O(k4 log2 k) time. To see that, an
application of the hash function requires the computation of k internal products between vectors of 2k2

entries, and each multiplication in the internal product is a multiplication in Zq, which can be computed in
O(k log2 k) time using FFT [12]. This makes the total time equal to O(k4 log2 k).

Authenticated data structures. As we mentioned in the introduction, there are three entities participating
in the authenticated data structures computational model [28, 41]. A trusted source that owns, updates and
outsources his data structure Di, along with a signed, timestamped, collision resistant digest of it, di, to the
untrusted servers that respond to queries sent by the clients. The servers should be able to provide with
proofs to the queries and the clients should be able to verify these proofs based on their trust to the source,
by basically using the correct and signed digest di. Complexities relevant to the source are the source update
time (time taken for the source to compute the updated digest), source space and update information (size
of information sent to the servers per update, i.e., the signed digest). Relevant to the servers are server
update time (time taken by the server per update), server space, query time (time taken by the server to
compute a proof for a query) and proof size. Finally, relevant to the client are verification time and client
space with obvious meaning. The client verification is performed using an algorithm {accept, reject} ←
verify(q,Π(q), di), where q is a query on data structure Di and Π(q) is a proof provided by the server. Note
that the digest di, the digest of Di, is an input as well. All these complexity measures are listed in Table 1.

Let now {reject, accept} = check(q, α(q), Di) be a deterministic algorithm that, given a query q on data
structure Di and an answer α(q) checks to see if this is the correct answer to query q. We can now present
the formal security definition, which states that it should be difficult (except with negligible probability) for
a computationally bounded adversary to produce verifying proofs for incorrect answers, even after he brings
the data structure to a state of his liking. We present the security definition that applies to any authenticated
data structure and captures the points raised before:

Definition 4 (Security) Suppose k is the security parameter and Adv is a computationally bounded adver-
sary that is given the public key of the source pk. Our data structure D0 is in the initial state with digest d0

and is stored by the source. The adversary Adv is given access to D0 and d0. For i = 0, . . . , h = poly(k)
either the source or the adversary Adv issue an update updi in the data structure Di and therefore the
source computes Di+1 and di+1. The outputs Di+1 and di+1 are sent to the adversary Adv. At the end of
this game of polynomially-many rounds, the adversary Adv enters the attack stage where he chooses a query
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q and computes an answer α(q) and a verification proof Π(q). We say that the authenticated data structure
is secure if

Pr
[
{q,Π(q), α(q)} ← Adv(1k, pk); accept← verify(q,Π(q), dh);

reject = check(q, α(q), Dh); digest(Dh) = dh

]
≤ ν(k) ,

where ν(k) is negligible in the security parameter k.

We note here that the authenticated data structures model is different (achieving stronger guarantees)
than the verifiable computation model [17, 24]. Important properties such as public verifiability of the result
(i.e., no secret information is needed to verify an answer), updates of queried data, and unlimited queries—as
opposed to one-time queries or many queries admitting well-formed (verifying) answers— are all supported
in the authenticated data structures model.

3 Main construction
Suppose we are given a table that consists of n indices 1, 2, . . . , n. In each index i we can store a value
xi from the set S = {0, 1, . . . , C} where |S| = O(1). In this section we describe the application of the
lattice-based hash function on top of this structure of n indices.

Without loss of generality assume that n is a power of two so that we can build a complete binary tree
on top of the table. Let T be that tree and let x1, x2, . . . , xn be the values of the table. Assume each of
the elements in {0, 1, . . . , C} can be represented with a vector of size k that has entries in Zq. Namely
x1, x2, . . . , xn ∈ Zkq . We are going to use the hash function hM(x, y) defined in Equation 2 in a recursive
way to define the digest of the structure. We recall that k is the security parameter, M is a k × m matrix
with elements sampled uniformly at random from Zp and then multiplied with λ, m = 2k2, β = δ

√
m,

p ≥ 4
√
mk1.5β and q = λp. Finally we also set δ = n, i.e., we allow the inputs of our hash function to in

{0, 1, . . . , n}2k2
, where n is the size of our structure (table). We now prove some useful properties:

Definition 5 (Binary representation) Let x ∈ Zq. We define f(x) ∈ {0, 1}k to be the binary representa-
tion of x. Namely if f(x) = [f0 f1 . . . fk−1]T then it holds x =

∑k−1
i=0 fi2i mod q.

Definition 6 (Radix-2 representation) Let x ∈ Zq. We define g(x) ∈ Zkq to be some radix-2 representation
of x. Namely if g(x) = [f0 f1 . . . fk−1]T then it holds x =

∑k−1
i=0 fi2i mod q.

By “some” radix-2 representation we mean that the function f : Zq → Zkq is “one-to-many”. For
example, for q = 16, x = 7, possible values for f(x) can be [1 1 1 0]T (the usual binary representation),
[−1 0 2 0]T or [−5 − 2 0 4]T (and many more). We can now prove the following:

Lemma 3 For any x1, x2, . . . , xt ∈ Zq there exist a radix-2 representation g(.) such that

g(x1 + x2 + . . .+ xt mod q) = f(x1) + f(x2) + . . .+ f(xt) mod q .

Moreover it is g(x1 + x2 + . . .+ xt mod q) ∈ {0, . . . , t}k.

Note that Lemma 3 is useful in the following sense. It tells us that if one has two binary representations
of x1 and x2, namely f1 and f2, one can always find a radix-2 representation of x1 + x2, namely the
representation f1 + f2. Moreover this representation has small entries. Definitions 5 and 6 can now be
naturally extended for vectors:

Definition 7 Let x ∈ Zkq . We define f(x) ∈ {0, 1}k2
to be the binary representation of x. Namely every xi,

for i = 1, . . . , k, is mapped to the respective k entries f(xi) in the resulting vector f(x).

Definition 8 Let x ∈ Zkq . We define g(x) ∈ Zk2

q to be some radix-2 representation of x. Namely every xi,
for i = 1, . . . , k, is mapped to the respective k entries g(xi) in the resulting vector g(x).

We can analogously generalize Lemma 3 as follows:
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Corollary 1 For any x1, x2, . . . , xt ∈ Zkq there exist a radix-2 representation g(.) such that

g(x1 + x2 + . . .+ xt mod q) = f(x1) + f(x2) + . . .+ f(xt) mod q .

Moreover it is g(x1 + x2 + . . .+ xt mod q) ∈ {0, . . . , t}k2
.

Finally, let U = [Ik2 Ok2 ]T (U stands for “up”) and D = [Ok2 Ik2 ]T (D stands for “down”) be m × k2

matrices, where It denotes the square unit matrix of dimension t and Ot denotes the square zero matrix
of dimension t. It easy to see that for all x ∈ {0, 1, . . . , n}k2

it is Ux ∈ Tn,+ and Dx ∈ Tn,−. Namely
multiplying matrices U and D with a vector in {0, 1, . . . , n}k2

doubles the dimension of the vector by
shifting its entries accordingly and by filling the vacant entries with zeros. This operation will be used to
prepare the vectors in the appropriate input format for the hash function.

Digest definition. As we mentioned in the beginning of Section 3, we build a binary tree of ` levels on
top of our n-index table. For each node v of the tree, we are going to define a collision resistant digest d(v),
based on the lattice-based hash function we introduce in Section 2. The digest of the root will serve as the
digest of the whole structure.

For every leaf node vi of the tree, i = 1, . . . , n (note that at node vi we store the value xi) we define the
leaf digest d(vi) simply as d(vi) = xi mod q. For an internal node u, with left child left(u) and right child
right(u), we define the internal digest as

d(u) = M [Ug(d(left(u))) + Dg(d(right(u)))] mod q , (3)

where, by the constraint of the inputs in the definition of the hash function in Equation 2, it must be (we
recall that we have set δ = n)

g(d(left(u))), g(d(right(u))) ∈ {0, 1, . . . , δ}m/2 = {0, 1, . . . , n}m/2 . (4)

To formalize the properties of the inputs to the hash function, we give the following definition:
Definition 9 Let x ∈ Zkq . We say that g(x) ∈ Zk2

q is an admissible radix-2 representation of x if and only if
g(x) is a radix-2 representation of x that has entries in {0, 1, . . . , n}.
The flow of the computation in Equation 3 is as follows (see Figure 1): Suppose we are given an internal node
u, with children left(u) and right(u), digests d(left(u)), d(right(u)) ∈ Zkq . By applying g(.) we transform
them into vectors of k2 “small” entries, i.e., into two admissible radix-2 representations. By multiplying
with U and D we “prepare” them to be input to the hash function, as defined in Equation 2. We note here
that the radix-2 representation g(z) used in Equation 3 is some specific radix-2 representation of z that is
admissible. It is actually the sum of a series of binary representations and is computed according to the
following definition (let bin(x) denote the binary representation of x− 1 and bin(x)i the i-th bit of bin(x)):
Definition 10 Let n = 2`, x1, x2, . . . , xn ∈ Zkq be the values of the table that is to be authenticated and T
be the complete binary tree of ` levels that is built on top of the table. Let z be an internal node of T at
level 0 ≤ t < `, T (z) be the subtree rooted at z and range(z) be the range of successive indices contained
in the leaves of T (z). Then the g(.) representation of d(z) is computed as the sum of the following binary
representations

g(d(z)) =
∑

i∈range(z)

f(MAi(t+1)f(MAi(t+2)f(. . . f(MAi`f(xi)) . . .))) mod q ,

where Aij = U if bin(i)j = 0, Aij = D if bin(i)j = 1.
Although unintuitive, we are going to show later (Corollary 2) that g(d(z)), as defined in Definition 10, is

indeed an admissible radix-2 representation of d(z) (see Figure 1). Note for example that its entry constraints
(from Definition 9) are indeed satisfied, since |range(z)| ≤ n

2 . We can now define the lattice digest of a
table x1, x2, . . . , xn ∈ Zkq as follows:
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Definition 11 Let n = 2`, x1, x2, . . . , xn ∈ Zkq be the values of the table that is to be authenticated and T
be the complete binary tree of root r and height ` that is built on top of the table. Suppose we compute the
digests d(u) of the nodes u of the tree as above (Equation 3). We define the lattice digest of a node u to be
the value d(u) and the lattice digest of the table to be the value d(r).

We now present the main result of this section, namely the fact that the lattice digest can be expressed
as a sum of n terms, which will eventually allow for more efficient updates:

Theorem 3 Let n = 2`, x1, x2, . . . , xn ∈ Zkq be the values of the table that is to be authenticated and T be
the complete binary tree of ` levels that is built on top of the table. Let z be an internal node of T at level
0 ≤ t < `, T (z) be the subtree rooted at z and range(z) be the range of successive indices contained in the
leaves of T (z). Then the lattice digest d(z) of z can be expressed as

d(z) =
∑

i∈range(z)

MAi(t+1)f(MAi(t+2)f(. . . f(MAi`f(xi)) . . .)) mod q ,

where Aij = U if bin(i)j = 0, Aij = D if bin(i)j = 1.

Proof: (sketch) By induction on the levels of the tree: We use the definition of the digest (Equation 3)
recursively on all the nodes of the tree and start applying Corollary 1. Then we can express the digest as a
sum of terms that are functions of the specific values stored in the table (full proof in the Appendix). 2

Putting together Theorem 3 and Definition 10 we can prove the following:
Corollary 2 Let z be an internal node of tree T . The g(.) representation of d(z) defined in Definition 10 is
an admissible radix-2 representation of d(z).

To get some intuition about the expression of the lattice digest in Theorem 3, suppose we have a table
of eight values x1, x2, . . . , x8. Root r lies at level 0 and the leaves lie at level `, as in Figure 1. Let rij be
the j-th node at level i for i = 1, . . . , `, with the numbering going also from the left to the right. The lattice
digest of the table can be expressed as follows (see Figure 1), according to Theorem 3 and by setting the
internal node in Theorem 3 to be the root of the tree:

d(r) = MUf(MUf(MUf(x1))) + MUf(MUf(MDf(x2))) + MUf(MDf(MUf(x3))) +
MUf(MDf(MDf(x4))) + MDf(MUf(MUf(x5))) + MDf(MUf(MDf(x6))) +
MDf(MDf(MUf(x7))) + MDf(MDf(MDf(x8))) mod q .

Digest security. We now give the main security claim for the strong collision resistance of the lattice
digest, given the results from Merkle [29] and Naor and Nissim [31]. In fact, Naor and Nissim [31] and
Merkle [29] used exactly the same algorithmic construction (i.e., a binary tree) to provide a solution for an
authenticated dictionary, generalizing their result for every strong collision resistant hash function h:

Remark 1 (Naor and Nissim [31]) Possible choices for h include the more efficient MD4 [37], MD5 [38]
or SHA [43] (collisions for MD4 and for the compress function of MD5 were found by Dobbertin [13, 14])
and functions based on a computational hardness assumption such as the hardness of discrete log [3, 8, 11]
and subset-sum [19, 25] (these are much less efficient).

The importance of the above remark is that essentially, one can use any strong collision resistant hash
function h(x, y) for a Merkle tree construction, given the hash function h(x, y) is secure according to a
widely acceptable computational assumption. Namely, it should be difficult (i.e., it should happen with
negligible probability ν(k)) for a computationally bounded adversary to find (x, y) 6= (x′, y′) such that
h(x, y) = h(x′, y′). We therefore have the following result:

Theorem 4 (Strong collision resistance of the lattice digest) Let k be the security parameter, m = 2k2,
β = n

√
m and p ≥ 4

√
mk1.5β be an odd positive integer. Let also F ∈ Zk×mp be a k ×m matrix that is

chosen uniformly at random and M = λF ∈ Zk×mq where q and λ are defined in Equation 1. Let also n = 2`,
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Figure 1: Tree T built on top of a table with 8 values x1, x2, . . . , x8. After producing an admissible g(.)
representation of the child digests, we multiply with either U or D, then we add the two resulting digests and
we compute the hash function on them by multiplying with M. At the leaves of the tree we show the terms
that correspond to each index, as computed by Theorem 3. The relation between specific f(.) representations
of the additive terms computed by Theorem 3 and the g(.) representation of the internal nodes are indicated
with dashed lines. Note that the g(.) representations of the internal nodes are the sum of specific f(.)
representations of the leaves, for example, g(d(r12)) = f(MUf(MUf(x5))) + f(MUf(MDf(x6))) +
f(MDf(MUf(x7))) + f(MDf(MDf(x8))) mod q.

x1, x2, . . . , xn ∈ Zkq be the values of the table that is to be authenticated, having a lattice digest equal to
d. It is computationally infeasible, i.e., it happens with negligible probability ν(k), for a computationally
bounded adversary to find a different table y1, y2, . . . , yn ∈ Zkq of lattice digest equal to d, unless there is a
polynomial-time algorithm for any instance of the problem GAPSVPγ for γ = 14πn

√
km.

Proof: By Remark 1 we can use any strong collision resistant hash function to recursively define a digest
of a Merkle tree. Here we are using the function of Equation 2 which is strong collision resistant according
to Theorem 2, unless there is a polynomial-time algorithm for any instance of the problem GAPSVPγ for
γ = 14πn

√
km = poly(k), since n is a polynomial of the security parameter (computational model). No

polynomial algorithm is known to date that approximates GAPSVPγ for γ = poly(k) [36]. 2

Digest update. Suppose now that x1, x2, . . . , xn ∈ Zkq are the values of the table and that the lattice digests
have been computed. Let d be the initial lattice digest of the table. The objective of the update is to compute
the new lattice digest of the table, in constant time, whenever the content of some index changes. We show
how an update at index 1 ≤ w ≤ n can be performed, which applies for all indices. Note that for index w,
where the value xw is stored, the additive term from Theorem 3 is

term(xw) = MAw1f(MAw2f(. . . f(MAw`f(xw)) . . .)) mod q . (5)

10



Note that xw does not appear in any other additive term term(xj) for all j 6= w (see Theorem 3). Suppose
now we update index w and we replace xw with yw. The new digest, by Theorem 3, can be computed as

d′ = d− term(xw) + term(yw) mod q . (6)

where
term(yw) = MAw1f(MAw2f(. . . f(MAw`f(yw)) . . .))) mod q . (7)

If all the quantities term(.) for index w have been precomputed (one for each possible value that can be
assigned to index w—and there is a constant number of such values—), the update can be performed in
constant time, since it only involves two additions in Zq. We prove now that this update does not violate
any security requirement for the produced digest of any internal node and therefore that the final (updated)
digest is a secure (collision-resistant) representation of our table.
Theorem 5 Let n = 2`, x1, x2, . . . , xn ∈ Zkq be the values of the table that is to be authenticated and T
be the complete binary tree of ` levels that is built on top of the table. For i = `, . . . , 1, let {vi} be the
logarithmic-sized path from some index w to the root’s child v1, d(vi) be the respective lattice digests and
g(d(vi)) ∈ {0, 1, . . . , n}m/2 be the admissible radix-2 representations of them. An update is issued and the
value of index w changes to yw. If g(d′(vi)), i = `, . . . , 1 are the updated g(.) representations of the path
nodes, then for every i = `, . . . , 1, after the update, g(d′(vi)) is an admissible radix-2 representation.
Proof: By Definition 10 and by the way updates are performed, at every time the g(.) representations of
the internal nodes are the sum of at most n

2 binary representations. Therefore the entries of the updated
g(.) representations cannot be greater than n, and therefore all the g(.) representation of the internal nodes
remain admissible after any update. 2

Note that the above theorem is very important for proving the desired update complexity (see Theorem 6)
since it ensures, that even after updates, the security of the hash function (small inputs) is maintained.

4 Authenticated data structure
In this section we describe how exactly the lattice-based construction is used in a three-party authenticated
data structure model, which consists of three entities, the trusted source, the untrusted servers and the clients.
Let 1, . . . , n be the indices of the table and x1, x2, . . . , xn ∈ Zkq are the values of the table. Due to space
limitations, all the proofs in this section appear in the Appendix.

System setup. We fix the parameters that we are using in our construction as follows: We recall that k is
the security parameter, M is a k×mmatrix with elements sampled uniformly at random from Zq, m = 2k2,
β = δ

√
m, p ≥ 4

√
mk1.5β, q is a k-bit modulus and λ = q/p. We recall that elements of matrix M are

computed as a product of random elements of Zp and λ, so that to maintain an injective homomorphism
from Zp to Zq. It is easy to see that given k and δ there is always a p = O(k3.5δ) to satisfy the above
constraints. Let’s set p = dc1k3.5δe+ 1 or p = dc1k3.5δe such that p is an odd positive integer, as required
by Theorem 1, for some suitable constant c1. Finally we set δ = n, where n is the size of our structure,
which is a polynomially bounded value (we are in the computational model). This setup, by Theorem 2, will
give a construction that is secure based on the difficulty of GAPSVPγ for γ = 14πδ

√
km. In specific, since

m = 2k2 and δ = n we have that γ = O(nk
√
k) = O(kc) for some c = O(1).

Source. We recall that in each index in {1, . . . , n} the source can store one of the values of the set S =
{0, 1, . . . , C}. Each element of the set S is represented with a distinct element of Zkq and |S| = O(1). Note
that the possible states of the table is therefore |S|n, exponentially large. Suppose now that x1, x2, . . . , xn ∈
Zkq are the initial values of the table and that the lattice digests have been computed using Equation 3 and
Definition 10. The source, for each index w ∈ {1, . . . , n} does the following precomputations: For each
value ywj ∈ S − {xw} (j = 0, 1, . . . , C) it computes and stores term(ywj) as defined in Equation 5.
Note that the source does not have to store the tree and the digest of the internal nodes, since the source is
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only interested in correctly updating the lattice digest of the whole structure. Finally, after the source has
computed the new digest, he signs it (along with an appended timestamp) using his private key and sends
the new digest along with the timestamped signature to the servers. We now have the following result:

Theorem 6 The source update time is O(1) per update, the source performs O(1) group operations per
update and keeps O(n) space. Moreover, the update authentication information has size O(1) and consists
of O(1) group elements.

Servers. The servers, whenever an update at index w is issued by the source, have to update the lattice
digest in the same way that the source did. Therefore they could achieve this task again in O(1) time.
However, since they have to provide proofs to the clients for future queries, they have to update the digests
of the internal nodes (the nodes belonging to the logarithmic-sized path from index w to the root of the tree)
that are influenced by the update and as a result the servers update time cannot be O(1):

Theorem 7 The server update time is O(log n) per update, the server performs O(log n) operations in Zkq
per update and keeps O(n) space. Also, the server query time is O(log n), the proof for a query has size
O(log n) and consists of O(log n) group elements.

Clients. Suppose a client sends a query to the server for the value of index w. After the client verifies the
freshness of the lattice digest sent by the source (which takes time O(1)), it verifies the logarithmic sized
proof sent by the server by performing multiplications with matrix M, until the client computes the authentic
digest sent by the source. This verification is very similar (only the cryptographic primitive changes) with
the one performed when using a Merkle tree [29]. If there is a match with the signed digest, the client
accepts the answer, else he rejects. We now give the following result for the client:

Theorem 8 The client verification time is O(log n) per query, the client performs O(log n) operations in
Zkq per query and the client keeps O(1) local space.

Putting everything together we can state our main theorem for the three-party model:
Theorem 9 Let k be the security parameter. Then there exists a three-party authenticated data structure
for authenticating a dynamic table of n indices such that: (1) It is secure according to Definition 4 and
assuming the hardness of GAPSVPγ for γ = O(nk

√
k); (2) The source update time is O(1) and involves

O(1) group operations; (3) The server update time is O(log n) and involves O(log n) group operations;
(4) The source space is O(n); (5) The server space is O(n); (6) The client space is O(1); (7) The server
query time is O(log n); (8) The client verification time is O(log n) and involves O(log n) group operations;
(9) The proof has size O(log n) and consists of O(log n) group elements; (10) The update authentication
information has size O(1) and consists of O(1) group elements.
Proof: The security is proved from Theorem 4, i.e., we are using a provably secure collision resistant hash
function and we maintain its security under updates (by using Theorem 5). All the other points are due to
Theorems 6, 7 and 8. Also note that γ = O(nk

√
k), since by Theorem 4 we need γ = 14πδ

√
km and,

m = 2k2 and δ = n. 2

Table 2: Asymptotic complexity measures of our authenticated structure, including constants. We recall
that n is the size of the table to be authenticated and k is the security parameter. The local space needed by
the client is O(k4).

source server update server verification proof update source server
update query size info. space space
k2 k4 log2 k log n k3 log n k4 log2 k log n k3 log n k2 k4 + k2n k4 + k3n

Finally, in Table 2 we present the complexities of the authenticated data structure, including constants.
All constants in Table 2 have been derived in the proofs of Theorems 6, 7, 8 that are in the Appendix.
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5 Authenticated Bloom filters and discussion
In this section we show how we can use the lattice-based hash function to authenticate the Bloom filter func-
tionality, a space efficient dictionary data structure, originally introduced in [6]. The Bloom filter consists of
an array (table)A[0 . . . n−1] storing n bits. All the bits are initially set to 0. Suppose one needs to store a set
S of r elements. ThenK hash functions hi(.) with range {0, . . . , n−1} are used (these are not lattice-based
hash functions) and for each element s ∈ S we set the bits A[hi(s)] to 1, for i = 1, . . . ,K. In this way,
false positives can occur, i.e., even if an element does not belong to the S, it might be represented in A. The
probability of a false positive can be proved to be (1 − p)K , where p = e−Kr/n, which is minimized for
K = ln 2(n/r) [6].

The Bloom filter above supports only insertions though. A deletion (i.e., setting some bits to 0) can cause
the undesired deletion of many elements. To deal with this problem, counting Bloom filters were introduced
by Fan et al. [16]. In this solution, by keeping a counter for each index of A (instead of just 0 or 1), we
can tolerate deletions by incrementing the counter during insertions and decrementing the counter during
deletions. However, the problem of overflow exists. As observed in [9], the overflow (at least one counter
goes over some value C) occurs with probability n(e ln 2/C)C , for a certain set of r elements. Setting
C = O(1) (e.g., C = 16) is suitable for most of the applications [9].

By the above description, it is clear that we can use our lattice-based construction to authenticate the
Bloom filter functionality: Each index of our table can take values from the set {0, . . . , C}, where C =
O(1). Note that constant update complexity in this application is very important given that a Bloom filter
is an update-intensive data structure (i.e., an insertion or deletion of an element involves K operations).
Therefore we have the following result:

Theorem 10 Let k be the security parameter. Then there exists a three-party authenticated data structure
for authenticating a Bloom filter of size n, storing r elements and using K hash functions such that: (1) It
is secure according to Definition 4 and assuming the hardness of GAPSVPγ for γ = O(nk

√
k); (2) The

source update time isO(K) and involvesO(K) group operations; (3) The server update time isO(K log n)
and involves O(K log n) group operations; (4) The source space is O(n); (5) The server space is O(n);
(6) The client space is O(1); (7) The server query time is O(K log n); (8) The client verification time is
O(K log n) and involves O(K log n) group operations; (9) The proof has size O(K log n) and consists of
O(K log n) group elements; (10) The update authentication information has sizeO(1) and consists ofO(1)
group elements.

For future work we envision reducing the complexities of our construction (especially the constants)
and, more importantly, applying lattices to more authenticated data structures problems, e.g., deriving a
lattice-based cryptographic accumulator.
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6 Appendix
6.1 Proof of Lemma 3
Let xi = f(xi) be the binary representation of xi for i = 1, . . . , t. Then

t∑
i=1

xi =

[
t∑
i=1

xi0
t∑
i=1

xi1 . . .
t∑
i=1

xi(k−1)

]T
mod q .

The resulting vector is a radix-2 representation of(
t∑
i=1

xi0

)
× 20 +

(
t∑
i=1

xi1

)
× 21 + . . .+

(
t∑
i=1

xi(k−1)

)
× 2k−1 mod q ,

which can be written as

k−1∑
j=0

x1j × 2j +
k−1∑
j=0

x2j × 2j + . . .+
k−1∑
j=0

xtj × 2j = x1 + x2 + . . .+ xt mod q.

Therefore there exists a radix-2 representation g such that g(x1 +x2 + . . .+xt mod q) = f(x1)+f(x2)+
. . . + f(xt) mod q. Finally note that since g(.) is the sum of t binary representations, it cannot contain a
entry that is greater than t. 2

6.2 Proof of Theorem 3
We prove the claim by induction on the levels of the tree T . For any internal node u that lies at level `− 1,
there are only two nodes (that store for example values xi (left child and odd index i) and xj (right child and
even index j) and belong to range(u)) in the subtree rooted on u. It is

MUf(xi) + MDf(xj) = M [Ug(xi) + Dg(xj)] = d(u) .

This is due to Equation 3 and also due to the fact that g(.) coincides with f(.), therefore satisfying the
security requirement of Equation 4. Also Ai1 = U and Aj1 = D, since i is odd and j is even. Hence the
base case holds. Assume the theorem holds for any internal node v that lies at level 0 < t+1 ≤ `. Therefore

d(v) =
∑

i∈range(v)

MAi(t+2)f(MAi(t+3)f(. . . f(MAi`f(xi)) . . .)) mod q .

where Aij = U if bin(i)j = 0 and Aij = D if bin(i)j = 1. For any internal node z that lies at level t it
should be

d(z) =
∑

i∈range(z)

MAi(t+1)f(MAi(t+2)f(. . . f(MAi`f(xi)) . . .))

= MU

 ∑
i∈range(left(z))

f(MAi(t+2)f(. . . f(MAi`f(xi)) . . .))


+ MD

 ∑
i∈range(right(z))

f(MAi(t+2)f(. . . f(MAi`f(xi)) . . .))

 mod q .
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By Corollary 1 there exist g(.) representations of entries at most max{|range(left(z))|, |range(left(z))|} ≤
n
2 such that

d(z) = MUg

 ∑
i∈range(left(z))

MAi(t+2)f(. . . f(MAi`f(xi)) . . .)


+ MDg

 ∑
i∈range(right(z))

MAi(t+2)f(. . . f(MAi`f(xi)) . . .)

 mod q .

By the inductive step this can be written as

d(z) = M[Ug(d(left(z))) + Dg(d(right(z)))] mod q ,

where g(.) are radix-2 representations that indeed satisfy the security requirement of Equation 4. Therefore
this satisfies Definition 3 and d(z) is indeed the correct digest of the internal node z. This completes the
proof. 2

6.3 Proof of Theorem 6
Assume the setup of Section 4. Suppose the initial state of the table is x1, x2, . . . , xn ∈ Zkq and that the initial
digest of the table is d. As we showed before, for each index w ∈ {1, . . . , n} the source does the following
precomputations: For each value ywj ∈ S − {xw} (j = 0, 1, . . . , C) it computes and stores term(ywj) as
defined in Equation 5, where S = {0, . . . , C}. Each term term(ywj) is an element in Zkq and therefore the
source needs O(k2)×O(|S|) bits for each index w (plus the matrix M that needs O(k4) bits). Therefore the
space needed is O(n). The source issues an update that changes the value of index w from xw to yw. Then
the updated digest d′ is computed by Equation 6 by setting

d′ = d− term(xw) + term(yw) mod q ,

which requires two additions (i.e., O(1) operations) in Zkq , which take time O(k2) = O(1) (k is a constant).
Finally note, that, by Theorem 5, there is no internal node of the tree whose g(.) representation is not
admissible, as a result of the described update. Therefore during all the updates, secure digests are being
produced. As for the update authentication information, this is a signature of the lattice digest, which is
O(k2) = O(1) bits long and therefore the signature is also O(1) bits. 2

6.4 Proof of Theorem 7
Suppose the table is at state x1, x2, . . . , xn ∈ Zkq . The server stores the binary tree on top of the table, and
at each internal node v of the binary tree, apart from the lattice digest d(v) it also stores the admissible g(.)
representation of it, i.e., g(d(v)). The lattice digest d(v) requires O(k2) bits and the g(.) representation
requires O(k3) bits (we recall that each g(.) representation has k2 entries in Zq and therefore O(k3) bits are
needed). Since the tree has O(n) nodes in total (the server also stores matrix M), the server needs space
O(k4 + k3n) = O(n). Suppose now an update is issued, that changes the value of the index w from xw to
yw. Let now

term(xw) = MAw1fw1(MAw2fw2(. . . fw(`−1)(MAw`fw`(xw)) . . .)) mod q ,

and
term(yw) = MAw1f

′
w1(MAw2f

′
w2(. . . f ′w(`−1)(MAw`f

′
w`(xw)) . . .)) mod q ,
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where fwi(.) and f ′wi(.) are the respective binary representations, for i = 1, . . . , `. The server computes the
representations fwi(.) and f ′wi(.) by using the recursive relations:

fw` = f(xw) mod q

fwi = f(MAw1fw(i+1)) mod q ,

for i = `− 1, . . . , 1 and

f ′w` = f ′(xw) mod q

f ′wi = f(MAw1f
′
w(i+1)) mod q ,

for i = ` − 1, . . . , 1. This task is performed in O(k4 log2 k log n) = O(log n) time since it involves one
application of the hash function (requiring O(k4 log2 k) time) and one binary representation computation of
a k2-bit number (taking time O(k3) time since the arithmetic is in Zq), per level (for a total of log n levels).

Let now v`, v`−1, . . . , v1 be the path from the node of index w to the child v1 of the root of the tree.
The server now is going to use the computed f(.) representations from above to update d(vi) to d′(vi) and
g(d(vi)) to g(d′(vi)) (i.e., the new admissible g(.) representations) as follows. By Definition 10 we can set

g(d′(vi)) = g(d(vi))− fwi + f ′wi mod q ,

for i = `, . . . , 1. This operation takes time O(k3) (the arithmetic is in Zq) and is performed log n times,
therefore the total time isO(k3 log n). Finally after the new admissible g(.) representations are computed the
lattice digests can be updated by applying the hash function per node (an operation that is also parrarelizable)
which takes time O(k4 log2 k log n) = O(log n). Therefore the update time O(log n).

The query time involves the computation of the proof, basically computing the collection of the g(.)
admissible representations along the path of the queried index. The proof is going to be the following
logarithmic-sized tuple:

{g(d(v`)), g(d(sib(v`))), g(d(v`−1)), g(d(sib(v`−1))), . . . , g(d(v1)), g(d(sib(v1)))} ,

exactly as is done in the computation of a Merkle tree proof. This takes O(k3 log n) = O(log n) time to
compute, since we have to collect O(log n) vectors of O(k3) bits each, which makes the proof size also
O(k3 log n) = O(log n). 2

6.5 Proof of Theorem 8
Suppose the client queries for index w. Let v`, v`−1, . . . , v1 be the path from the node of index w to the
child v1 of the root of the tree. The server computes the following proof

{g(d(v`)), g(d(sib(v`))), g(d(v`−1)), g(d(sib(v`−1))), . . . , g(d(v1)), g(d(sib(v1)))}

and also sends the answer “the value of index w is rw”. The client checks to see if g(d(v`)) = f(rw) and
accordingly performs the following checks:

f(M[Ai1g(d(vi)) + Ai2g(d(sib(vi)))]) = g(d(vi−1)) ?

for i = `, . . . , 2 and where Ai1 and Ai2 are either U or D depending on the binary representation of
w. During these computations the client should also check to see that the coordinates of the g(.) repre-
sentations are in {0, 1, . . . , n}, i.e., that the g(.) representations used are admissible. Finally, if d is the
authentic digest received by the source the client performs the final verification, i.e., he checks to see if
M[A11g(d(v1)) + A12g(d(sib(v1)))] = d? If all the checks succeed, then the client accepts the answer,
otherwise the client rejects. Since the client has to do O(log n) checks, each one taking time O(k4 log2 k),
since matrix multiplications are involved, the verification time is O(k4 log2 k log n) = O(log n). Finally,
the client needs only to locally store the public key of the source and the matrix M, in order to run the
verification algorithm. Therefore the local space needed is O(k4 + k) = O(1). 2
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