
Signing on Elements in Bilinear Groups

for Modular Protocol Design

Masayuki Abe∗ Kristiyan Haralambiev∗∗§ Miyako Ohkubo∗

∗ Information Sharing Platform Laboratories, NTT Corporation, Japan
{abe.masayuki,ookubo.miyako}@lab.ntt.co.jp

∗∗ Computer Science Department, New York University, U.S.A.
kkh@cs.nyu.edu

Abstract

This paper addresses the construction of signature schemes whose verification keys, mes-
sages, and signatures are group elements and the verification predicate is a conjunction of
pairing product equations. We answer to the open problem of constructing constant-size signa-
tures by presenting an efficient scheme. The security is proven in the standard model based on
a novel non-interactive assumption called Simultaneous Flexible Pairing Assumption that can
be justified and has an optimal bound in the generic bilinear group model. We also present effi-
cient schemes with advanced properties including signing unbounded number of group elements,
allowing simulation in the common reference string model, signing messages from mixed groups
in the asymmetric bilinear group setting, and strong unforgeability. Among many applications,
we show two examples; an adaptively secure round optimal blind signature scheme and a group
signature scheme with efficient concurrent join. As a bi-product, several homomorphic trapdoor
commitment schemes and one-time signature schemes are presented, too. In combination with
the Groth-Sahai proof system, these schemes contribute to an efficient instantiation of modular
constructions of cryptographic protocols.

Keywords: Digital Signatures, Modular Protocol Design, Groth-Sahai Proofs, Blind Signa-
tures, Group Signatures

§Work done while visiting NTT Information Sharing Platform Laboratories.

i

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Common Setup with Bilinear Groups . 3

2.2 Digital Signatures . 3

2.3 Assumptions . 4

2.4 Other Basics . 5

3 Randomization Techniques 5

4 The Main Scheme: Constant-Size Signatures 6

4.1 Technical Overview . 6

4.2 Construction . 7

4.3 Security . 7

4.4 Notable Properties . 9

4.5 Variations . 10

5 Signing Unbounded-Size Messages 11

5.1 Overview . 11

5.2 Construction . 11

6 Simulatable Signatures 12

6.1 Overview . 12

6.2 Definitions . 13

6.3 Construction . 14

6.4 Security . 15

7 Signing Mixed-Group Messages in the SXDH Setting 18

7.1 Overview . 18

7.2 Construction . 18

7.3 Security . 19

8 Strongly Unforgeable Signatures 20

8.1 A Generic Construction . 20

8.2 More Efficient Non-Generic Construction . 21

9 Applications 22

9.1 Round-Optimal Blind Signatures . 22

9.2 Group Signatures with Concurrent Join . 24

10 Conclusion 26

A Proofs Related to Assumptions 30

A.1 Proof of Theorem 1 (DDHG1 ⇒ DBP) . 30

A.2 Proof of Theorem 3 (SFP⇒ SDP) . 30

A.3 Proof of Theorem 2 and Theorem 6 (Justification of SFP and k-SFP) 31

ii

B Homomorphic Trapdoor Commitment Schemes 34
B.1 Scheme TC1 . 34
B.2 Scheme TC2 . 36
B.3 Scheme TC3 . 37
B.4 Scheme TC4 . 37

C One-Time Signature Schemes 39
C.1 A One-Time Signature Scheme in Any Setting . 39
C.2 More Efficient Scheme in the Asymmetric Setting . 40

D Signing Unbounded-Size Messages – Alternative Construction 40

E Groth-Sahai Proof System 42

iii

1 Introduction

Background. Cryptographic protocols often allow modular constructions that combine general
building blocks such as commitments, encryption, signatures, and zero-knowledge proofs. While
modular design is useful to show feasibility of cryptographic tasks and also to illustrate a comprehen-
sible framework, efficient instantiations are sometimes left as a next challenge. Some cryptographic
tasks find ”cleverly crafted” efficient solutions dedicated for their own purposes. Nevertheless, mod-
ular construction makes it easier and can be a good alternative for comparison when the building
blocks have reasonable instantiations.

The combination of signatures and non-interactive zero-knowledge proofs of knowledge appears
frequently in privacy-protecting cryptographic protocols such as blind signatures [24, 2], group
signatures [4, 37, 6], anonymous credential systems [3], verifiably encrypted signatures [10, 45],
non-interactive group encryption [22] and so on. An efficient non-interactive proof system in the
standard model, however, has been absent until recently. In [35], Groth and Sahai presented the first
(and currently the only) efficient non-interactive proof system based on bilinear mapping. Their
proof system (GS proofs for short) exerts its full power as a proof of knowledge system when the
proof statement is described as a conjunction of relations described by pairing product equations
and when the witnesses consists of group elements 1.

Thus it is desired to have signature schemes with properties that (1) the verification keys,
messages, and signatures are elements of bilinear groups, and (2) the verification predicate is a
conjunction of pairing products. As a non-interactive proof of knowledge system is a very powerful
tool in cryptographic protocol design, such a ”GS-compatible” signature scheme apparently has
numerous applications.

Related Works. Research on signature schemes that were compatible with GS proofs was initi-
ated in [31]. While the design goal is clear and simple, it is not easy to achieve since the requirements
proscribe the use of hash functions which usually play a central role to make signature schemes un-
forgeable against adaptive chosen message attacks, particularly when the messages are not from a
specific space such as Zp. Furthermore, basing only on pairing products in the verification predicate
often yields linear dependencies that can be useful in adaptive attacks. There are efficient signa-
ture schemes, e.g., [8, 18, 3, 16], whose all but one components are group elements and verification
predicates are pairing product equations. These schemes are sufficient for specific purposes but
would not for others. In [31], Groth first showed the feasibility by presenting a construction based
on the decision linear assumption (DLIN) [9]. The size of a signature is O(k) where k is the number
of group elements in a message. While it is remarkable that the security can be shown based on
a simple standard assumption, the scheme is not practical due to a large constant factor. Based
on the q-Hidden LRSW assumption on the asymmetric bilinear groups, Green and Hohenberger
presented an efficient scheme that provides security against random message attacks [30]. Unfor-
tunately, extension to the chosen message security is not known. In [25], Fuchsbauer presented
a practical scheme based on (a variant of) the Double Hidden Strong Diffie-Hellman Assumption
(DHSDH) from [26]. While their scheme is pretty efficient, it has limited generality as a message
must be a single Diffie-Hellman pair. Recently, in [22], Cathalo, Libert and Yung showed a practical
scheme based on a combination of the Hidden Strong Diffie-Hellman Assumption (HSDH), Flexible
Diffie-Hellman Assumption, and the DLIN assumption. Their signature consists of 9k + 4 group
elements and it is left as an open problem to construct constant-size signatures.

1Disjunction can be handled in somewhat tricky way with extra computation and storage[15]. When the witness
is a scalar, it is possible to preserve the proof of knowledge property, but it requires bit-wise treatment and results
in proofs growing linearly in the security parameter.

1

Our Contribution. We present the first constant-size GS-compatible signature scheme for mes-
sages of general bilinear group elements. A signature consists only of 7 group elements regardless
of the size of the message. For a message (m1, . . . ,mk), a signature (z, r, s, t, u, v, w) fulfills the
verification equations

A = e(gz, z) e(gr, r) e(s, t)

k∏
i=1

e(gi,mi), and

B = e(hz, z) e(hu, u) e(v, w)

k∏
i=1

e(hi,mi)

determined by the verification key.
The unforgeability against adaptive chosen message attacks is proven in the standard model

based on a novel non-interactive assumption called the Simultaneous Flexible Pairing Assumption
(SFP). It is a strong, i.e., so-called ”q-type” assumption like the popular Strong Diffie-Hellman
Assumption (SDH) [8]. On the positive side, SFP is a rare strong assumption that achieves the
optimal quadratic security bound when analyzed in the generic group model [49] while SDH and
its variations suffer from a cubic bound. (We refer to [23] and [41] for a risk and discussion about
non-optimality in the generic model.) Another positive point is that SFP implies the Simultaneous
Double Pairing Assumption (SDP), a simple assumption implied by DLIN and that allows to build
useful commitment schemes that could be smoothly integrated into constructions based on SFP.
On the negative side, SFP is more complex than (H)SDH. Nevertheless, we enlighten the bright
side and hope that SFP be considered as a reasonable alternative for primitive designs when only
group elements are involved.

We then explore variations and a few applications. In Section 5, based on the observation that
the constant-size signatures allow unbounded ”signature chaining”, we present a signature scheme
that signs unbounded-size messages. Since the message space of the resulting scheme covers the ver-
ification key space, this extension gives an automorphic signature scheme [25], which has number of
interesting high-level applications coupled with GS proofs. In Section 6, we addresses simulatability
in the common reference string (CRS) model. With simulatable signatures, a simulator can create
signatures for arbitrary messages by using the trapdoor for the CRS. Such a property is useful
in building adaptively secure protocols where a simulator has to have correct signatures without
having help from a corrupted signer [2]. The resulting scheme gives an efficient instantiation to
(adaptively secure variant of) Fischlin’s round-optimal blind signature framework [24, 2] which we
present in Section 9.1. It has been an open problem since Crypto’06 and considered as difficult [40].
In Section 7, we present a scheme that works in the asymmetric setting where the symmetric ex-
ternal Diffie-Hellman (SXDH) assumption holds. This setting is of interest as the GS proof system
can provide better efficiency and some protocols may demand such a setting. We stress that it is
not trivial to sign a message consisting of elements from both G1 and G2 since there are no efficient
mappings between both groups, and straightforward independent signing allows a forgery. Finally,
in Section 8, we show a variation that provides strong unforgeability with constant-size signatures.

As a bi-product, we present several homomorphic trapdoor commitment schemes that are useful
in coupling with our signature schemes and the GS proofs. One of them is fully GS-compatible,
i.e., its commitment-key, message, commitment, and decommitment are in G1 and G2 and the
verification predicate consists of pairing product equations. It is the first such scheme that binds
multiple messages at once.

Organization. After introducing necessary notations and notions in Section 2, the main constant-
size signature scheme is presented in Section 4. It is followed by variations in Section 5, Section 6,

2

and Section 7. We show outline of high-level applications in Section 9. Some of the formal proofs
are shown in Appendix. The commitment schemes are presented in Appendix B.

2 Preliminaries

2.1 Common Setup with Bilinear Groups

Let Λ := (p,G1,G2,GT , e, g, g̃) be a description of groups G1, G2 and GT of prime order p equipped
with efficient bilinear map e : G1 × G2 → GT . It also includes a random generator g of G1 and
g̃ of G2. By G∗

1 we denote G1 \ {1G1}, and the same for G∗
2 and G∗

T . By Λsym we denote a
special case of Λ where G1 = G2 = G. Similarly, Λxdh denotes a case where the Decision Diffie-
Hellman (DDH) assumption holds for G1 (DDHG1 in short). This setting implies that there is no
efficiently computable mapping G1 → G2. And Λsxdh denotes a case where the DDH assumption
holds for both G1 and G2. This means that no efficient mapping is available for either direction.
The Λxdh and Λsxdh settings are usually referred to as the (Symmetric) External Diffie-Hellman
Assumption [48, 9, 28, 50]. For differences of these settings in practice, we refer to [27]. A scheme
(or an assumption or a proof) designed and proven in one setting may not necessarily go through
in a different setting. In particular, if the scheme is for Λsym and uses the homomorphism between
G1 and G2, it does not work, or not known to be secure when used with Λxdh or Λsxdh. We treat
Λ as a common parameter implicitly given to all algorithms of interest. However, we present our
constructions with care so that it is clear in which setting they work and are secure.

2.2 Digital Signatures

Definition 1 (Digital Signature Scheme). A digital signature scheme SIG is a set of algorithms
(SIG.Key, SIG.Sign, SIG.Vrf) such that:

SIG.Key(1λ): A key generation algorithm that takes security parameter 1λ and generates a verifi-
cation key vk and a signing key sk. Message spaceM is associated to vk.

SIG.Sign(sk,m): A signature generation algorithm that computes a signature σ for input message
m by using signing key sk.

SIG.Vrf(vk,m, σ): A verification algorithm that outputs 1 for acceptance or 0 for rejection according
to the input.

A signature scheme must provide correctness in the sense that if the key pair and a signature on a
message are generated legitimately, SIG.Vrf returns 1. In this paper, algorihtms works over common
bilinear setting Λ. The security parameter 1λ allows SIG.Key to implicitly select Λ of appropreate
size. SIG.Key may also take some other parameters if necessary.

We use standard notion of existential unforgeability against adaptive chosen message attacks [29]
(EUF-CMA in short) formally defined as follows.

Definition 2 (Existential Unforgeability against Adaptive Chosen Message Attacks). A
signature scheme is existentially unforgeable against adaptive chosen message attacks if, for any
polynomial-time adversary A, the following experiment returns 1 with negligible probability.

3

Experiment :

(vk, sk)← SIG.Key(1λ)

(m⋆, σ⋆)← AOsign(vk)

Return 1 if m⋆ ̸∈ Qm and 1← SIG.Vrf(vk⋆,m⋆, σ⋆). Return 0, otherwise.

Osign is the signing oracle that takes message m and returns σ ← SIG.Sign(sk,m). Qm is the
messages submitted to Osign. By requireing (m⋆, σ⋆) ̸∈ Qm,σ where Qm,σ is pairs of a message and
a signature observed by Osign, we have the notion of Strong EUF-CMA (denoted by sEUF-CMA
for short).

2.3 Assumptions

We start with introducing a simple assumption, called Double Pairing Assumption (DBP), that
holds in asymmetric bilinear setting, i.e., Λ ∈ {Λxdh,Λsxdh}.

Assumption 1 (Double Pairing Assumption (DBP)). Given Λ ∈ {Λxdh,Λsxdh} and (gz, gr)←
G∗

1
2, it is hard to find (z, r) ∈ G∗

2 ×G∗
2 such that

1 = e(gz, z) e(gr, r). (1)

It is obvious that DBP does not hold for Λ = Λsym since (z, r) = (g−1
r , gz) ̸= (1, 1) fulfills the

relation. On the other hand, we can show that DBP holds for Λ ∈ {Λxdh,Λsxdh} where DDH is
assumed hard in G1.

Theorem 1. If DDHG1 holds for Λ, then DBP holds for Λ.

The proof is by a straightforward reduction and given in Appendix A.1.
We note that the DBP assumption could be viewed as a simpler version of the Simultaneous

Triple Pairing Assumption (STP) [33]. The DBP assumption was introduced in an earlier version of
this work, and independently in [34] (personal communication) by Groth, who also showed explicitly
that DBP implies STP.

Next is an extension of DBP, called Simultaneous Double Pairing Assumption (SDP), which
is a weaker assumption and can be justified in any setting Λ ∈ {Λsym,Λxdh,Λsxdh} by a standard
argument in the generic bilinear group model.

Assumption 2 (Simultaneous Double Pairing Assumption (SDP)). Given Λ and (gz, hz,
gr, hu)← G∗

1
4, it is hard to find (z, r, u) ∈ G∗

2
3 such that

1 = e(gz, z) e(gr, r) and 1 = e(hz, z) e(hu, u). (2)

As shown in [22], SDP is implied by DLIN.

Next we introduce a novel assumption by extending SDP so that it should be hard to find
another answer given several answers. Observe that, given an answer to an instance of SDP, one
can easily yield more answers by exploiting the linearity of the relation to be satisfied. We eliminate
such a linearity by multiplying random pairings to both sides of the equations in (2). Intuition
is that, it should be hard to merge two random pairings e(s, t) e(s′, t′) into one equivalent pairing
e(s′′, t′′). We call such a random part flexible as random pairings can be easily randomized or
combined when their relation with respect to the same bases is known.

4

Assumption 3 (Simultaneous Flexible Pairing Assumption (SFP)). Let Λ be a common
parameter and let gz, hz, gr, and hu be random generators of G1. Let (a, ã), (b, b̃) be random pairs
in G1 ×G2. For j = 1, . . . , q, let Rj = (z, r, s, t, u, v, w) that satisfies

e(a, ã) = e(gz, z) e(gr, r) e(s, t) and e(b, b̃) = e(hz, z) e(hu, u) e(v, w). (3)

Given (Λ, gz, hz, gr, hu, a, ã, b, b̃) and uniformly chosenR1, . . . , Rq, it is hard to find (z⋆, r⋆, s⋆, t⋆, u⋆, v⋆, w⋆)
that fulfill relations in (3) under the restriction that z⋆ ̸= 1 and z⋆ ̸= z ∈ Rj for every Rj .

Theorem 2. For any generic algorithm A, the probability that A breaks SFP with ℓ group opera-
tions and pairings is bound by O(q2 + ℓ2)/p.

In Appendix A.3, a proof of Theorem 2 is given for the case of Λ = Λsym. The argument can
be translated to the asymmetric settings. The following holds with respect to SFP and SDP.

Theorem 3. SFP⇒ SDP.

A formal proof is in Appendix A.2. An intuition is that, given an answer (z, r, u) to SDP,
setting (s, t, v, w) = (a, ã, b, b̃) results in a correct answer, (z, r, u, s, t, v, w), to SFP.

2.4 Other Basics

A brief introduction of the Groth-Sahai proof system is in Appendix E. For further details, we refer
to the original paper [35].

3 Randomization Techniques

We introduce techniques that randomize elements in a pairing or a pairing product without changing
their value in GT . These useful techniques are used throughout the paper.

• Inner Randomization (x′, y′) ← Rand(x, y): A pairing A = e(x, y) ̸= 1 is randomized as
follows. Choose γ ← Z∗

p and let (x′, y′) = (xγ , y1/γ). It then holds that (x′, y′) distributes
uniformly over G1 × G2 under the condition of A = e(x′, y′). If A = 1, then first flip a coin
and pick e(1, 1) with probability 1/(2p − 1). If it is not selected, flip a coin and pick either
e(1, x) or e(x, 1) with probability 1/2. Then select x uniformly from the corresponding group
except for 1.

• Sequential Randomization {x′i, y′i}ki=1 ← RandSeq({xi, yi}ki=1): A pairing product A =
e(x1, y1) e(x2, y2) . . . e(xk, yk) is randomized into A = e(x′1, y

′
1) e(x

′
2, y

′
2) . . . e(x

′
k, y

′
k) as follows:

Let (γ1, . . . , γk−1)← Zk−1
p . We begin with randomizing the first pairing by using the second

pairing as follows. First verify that y1 ̸= 1 and x2 ̸= 1. If y1 = 1, replace the first pairing
e(x1, 1) with e(1, y1) with a new random y1(̸= 1). The case of x2 = 1 is handled in the same
manner. Then multiply 1 = e(x−γ12 , y1) e(x2, y

γ1
1) to both sides of the formula. We thus obtain

A = e(x1x
−γ1
2 , y1) e(x2, y

γ1
1 y2) e(x3, y3) . . . e(xk, yk). (4)

Next we randomize the second pairing by using the third one. As before, if yγ11 y2 = 1 or
x3 = 1, replace them to random values. Then multiply 1 = e(x−γ23 , yγ11 y2) e(x3, (y

γ1
1 y2)

γ2).
We thus have

A = e(x1x
−γ1
2 , y1) e(x2x

−γ2
3 , yγ11 y2) e(x3, (y

γ1
1 y2)

γ2y3) . . . e(xk, yk). (5)

5

This continues up to the (k−1)-st pairing. When done, the value of the i-th pairing distributes
uniformly in GT due to the uniform choice of γi. The k-th pairing follows the distribution
determined by A and preceding k− 1 pairings. To complete the randomization, every pairing
is processed by the inner randomization.

The sequential randomization can be used to extend a product of k pairings a product
of arbitrary ≥ k pairings by appending e(1, 1) before randomization. By {x′i, y′i}k

′
i=1 ←

Extend({xi, yi}ki=1) for k′(> k) we denote the sequential randomization with extension. Pa-
rameters k and k′ should be clear from the input and the output.

• One-side Randomization {x′i}ki=1 ← RandOneSide({gi, xi}ki=1): Let gi be an element in G∗
1

of symmetric setting Λsym. A pairing product A = e(g1, x1) e(g2, x2) . . . e(gk, xk) is randomized
into A = e(g1, x

′
1) e(g2, x

′
2) . . . e(gk, x

′
k) as follows. Let (γ1, . . . , γk−1) ← Zk−1

p . First multiply

1 = e(g1, g
γ1
2) e(g2, g

−γ1
1) to both sides of the formula. We thus obtain

A = e(g1, x1g
γ1
2) e(g2, x2g

−γ1
1) e(g3, x3) . . . e(gk, xk). (6)

Next multiply 1 = e(g2, g
γ2
3) e(g3, g

−γ2
2). We thus have

A = e(g1, x1g
γ1
2) e(g2, x2g

−γ1
1 gγ23) e(g3, x3g

−γ2
2) . . . e(gk, xk). (7)

This continues until γk−1 and we eventually have A = e(g1, x
′
1) . . . e(gk, x

′
k). Observe that

every x′i for i = 1, . . . , k−1 distributes uniformly in G due to the uniform multiplicative factor
gγii+1. In the k-th pairing, x′k follows the distribution determined by A and the preceding k−1

pairings. Thus (x′1, . . . , x
′
k) is uniform over Gk under constraint of being evaluated to A.

Note that the algorithms yield uniform elements and thus may include pairings that evaluate to
1GT

. If it is not preferable, it can be avoided by repeating that particular step once again excluding
the bad randomness.

4 The Main Scheme: Constant-Size Signatures

4.1 Technical Overview

Combining a trapdoor commitment scheme and a strong assumption is a well-known approach
for designing signature schemes. To bring this idea into a real construction, we need a trapdoor
commitment scheme and a useful (and acceptable) assumption which are compatible with each
other, something that is not easily obtained under strong design constraints. In our case, we can
build efficient multi-message trapdoor commitment schemes from SDP as shown in Appendix B.
Furthermore, SDP is implied by SFP as shown in Theorem 3, so that should allow a smooth
combination.

A remaining technical issue is how to deal with “exceptions” such as z⋆ ̸= 1 in SFP. The
signature scheme should not inherit it since when proving a knowledge of a signature, the condition
z ̸= 1 is not trivial to prove and affects the efficiency. We address this issue by involving another
set of elements (a0, ã0) and (b0, b̃0) in the verification predicate. In the proof of unforgeability, these
elements hold a secret random offset g̃ζ that will be multiplied to z in a forged signature so that
the answer to SFP, z⋆ = zg̃ζ , happens to be 1 only by chance. (The real proof is slightly more
involved.)

The randomization techniques from Section 3 also help the construction and the security proof
in such a way that elements in pairings are uniform in the real signatures and the ones created in
the security reduction.

6

4.2 Construction

Let m⃗ = (m1, . . . ,mk) ∈ Gk
2 be a message to be signed. Parameter k determines the length of a

message and shorter messages are implicitly padded with 1G2-s. Let Λ ∈ {Λsym,Λxdh,Λsxdh}. We
remind that Λ := (p,G1,G2,GT , e, g, g̃) is an implicit input to the algorithms described below.

• Key Generation. SIG.Key(1λ): Choose random generators gr, hu ← G∗
1. For i = 1, . . . , k,

choose γi, δi ← Z∗
p
2 and compute gi = gγir and hi = hδiu . Choose γz, δz ← Z∗

p
2 and compute

gz = gγzr and hz = hδzu . Also choose α, β ← Z∗
p
2 and compute {ai, ãi}1i=0 ← Extend(gr, g̃

α)

and {bi, b̃i}1i=0 ← Extend(hu, g̃
β). Set vk = (gz, hz, gr, hu, {gi, hi}ki=1, {ai, ãi, bi, b̃i}1i=0) and

sk = (vk, α, β, γz, δz, {γi, δi}ki=1). Output (vk, sk).

• Signature Issuing. SIG.Sign(sk, m⃗): Choose ζ, ρ, τ, φ, ω randomly from Z∗
p and set:

z = g̃ζ , r = g̃ρ−γzζ
∏k
i=1m

−γi
i , s = gτr , t = g̃(α−ρ)/τ ,

u = g̃φ−δzζ
∏k
i=1m

−δi
i , v = hωu , w = g̃(β−φ)/ω.

Output σ = (z, r, s, t, u, v, w) as a signature.

• Verification. SIG.Vrf(vk, m⃗, σ): Parse σ into (z, r, s, t, u, v, w). Output 1 if

A = e(gz, z) e(gr, r) e(s, t)

k∏
i=1

e(gi,mi), and (8)

B = e(hz, z) e(hu, u) e(v, w)

k∏
i=1

e(hi,mi) (9)

hold for A = e(a0, ã0) e(a1, ã1) and B = e(b0, b̃0) e(b1, b̃1). Output 0, otherwise.

4.3 Security

Theorem 4. SIG in Section 4.2 is correct. It is EUF-CMA if SFP holds for Λ.

Proof. correctness. Observe that

e(gz, z) e(gr, r) e(s, t)

k∏
i=1

e(gi,mi) = e
(
gγzr , g̃

ζ
)
e

(
gr, g̃

ρ−γzζ
k∏
i=1

m−γi
i

)
e (s, t)

k∏
i=1

e (gγir ,mi)

= e (gr, g̃
ρ) e

(
gτr , g̃

(α−ρ)/τ
)

= e (gr, g̃
α) = A

holds. Thus (8) is fulfilled. Relation (9) is verified in the same manner.

unforgeability. Let A be an adversary that has a non-negligible advantage of forging a signature
for the above scheme on a message m⃗†, m⃗† ̸∈ {m⃗j}qj=1, after adaptively querying the signing oracle
on messages m⃗j , for j = 1, . . . , q, and receiving signatures σj . We construct a reduction algorithm
which takes an input Λ, gz, hz, gr, hu, (a, ã), (b, b̃), and uniformly chosen tuples Rj for j = 1, . . . , q
as defined in Assumption 3, and simulates the view of A in the attack environment as follows:

7

• (Simulating SIG.Key) : Use (gz, hz, gr, hu) as given in the input. For i = 1, . . . , k set
gi = gχi

z g
γi
r and hi = hχi

z hδiu , where χi, γi, δi ← Z∗
p. Choose ζ, ρ, φ randomly from

Z∗
p. Then compute ((a0, ã0), (a1, ã1)) ← RandSeq((gζzg

ρ
r , g̃), (a, ã)) and ((b0, b̃0), (b1, b̃1)) ←

RandSeq((hζzh
φ
u , g̃), (b, b̃)). The verification key is vk = (gz, hz, gr, hu, {gi, hi}ki=1, {ai, ãi, bi, b̃i}1i=0).

• (Simulating SIG.Sign) : Given message m⃗, take a fresh tuple Rj = (zj , rj , sj , tj , uj , vj , wj)
from the input instance. Then compute

z = zj g̃
ζ

k∏
i=1

m−χi
i , r = rj g̃

ρ
k∏
i=1

m−γi
i , s = sj , t = tj ,

u = uj g̃
φ

k∏
i=1

m−δi
i , v = vj , w = wj .

The signature is σ = (z, r, s, t, u, v, w). It is easy to verify that the signature satisfies the
verification equations.

When A outputs (m⃗†, (z†, r†, s†, t†, u†, v†, w†)), compute

z⋆ = z† g̃−ζ
k∏
i=1

(
m†
i

)χi

, r⋆ = r† g̃−ρ
k∏
i=1

(
m†
i

)γi
, u⋆ = u† g̃−φ

k∏
i=1

(
m†
i

)δi
,

and set s⋆ = s†, t⋆ = t†, v⋆ = v†, and w⋆ = w†. The output is (z⋆, r⋆, s⋆, t⋆, u⋆, v⋆, w⋆). This
completes the description of the reduction algorithm.

The above signatures follow correct distribution. So A outputs a successful forgery with a
non-negligible probability. Then, for the output of the reduction algorithm, it holds that

e(gz, z
⋆) e(gr, r

⋆) e(s⋆, t⋆) = e

(
gz, z

† g̃−ζ
k∏
i=1

(
m†
i

)χi

)
e

(
gr, r

† g̃−ρ
k∏
i=1

(
m†
i

)γi)
e
(
s†, t†

)

= e
(
g−ζz g−ρr , g̃

)
e
(
gz, z

†
)
e
(
gr, r

†
)
e
(
s†, t†

) k∏
i=1

e
(
gi,m

†
i

)

= e
(
gζzg

ρ
r , g̃
)−1

1∏
i=0

e(ai, ãi) = e(a, ã).

One can also verify that e(gz, z
⋆) e(hu, u

⋆) e(v⋆, w⋆) = e(b, b̃) holds in the same way.
What remains is to show that z⋆ is not in {1, z1, . . . , zq}. It can be verified that parameters

ζ and χi for i = 1, . . . , k are independent from the view of adversary A. Namely, for any view of
the adversary and for any choice of ζ and χi for i = 1, . . . , k, there exist unique and consistent
parameters ρ, φ, γi, δi, for i = 1, . . . , k and zj , rj , uj for j = 1, . . . , q. First we show that the
probability z⋆ ∈ {z1, . . . , zq} is negligible. For every zj and signature σ = (z, r, s, t, u, v, w) on a
message m⃗ simulated by using zj , it holds that

z⋆

zj
=

z† g̃−ζ
∏k
i=1

(
m†
i

)χi

z g̃−ζ
∏k
i=1m

χi
i

=
z†

z

k∏
i=1

(
m†
i

mi

)χi

.

Since m⃗† ̸= m⃗, there exists i such that m†
i ̸= mi. Since χi is information theoretically hidden from

the view of the adversary, the probability that z⋆ = zj is negligible due to the term (m†
i/mi)

χi in

8

the above equation. To show that z⋆ =
(
z†
)
g̃−ζ

∏k
i=1

(
m†
i

)χi

= 1 with a negligible probability,

notice that ζ is also independent from the view of the adversary and the claim holds due to the
uniform choice of ζ. Therefore, the probability that z⋆ ̸∈ {1, z1, . . . , zq} is overwhelming.

4.4 Notable Properties

This section introduces two useful properties of SIG, which we call Partial Perfect Randomizability
and Signature Binding Property.

Partial Perfect Randomizability. Given a signature (z, r, s, t, u, v, w) one can randomize every
element except for z by applying the sequential randomization technique with small tweak as
follows. Define the function SigRand , (r′, s′, t′, u′, v′, w′)← SigRand(r, s, t, u, v, w), as:

• Randomize (r, s, t) into (r′, s′, t′) as follows.

– First, if t = 1, set s = 1 and choose t← G∗
2.

– Then, choose ϱ← Zp and compute

r′ = r tϱ, (s′, t′)← Rand(sg−ϱr , t) (10)

• Randomize (u, s, t) into (u′, s′, t′) analogously.

Lemma 1. The above (r′, s′, t′, u′, v′, w′) distributes uniformly over (G2 × G1 × G2)
2 under con-

straint that e(gr, r) e(s, t) = e(gr, r
′) e(s′, t′) and e(hu, u) e(v, w) = e(hu, u

′) e(v′, w′).

Proof. Uniformity of r′ ∈ G2 follows from t ̸= 1 and the uniformity of ϱ in (10). Under the described
constraints, for any choice of r′, their is a unique value e(s′, t′) = e(gr, r) e(s, t) e(gr, r

′)−1. Then,
uniformity of s′ and t′ holds from the property of Rand. The same is true for (u′, v′, w′).

The claim implies that (s′, t′, v′, w′) is information theoretically independent of the remaining
elements (z, r′, u′) in a signature, the message, and the verification key. (In general, the same is
true for publishing any two elements from (r′, s′, t′) and (u′, v′, w′) respectively.) This property is
useful in reducing the task of combined proofs. See Section 9.1 for typical use of this property.

Signature Binding Property. Roughly, it claims that no one can obtain two signatures which
have the same s and v. In the following formal statement, the adversary is allowed to submit both
m⃗ and m⃗′ to the signing oracle. Hence the property is not implied by EUF-CMA in general.

Lemma 2. Under adaptive chosen message attacks, no adversary can output (m⃗, σ) and (m⃗′, σ′)
such that 1 = SIG.Vrf(vk, m⃗, σ) = SIG.Vrf(vk, m⃗′, σ′), m⃗ ̸= m⃗′, and (s, v) are shared in σ and σ′.

Recall that s and v are uniformly chosen in the signature generation algorithm. Hence they
are independent of the remaining part of the signature and the message. Accordingly, in a way,
publishing (s, v) together with the verification key works as a commitment of the signature and the
message. This property is used in Section 5, and would find more applications.

Proof. Suppose that there is a successful adversary, A that outputs the signatures as in the lemma.
We then construct an adversary B that breaks EUF-CMA of SIG.

Given vk and oracle access to Osign, B invokes A with vk. Every signing query from A is
directly passed to Osign and the signatures are returned directly to A. Hence B’s simulation is

9

perfect. Eventually, A terminates and outputs σ = (z, r, s, t, u, v, w), m⃗ = (m1, . . . ,mk), σ
′ =

(z′, r′, s, t′, u′, v, w′), and m⃗′ = (m′
1, . . . ,m

′
k).

B then chooses ϱ1, ϱ2 ← Z∗
p and computes linear combinations

z⋆ = (z′ϱ1zϱ2)1/(ϱ1+ϱ2), r⋆ = (r′ϱ1rϱ2)1/(ϱ1+ϱ2), u⋆ = (u′ϱ1uϱ2)1/(ϱ1+ϱ2),

t⋆ = (t′ϱ1tϱ2)1/(ϱ1+ϱ2), w⋆ = (w′ϱ1wϱ2)1/(ϱ1+ϱ2), m⋆
i = (m′

i
ϱ1mi

ϱ2)1/(ϱ1+ϱ2).

Then outputs σ⋆ = (z⋆, r⋆, s, t⋆, u⋆, v, w⋆) and m⃗⋆ = (m⋆
1, . . . ,m

⋆
k). This completes the specification

of B.
We verify the correctness of B as follows. Since these signatures are valid, they satisfy

A = e(gz, z
′) e(gr, r

′) e(s, t′)

k∏
i=1

e(gi,m
′
i) = e(gz, z) e(gr, r) e(s, t)

k∏
i=1

e(gi,mi), and (11)

B = e(hz, z
′) e(hu, u

′) e(v, w′)
k∏
i=1

e(hi,m
′
i) = e(hz, z) e(hu, u) e(v, w)

k∏
i=1

e(hi,mi). (12)

From (11) and (12), the output of B satisfies

A = e(gz, z
⋆) e(gr, r

⋆) e(s, t⋆)
k∏
i=1

e(gi,m
⋆
i), and

B = e(hz, z
⋆) e(hu, u

⋆) e(v, w⋆)

k∏
i=1

e(hi,m
⋆
i).

Accordingly, σ⋆ = (z⋆, r⋆, s, t⋆, u⋆, v, w⋆) is a correct signature for message vector m⃗⋆ = (m⋆
1, . . . ,m

⋆
k).

Since m⃗′ ̸= m⃗ there exists i⋆ such that m′
i⋆ ̸= 1 or mi⋆ ̸= 1 (if no such index exists, m⃗′ = m⃗ = 1⃗).

Due to the randomness of ϱ1 or ϱ2, message m⋆
i⋆ = (m′

i⋆
ϱ1mi⋆

ϱ2)1/(ϱ1+ϱ2) distributes uniformly over
G2. Accordingly, m⃗⋆ is different from any message vector observed by Osign with overwhelming
probability. Thus, (σ⋆, m⃗⋆) is a valid forgery to SIG.

4.5 Variations

• We can replace ai, ãi, bi, b̃i with A = e(gr, g̃
α) and B = e(hu, g̃

β) in a verification-key, and
use the A and B directly in the verification equations (8) and (9). The reason we include a
representation of A (and B) in G1 and G2 is to address the needs to put the verification key
into the base groups. The GS-proof system provides zero-knowledge property for statements
that do not include elements from GT except for 1GT

. When WI is of only concern, one can
include A and B in vk and use them directly in the verification. We use this modification in
Section 9.1. The same is possible for other schemes in this paper.

• Let ⟨n⟩ denote a deterministic encoding of non-negative integer n (< p) to an element of
G∗

2. By limiting the maximum message length to be k − 1 and putting ⟨|m⃗|⟩ at the tail of
input message m⃗, shorter messages can be treated. Since the encoding is deterministic and
black-box that is independent of the representation of the elements in m⃗, it does not impact
the compatibility.

10

• As we observed in the very last stage of the security proof, (a0, ã0) and (b0, b̃0) in a verification
key is needed to handle the case where z† = 1 and m⃗† = (1, . . . , 1) happen at the same time.
If m⃗ is encoded with length as m⃗† = (1, . . . , 1, ⟨n⟩), that exception case is not possible. Thus
(a0, ã0) and (b0, b̃0) can be removed from the scheme.

• In the asymmetric settings, one can swap G1 and G2 in the description of SIG to get the ’dual’
scheme of SIG whose message space is Gk

1.

• Dropping the flexible part e(s, t) and e(v, w) from the construction results in a strongly
unforgeable one-time signature scheme based on the SDP assumption. It also saves e(a0, ã0)
and e(b0, b̃0). See Appendix C for details.

5 Signing Unbounded-Size Messages

5.1 Overview

Taking the advantage of having a constant-size signature scheme from Section 4, we introduce a
simple ”signature chain” approach to construct a signature scheme whose message size is not a-
priori limited. That is, first sign m1 to obtain σ1, and next sign σ1||m2 to obtain σ2, then sign
σ2||m3 and so on. (Note that this rough description lacks some important details. In particular,
signing only on m1 at the beginning results in an insecure scheme. See also Appendix D where we
discuss an alternative approach with efficiency comparison.)

A technical highlight in the construction is that, with our constant-size signature scheme, it
is not necessary to include an entire signature into each step of chaining but including only two
elements (s, v) constitutes a secure chain. This is possible due to the signature binding property of
SIG as shown in Section 4.4.

5.2 Construction

Let SIG be the constant-size signature scheme from Section 4, whose message space is Gk
2 for

k ≥ 3. We construct an unbounded-message signature scheme, USIG1, as follows. Let Λ = Λsym be
implicitly given to the functions described below. Recall that ⟨n⟩ is an encoding of n to an element
of G∗

2.

• USIG1.Key(1λ): Generate random (s−1, v−1) ∈ G2
1. Invoke (vk′, sk) ← SIG.Key(1λ). Output

vk = (vk′, s−1, v−1) and sk.

• USIG1.Sign(sk, m⃗): Parse m⃗ into (m1, . . . ,mn). Let ℓ = ⌈n+1
k−2 ⌉. Let m0 = ⟨n⟩ and mi = 1

for i = n + 1, . . . , ℓ(k − 2). For i = 0, . . . , ℓ − 1, compute σi = (zi, ri, si, ti, ui, vi, wi) ←
SIG.Sign(sk, m⃗i) where m⃗i = (si−1, vi−1,mi(k−2), . . . ,m(i+1)(k−2)−1). Output σ = (σ0, . . . , σℓ−1).

• USIG1.Vrf(vk, m⃗, σ): Parse σ into (σ0, . . . , σℓ−1) and m⃗ into (m1, . . . ,mn). Let m0 = ⟨n⟩ and
mi = 1 for i = n + 1, . . . , ℓ(k − 2). For i = 0, . . . , ℓ − 1, compute bi = SIG.Vrf(vk′, m⃗i, σi)
where m⃗i is formed in the same way as in SIG.Sign. Output 1 if bi = 1 for all i = 0, . . . , ℓ− 1.
Output 0, otherwise.

The resulting signature is in the size of 7 · ⌈n+1
k−2 ⌉.

Remarks. Filling 1G to the sloppy slots of the message space is for notational consistency. It does
not increase either computation or storage. Setting Λ = Λsym is needed as (ri, ui) is in G2

1 while
the message space is Gk

2. It can be modified for the case of Λ = Λsxdh using the signature scheme

11

described in Section 7 (but not for the case of Λ = Λxdh). If m⃗ is given as an on-line stream
and the length is not known in advance, one can use the trapdoor commitment scheme TC2 from
Appendix B so that m0 is set to a random commitment and later opened to n when n is fixed. The
opening information is included as a part of a signature. Since the opening information is a group
element and the commitment verification predicate is a pairing product equation, the resulting
verification predicate for USIG1 remains as a conjunction of pairing product equations.

Theorem 5. If SIG is EUF-CMA, so is USIG1.

Proof. Suppose that there is a successful adversary, say A, that launches chosen message attacks
and outputs a valid forgery, ((m†

1, . . . ,m
†
n), (σ

†
0, . . . , σ

†
ℓ−1)). Let m⃗

†
i be the message vector associated

to σ†i . We then have two cases.

Type-I. There is m⃗†
i that has never been signed by the signing oracle.

Type-II. Every m⃗†
i has been signed by the signing oracle (in separate queries).

Type-I forgery trivially breaks the unforgeability of SIG. For Type-II forgery, we show a re-
duction to the unforgeability of SIG as follows. Given verification key vk′ of SIG and access to
the signing oracle of SIG, we construct a simulator that uses adversary A and simulates USIG1 as
follows. Let Osign be the signing oracle of SIG with respect to vk′.

• (Simulating USIG1.Key): Generate a random message vector m⃗−1 of size k and send it to
Osign. Receive signature (z−1, r−1, s−1, t−1, u−1, v−1, w−1) and output vk = (vk′, s−1, v−1).

• (Simulating USIG1.Sign): On input m⃗, follow the legitimate signing algorithm by asking Osign

to compute SIG.Sign. Then output the resulting signature.

Observe that s−1 and v−1 generated in the simulated USIG1.Key are uniform and independent of
m⃗−1. Simulation for USIG1.Sign is clearly perfect as it follows the legitimate procedure.

Suppose that adversary A outputs a valid forgery for USIG1. Then there exists a signing query
(to the signing oracle of USIG1) in which m⃗†

ℓ−1 is observed. Let ((m1, . . . ,mn′), (σ0, . . . , σℓ′−1))
be the message and the signature with respect to the query and let m⃗i denote a message vector
associated to σi. Let i⋆ be the index where m⃗†

ℓ−1 = m⃗i⋆ happens. If ℓ − 1 = 0, then i⋆ = 0 is
not the case because the message in the valid forgery must be fresh. In the case of ℓ − 1 ̸= 0 and
i⋆ = 0, it happens that m⃗†

ℓ−2 ̸= m⃗−1 with overwhelming probability since m⃗−1 is chosen randomly
and information theoretically independent from the view of the adversary. The same is true for the
case of ℓ− 1 = 0 and i⋆ > 0. In the case of ℓ− 1 ̸= 0 and i⋆ > 0, since the messages are prefix-free,
there exists j⋆ such that m⃗†

ℓ−1−j⋆ ̸= m⃗i⋆−j⋆ happens for the first time when j⋆ is increased from
0 to min(ℓ − 1, i⋆) + 1. In any of the cases (j⋆ is set to 1 for the case of i⋆ = 0 or ℓ − 1 = 0),

signature σ†ℓ−1−j⋆ shares s and v with σi⋆−j⋆ as they are included in m⃗i⋆−j⋆+1(= m⃗†
ℓ−1−j⋆+1). This

contradicts to the signature binding property of SIG as claimed in Lemma 2.

6 Simulatable Signatures

6.1 Overview

A simulatable signature scheme is a signature scheme in the CRS model that allows to create valid
signatures without the signing-key but with a trapdoor associated to the common reference string.

12

The notion is introduced in [2] but in an informal way dedicated for their purposes. We elaborate
the notion and present a formal treatment with reasonable construction in this section.

A simulatable signature is a useful tool in combination with a witness indistinguishable (WI)
proof system. Unlike zero-knowledge (ZK) proofs, WI proof system does not accompany a simulator.
So when a signature is a part of the witness and the signer is corrupt and useless, simulatable
signature can provide a correct witness to the entity having the trapdoor. This situation happens
in reality, for instance, when we attempt to instantiate Fischlin’s round-optimal blind signature
scheme [24] (modified to use WI as suggested in [36, 2]).

It is known that a simulatable signature scheme can be unconditionally constructed from any
regular signature scheme by modifying the verification predicate in such a way that a signature is
accepted if it passes regular verification with respect to the signer’s verification key or the verifica-
tion key included in the CRS. This generic construction, however, inherently involves disjunction
in the resulting verification predicate.

Our construction shares the idea of two-keys. But we use a trapdoor commitment scheme and
a signature scheme combined. We assign a commitment-key to the CRS and use a signing-key
for real signature generation. Then a reference signature on a default message is included into
a verification key. When simulation is needed, we use the trapdoor for the commitment scheme
and equivocate the reference signature to be valid with a given message. Since our main scheme
in Section 4 already integrate a trapdoor commitment scheme in its construction, it would seem
possible to move the commitment part of the verification key into the CRS. And we mostly follow
this way. A formal proof however reveals that we need to have k flexible pairings to sign messages
of size k, k ≥ 1, without needing the trapdoor for the commitment part. This results in relying on
k-SFP rather than SFP when dealing with messages of size k ≥ 2.

6.2 Definitions

Definition 3 (Simulatable Signature Scheme). A simulatable signature scheme SSIG consists
of algorithms SSIG.{Crs,Key,Chk,Sign,Vrf,Sim} where SSIG.{Key,Sign,Vrf} constitute a regular
signature scheme (except that they take the CRS), and the extra algorithms works as follows.

SSIG.Crs(1λ): A CRS generation algorithm that, on input security parameter λ, outputs a common
reference string Σ and a trapdoor τ .

SSIG.Chk(Σ, vk): A verification key checking algorithm that, on input a verification key, returns 1
or 0.

SSIG.Sim(Σ, vk,m, τ): A signature simulation algorithm that computes a signature σ for message
m by using trapdoor τ .

ByMvk, we denote the message space associated to vk. By K, we denote the set of (vk, sk) that can
be generated by SSIG.Key(Σ). Also by Ssk,m we denote the set of signatures that can be generated
by SSIG.Sign(Σ, sk,m).

Completeness is defined in a standard way; with respect to correctly generated CRS, verification
keys, and signatures, the verification function outputs 1 with probability 1.

Signature simulatability is defined in such a way that whenever adversary selects an appropriate
message and verification key, then, by using the trapdoor of the CRS, it is possible to generate
a signature that could have been generated by the proper signing operation. Formal definition
follows.

13

Definition 4 (Signature-Simulatability). A signature scheme in the CRS model is simulatable
if, for every CRS Σ generated by (Σ, τ)← SSIG.Crs(1λ), for any (m, vk), if 1 = SSIG.Chk(Σ, vk) ∧
m ∈Mvk, then there exists sk such that (vk, sk) ∈ K, and 1 = SSIG.Vrf(Σ, vk,m, σ) holds for any
σ ← SSIG.Sim(Σ, vk,m, τ).

A relaxation would allow a negligible error in SSIG.Vrf for a message and a verification key chosen
by an adversary. Note that the signature simulatability does not require simulated signatures be
indistinguishable from the real ones. It is considered as a role of witness indistinguishable proof
system coupled with the signature scheme.

Unforgeability is defined with respect to adaptive chosen message attacks. In the CRS model,
however, a CRS is used for generating many keys and therefore, we must be careful that the
keys should not be badly affected each other. By reflecting this concern, we allow an adversary
to access an oracle that outputs correctly generated verification keys with respect to the same
CRS. Furthermore, in our potential applications, the adversary is given a witness indistinguishable
proof of holding a correct signature with respect to a given message and verification key. Let
π ← NIWI.Prf((Σ, vki,m), σ) denote the proof system for this purpose. Here (Σ, vki,m) is public,
and σ is the witness, and π is the proof. We do not give much details to the proof system as only
the property needed in this formulation is the witness indistinguishability. The CRS for this proof
system is implicitly given to the adversary. In summary the attack model includes the following
three oracles.

• (Key Generation Oracle Ovk): On receiving i-th request, compute (vki, ski)← SSIG.Key(Σ),
and return vki. Record vki to QK .

• (Signing Oracle Osign): On input (vki,m), return ⊥ if vki is not recorded. Otherwise, compute
σ ← SSIG.Sign(Σ, ski,m) and return σ. Record m to Qvkim .

• (Proof Oracle Owi): On input (vki,m), return ⊥ if 0 ← SSIG.Chk(Σ, vki) or m ̸∈ Mvki .
Otherwise, compute σ ← SSIG.Sim(Σ, vki,m, τ), and π ← NIWI.Prf((Σ, vki,m), σ). Then
return π.

Definition 5 (Unforgeability with WI-Simulation). A signature scheme in the CRS model
is unforgeable against adaptive chosen message and random verification key attacks with witness-
indistinguishable simulation if, for any polynomial-time adversary A, the following experiment
returns 1 with negligible probability.

Experiment :

(Σ, τ)← SSIG.Crs(1λ)

(m⋆, σ⋆, vk⋆)← AOsign,Ovk,Owi(Σ)

Return 1 if vk⋆ ∈ QK and m ̸∈ Qvk⋆m and 1← SSIG.Vrf(Σ, vk⋆,m⋆, σ⋆).

Return 0, otherwise.

6.3 Construction

Let Λ = (p,G1,G2,GT , e, g, g̃) ∈ {Λsym,Λxdh,Λsxdh} be implicitly given to the algorithms below.

14

• SSIG.Crs(1λ): Choose random generators gz, hz, gr, hu from G∗
1. For i = 1, . . . , k, choose

χi, γi and δi from Z∗
p and compute gi = gχi

z g
γi
r and hi = hχi

z hδiu . The CRS is set to Σ =

(gz, hz, gr, hu, {gi, hi}ki=1), and the trapdoor is tk = (χ1, γ1, δ1, . . . , χk, γk, δk).

• SSIG.Key(Σ): Choose α, β ← Z∗
p and compute {ai, ãi}ki=0 ← Extend(gr, g̃

α) and {bi, b̃i}ki=0 ←
Extend(hu, g̃

β). Let sk = (α, β). For some default message m⃗∗ ∈ Gk
2, compute a reference

signature σ∗ = SSIG.Sign(Σ, sk, m⃗∗) as shown below. Let vk = ({ai, ãi, bi, b̃i}ki=0, σ
∗). Output

(vk, sk).

• SSIG.Sign(Σ, sk, m⃗): For i = 1 to k and randomly chosen ζi, ρi, φi ← Z∗
p, set

(If mi ̸= 1) : s′i = gζiz g
ρi
r g

−1
i , t′i = mi, v′i = hζiz h

φi
u h

−1
i , w′

i = mi,

(If mi = 1) : s′i = gζiz g
ρi
r , t′i = g̃, v′i = hζiz h

φi
u , w′

i = g̃.

and

z =

k∏
i=1

t′i
−ζi , r = g̃α

k∏
i=1

t′i
−ρi , u = g̃β

k∏
i=1

w′
i
−φi .

Then, compute {si, ti}ki=1 ← RandSeq({s′i, t′i}ki=1) and {vi, wi}ki=1 ← RandSeq({v′i, w′
i}ki=1).

Output σ = (z, r, u, {si, ti, vi, wi}ki=1) as a signature.

• SSIG.Vrf(Σ, vk, m⃗, σ): Parse σ as (z, r, u, {si, ti, vi, wi}ki=1). Output 1 if

A = e(gz, z) e(gr, r)

k∏
i=1

e(gi,mi) e(si, ti), and (13)

B = e(hz, z) e(hu, u)
k∏
i=1

e(hi,mi) e(vi, wi) (14)

hold for A =
∏k
i=0 e(ai, ãi) and B =

∏k
i=0 e(bi, b̃i). Output 0, otherwise.

• SSIG.Chk(Σ, vk): Parse vk into ({ai, ãi, bi, b̃i}ki=0, σ
∗) and return 0 if it fails. Check if every

element but σ∗ is in appropriate group G1 or G2, and verify that 1 = SSIG.Vrf(Σ, vk, m⃗∗, σ∗).
If any of the checks fail, output 0. Otherwise, output 1.

• SSIG.Sim(Σ, vk, m⃗, tk): Take σ∗ from vk and parse it into (z, r, u, {si, ti, vi, wi}ki=1). By using
tk = (χ1, γ1, δ1, . . . , χk, γk, δk), compute (z′, r′, u′) as

z′ = z ·
k∏
i=1

(mi/m
∗
i)

−χi , r′ = r ·
k∏
i=1

(mi/m
∗
i)

−γi , and u′ = u ·
k∏
i=1

(mi/m
∗
i)

−δi .

Output σ = (z′, r′, u′, {si, ti, vi, wi}ki=1) as a signature for m⃗.

6.4 Security

The security of SSIG relies on k-SFP, a generalization of SFP that has k flexible pairings in each
relation as formally defined below. In the case of k = 1, k-SFP becomes SFP.

15

Assumption 4 (Simultaneous k-Flexible Pairing Assumption (k-SFP)). Let Λ be a com-
mon parameter and let gz, hz, gr, and hu be random generators of G1. Let {(ai, ãi), (bi, b̃i)}ki=1 be
random elements in (G1 × G2)

2k. For j = 1, . . . , q, let Rj be a tuple (z, r, u, {si, ti, vi, wi}ki=1) ∈
G2

3 × (G1 ×G2 ×G1 ×G2)
k that satisfies

k∏
i=1

e(ai, ãi) = e(gz, z) e(gr, r)

k∏
i=1

e(si, ti), and (15)

k∏
i=1

e(bi, b̃i) = e(hz, z) e(hu, u)
k∏
i=1

e(vi, wi). (16)

Given Λ, gz, hz, gr, hu, {(ai, ãi), (bi, b̃i)}ki=1, and uniformly chosen R1, . . . , Rq, it is hard to find
(z⋆, r⋆, u⋆, {s⋆i , t⋆i , v⋆i , w⋆i }ki=1), that fulfill relations (15) and (16). A restriction is that z⋆ ̸= 1 and
z⋆ ̸= z ∈ Rj for every Rj .

Theorem 6. For any generic algorithm A, the probability that A breaks k-SFP with ℓ group oper-
ations and pairings is bound by O(k2 · q2 + ℓ2)/p.

Proof of Theorem 6 that justifies the assumption in the generic bilinear group model is in
Appendix A.3. As well as Theorem 3, k-SFP implies SDP for any k ≥ 1. Somewhat contradictory
to the fact that k-SFP is a generalization of SFP, we do not see useful reduction between them for
k ≥ 2.

Theorem 7. Signature scheme SSIG is correct and signature-simulatable. It is EUF-CMA with
WI-simulation in the multi-user setting if k-SFP holds for Λ.

Proof. Correctness. Let I (and I∗) denote the set of indexes where mi ̸= 1 (and mi = 1,

respectively) in SIG.Sign. Regarding the first relation in the verification predicates, we have:

e(gz, z) e(gr, r)
k∏
i=1

e(gi,mi) e(si, ti)

= e

(
gz,

k∏
i=1

t′i
−ζi

)
e

(
gr, g̃

α
k∏
i=1

t′i
−ρi

) ∏
i∈I

e (gi,mi) e
(
gζiz g

ρi
r g

−1
i , t′i

) ∏
i∈I∗

e
(
gζiz g

ρi
r , t

′
i

)

= e

(
gz,

k∏
i=1

t′i
−ζi

)
e

(
gr, g̃

α
k∏
i=1

t′i
−ρi

)
k∏
i=1

e
(
gζiz g

ρi
r , t

′
i

)
= e(gr, g̃

α) = A

The other relation can be verified in the same manner as z =
∏k
i=1 t

′
i
−ζi =

∏k
i=1w

′
i
−ζi .

Signature-Simulatability. For every vk = ({ai, ãi, bi, b̃i}ki=1, σ
∗) such that 1 = SSIG.Chk(Σ, vk),

every elements in {ai, ãi, bi, b̃i}ki=1 is in the correct group G1 and G2. Clearly there are (α, β) so

that
∏k
i=1 e(ai, ãi) = e(gr, g̃

α) and
∏k
i=1 e(bi, b̃i) = e(hu, g̃

β) hold. Therefore such {(ai, ãi, bi, b̃i)}ki=1

and (α, β) are a correct key pair. The rest is to show that SSIG.Sim correctly works to turn valid
signature σ∗ = (z, r, u, {si, ti, vi, wi}ki=1) for m⃗

∗ into a signature σ = (z′, r′, u′, {si, ti, vi, wi}ki=1) for

16

message m⃗. It holds that

e(gz, z
′) e(gr, r

′)

k∏
i=1

e(gi,mi) e(si, ti)

= e(gz, z ·
k∏
i=1

(mi/m
∗
i)

−χi) e(gr, r ·
k∏
i=1

(mi/m
∗
i)

−γi)
k∏
i=1

e(gi,mi) e(si, ti)

= e(gz, z) e(gr, r)

k∏
i=1

e(gi,m
∗
i) e(si, ti) = A.

The other relation e(hz, z
′) e(hu, u

′)
∏k
i=1 e(hi,mi) e(vi, wi) = B can be verified in the same way.

Thus the output from SSIG.Sim is a valid signature for m⃗.

EUF-CMA with WI-Simulation. Given an instance of k-SFP, we simulate the view of A in the
attack environment as follows.

• (CRS generation) : Do the same as original SSIG.Crs by using given generators (gr, hu, gz, hz)
in the input instance. The commitment-key is assigned as a CRS, Σ = (gz, hz, gr, hu, {gi, hi}ki=1),
and the trapdoor is tk = (χ1, γ1, δ1, . . . , χk, γk, δk).

• (Key Generation Oracle Ovk) : Take {ai, ãi, bi, b̃i}ki=1 from the input instance. Choose

ζ, ρ, φ← Z∗
p and g̃ ← G∗

2. Then compute {a′i, ã′i}ki=0 ← RandSeq((gζzg
ρ
r , g̃), (a1, ã1), . . . , (ak, ãk))

and {b′i, b̃′i}ki=0 ← RandSeq((hζzh
φ
u , g̃), (b1, b̃1), . . . , (bk, b̃k)). Then simulate a reference signa-

ture σ0 as described below. The verification key is vk = ({a′i, ã′i, b′i, b̃′i}ki=0, σ0). Record vk to
QK .

• (Signing Oracle Osign) : Given message m⃗ and vk, return ⊥ if vk is not in QK . Take a new
tuple Rj = (zj , rj , uj , {sij , tij , vij , wij}ki=1) from the given instance. Then compute

z′j = zj g̃
ζ

k∏
i=1

m−χi
i , r′j = rj g̃

ρ
k∏
i=1

m−γi
i , u′j = uj g̃

φ
k∏
i=1

m−δi
i . (17)

by using (ζ, ρ, φ) used for generating vk inOvk. The signature is σj = (z′j , r
′
j , u

′
j , {sij , tij , vij , wij}ki=1).

• (Simulation Oracle Owi) : Given m⃗ and vk, return ⊥ if 0 ← SSIG.Chk(Σ, vki) or m ̸∈ Mvki .
If vk is in QK , compute σ ← Osign(m⃗, vk). Otherwise, compute σ ← SSIG.Sim(Σ, vk, m⃗, tk).
Then compute π ← NIWI.Prf((Σ, vk,m), σ) and return π.

When A outputs (m⃗†, z†, r†, u†, {s†i , v
†
i , t

†
i , w

†
i }ki=1), compute

z⋆ =
(
z†
)
g̃−ζ

k∏
i=1

(
m†
i

)χi

, r⋆ =
(
r†
)
g̃−ρ

k∏
i=1

(
m†
i

)γi
, u⋆ =

(
u†
)
g̃−φ

k∏
i=1

(
m†
i

)δi
, (18)

and set s⋆i = s†i , t
⋆
i = t†i , v

⋆
i = v†i , and w

⋆
i = w†

i for i = 1, . . . , k. The reduction algorithm outputs a
tuple (z⋆, r⋆, u⋆, {s⋆i , t⋆i , v⋆i , w⋆i }ki=1) and terminates.

It can be verified by inspection that the CRS, the verification-key and the signatures perfectly
follow the legitimate distribution. When A is successful, for the outputs of the reduction algorithm,

17

it holds that

e(gz, z
⋆) e(gr, r

⋆)

k∏
i=1

e(s⋆i , t
⋆
i) = e

(
gz,
(
z†
)
g̃−ζ

k∏
i=1

(
m†
i

)χi

)
e

(
gr,
(
r†
)
g̃−ρ

k∏
i=1

(
m†
i

)γi) k∏
i=1

e
(
s†i , t

†
i

)

= e
(
g−ζz g−ρr , g̃

)
e
(
gz, z

†
)
e
(
gr, r

†
) k∏

i=1

e
(
gi,m

†
i

)
e
(
s†i , t

†
i

)

= e(a0, ã0)
−1

k∏
i=0

e(ai, ãi) =

k∏
i=1

e(ai, ãi).

One can also verify that e(gz, z
⋆) e(hu, u

⋆)
∏k
i=1 e(v

⋆
i , w

⋆
i) =

∏k
i=1 e(bi, b̃i) holds in the same way.

What remains is to show that z⋆ is not in {1, z1, . . . , zq}. Basically the argument is the same
as the one in the proof of Theorem 4 in Section 4.3. For the same argument to hold, we have
to show that trapdoor tk used for simulating Owi is information theoretically hidden even after π
is seen by the adversary. For vk generated by Ovk, simulation is done just by calling the signing
oracle. So the same argument applies. On the other hand, for vk that is not generated by Ovk,
SSIG.Chk guarantees that there exists a corresponding signing key sk. Since NIWI.Prf is witness
indistinguishable, there exists a randomness that is consistent to a valid signature that cold have
been generated by the signing key. Clearly, that signature can be generated without using tk. Thus
tk remains independent from the view of the adversary.

7 Signing Mixed-Group Messages in the SXDH Setting

7.1 Overview

By using the idea of signature chaining, we construct a signature scheme whose message space
consists of a mixture of G1 and G2. We use two signature schemes: SIG1 signing messages from
the space Gk1

1 and SIG2 signing messages from the space Gk2
2 . A part of a signature from SIG2 is

included into the message given to SIG1 as a joint. Surprisingly, the joint can be as minimal as
only one group element s in this case.

7.2 Construction

Let SIG2 be the constant-size signature scheme from Section 4, whose message space is Gk2
2 . Let

SIG1 be a ’dual’ scheme obtained by exchanging G1 and G2 in the same scheme. Let the message
space of SIG1 is Gk1+1

1 . (Note that we use the same letters for variables in a signature. Accordingly,
z, r, u, t, and w are in the same group as the input message while s and v are in the other group.) By
using these signature scheme, we construct signature scheme XSIG whose message space is Gk1

1 ×G
k2
2

as follows. Let (m, m̃) be a message in Gk1
1 ×Gk2

2 . For vector m ∈ Gk1
1 and single element s ∈ G1,

let m||s denote a vector in Gk1+1
1 obtained by appending s to the end of vector m. Let Λ = Λsxdh

be given to the functions described below.

• XSIG.Key(1λ): Run (vk1, sk1)← SIG1.Key(1λ) and (vk2, sk2)← SIG2.Key(1λ). Output (vk, sk) =
((vk1, vk2), (sk1, sk2)).

• XSIG.Sign(sk, (m⃗, ⃗̃m)): Run σ2 = (z, r, s, t, u, v, w)← SIG2.Sign(sk2, ⃗̃m)
and σ1 = (z′, r′, s′, t′, u′, v′, w′)← SIG1.Sign(sk1, m⃗||s). Output σ = (σ1, σ2).

18

• XSIG.Vrf(vk, (m⃗, ⃗̃m), (σ1, σ2)): Take s ∈ G1 from σ2. Run b2 = SIG2.Vrf(vk2, ⃗̃m, σ2) and
b1 = SIG1.Vrf(vk1, m⃗||s, σ1). Output 1 if b2 = b1 = 1. Output 0, otherwise.

7.3 Security

Theorem 8. If SIG1 and SIG2 are EUF-CMA, so is XSIG.

Proof. Suppose that there is a successful adversary that launches chosen message attacks and
outputs a valid forgery, ((m⃗†, ⃗̃m†), (σ†1, σ

†
2)). Consider s† included in σ†2. Observe that σ†1 is a

signature for m†||s†. We then have 3 cases.

Type-I m⃗†||s† has never been signed by the signing oracle. This case contradicts to the unforge-
ability of SIG1.

Type-II ⃗̃m† has never been signed by the signing oracle. This case contradicts to the unforgeability
of SIG2.

Type-III Both m⃗†||s† and ⃗̃m† have been signed by the signing oracle in separate queries. This
case contradicts to the DBP assumption.

Since the first two forgery cases are trivial, we focus on Type-III. We construct a reduction
algorithm that simulates the environment for adversary A launching an adaptive chosen message
attack on XSIG. The simulator only simulates SIG2 and honestly acts with respect to SIG1. We
thus describe the simulation only with respect to SIG2. Given an instance of the DBP assumption,
(Λ, gz, gr), the simulator works as follows:

• (Key Generation): Choose random hz and hu from G∗
1. Then, for i = 1, . . . , k2, set gi =

gχi
z g

γi
r and hi = hχi

z hδiu for random χi, γi, and δi in Z∗
p. Choose α, β from Z∗

p and g̃ from

G∗
2. Then compute {ai, ãi}1i=0 ← Extend(gr, g̃

α) and {bi, b̃i}1i=0 ← Extend(hu, g̃
β). Output

vk1 = (gz, hz, gr, hu, {gi, hi}k2i=1, {ai, ãi, bi, b̃i}1i=0).

• (Signature Issuing): Given message m̃ ∈ Gk2
2 , choose ζ, ρ, τ , φ, ω ← Z∗

p and set

z = g̃ζ
k2∏
i=1

m̃−χi
i , r = g̃ζρ/τ+α

k2∏
i=1

m̃−γi
i , s = gτz g

ρ
r , t = g̃−ζ/τ

u = g̃ζφ/ω+β
k2∏
i=1

m̃−δi
i , v = hωz h

φ
u , w = g̃−ζ/ω.

Output σ2 = (z, r, s, t, u, v, w).

To see the correctness of the simulated signatures, observe that

e(gz, z) e(gr, r) e(s, t)

k2∏
i=1

e(gi,mi)

= e

(
gz, g̃

ζ
k2∏
i=1

m−χi
i

)
e

(
gr, g̃

ζρ/τ+α
k2∏
i=1

m−γi
i

)
e (s, t)

k2∏
i=1

e (gχi
z g

γi
r ,mi)

= e
(
gz, g̃

ζ
)
e
(
gr, g̃

ζρ/τ+α
)
e
(
gτz g

ρ
r , g̃

−ζ/τ
)

= e(gr, g̃
α) =

1∏
i=0

e(ai, ãi)

19

holds. The other verification predicate holds in the same way. It is also not hard to inspect that
the distribution of signatures is statistically close to the original one due to the random coins in
the simulation.

Let σ† = (σ†1, σ
†
2), where σ

†
2 = (z†, r†, s†, t†, u†, v†, w†), be the forged signature for a message

(m⃗†, ⃗̃m†). By the forgery type constrains, there exists a signing query with message (m⃗†, ⃗̃m) such
that ⃗̃m ̸= ⃗̃m† and its signature σ2 = (z, r, s, t, u, v, w) satisfies s = s†. Accordingly, we have

e(gz, z
†) e(gr, r

†) e(s†, t†)

k2∏
i=1

e(gi, m̃
†
i) = e(gz, z) e(gr, r) e(s

†, t)

k2∏
i=1

e(gi, m̃i). (19)

Recall that s† = s = gτz g
ρ
r . By dividing the left-hand of the above equation by its right-hand, we

have

1 = e

(
gz,

z†

z

)
e

(
gr,

r†

r

)
e

(
s†,

t†

t

) k2∏
i=1

e

(
gi,

m̃†
i

m̃i

)

= e

(
gz,

z†

z

k2∏
i=1

(
m̃†
i

m̃i
)χi

)
e

(
gr,

r†

r

k2∏
i=1

(
m̃†
i

m̃i
)γi

)
e

(
gτz g

ρ
r ,
t†

t

)
= e(gz, z

⋆) e(gr, r
⋆),

where z⋆ = z†

z (
t†

t)
τ
∏
i(
m̃†

i
m̃i

)χi and r⋆ = r†

r (
t†

t)
ρ
∏
i(
m̃†

i
m̃i

)γi .

Since ⃗̃m† ̸= ⃗̃m, there exists i⋆ such that m̃†
i⋆/m̃i⋆ ̸= 1. Observe that χi⋆ is independent of the

view of the adversary. Hence the probability that z⋆ = 1 is negligible. The reduction algorithm
outputs (z⋆, r⋆) as a valid answer to the given instance of DBP.

8 Strongly Unforgeable Signatures

8.1 A Generic Construction

We first show a generic construction of sEUF-CMA signature scheme with constant-size signatures.
Let SIG be a signature scheme with EUF-CMA property, and OTS be a one-time signature scheme
that is strongly unforgeable against one-time selective-message attacks. (In the one-time selective-
message attacks, the adversary has to select a message before seeing the verification-key and creates
a forged signature on that message. This is a weaker notion than regular one-time chosen message
attacks.) The construction requires that the message space of SIG covers the public-key space of
OTS.

• FSIG1.Key(1λ): Run (vk, sk)← SIG.Key(1λ). Output (vk, sk).

• FSIG1.Sign(sk, m⃗): (vko, sko)← OTS.Key(1λ), σ1 ← SIG.Sign(sk, vko||m⃗), σ2 ← OTS.Sign(sko, σ1).
Output σ = (vko, σ1, σ2).

• FSIG1.Vrf(vk, m⃗, σ): Parse σ into (vko, σ1, σ2). Compute b1 ← SIG.Vrf(vk, vko||m⃗, σ1) and
b2 ← OTS.Vrf(vko, σ1, σ2). Output 1 if b2 = b1 = 1. Output 0, otherwise.

Theorem 9. Signature scheme FSIG1 is strongly EUF-CMA if SIG is EUF-CMA and OTS is
strongly unforgeable against one-time selective-message attacks.

20

Proof. Let Osign be the signing oracle of FSIG1. Suppose that an adversary outputs a valid forgery

(vk†o, σ
†
1, σ

†
2, m⃗

†). Let Qi = (vko, σ1, σ2, m⃗) for i = 1, . . . , q be the record of interaction between the
adversary and Osign. We consider two cases;

Case 1: (vk†o, m⃗
†) ̸= (vko, m⃗) for any Qi. Since 1 = SIG.Vrf(vk, vk†o||m⃗†, σ†1) holds, (m⃗⋆, σ⋆) =

(vk†o||m⃗†, σ†1) is a successful forgery with respect to SIG. This contradicts to the EUF-CMA
property of SIG.

Case 2: (vk†o, m⃗
†) = (vko, m⃗) and (σ†1, σ

†
2) ̸= (σ1, σ2) for some Qi⋆ . Since 1 = OTS.Vrf(vk†o, σ

†
1, σ

†
2) =

OTS.Vrf(vko, σ1, σ2) for vk†o = vko, the fact that (σ†1, σ
†
2) ̸= (σ1, σ2) contradicts to the strong

unforgeability of OTS with respect to vko.

Since (vk†o, σ
†
1, σ

†
2, m⃗

†) ̸= (vko, σ1, σ2, m⃗) for all Qi must hold for a successful forgery, the above cases
cover all valid forgeries.

By instantiating SIG and OTS by the ones in Section 4 and Appendix C.1 with setting Λ = Λsym,
the resulting FSIG1 outputs a signature of 32 group elements (|vko| = 22, |σ1| = 7, |σ2| = 3) which
is a constant in the size of m⃗.

8.2 More Efficient Non-Generic Construction

The construction is the same as that of FSIG1 with SIG from Section 4 and OTS from Appendix C.1.
Only the difference is that OTS takes bases (gz, hz, gr, hu, g1, h1, . . . , g7, h7) from those of SIG. Then
vko consits of 4 group elements, (a, ã, b, b̃), which gives total singature of size 14. Let FSIG2 denote
this signature scheme.

Theorem 10. Signature scheme FSIG2 is sEUF-CMA if SFP holds for Λ = Λsym.

Proof. First observe that we cannot show a black-box reduction to the security of SIG and OTS
by using their signing oracles since they share the bases. We instead construct reduction to their
underlying assumptions. This is possible because, in both security proofs for SIG and OTS, bases
(g1, h1, . . . , g7, h7) are set in the same manner with respect to (gz, hz, gr, hu). Thus, while we
simulate the signing oracle for SIG, we can also simulate signatures of OTS.

The outline of the proof is the same as that for Theorem 9. In case 1, we construct a reduction
to SFP by simulating SIG as shown in the proof of Theorem 4.3. We also simulate OTS as shown in
the proof of Theorem 16. Note that the simulation of OTS is possible since the way bases gi and hi
are set in simulating SIG is exactly the same as that in simulating OTS. Thus we can successfully
simulate FSIG2 by using these simulated SIG and OTS. It is important to see that exponents hidden
in gi and hi remain independent of the view of the adversary even through the simulation of OTS
as shown in the proof of Theorem 16. Thus a successful forgery results in a contradiction to SFP
as shown in the proof of Theorem 4.3.

In case2, we show a reduction to SDP by simulating OTS as shown in the proof of Theorem 16.
Since simulation of SIG needs an instance of SFP, we generate a random instance of SFP from
that of SDP as follows. Given an SDP instance (gz, hz, gr, hu), set (a, ã) ← Rand(gr, g̃

α) and
(b, b̃)← Rand(hu, g̃

β). Then for j = 1, . . . , q, compute reference Rj = (z, r, u, s, t, v, w) by choosing
ζ ← Zp and setting z = g̃ζ , r′ = g̃α, s′ = gz, t

′ = g̃ζ , u′ = g̃β , v′ = hz, w
′ = g̃ζ and applying

(r, s, t, u, v, w)← SigRand(r′, s′, t′, u′, v′, w′). The rest of the simulation for SIG is the same as that
in the proof of Theorem 4.3. As well as the previous case, the simulation of SIG retains independence
of exponents hidden in gi and hi. Thus a successful forgery contradicts to SDP as shown in the
proof of Theorem 16.

21

Finally, applying Theorem 3 to reduce SDP to SFP completes the proof.

9 Applications

In some cryptographic protocols, the existing state of the art constructions achieve the desired
security properties with good efficiency, whereas for others certain compromises are made (achieving
slightly weaker notion of security or being somewhat inefficient). Below we present constructions for
round-optimal blind signatures following the framework of [24], the efficient instantiation of which
has been an open problem since Crypto’06; and efficient fully secure group signatures supporting
concurrent join procedure, with previous constructions being not in the standard model, secure
under weaker model, not supporting concurrent join procedure, or being inefficient. Our signature
schemes not only embody known modular protocol designs, but also achieve an excellent efficiency.
These are good examples that enlightens the usefulness of modular protocol design and significance
of developing efficient building blocks.

9.1 Round-Optimal Blind Signatures

We present an efficient instantiation of Fischlin’s round-optimal blind signature scheme [24]. In
fact, we use the modification of [36, 2] for which the generic construction uses a non-interactive
witness indistinguishable (NIWI) proof system and a simulatable signature scheme. This gives
the first efficient round-optimal non-committing blind signature scheme adaptively secure in the
universally composability framework [20].

The structure of the framework is the following. A user commits to a message m with opening d
and send the commitment c to the signer. The signer signs commitment c and return the signature
σ to the user. Then the user computes a NIWI proof π with witness (c, d, σ) for the fact that he
knows a commitment c of message m, he knows the correct opening d, and he has a valid signature
on c with respect to a verification key vk of the signer. The security follows from the generic
framework in [2].

To instantiate this generic scheme, we use the GS proof system, the simulatable signature
scheme SSIG from Section 6 for k = 1 (i.e. for signing only a single group element), and the
commitment scheme TC2 in Appendix B.2. In fact, any commitment scheme suffices for our purpose
as long as commitment key, commitments, and openings to be group elements and the verification
is by pairing product equations. The choice of TC2 is due to the efficiency; it has the smallest
commitment size. The commitment scheme TC2 could be viewed as a ”pairing-based variant” of
Pedersen commitment [44], and, indeed, is almost as efficient.

Let Λ ∈ {Λsym,Λsxdh} be the common parameter. Let (Σcom, tk) ← TC2.Key(1λ), (Σsig, tk
′) ←

SSIG.Crs(1λ). Let Σniwi be the common reference string for the GS proof system in the simulation
mode. Concretely, those are Σcom = f ∈ G2, Σsig = (gz, hz, gr, hu, g1, h1) ∈ G6

1, and Σniwi set up
in the way the simulated CRS is created according to Section E. The CRS for the blind signature
scheme is Σ = (Λ,Σcom,Σsig,Σniwi). A signer runs (vk, sk)← SSIG.Key(Σsig) where vk = (A,B, σ∗)
and publish vk as his verification key. The blind signature issuing protocols is as follows:

• On input m ∈ Zp, a user computes (c, d) ← TC2.Com(Σcom,m) where (c, d) = (g̃mf δ, gδ) ∈
G2 ×G1. Then the user sends c to the signer.

• The signer computes (z, r, s, t, u, v, w)← SSIG.Sign(sk, c) and sends σ to the user.

22

Scheme #(rounds) Communication Signature Size Security Model Assumption

Oka06[42] 4 3[N
2] + 4[1] + 10[p] 4[1] + 1[p] SA 2SDH,DCR

KZ08[40] 6 9[N
2] + 7[1] + 7[p] 4[1] + 1[p] UC 2SDH,DCR

Fuc10[25] 2 22[1] 30[1] SA DAHSDH,HDL,DLIN
(ours) 2 8[1] 28[1] UC SFP, DLIN

Table 1: Summary of properties of concurrently secure efficient blind signatures. Columns for ”Commu-
nication” and ”Signature Size” count the number of elements, indicating the groups they belong to ([N2],
[1], and [p], respectively, for ZN2 , G1, and Zp). UC: Universally Composable Security with Adaptive Cor-
ruption [21, 2]. SA: Stand-Alone Security. 2SDH: 2-Variable Strong Diffie-Hellman Assumption [42]. DCR:
Decision Composite Residuosity [43]. DAHSDH,HDL: See [25]

• The user computes (r′, s′, t′, u′, v′, w′)← SigRand(r, s, t, u, v, w) as in Section 4.4, and gives a
GS-proof π with a witness (c, d, z, r′, u′) for pairing product equations

e(g, c) e(d, f−1) = e(g, g̃m), (20)

e(gz, z) e(gr, r
′) e(g1, c) = A · e(s′, t′)−1, (21)

e(hz, z) e(hu, u
′) e(h1, c) = B · e(v′, w′)−1. (22)

Then output a signature σ = (s′, t′, v′, w′, π) for m.

Given (σ,m), a verifier accepts σ = (s′, t′, v′, w′, π) if π is a correct GS-proof with respect to
relations (20), (21), and (22).

In the construction, the use of SigRand is for better efficiency and does not affect to the frame-
work due to the nature of perfect randomness. The resulting blind signature consists of 4 group
elements, 5 GS commitments to group elements, and proof elements for 3 pairing product equa-
tions. Note that when Λ = Λsym, we could swap the elements in the second pairing of the first
equation and get all three equations to be one-sided pairing products. Thus, the size of final blind
signature is 38 group elements for Λ = Λsxdh using GS-proof system with SXDH setting, and 28
group elements for Λ = Λsym using GS-proof system with DLIN setting. The communication com-
plexity is quite low. Only 8 group elements are exchanged in total, and achieves optimal 2 moves.
This could be a good efficiency standard for ”crafted” constructions to compare.

By replacing SSIG with SIG from Section 4, one could also instantiate the very original Fis-
chlin’s scheme that is secure against static adversaries. This, however, requires NIZK proofs and
hence becomes less efficient; NIZK requires that we replace A and B with their pairing product
representations as originally described for SIG in Section 4. We also remark that the construction
can be extended to a partially-blind scheme [1] as SSIG (and SIG) can sign multiple group elements
at once.

Table 1 summaries efficiency of some known blind signature schemes. There are other schemes
that achieve concurrent security without random oracles, e.g., [17, 39, 36, 40]. [42] is a represen-
tative from those without GS-proofs. Sizes for [42] vary in parameter setting and include some
approximation. Numbers for [40] translates numbers in ZN3 and ZN into that of ZN2 with appro-
priate factors . (Precisely, 9[N

2] is a translation of 1[N
3] + 6[N

2] + 3[N].) Our instantiation is very
strong in communication while the schemes in [42, 40] with classical blind-then-unblind structure
have an advantage in the signature size.

23

9.2 Group Signatures with Concurrent Join

This section highlights a useful property of our signature schemes that the message space is com-
patible with the verification key space. In particular, we present the most efficient instantiation of
a group signature scheme that allows efficient concurrent join protocol [38].

In the symmetric setting Λ = Λsym, the message space of USIG1 from Section 5 includes the
verification key space. This allows Alice to sign Bob’s key and Bob can sign Charlie’s key and so
on. Such a chaining can be hidden by applying NIZK. A signature scheme that allows to sign its
own verification key is introduced as automorphic signatures in [25]. It is proven to have some
interesting high-level applications such as proxy signatures.

Conceptually, a group signature scheme is a special case of such anonymous delegation system
with only one hop of delegation. As sketched in [19] and embodied in [38], the above single-round
certification protocol between Alice and Bob brings some favorable properties in the construction
of efficient group signature schemes. In the following, we revisit the general idea of [19, 38, 32]
with CPA-anonymity [9] by using terminology of proof of knowledge. The construction extends
to CCA-anonymity by following the generic construction in [32]. Let SIG0 and SIG1 be sigantrue
schemes, and NIWI be a witness indistinguishable proof of knowledge system. A group signature,
GSIG, consists of 5 algorithms {Setup, Join,Sign,Vrf,Open} such that:

• GSIG.Setup is a setup algorithm that takes security parameter 1λ and runs (vkc, skc) ←
SIG0.Key(1λ) and also sets up a CRS Σniwi and a trapdoor sko for NIWI. Group verificationo-
key is vkg = (vkc,Σniwi). The certification-key skc is given privately to the issuer and the
opening-key sko is given privately to the opener.

• GSIG.Join is an interactive protocol between a group member and the issuer. The group
member generates his own key-pair (vku, sku) ← SIG1.Key(1λ) and send vku to the issuer.
The issuer signs on vku by σc ← SIG0.Sign(skc, vku) and send the certificate σc to the member.

• GSIG.Sign is a signing algorithm run by a group member to sign message m. It consists of
signing on message m by σu ← SIG1.Sign(sku,m) and generating a non-interactive witness
indistinguishable proof of knowledge π ← NIWI.Prf(Σniwi,pub,wit) that proves relation 1 =
SIG0.Vrf(vkc, vku, σc) and 1 = SIG1.Vrf(vku,m, σu) with respect to witness wit = (vku, σc, σu)
and public information pub = (vkc,m). Final output is π, which is a group signature.

• GSIG.Vrf takes (vkg,m, π) as input and verifies correctness of π by verifying π as a NIWI
proof with respect to pub = (vkc,m) and CRS Σniwi.

• GSIG.Open is an opening algorithm run by the opener who has opening-key sko. Given π
and sko as input, the algorithm runs the knowledge extractor of the NIWI proof system and
extracts witness (vku, σc, σu). The exposed verification key vku identifies the group member
who actually created π. This algorithm will be associated with another algorithm that publicly
verifies the correctness of the opening.

Theorem 11. Group signature scheme GSIG is CPA-anonymous, traceable, and non-frameable.

We refer to [9] and [6] for formal definitions of the security notions stated in the theorem.
Intuitively, CPA-anonymity is that the adversary cannot distinguish group signatures from two
members. As CPA security, the adversary is not given oracle access to the opener. Traceability
guarantees that once a group signature is opened, it identifies a group memeber who once completed
GSIG.Join. Non-frameability means that no one but a group member can issue a valid group
signature that points to the member if opened.

24

Scheme Concurrent Non- Signature Assumptions
Join Frameability Size

BW07[14] yes no 6[N] SD, HSDH
Gro07[32] no yes 28[1] SDH, q-U, DLIN
GSIG([22]+BB[7]) yes yes 297[1] + 1[p] DLIN,SDH
GSIG(SIG+BB[7]) yes yes 43[1] + 1[p] SFP, SDH

Table 2: Summary of efficiency and properties of group signature schemes with CPA-anonymity. The
signature size counts the number of elements and indicating the groups they belong to ([1], [N], and [p]
respectively for G1, ZN , and Zp). SD: Subgroup Decision Assumption [11]. q-U: See [32].

Proof. CPA-anonymity follows directly from the (computational) WI property [35] of the proof
system NIWI. For traceability, suppose that there is a valid signature π on message m. Due to
the knowledge soundness of NIWI, the opener can extract (vku, σc, σu) from π and (vku, σc) fulfills
1 = SIG0.Vrf(vkc, vku, σc). If vku does not point any group member registered through GSIG.Join,
σc is a valid forgery for SIG0, which contradicts to the EUF-CMA property of SIG0. Thus vku
allows tracing. For non-frameability, suppose that the opener extracts (vku, σc, σu) from a group
signature on message m. If 1 = SIG1.Vrf(vku,m, σu) holds but the owner of vku have never signed
on m, it is a valid forgery against SIG1, contradicting the EUF-CMA property of SIG1.

As mentioned in [38], the above framework has been known without efficient instantiation in
the standard model. Using our main signature scheme SIG as SIG0 and GS-proof system as NIWI,
we can instantiate the construction with efficiency. We assess the efficiency in the setting Λ = Λsym

as follows. Let SIG1 be a signature scheme whose verification key vku and signature σu consist
of α and β group elements, respectively. Let γ be the number of group elements needed to prove
relation 1 = SIG1.Vrf(vku,m, σu) including GS-commitments for vku and σu. Regardless of size
vku to be certified, our SIG0 outputs σc of size 7. Since 4 out of the 7 elements in σc can be
perfectly randomized and given in the clear as we have done in Section 9.1, we need only 3 GS-
commitments in proving relation 1 = SIG0.Vrf(vkc, vku, σc), which consists of two one-sided pairing
product equations and costs 6 elements in a proof. (Commitments of vku is already included in γ.)
In total we have (Group Sig Size) = 19 + γ. One can instantiate SIG0 with the signature scheme
in [22], that has 9α + 4 elements in σc and 3α + 3 one-sided and 3α double-sided pairing product
equations in SIG0.Vrf. In that case, the size of a group signature is (Group Sig Size) = 63α+21+γ.

If we instantiate SIG1 with full EUF-CMA Boneh-Boyen signature scheme from [7], vku consists
of α = 4 group elements (including the bases). A signature consists of one group element and one
scalar value but the scalar value is totally random and independent of the verification-key. So we
have 4+1 GS-commitments in proving 1 = SIG1.Vrf(vku,m, σu). The verification predicate consists
of a double-sided pairing product equation, which yields 9 group elements in a proof. In total, we
have γ = 24 and a group signature consists of 43 group elements and 1 scalar value. With [22] for
SIG0, the signature size will be 297 group elements and 1 scalar value.

Table 2 summarizes some efficient group signature schemes that provide CPA-anonymity in the
standard model. [13, 14] provide efficiency with more reasonable assumptions. However, they are
not non-frameable, i.e., the issuer can frame any group member. [38] allows concurrent join but
the security is argued in the random oracle model [5]. The scheme in [32] yields a group signature
of 28 group elements in the case of CPA anonymity. Their GSIG.Join protocol includes 6 rounds of
interaction and does not provide concurrent security. Also, the traceability needs to put a strong
dedicated assumption on top of the security of the building blocks. The increased signature size in

25

our construction is the price for achieving concurrent join property and allowing very simple and
modular security argument without dedicated assumptions.

Some final remarks follow: CCA-anonymity is obtained by following the approach in [32],
which uses a strong one-time signature scheme and a selective-tag CCA secure tag-based public-
key encryption scheme. As stated in [32], this strengthening costs extra 15 group elements in a
signature. Accordingly, we have a CCA-anonymous group signature scheme with concurrent join
whose signature consits of 58 group elements and one scalar value. One of the advantages of using
our SIG for SIG0 is that it allows to insert a warranty in the clear to σc so that the signing policy
given to a group member is explicit. Due to the constant-size property of SIG, this useful extension
can be done without impacting to the size of the group signature (except for the warranty itself)
at all.

10 Conclusion

This paper presented a practical signature scheme all components of which are group elements in
bilinear settings. Signing arbitrary k group elements at the same time results in a signature of
size only 7 group elements. This solves an open problem since [31] (explicitly stated in [22]). Its
technically interesting properties are enlightened by presenting variations with advanced proper-
ties. Combined with Groth-Sahai proof system, our signature schemes give handy and reasonably
practical solutions to many cryptographic tasks. As an example, we give an answer to the open
problem of instantiating the round-optimal blind signature framework from [24, 2].

The most challenging open problem is to base security on weaker and well studied assumptions
while retaining the efficiency and compatibility. Also, it would be interesting to explore generic
domain extension methods since this is rather a new issue that has not been needed in ordinary
signature schemes that can compress arbitrarily long messages with a hash function. Finally,
it is left as an open problem to construct a compatible commitment scheme with constant-size
commitments in the base groups.

References

[1] M. Abe and E. Fujisaki. How to date blind signatures. In K. Kim and T. Matsumoto, editors,
Advances in Cryptology – ASIACRYPT ’96, volume 1163 of LNCS, pages 244–251. Springer-
Verlag, 1996. (Cited on page 23.)

[2] M. Abe and M. Ohkubo. A framework for universally composable non-committing blind
signatures. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912
of LNCS, pages 435–450. Springer-Verlag, 2009. (Cited on page 1, 2, 13, 22, 23, 26.)

[3] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Non-interactive anonymous cre-
dentials. In R. Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography Confer-
ence, TCC 2008, volume 4948 of LNCS. Springer-Verlag, 2008. Also available on IACR ePrint
Archive, 2007/384. (Cited on page 1.)

[4] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements and a construction based on general assumptions. In E. Biham,
editor, Advances in Cryptology - EUROCRPYT 2003, volume 2656 of LNCS, pages 614–629.
Springer-Verlag, 2003. (Cited on page 1.)

26

[5] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In First ACM Conference on Computer and Communication Security, pages 62–73.
Association for Computing Machinery, 1993. (Cited on page 25.)

[6] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of LNCS,
pages 136–154. Springer-Verlag, 2005. Full version available at IACR e-print 2004/077. (Cited
on page 1, 24.)

[7] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Advances in Cryptology — Eurocrypt ’04, volume 3027 of LNCS, pages 56–73.
Springer-Verlag, 2004. (Cited on page 25.)

[8] D. Boneh and X. Boyen. Short signatures without random oracles and the sdh assumption in
bilinear groups. Journal of Cryptology, 21(2):149–177, 2008. (Cited on page 1, 2.)

[9] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, Advances
in Cryptology — CRYPTO ’04, volume 3152 of LNCS, pages 41–55. Springer-Verlag, 2004.
(Cited on page 1, 3, 24.)

[10] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume
2656 of LNCS, pages 416–432. Springer-Verlag, 2003. (Cited on page 1.)

[11] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In J. Kilian,
editor, Theory of Cryptography Conference– TCC’2005, volume 3378 of LNCS, pages 325–341.
Springer-Verlag, 2005. (Cited on page 25.)

[12] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In C. Boyd, editor,
Advances in Cryptology – Asiacrypt 2001, volume 2248 of LNCS, pages 514–532. Springer-
Verlag, 2001. (Cited on page 36.)

[13] X. Boyen and B. Waters. Compact group signatures without random oracles. In Advances
in Cryptology — Eurocrypt ’06, volume 4004 of LNCS, pages 427–444. Springer-Verlag, 2006.
Full version available from IACR ePrint Archive 2005/381. (Cited on page 25.)

[14] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures.
In Public Key Cryptography—PKC 2007, volume 4450 of LNCS, pages 1–15. Springer-Verlag,
2007. Available at http://www.cs.stanford.edu/~xb/pkc07/. (Cited on page 25.)

[15] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key
dependent chosen plaintext and adaptive chosen ciphertext attacks. In Advances in Cryptology
- EUROCRYPT 2009, volume 5479 of LNCS, pages 351–368. Springer-Verlag, 2009. (Cited
on page 1, 43.)

[16] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In Public Key Cryptography, PKC 2009, volume
5443 of LNCS, pages 481–500. Springer-Verlag, 2009. (Cited on page 1.)

[17] J. Camenisch, M. Koprowski, and B. Warinschi. Efficient blind signatures without random
oracles. In C. Blundo and S. Cimato, editors, Security in Communication Networks, 4th
International Conference, SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised Selected
Papers, volume 3352 of LNCS, pages 134–148. Springer-Verlag, 2005. (Cited on page 23.)

27

http://www.cs.stanford.edu/~xb/pkc07/

[18] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Advances in Cryptology — CRYPTO ’04, volume 3152 of LNCS, pages 56–72.
Springer-Verlag, 2004. (Cited on page 1.)

[19] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B. S.
Kaliski Jr., editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of LNCS, pages
410–424. Springer-Verlag, 1997. (Cited on page 24.)

[20] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of the 42nd IEEE Annual Symposium on Foundations of Computer Science, pages
136–145, 2001. (Cited on page 22.)

[21] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Technical Report 2000/067, IACR e-print Archive, 2005. 2nd version updated on 13 Dec 2005.
(Cited on page 23.)

[22] J. Cathalo, B. Libert, and M. Yung. Group encryption: Non-interactive realization in the
standard model. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume
5912 of LNCS, pages 179–196. Springer-Verlag, 2009. (Cited on page 1, 4, 25, 26, 34, 41, 42.)

[23] J. H. Cheon. Security analysis of hte strong diffie-hellman problem. In Advances in Cryptology
— Eurocrypt ’06, volume 4004 of LNCS, pages 1–11. Springer-Verlag, 2006. (Cited on page 2.)

[24] M. Fischlin. Round-optimal composable blind signatures in the common reference model. In
C. Dwork, editor, Advances in Cryptology — CRYPTO ’06, volume 4117 of LNCS, pages
60–77. Springer-Verlag, 2006. (Cited on page 1, 2, 13, 22, 26.)

[25] G. Fuchsbauer. Automorphic signatures in bilinear groups. IACR ePrint Archive 2009/320,
updated Feb.10, 2010, 2009-10. (Cited on page 1, 2, 23, 24, 40.)

[26] G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Transferable anonymous constant-size fair
e-cash. IACR ePrint Archive 2009/146. Also to appear in CANS 2009., 2009. (Cited on page 1.)

[27] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Technical Report
2006/165, IACR ePrint archive, 2006. (Cited on page 3.)

[28] S. D. Galbraith and V. Rotger. Easy decision-diffie-hellman groups. LMS Journal of Compu-
tation and Mathematics, 7:2004, 2004. (Cited on page 3.)

[29] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988. (Cited on
page 3.)

[30] M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer. In
J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, volume 5350 of LNCS,
pages 179–197. Springer-Verlag, 2008. Preliminary version: IACR ePrint Archive 2008/163.
(Cited on page 1.)

[31] J. Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. In X. Lai and K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006,
volume 4284 of LNCS, pages 444–459. Springer-Verlag, 2006. (Cited on page 1, 26.)

28

[32] J. Groth. Fully anonymous group signatures without random oracles. In Advances in Cryp-
tology – Asiacrypt’07, volume 4833 of LNCS, pages 164–180. Springer-Verlag, 2007. (Cited on
page 24, 25, 26.)

[33] J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive,
Report 2009/007, January 2009. (Cited on page 4, 34, 35.)

[34] J. Groth. Homomorphic trapdoor commitments to group elements. Unpublished Manuscript,
2010. (Cited on page 4.)

[35] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances
in Cryptology — Eurocrypt ’08, volume 4965 of LNCS, pages 415–432. Springer-Verlag, 2008.
Full version available: IACR ePrint Archive 2007/155. (Cited on page 1, 5, 25, 42, 43, 44.)

[36] C. Hazay, J. Katz, C. Koo, and Y. Lindell. Concurrently-secure blind signatures without
random oracles or setup assumptions. In Theory of Cryptography Conference, TCC 2007,
volume 4392 of LNCS, pages 323–341. Springer-Verlag, 2007. (Cited on page 13, 22, 23.)

[37] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Advances in
Cryptology – Eurocrypt 2005, volume 3494 of LNCS, pages 198–214. Springer-Verlag, 2005.
(Cited on page 1.)

[38] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In R. Cramer,
editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494 of LNCS, pages 198–214.
Springer-Verlag, 2005. (Cited on page 24, 25.)

[39] A. Kiayias and H. Zhou. Concurrent blind signatures without random oracles. In SCN 2006,
volume 4116 of LNCS, pages 49–62. Springer-Verlag, 2006. (Cited on page 23.)

[40] A. Kiayias and H. Zhou. Equivocal blind signatures and adaptive uc-security. In R. Canetti,
editor, Theory of Cryptography Conference, TCC 2008, volume 4948 of LNCS, pages 340–355.
Springer-Verlag, 2008. (Cited on page 2, 23.)

[41] N. Koblitz and A. Menezes. Another look at generic group. IACR ePrint Archive 2006/230,
2006. (Cited on page 2.)

[42] T. Okamoto. Efficient blind and partially blind signatures without random oracles. In S. Halevi
and T. Rabin, editors, Theory of Cryptography Conference, TCC 2006, volume 3876 of LNCS,
pages 80–99. Springer-Verlag, 2006. Full version avaialble on ePrint archive. (Cited on page 23.)

[43] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of LNCS, pages 223–238.
Springer-Verlag, 1999. (Cited on page 23.)

[44] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, volume 576 of LNCS, pages
129–140. Springer-Verlag, 1992. (Cited on page 22.)

[45] M. Rückert and D. Schröder. Security of verifiably encrypted signatures and a construction
without random oracles. IACR ePrint Archive 2009/027, 2009. (Cited on page 1.)

[46] A. Rupp, G. Leander, E. Bangerter, A.-R. Sadeghi, and A. W. Dent. Sufficient conditions
for intractability over black-box groups: Generic lower bounds for generalizaed dl and dh
problems. IACR ePrint Archive 2007/360, 2007. (Cited on page 31.)

29

[47] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of the ACM, 27(4), 1980. (Cited on page 31.)

[48] M. Scott. Authenticated id-based key exchange and remote log-in with simple token and pin
number. Cryptology ePrint Archive, Report 2002/164, 2002. http://eprint.iacr.org/.
(Cited on page 3.)

[49] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Advances in Cryptology — EUROCRYPT ’97, volume 1233 of LNCS, pages 256–266. Springer-
Verlag, 1997. (Cited on page 2, 31.)

[50] E. R. Verheul. Evidence that xtr is more secure than supersingular elliptic curve cryptosystems.
J. Cryptology, 17(4):277–296, 2004. (Cited on page 3.)

Appendices

A Proofs Related to Assumptions

A.1 Proof of Theorem 1 (DDHG1 ⇒ DBP)

Proof. Assume that the DBP assumption does not hold and there is an adversary A that produces
a pair (z, r) ̸= (1, 1) satisfying the equation e(gz, z) e(gr, r) = 1 for randomly chosen gz, gr with
non-negligible probability. We construct B which breaks the DDH assumption in G1.

The DDHG1 assumption says that given a tuple e(g, ga, gb, gc) ∈ G4
1, where ga = ga, gb = gb,

and gc = gc, for a, b, c ∈ Z∗
p it is hard to distinguish distinguish between c = ab and c ̸= ab with

non-negligible probability. For a challenge tuple (g, ga, gb, gc), B chooses a random ψ ∈ Z∗
p and gives

to A an input (gψ, gψa) along with the appropriate public parameters. If A outputs (z, r) ̸= (1, 1)

satisfying e(gψ, z) e(gψa , r) = 1, it is true that z = r−a. Then, e(gb, z) e(gc, r) = e(gb, r−a) e(gc, r) =
e(g, r)c−ab; that equation is equal to 1 if and only ab = c mod p.

Therefore, B has the same success probability of breaking the DDHG1 assumption as A of break-
ing the DBP assumption.

A.2 Proof of Theorem 3 (SFP⇒ SDP)

Proof. Suppose that there exists an algorithm, A, that successfully finds (z, r, u) that fulfills (2). We
construct an algorithm that breaks SFP as follows. Given an SFP instance (Λ, gz, hz, gr, hu, a, ã, b, b̃,
R1, . . . , Rq), input (gz, hz, gr, hu) to A. If A outputs (z⋆, r⋆, u⋆), set (s⋆, t⋆, v⋆, w⋆) = (a, ã, b, b̃) and
output R⋆ = (z⋆, r⋆, s⋆, t⋆, u⋆, v⋆, w⋆).

Now, multiplying 1 = e(gz, z
⋆), e(gr, r

⋆) to both sides of (a, ã) = e(s⋆, t⋆) results in the first
equation in (3). Similarly, multiplying 1 = e(hz, z

⋆), e(hu, u
⋆) to both sides of (b, b̃) = e(v⋆, w⋆)

results in the second equation in (3). Thus R⋆ fulfills relations in (3). Since (z⋆, r⋆, u⋆) is a
valid answer to SDP, z⋆ ̸= 1 holds. Since every zj in Rj is uniformly chosen and independent of
(gz, hz, gr, hu, a, ã, b, b̃), it is independent of the view of the adversary. Thus z⋆ = zj happens only
with negligible probability for every j ∈ {1, . . . , q}. Thus R⋆ is a correct and valid answer to the
SFP instance.

30

http://eprint.iacr.org/

A.3 Proof of Theorem 2 and Theorem 6 (Justification of SFP and k-SFP)

Proof.

Outline. In the generic model, every group element is represented by a unique index. The group
operation to two group elements corresponds to addition of two indices. In the simulation, the
index for an independent group element is represented by a unique variable. The index for a group
element that is related to independent group elements is represented by a function of the variables
determined by the relation.

A security argument in the generic group model consists of three steps. First we argue that
no linear combinations of indices of initially given group elements could yield a new set of indices
that fulfills the target predicate implied by the assumption. This step is done by inspecting the
form of possible representation of indices. Although the argument looks intricate and lengthy, the
underlying idea follows the standard approach.

The second step is to estimate the success probability of the adversary when uniform assignment
is done to the variables. The adversary is considered as successful either when the simulation
happens to be inconsistent to the concrete assignment or when the output of the adversary happens
to fulfill the target predicate. For this, we estimate the probability that two indices represented
by functions of variables are not identical but fall into the same value when concrete values are
assigned to the variables. A common idea for this step is to apply Schwartz’s lemma [49, 47] to
the formula representing the difference between two indices. When the formula is a polynomial,
it promptly gives an upper bound to the probability due to the degree of the polynomial. In the
case of SDH, however, the formula will be in the form of 1

x−c1 + · · · + 1
x−cq that results in having

xq in the polynomial expression of the formula. Thus it gives an upper bound with factor of q. By
accumulating the error probability for all combinations of indices that could be generated through
ℓ group operations, total error probability is bound by O(qℓ2), which is apart from the optimal
O(ℓ2) bound in DL and CDH [49] by the factor of q. In the case of SFP, the formula is in the form
of u1 +

1
u1

+ · · ·+ uq +
1
uq
, which is a Laurent polynomial. Directly applying Schwartz’s lemma as

introduced in [49] or its variation for Laurent polynomial in [46] results in loose bound with factor
of q since the formula is in degree q in its (regular) polynomial form. We instead follow the proof
idea of the original Schwartz’s lemma as introduced in [47] and show a constant bound with factor
of 2. In the actual argument, we have to consider products of two indices to take care of pairing
operations, which makes the analysis more intricate. But we can show a constant bound in the
same way. As a result, the factor of q is eliminated and we have optimal O(ℓ2) bound.

Details. SFP is a special case of k-SFP at k = 1. For simplicity, we start with the case of SFP
and then show how to generalize the argument to the case of k-SFP. We consider the generic group
model for symmetric group setting where G1 = G2 = G. The symmetric setting is not just for
simplicity but also for generality as our argument in the symmetric setting trivially holds in the
asymmetric setting as well. (The error probability can be slightly improved in the asymmetric
setting since each group has less elements.)

In the following, we focus on the relation between the indexes of the group elements by trans-
lating the assumption appropriately. To make the argument easily linkable to its original rep-
resentation, we use the same letter to denote the index of a group element with respect to an
implicit fixed base. For instance, for a ∈ G, we denote log a ∈ Zp by a itself. By using this no-
tation, SFP is translated as follows. Let I be a tuple that consists of (gz, hz, gr, hu, a, ã, b, b̃) and
Rj = (zj , rj , sj , tj , uj , vj , wj) for j = 1, . . . , q, which intotal consits of 8 + 7q variables. Recall Rj

31

fulfills relations

A
def
= a · ã = gz · zj + gr · rj + sj · tj , and (23)

B
def
= b · b̃ = hz · zj + hu · uj + vj · wj . (24)

Let O = (z⋆, r⋆, s⋆, t⋆, u⋆, v⋆, w⋆) be a 7-tuple of linear combinations of the variables in I. We show
that there is no O that identically fulfills relations

A = gz · z⋆ + gr · r⋆ + s⋆ · t⋆, and (25)

B = hz · z⋆ + hu · u⋆ + v⋆ · w⋆ (26)

under the constraint that z⋆ ̸∈ {0, z1, . . . , zq}.
For a polynomial x ∈ Zp[I] of degree 1, let ψ(x) be the linear form (line matrix of 1 × |I|)

associated to x. Then, for x, y ∈ Zp[I], product x · y is represented by a |I| × |I| symmetric matrix,
say Ψ(x · y),

Ψ(x · y) = 1

2

(
ψ(x) ◦ ψ(y)T + ψ(y) ◦ ψ(x)T

)
. (27)

It is important to see that Rank(Ψ(x·y)) = 2. Each row and column is associated to a variable, e.g.,
a in I and called a-row and a-column. By Ψ(X+Y) we denote a matrix obtained by Ψ(X)+Ψ(Y). In
the following, we re-write a, ã, b, b̃ by s0, t0, v0, w0, respectively, and let z0 = r0 = u0 = 0 for seamless
argument. Define Aj and Bj as Aj = Ψ(gz · zj + gr · rj + sj · tj) and Bj = Ψ(hz · zj +hu · rj + vj ·wj)
for j = 0, . . . , q.

Relation (25) holds if and only if Ψ(gz · z⋆ + gr · r⋆ + s⋆ · t⋆) is identical to a quadratic form
representation of A. Since Rank(Ψ(gz · z⋆ + gr · r⋆ + s⋆ · t⋆)) ≤ 6, it suffices to consider a quadratic
form representation of A whose rank is less than 6. Recall that A is defined by A0 and equivalently
by Aj for j = 1, . . . , q. For some symmetric matrix X of size |I| × |I|, Consider R = (((X mod
A0) mod A1) . . .). If R ̸= ∅, there exists an assignment to the variables that evaluates the quadratic
form associated by R to a non-zero value. Accordingly, for a matrix X to be evaluated to A for any
valid assignments to the variables, X must be identical to

∑
cjAj where

∑
cj = 1 for some constant

cj ∈ Zp. Observe that Rank(Aj) = 6 for j = 1, . . . , q. Also observe that for any j = 0, . . . , q, and
for any j′ ̸= j, it holds that Rank(cjAj + cj′Aj′) ≥ 8 when ci ̸= 0 and ci′ ̸= 0. Thus only individual
Aj for j = 0, . . . , q are the quadratic form representations of A with rank equal to or less than 6.
It therefore suffices to consider Aj for the left hand of (25). By the same argument, it suffices to
consider Bj for the left hand of (26).

Observe that Rank(Aj) = 6 for j = 1, . . . , q. Also observe that for any j = 0, . . . , q, and for any
j′ ̸= j, sj-row and tj-row in Aj are linearly independent from Aj′ and these rows are zeros in Aj′ .
Accordingly, Rank(cjAj+ cj′Aj′) ≥ 8 if ci ̸= 0 and ci′ ̸= 0. Thus only individual Aj for j = 0, . . . , q
are quadratic form representation of A with rank equal to or less than 6. It therefore suffices to
consider Aj for the left hand of (25). The same argument applies to (26).

Suppose that (25) holds, namely:

Ψ(gz · zj) + Ψ(gr · rj) + Ψ(sj · tj) = Ψ(gz · z⋆) + Ψ(gr · r⋆) + Ψ(s⋆ · t⋆) (28)

holds. Observe that all cells in matrix Ψ(gz · z⋆) are zeros except for those in the gz-row and gz-
column. Thus Ψ(sj · tj) is not covered by Ψ(gz ·z⋆). Similarly, Ψ(sj · tj) is not covered by Ψ(gr · r⋆),
either. Thus Ψ(s⋆ · t⋆) covers Ψ(sj · tj). Observe that Rank(Ψ(s⋆ · t⋆)) = 2 and the sj-row and
tj-row in Ψ(s⋆ · t⋆) are linearly independent each other. Since z⋆ ̸= zj , we have either z⋆ = c · zj for
some constant c ̸= 1 or z⋆ is a linear combination of variables including at least one variable other

32

than zj . In either case, the gz-row of Ψ(gz · z⋆) is linearly dependent on the sj-row and tj-row in
Ψ(s⋆ · t⋆). This results in having non-zero terms of sj or tj or both in z⋆. Without loss of generality,
assume that z⋆ includes a term in sj . Now consider the other relation

Ψ(hz · zj′) + Ψ(hu · rj′) + Ψ(vj′ · wj′) = Ψ(hz · z⋆) + Ψ(hu · r⋆) + Ψ(v⋆ · w⋆) (29)

where j′ can be different from j in (28). Since z⋆ includes sj , cell (hz, sj) is non-zero in Ψ(hz · z⋆).
Since the cell is zero in the matrices in the left hand of (29), it must be offset by Ψ(hu·r⋆)+Ψ(v⋆·w⋆).
In Ψ(hu · r⋆), the cell is zero since only hu-row and hu-column can have non-zero cells. Therefore
cell (hz, sj) is non-zero in Ψ(v⋆ · w⋆). Due to the same reason as before, Ψ(v⋆ · w⋆) must cover
Ψ(vj′ · wj′) in (29). Since Rank(Ψ(vj′ · wj′)) is two, the hz-row must be linearly dependent on vj′-
row and wj′-row. Thus either (vj′ , sj) or (wj′ , sj) must be non-zero. However, none of the matrices
in (29) has non-zero value in (vj′ , sj) and (wj′ , sj). Thus (29) cannot hold. This completes the case
of k = 1.

To generalize the above argument to the case of k ≥ 2, simply replace Ψ(sj ·tj) with Ψ(
∑k

i=1 sji ·
tji) and argue in the same way based on the observation that Rank(Ψ(

∑k
i=1 sji · tji)) = 2k.

We now proceed to evaluate the error probability of the generic group oracle simulation for the
case of general k. Namely, we consider the probability, say P1, that two distinct elements in G
evaluates to the same value by assignment. An index for an element in G is a linear combination of
variables in I. For index f and f ′ of two distinct elements in GT , probability P1 is Pr[f − f ′ = 0].
Here the probability is taken over uniform assignments to the independent variables in I. Among
the variables in I we consider rj and uj be dependent and represent them by

rj =

(
k∑
i=1

(ai · ãi − sji · tji)− gz · zj

)
/gr, and (30)

uj =

(
k∑
i=1

(
bi · b̃i − vji · wji

)
− hz · zj

)
/hu. (31)

Let F be a polynomial obtained by replacing rj and uj in f with the right hands of the above
equations and multiplying gr · hu. Define F ′ for f ′ in the same way. Then we have P1 = Pr[F −
F ′ = 0]. Since deg(F − F ′) = 3, we have P1 ≤ 3/p from Schwartz’s lemma. Having initial
|I| = 2 + 4k + (3 + 4k)q elements and at most ℓ1 group operations, we have the upper bound(

2 + 4k + (3 + 4k)q + ℓ1
2

)
· 3/p ≤ O((k · q + ℓ1)

2)/p (32)

for the simulation error of elements in G.

The error probability, say PT , in simulating GT is estimated in the similar way. An index of an
element in GT is in a quadratic form of variables in I. Let FT and F ′

T be polynomials obtained from
the indexes of two distinct elements in GT in the same way as above. Then PT = Pr[FT −F ′

T = 0].
Since deg(FT − F ′

T) = 4, we have PT ≤ 4/p from Schwartz’s lemma. Having at most ℓT pairing
operations and group operations in GT , at most ℓT elements appear in GT during the simulation.
Thus the error probability throughout the simulation is bound by

(
ℓT
2

)
· PT = O(ℓ2T)/p.

In total, the simulation error is upper bound by P1 + PT = O(ℓ2T + (k · q + ℓ1)
2)/p. By setting

ℓ = ℓ1 ≈ ℓT , it is simplified to O(k2 · q2 + ℓ2)/p as stated in Theorem 6. Setting k = 1 gives
O(q2 + ℓ2)/p as in Theorem 2.

33

Scheme Λ K M C D #(pairings) #(PPE) assumption

TC1 any 2k + 2[1] k[2] 2[T] 2[2] 2k + 2 2 SDP ≪ DLIN
TC4 Λxdh,Λsxdh k + 1[1] k[2] 1[T] 1[2] k + 1 1 DBP ≪ DDHG1

Gro09[33] any 2k + 4[1] k[2] 2[T] 2[2] 2k + 4 2 STP ≪ DLIN

TC3 Λsym 2k + 2[1] k[1] 2k + 2[1] 2[1] 2k+ 2 2 SDP ≪ DLIN
CLY09[22] Λsym 5[1] 1[1] 3[1] 3[1] 9 3 DLIN

TC2 any 2[2] 1[p] 1[2] 1[1] 2 1 XDHI (≪ DLIN)

Table 3: Summary of homomorphic trapdoor commitments. Columns from K to D count the number of
elements and indicating the groups they belong to ([1], [2], [T], and [p] respectively for G1, G2, GT , and Zp).
#(pairings) and #(PPE) count the number of pairings and pairing product equations in the verification
predicate. On top are the multi-message schemes committing to k group elements at once; in the middle are
the schemes not using any group element in GT ; and at the bottom is the efficient scheme when the message
is in Zp and the other components are in G1 and G2. X ≪ Y : Assumption X is implied by Y (if Λ = Λsym).

B Homomorphic Trapdoor Commitment Schemes

This section presents several homomorphic trapdoor commitment schemes in bilinear settings. Not
all of them are used in our construction. Nevertheless, we introduce them because they have
different properties and may be useful in applications needing specific properties. We note that all
the schemes in this section can also work as a chameleon hash. Namely, it is possible to equivocate
any commitment generated by TC.Com rather than the ones simulated by TC.Sim. Indeed, we
integrate TC1 as a chameleon hash in the construction of SSIG in Section 6.

By (K,M, C,D) we denote spaces for commitment-keys, messages, commitments, and decom-
mitments. The commitment-key refers to elements not included in Λ. Table 3 shows a summary of
the schemes in their space parameters and performance in verifying the correct opening. For com-
parison, we list schemes from [33] and [22] which are the only homomorphic trapdoor commitment
schemes we aware in the literature whose messages are group elements and the verification is done
by checking pairing product equations.

TC3 and [22] are GS-compatible schemes whose components are all in the base groups. In
particular, TC3 is the first multi-commitment scheme that commits to k elements at a time. Its
commitment has 2k + 2 group elements while it will be 3k if we repeatedly use [22] for k times.
It is an interesting open problem to construct a constant-size commitment scheme while being
compatible with GS-proofs.

For multi-message commitment schemes, TC1,TC3,TC4, let m⃗ = {m1, . . . ,mk} ∈ G2
k be a

message. For single-message commitment scheme, TC2, let m be an element of Zp. In the following
description, we assume that Λ is given to all algorithms implicitly.

B.1 Scheme TC1

TC1.Key(1λ): Choose random generators gr, hu from G∗
1. For i = 1, . . . , k, choose γi and δi from Z∗

p

and compute gi = gγir and hi = hδiu . Output commitment-key ck = (gr, hu, g1, h1, . . . , gk, hk)
and trapdoor tk = (γ1, δ1 . . . , γk, δk).

TC1.Com(ck, m⃗): Choose r and u randomly from G2, and compute

C1 = e(gr, r)

k∏
i=1

e(gi,mi) and C2 = e(hu, u)

k∏
i=1

e(hi,mi). (33)

34

Output commitment c = (C1, C2) and decommit-key dk = (r, u).

TC1.Vrf(ck, c, m⃗, dk): Parse c into (C1, C2) and dk into (r, u). Output 1 if (33) holds. Output 0,
otherwise.

TC1.Sim(ck): Choose r and u randomly from G2 and compute C1 = e(gr, r) and C2 = e(hu, u).
Output commitment c = (C1, C2) and equivocation-key ek = (r, u).

TC1.Equiv(ck, m⃗, ek, tk): Parse ek into (r, u) and tk into (γ1, δ1 . . . , γk, δk). Then compute r′ =
r ·
∏k
i=1m

−γi
i , and u′ = u ·

∏k
i=1m

−δi
i . Then output decommit-key dk = (r′, u′).

The above scheme shares many similarities with that of Groth [33], but the security is based
on a different computational assumption, i.e. the SDP assumption. It should be noted that both
assumptions are implied by DLIN assumption.

Theorem 12. Trapdoor commitment scheme TC1 is perfectly hiding and computationally binding
under the SDP assumption.

Proof. For perfect hiding, observe that, for any (C1, C2) ∈ G2
T , any m⃗ ∈ Gk

2, there exits a unique
(r, u) ∈ G2

2 that fulfills relation (33).

For computational binding, suppose that there exists an adversary that successfully opens a
commitment to two distinct messages. We show that one can break SDP by using such an adversary.
Given an instance of SDP, (Λ, gr, hu, gz, hz), do as follows.

• Set gi = gχi
z g

γi
r and hi = hχi

z hδiu for i = 1, . . . , k. Run the adversary with ck = (gr, hu, {gi, hi}ki=1).

• Given two openings (m⃗, r, u) and (m⃗′, r′, u′) from the adversary, compute

z⋆ =
k∏
i=1

(
mi

m′
i

)χi , r⋆ =
r

r′

k∏
i=1

(
mi

m′
i

)γi , u⋆ =
u

u′

k∏
i=1

(
mi

m′
i

)δi . (34)

• Output (z⋆, r⋆, u⋆).

Since the openings fulfills (33), we have

1 = e
(
gr,

r

r′

)∏
e

(
gi,

mi

m′
i

)
= e

(
gz,

k∏
i=1

(
mi

m′
i

)χi
)
e

(
gr,

r

r′

k∏
i=1

(
mi

m′
i

)γi)
= e(gz, z

⋆) e(gr, r
⋆), and

1 = e
(
hu,

u

u′

)∏
e

(
hi,

mi

m′
i

)
= e

(
hz,

k∏
i=1

(
mi

m′
i

)χi
)
e

(
hu,

u

u′

k∏
i=1

(
mi

m′
i

)δi)
= e(hz, z

⋆) e(hu, u
⋆).

But m⃗ ̸= m⃗′, so there exists i such that mi/m
′
i ̸= 1. Also, χi is independent from the view of the

adversary. That is, for every choice of χi, there exist corresponding γi and δi that gives the same
gi and hi. Therefore, z

⋆ =
∏
i(mi/m

′
i)
χi ̸= 1 with overwhelming probability. Hence (z⋆, r⋆, u⋆) is a

valid answer to the instance of SDP.

35

B.2 Scheme TC2

Let g ∈ G1 and g̃ ∈ G2 be random bases. Common parameter Λ is given to all algorithms described
below.

• TC2.Key(1λ): Select γ ∈ Zp and set f̃ = g̃γ . Output commitment key ck = (Λ, f̃) and
trapdoor tk = γ.

• TC2.Com(ck,m): Choose random δ ∈ Zp and compute commitment c = g̃mf̃ δ ∈ G2 and
decommit-key d = gδ ∈ G1. Output c and d.

• TC2.Vrf(ck, c,m, d): Output 1 if e(g, c/g̃m) = e(d, f̃). Output 0, otherwise.

• TC2.Sim(ck): Choose random δ ∈ Zp and output a commitment c = f̃ δ and an equivocation-
key ek = δ.

• TC2.EqOpen(ck,m, ek, tk): Let δ = ek and γ = tk. Output d = gδ−m/γ .

The correctness follows since

e(g, c/g̃m) = e(g, f̃ δ) = e(gδ, f̃) = e(d, f̃).

The trapdoor property holds because

e(d, f̃) = e(gδ−m/γ , f̃) = e(g, g̃−mf̃ δ) = e(g, c/g̃m).

To prove computational binding property, we assume that the following variant of Diffie-Hellman
inversion problem (XDHI) is hard with respect to Λ.

Assumption 5 (XDHI). Given Λ and (g, g̃, g̃a) ∈ G∗
1 ×G∗

2 ×G∗
2 for random a ∈ Z∗

p, it is hard to

compute g1/a ∈ G1.

Depending on setting Λ, the XDHI assumption is implied by basic assumptions, Computational
Diffie-Hellman Assumption (CDH), Computational Co-Diffie-Hellman Assumption (co-CDH) [12],
and Decisional Diffie-Hellman Assumption in G2 (DDHG2), as follows. Note that, CDH is implied
by DLIN in Λsym and DDHG2 is implied by SXDH in Λsxdh.

Lemma 3. CDH⇒ XDHI for Λsym. co-CDH⇒ XDHI for Λxdh. DDHG2 ⇒ XDHI for Λsxdh.

Proof. Let A be an XDHI adversary. In Λsym, given an CDH instance (g, gα, gβ), input (gα, gβ , g)
to A. It outputs gαβ , which is the answer to the CDH instance. Next, in Λxdh, given an co-CDH
instance (g, gα, g̃, g̃β) ∈ G∗

2
3, input (gα, g̃β , g̃) to A. It outputs gαβ , which is the answer to the co-

CDH instance. In Λsxdh, observe that, on input (g, g̃x, g̃), adversary A outputs gx. Thus A provides
a mapping from G2 to G1. Now, given an instance (g̃, g̃α, g̃β , g̃γ) of DDHG2 , input (g, g̃α, g̃) to A
and receive gα. Then γ = αβ can be tested by checking if e(gα, g̃β) = e(g, g̃γ) holds or not.

Theorem 13. Trapdoor commitment scheme TC2 is perfectly hiding. It is binding if the XDHI
assumption holds for Λ.

36

Proof. The perfect hiding property holds from the fact that, for any c ∈ G2, for every m ∈ Zp there
exists a single consistent δ ∈ Zp.

The binding property is proven by showing a reduction to XDHI. Given an instance of XDHI,
(g, g̃, g̃a), set f̃ = g̃a. Suppose that an adversary outputs a commitment c correctly opened to (m, d)
and (m′, d′) form ̸= m′. Then e(g, c/g̃m) = e(d, f̃) and e(g, c/g̃m

′
) = e(d′, f̃) hold. By dividing both

sides of the equations, we have e(g, g̃m−m′
) = e(d′/d, f̃) = e(d′/d, g̃a). Thus (d′/d)1/m−m′

= g1/a,
which is a correct answer to the XDHI instance.

B.3 Scheme TC3

All components for this scheme is in G1 and G2. The underlying idea is to use TC1 and, instead of
publishing a commitment in GT , we publish the decommit-key and the message in a randomized
way by applying the one-side randomization RandOneSide from Section 3.

TC3.Key(1λ): Choose random generators gr, hu from G∗
2. For i = 1, . . . , k, choose γi and δi from

Z∗
p and compute gi = gγir and hi = hδiu . Output commitment-key ck = (Λ, gr, hu, . . . , gk, hk)

and trapdoor tk = (γ1, δ1 . . . , γk, δk).

TC3.Com(ck, m⃗): Choose r and u randomly from G2, and compute

{cai}ki=0 ← RandOneSide((gr, t), (g1,m1), . . . , (gk,mk)), and (35)

{cbi}ki=0 ← RandOneSide((hu, w), (h1,m1), . . . , (hk,mk)). (36)

Output commitment c = ({cai}ki=0, {cbi}ki=0) and decommit-key dk = (r, u).

TC3.Vrf(ck, c, m⃗, dk): Parse c into ({cai}ki=0, {cbi}ki=0) ∈ G2k+2
2 and dk into (z, r, u) ∈ G3

2. Output
1 if they satisfy the following predicates. Output 0, otherwise.

1 = e(gr, r/ca0)

k∏
i=1

e(gi,mi/cai) and 1 = e(hu, u/cb0)

k∏
i=1

e(hi,mi/cbi) (37)

TC3.Sim(ck): Do the same as TC3.Com with m⃗ = (1, . . . , 1).

TC3.Equiv(ck, m⃗, ek, tk): Parse ek into (r, u) and tk into (γ1, δ1 . . . , γk, δk). Then compute r′ =
r ·
∏k
i=1m

−γi
i , and u′ = u ·

∏k
i=1m

−δi
i . Then output decommit-key dk = (r′, u′).

Theorem 14. Trapdoor commitment scheme TC3 is perfectly hiding and computationally binding
under the SDP assumption.

The hiding property is clear from the uniform output property of RandOneSide and that of TC1.
The binding property is taken over from TC1 and can be proven in the same way as for TC1.

B.4 Scheme TC4

This is the most efficient scheme both in computation and storage. The scheme virtually ’half’ the
scheme of TC1. Let Λ ∈ {Λxdh,Λsxdh}.

TC4.Key(1λ): Choose random generators gr from G∗
1. For i = 1, . . . , k, choose γi from Z∗

p and com-
pute gi = gγir . Output commitment-key ck = (Λ, gr, g1, . . . , gk) and trapdoor tk = (γ1, . . . , γk).

37

TC4.Com(ck, m⃗): Choose r randomly from G2, and compute

c = e(gr, r)

k∏
i=1

e(gi,mi). (38)

Output commitment c and decommit-key dk = r.

TC4.Vrf(ck, c, m⃗, dk): Output 1 if (38) holds. Output 0, otherwise.

TC4.Sim(ck): Choose r randomly from G2 and compute c = e(gr, r). Output commitment c and
equivocation-key ek = r.

TC4.Equiv(ck, m⃗, ek, tk): Take r and (γ1, . . . , γk) out from ek and tk, respectively. Then compute
r′ = r ·

∏k
i=1m

−γi
i , and Then output decommit-key dk = r′.

Theorem 15. TC4 is perfectly hiding and computationally binding if the DBP assumption holds
for Λ.

Proof. The hiding property holds because, for any commitment c ∈ GT and any m⃗ ∈ Gk
2, there

exists consistent t ∈ G2 that fulfills relation (38).

The binding property is shown similarly to Theorem 12:
Given an instance of DBP, (Λ, gz, gr), do as follows.

• Set gi = gχi
z g

γi
r . Run the adversary with ck = (gr, {gi}ki=1).

• Given two openings (m⃗, r) and (m⃗′, r′) from the adversary, compute

z⋆ =

k∏
i=1

(mi/m
′
i)
χi , r⋆ = (r/r′)

k∏
i=1

(mi/m
′
i)
γi . (39)

• Output (z⋆, r⋆).

Since the openings fulfills (33), we have

1 = e
(
gr,

r

r′

)∏
e

(
gi,

mi

m′
i

)
= e

(
gz,

k∏
i=1

(
mi

m′
i

)χi
)
e

(
gr,

r

r′

k∏
i=1

(
mi

m′
i

)γi)
= e(gz, z

⋆) e(gr, r
⋆).

But m⃗ ̸= m⃗′, so there exists i such that mi/m
′
i ̸= 1. Also, χi is independent from the view of

the adversary. That is, for every choice of χi, there exist corresponding γi that gives the same gi.
Therefore, z⋆ =

∏
i(mi/m

′
i)
χi ̸= 1 with overwhelming probability. Hence (z⋆, r⋆) is a valid answer

to the instance of SDP.

One can have a variant of TC4 whose commitment is in G1 and G2 in a similar way we convert
TC1 to TC3. Unlike the previous case, however, RandOneSide cannot be used as TC4 is in Λ = Λsxdh.
So we instead use RandSeq keeping gr and hu intact. This modification results in 2k + 1 group
elements in a commitment, which is 1 element less than that of TC4. However, depending on
applications, this may not be a gain since the resulting verification predicate is not one-sided.

38

C One-Time Signature Schemes

C.1 A One-Time Signature Scheme in Any Setting

Let Λ ∈ {Λsym,Λxdh,Λsxdh}.

• OTS1.Key(1λ): Choose random generators gz, hz, gr, hu ← G∗
1. For i = 1, . . . , k, choose χi,

γi, δi ← Z∗
p and compute (gi, hi) = (gχi

z g
γi
r , h

χi
z hδiu). Also choose ζ, ρ, φ← Z∗

p and set (a, ã)←
Rand(gζzg

ρ
r , g̃) and (b, b̃) ← Rand(hζzh

φ
u , g̃). Set vk = (gz, hz, gr, hu, {gi, hi}ki=1, a, ã, b, b̃) and

sk = (vk, ζ, ρ, φ, {χi, γi, δi}ki=1). Output (vk, sk).

• OTS1.Sign(sk, m⃗): Compute

z = g̃ζ
k∏
i=1

m−χi
i , r = g̃ρ

k∏
i=1

m−γi
i , u = g̃φ

k∏
i=1

m−δi
i .

Output σ = (z, r, u) as a signature.

• OTS1.Vrf(vk, m⃗, σ): Parse σ into (z, r, u). Output 1 if the following equations hold. Output
0, otherwise.

e(a, ã) = e(gz, z) e(gr, r)
k∏
i=1

e(gi,mi) (40)

e(b, b̃) = e(hz, z) e(hu, u)

k∏
i=1

e(hi,mi) (41)

Theorem 16. One-time signature scheme OTS1 is strongly unforgeable against one-time chosen
message attacks if SDP holds for Λ.

Proof. Suppose that there is an adversary, A, that finds a forged signature σ† = (z†, r†, u†) for
message m⃗† after seeing a one-time signature (z, r, u) for message m⃗ of its choice. We construct a
reduction algorithm to SDP as follows.

Given an instance (gz, hz, gr, hu) of SDP, do the same as OTS1.Key by using the input instance
as the bases. When A submit message m⃗, run OTS1.Sign and return (z, r, u) to A. Given output
(z†, r†, u†) and m⃗† from A, compute

z⋆ = (z†/z)

k∏
i=1

(m†
i/mi)

χi
, r⋆ = (r†/r)

k∏
i=1

(m†
i/mi)

γi
, u⋆ = (u†/u)

k∏
i=1

(m†
i/mi)

δi
. (42)

Then output (z⋆, r⋆, u⋆). This completes the description of the reduction algorithm.
Suppose that adversary A is successful. By dividing both sides of (40) with respect to (z⋆, r⋆, u⋆)

and (z, r, u), we have

1 = e(gz, z
†/z) e(gr, r

†/r)

k∏
i=1

e(gi,m
†
i/mi)

= e(gz, z
†/z

k∏
i=1

(m†
i/mi)

χi
) e(gr, r

†/r

k∏
i=1

(m†
i/mi)

γi
)

= e(gz, z
⋆) e(gr, r

⋆).

39

Similarly, with respect to (41), we have

1 = e(hz, z
†/z) e(hu, u

†/u)
k∏
i=1

e(hi,m
†
i/mi)

= e(hz, z
†/z

k∏
i=1

(m†
i/mi)

χi
) e(hu, u

†/u

k∏
i=1

(m†
i/mi)

δi
)

= e(hz, z
⋆) e(hu, u

⋆).

Hence (z⋆, r⋆, u⋆) is a correct answer to the SDP instance.
What remains to show is z⋆ ̸= 1. We first consider the case of m⃗ = m⃗†. In this case,

(z†, r†, u†) ̸= (z, r, u) must hold. Observe that z† = z cannot be the case since it implies r† = r
and u† = u to fulfill (40) and (41). Since m⃗ = m⃗†, we have z⋆ = z†/z ̸= 1. Next we consider the

case of m⃗ ̸= m⃗†. In this case, there exists i⋆ for which mi⋆ ̸= m†
i⋆ holds. For such i⋆, parameter χi⋆

is information theoretically independent from the view of the adversary. Namely, for any view of
the adversary and for any χi⋆ ∈ Z∗

p, there exist consistent g̃ζ , γi⋆ , and δi⋆ . This can be verified by

seeing that (a, ã), (b, b̃), and gi, hi are perfectly hiding commitment of ζ and χi⋆ and the one-time

signature does not identify ζ and χi⋆ at the same time. Therefore, having the factor of (m†
i⋆/mi⋆)

χi⋆

with m†
i⋆/mi⋆ ̸= 1, z⋆ = 1 happens only with negligible probability over the choice of χi⋆ .

C.2 More Efficient Scheme in the Asymmetric Setting

In the case of Λ ∈ {Λxdh,Λsxdh} we can construct a more efficient scheme, say OTS2, that halves
OTS1 just like TC4 does for TC1. The verification equation would be:

e(a, ã) = e(gz, z) e(gr, r)

k∏
i=1

e(gi,mi) (43)

Scheme OTS2 is strongly unforgeable against one-time chosen message attacks under the DBP
assumption.

D Signing Unbounded-Size Messages – Alternative Construction

When the spaces for messages and verification keys are compatible, signing unbounded-size mes-
sages is generally possible (with some constraint about the message length) by the ”double-decker”
approach inspired by [25].2 On receiving a message, first sign an ephemeral verification-key and
the message length by using the base signing-key. Then divide the message into appropriate size as
determined by the ephemeral key and sign each piece with a tag that identifies the position by using
the ephemeral key repeatedly. A positive point of this approach is that it is as general as to accept
a signature scheme with linear-size signatures as the building block. On the other hand, it chokes
the message space for the individual signing and yields considerable overhead both in computation
and storage. We give a formal analysis and efficiency assessment to this generic construction in the
following.

2The generic extension in [25] is vulnerable against chosen message attacks: One can create a signature on
m⃗ = (⟨3⟩, ⟨1⟩, ⟨2⟩) by swapping some elements in a given signature on m⃗′ = (⟨2⟩, ⟨3⟩, ⟨1⟩) where ⟨n⟩ is an encoding of
integer n to an element in the message space.

40

Construction. Let SIG be a signature scheme whose verification key size is α1k+α2 and signature
size is β1k + β2 for messages of size k where α1, α2, β1, and β2 are non-negative constants. It is
required that k can be set to ≥ 2 for SIG. The construction is as follows.

• USIG2.Key(1λ): Run (vk, sk)← SIG.Key(1λ) with parameter k.

• USIG2.Sign(sk, m⃗): Let k′ = ⌊k−α2−1
α1
⌋ and n = ⌈ |m⃗|

k′−1⌉. Run (vk′, sk′) ← SIG.Key(1λ) with

parameter k′. Set m⃗0 = vk′||⟨|m⃗|⟩ and compute σ0 ← SIG.Sign(sk, m⃗0). For i = 1, . . . , n,
set m⃗i = ⟨i⟩||(m(i−1)(k′−1)+1, . . . ,mi(k′−1)) and compute σi ← SIG.Sign(sk′, m⃗i). Output σ =
(vk′, σ0, . . . , σn).

• USIG2.Vrf(vk, m⃗, σ): Let n = ⌈ |m⃗|
k′−1⌉. Set m⃗0 = vk′||⟨|m⃗|⟩ and compute b0 = SIG.Vrf(vk, m⃗0, σ0).

For i = 1, . . . , n, set m⃗i = ⟨i⟩||(m(i−1)(k′−1)+1, . . . ,mi(k′−1)) and compute bi = SIG.Vrf(vk′, m⃗i, σi).
Output 1 if bi = 1 for all i = 0, . . . , n. Output 0, otherwise.

If |m⃗| is not a multiple of k′ − 1, an appropriate padding is applied in both USIG2.Sign and
USIG2.Vrf. The length of a signature is |σ| = β1k + β2 + n(β1k

′ + β2).

Security.

Theorem 17. If SIG is EUF-CMA, so is USIG2.

Proof. Given verification-key vk, adversary A launches an adaptive chosen message attack to
USIG2. It eventually outputs a successful forgery, (m⃗†, σ†). Let σ† = (vk′

†
, σ†0, . . . , σ

†
n). Let m⃗†

i

for i = 0, . . . , n be message vector that associates to σ†i . Let {m⃗0} be messages signed by vk. Let
{m⃗i}vk′ be messages signed by vk′. We classify adversaries by two events.

• (m⃗†
0 ̸∈ {m⃗0}): In this case, (m⃗†

0, σ
†
0) is a valid forgery for underlying SIG with vk. For

adversaries that causes this case, we simulate USIG2 in a straightforward manner by using
the signing oracle of SIG with respect to vk.

• (m⃗†
0 ∈ {m⃗0}): Let m⃗†

0 = vk′
†||⟨n⟩. Let m⃗ be a message given to the signing oracle of USIG2

when m⃗0 appears. Since m⃗† must be fresh, m⃗† ̸= m⃗. Thus there exists i⋆ ∈ {1, . . . , n} where
m⃗†
i⋆ ̸= m⃗i⋆ holds. Observe that both m⃗†

i⋆ and m⃗i⋆ has ⟨i⋆⟩ as the first element. Furthermore,
since vk′ is used only once with high probability, m⃗i⋆ is the only one in {m⃗i}vk′ that has ⟨i⋆⟩
as the first element. Thus, m⃗†

i⋆ ̸∈ {m⃗i}vk′ holds. Accordingly, (m⃗†
i⋆ , σ

†
i⋆) is a valid forgery with

respect to vk′. For such adversary, the reduction algorithm first guesses from which query
adversary picks vk′ and generate (vk, sk) honestly. It then simulate a signature to that query

by using sk to sign m⃗†
0 and asking the signing oracle of SIG for the remaining part of the

signature. Other queries are answered correctly by using sk.

In either case, existence of successful adversary A to USIG2 contradicts to EUF-CMA of SIG.

Efficiency. We estimate the efficiency of USIG2 for the cases where SIG is instantiated with the
scheme in [22] and the one in Section 4. To see concrete figures, we estimate the size of a self-
certificate, i.e., a signature on the verification key itself. See Table 4 for summary. For comparison,
we include the figures about the signature-chain scheme from Section 5.2 in the table.

41

Scheme Underlying verification key signature size self-certificate
Signature size at k = 18 size at k = 18

USIG2 (double-decker) [22] 3k+11 22|m⃗|+ 166 1596
USIG2 (double-decker) SIG (Sec.4) 2k+12 7|m⃗|+ 7 343

USIG1 (sig-chaining) SIG (Sec.4) 2k+14 7⌈ |m⃗|+1
16 ⌉ 28

Table 4: Summary of efficiency assessment for schemes for unbounded-size messages. The size counts the
number of group elements. Parameter k is the maximum message size for the underlying signature scheme
and set to 18 in computing the size of a signature and self-certificate. The size of a self-certificate counts the
number of group elements in a signature when m⃗ is its own verification key.

• With the scheme in [22], the parameter is (α1, α2, β1, β2) = (3, 11, 9, 4). 3 Since k′ ≥ 2, we
have k ≥ 18. When k′ = 2 and k = 18, the total signature size for message of size |m⃗| is
9·18+4+|m⃗|(9·2+4) = 22|m⃗|+166. A self-certificate thus consists of 22(3·18+11)+166 = 1596
group elements.

• With the scheme in Section 4, the parameter is (α1, α2, β1, β2) = (2, 12, 0, 7). Since k′ ≥ 2,
we have k ≥ 17. With the same setting k′ = 2 and k = 18, a signature is in size 7|m⃗|+ 7. A
self-certificate thus consists of 7(2 · 18 + 12) + 7 = 343 group elements.

• With the signature-chain construction instantiated with our scheme in Section 5.2, the pa-
rameter is (α1, α2, β1, β2) = (2, 14, 0, 7). The size of signature for k = 18 is 7⌈ |m⃗|+1

16 ⌉. A
self-certificate thus consists of 7⌈2·18+15

16 ⌉ = 28 group elements.

E Groth-Sahai Proof System

The Groth-Sahai (GS) proof system [35] gives efficient non-interactive witness-indistinguishable
(NIWI) proofs and non-interactive zero-knowledge (NIZK) proofs for languages that can be de-
scribed as a set of satisfiable equations, each of which falls in one of the following categories:
pairing product equations, multi-exponentiation equations, and general arithmetic gates; we de-
scribe those equation types later in this section. The proof system could be instantiated under
different assumption, in particular Λsxdh setting (which is asymmetric pairings for which the the
DDH holds both in G1 and G2) or under the DLIN assumption in the Λsym setting. Below, we
define K = 1 when using the Λsxdh setting and K = 2 when using the latter.

The proof system has two type of CRS which are computationally indistinguishable: one called
“real” which yields perfect soundness and allows extraction if in possession of the trapdoor key, and
another “simulated” which yields perfect witness-indistinguishable (WI) proofs which could also
be made zero-knowledge (ZK) for some of the equations. The common reference strings consists of
u⃗0, u⃗1, . . . , u⃗K , u⃗ ∈ GK+1

1 , where u⃗1, . . . , u⃗K are linearly independent vectors as defined below and
u⃗0 and u⃗ are defined differently depending on the CRS. For a real CRS, u⃗0 is chosen to be a random
linear combination of u⃗1, . . . , u⃗K ; and u⃗ is chosen to be random and linearly independent of those
vectors. This way, the commitments defined in the next paragraph are perfectly binding. Whereas
for a simulated CRS, u⃗0 is chosen to be random and linearly independent of u⃗1, . . . , u⃗K ; u⃗ is chosen
as a random linear combination of those vectors; and the commitments are perfectly hiding. In
both cases u⃗1 = (u0, u1, 1, . . . , 1), u⃗2 = (u0, 1, u2, 1, . . . , 1), . . . , u⃗K = (u0, 1, . . . , 1, uK) for randomly
chosen u0, u1, . . . , uK ∈ G∗

1. The CRS also includes analogously defined v⃗0, v⃗1, . . . , v⃗K , v⃗ ∈ GK+1
2 .

3The original scheme in [22] includes e(g, g)α ∈ GT in a verification key. One can instead include gα/γ and gγ

with random γ without impacting to the security.

42

When proving a statement, described as a set of equations, the GS proof system first commits to
the witness components and then for each equation produces proof elements that the corresponding
committed values satisfy the equation. The commitments are done as follows: to commit to x ∈ G1,
compute c⃗x ← GSCom(x; r⃗) = (x, 1, . . . , 1)

∏K
j=0 u⃗

rj
j , where r⃗ ← ZK+1

p ; similarly commit to x̃ ∈ G2

as GSCom(x̃; r⃗) = (x̃, 1, . . . , 1)
∏K
j=0 v⃗

rj
j for a randomly chosen r⃗. Committing to χ ∈ Zp is done

by choosing random r⃗ ∈ ZKp and computing c⃗χ ← GSCom(χ; r⃗) = v⃗χ
∏K
j=1 v⃗

rj
j which is used for

multi-exponentiation equations in G1; for same type of equations in G2 we commit as u⃗χ
∏K
j=1 u⃗

rj
j .

Each commitment consists of (K + 1) group elements.

From the type of equations the GS proof system supports, we are usually interested in pairing
product equations, e.g.

∏n
i=1 e(xi, x̃i) = T , and multi-exponentiations, e.g.

∏n
i=1 x

χi
i = t. Both

types have slightly more general forms (see [35]) and also simpler (and more efficient) forms of which
we are often interested. A one-sided equation has a witness with all components being committed
either in GK+1

1 or GK+1
2 , but not in both as the multi-exponentiation example above for which

x-s are committed in the former space but χ-s are committed in the latter. The one-sided pairing
production equations are of the form

∏n
i=1 e(gi, x̃i) = T , where g1, . . . , gn are some constant group

elements; we use this particular type in Section 9.1. Similarly, the one-sided multi-exponentiation
equations are of the form

∏n
i=1 g

χi
i = t, where g-s are constants.

As mentioned before, a GS proof first commits to each witness component and then produces
proof elements for each equation (in the set of equations being shown satisfiable). Below we describe
how those elements are computed for the one-sided equations (the simplest of all) borrowing some
of the notation from [15], and refer the reader to [35] for full description in general.

One-sided Multi-exponentiation Equations

We consider the one-sided multi-exponentiation in G2; the case of G1 is handled analogously.

For an equation of the following type:

g0 = gχ1
1 gχ2

2 . . . gχn
n

where g0, . . . , gn ∈ G2 are constants (one could view an equation being described by those constants)
and χ1, . . . , χn ∈ Zq are variables (the witness for which the equation is satisfiable), the proof
elements are p1, . . . , pK :

pj =

n∏
i=1

g
rij
i , j = 1, . . . ,K,

where r⃗i ∈ ZKp is the randomness used to commit to χi, i.e. c⃗χi ← GSCom(χi; r⃗i).

When verifying a proof, for each equation g0 = gχ1
1 gχ2

2 . . . gχn
n the verifier checks that the proof

elements corresponding to the equation and the commitments satisfy

n∏
i=1

E(⃗cχi , gi) = E(⃗u, g0)

K∏
j=1

E(⃗uj , pj),

where E : GK+1
1 × G2 → GK+1

T , sending ((α0, . . . , αK), β) to (e(α0, β), . . . , e(αK , β)), is a bilinear
map.

The proofs are ZK. A proof for set of q equations being satisfiable with a witness of size n
results in a proof of size (K +1)n+Kq group elements. Note again that K = 1 or 2 depending on
the setting we work in.

43

One-sided Pairing Product Equations

For an equation
n∏
i=1

e(gi, x̃i) = T

where g1, . . . , gn ∈ G1 and T ∈ GT are constants and x̃1, . . . , x̃n ∈ G2 are variables, the proof
elements p0, . . . , pK are computed as follows:

pj =

n∏
i=1

g
rij
i , j = 0, . . . ,K,

where r⃗i ∈ ZK+1
p is the randomness used to commit to x̃i, i.e. c⃗x̃i ← GSCom(x̃i; r⃗i). When

verifying a proof, for each equation
∏n
i=1 e(gi, x̃i) = T the verifier checks that the proof elements

corresponding to the equation and the commitments satisfy

n∏
i=1

E(gi, c⃗x̃i) = (T, 1, 1, . . . , 1)
K∏
j=0

E(pj , v⃗j),

where E : G1 × GK+1
2 → GK+1

T , sending (α, (β0, . . . , βK)) to (e(α, β0), . . . , e(α, βK)), is a bilinear
map.

These proofs are only witness indistinguishable (WI), and for a set of q equations satisfiable
with a witness of size n, the proof size is (K + 1)(n+ q).

When representation of T as a pairing product is known, the trivial such case is T = 1GT
, the

proof could be transformed into ZK but results in little less efficient proofs [35].

44

	1 Introduction
	2 Preliminaries
	2.1 Common Setup with Bilinear Groups
	2.2 Digital Signatures
	2.3 Assumptions
	2.4 Other Basics

	3 Randomization Techniques
	4 The Main Scheme: Constant-Size Signatures
	4.1 Technical Overview
	4.2 Construction
	4.3 Security
	4.4 Notable Properties
	4.5 Variations

	5 Signing Unbounded-Size Messages
	5.1 Overview
	5.2 Construction

	6 Simulatable Signatures
	6.1 Overview
	6.2 Definitions
	6.3 Construction
	6.4 Security

	7 Signing Mixed-Group Messages in the SXDH Setting
	7.1 Overview
	7.2 Construction
	7.3 Security

	8 Strongly Unforgeable Signatures
	8.1 A Generic Construction
	8.2 More Efficient Non-Generic Construction

	9 Applications
	9.1 Round-Optimal Blind Signatures
	9.2 Group Signatures with Concurrent Join

	10 Conclusion
	A Proofs Related to Assumptions
	A.1 Proof of Theorem 1 (DDHG1 DBP)
	A.2 Proof of Theorem 3 (SFP SDP)
	A.3 Proof of Theorem 2 and Theorem 6 (Justification of SFP and k-SFP)

	B Homomorphic Trapdoor Commitment Schemes
	B.1 Scheme TC1
	B.2 Scheme TC2
	B.3 Scheme TC3
	B.4 Scheme TC4

	C One-Time Signature Schemes
	C.1 A One-Time Signature Scheme in Any Setting
	C.2 More Efficient Scheme in the Asymmetric Setting

	D Signing Unbounded-Size Messages – Alternative Construction
	E Groth-Sahai Proof System

