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Abstract. Encryption and signature schemes based on worst-case lattice problems are
promising candidates for the post-quantum era, where classic number-theoretic assump-
tions are rendered false. Although there have been many important results and break-
throughs in lattice cryptography, the question of how to systematically choose secure pa-
rameters in practice is still open. This is mainly due to the fact that most security proofs
are essentially asymptotic statements. In addition, the hardness of the underlying com-
plexity assumption is controlled by several interdependent parameters rather than just a
simple bit length as in classic schemes.

With our work, we close this gap by providing a handy framework for estimating secure
parameter sets by relating the hardness of practical lattice basis reduction to symmetric
“bit security” for the first time. Our approach takes various security levels, or attacker
types, into account. Moreover, we use it to predict long-term security in a similar fashion
as the results that are collected on www.keylength.com.

We apply our framework to essentially all published encryption and signature schemes that

are based on the learning with errors problem (LWE) or the small integer solution problem

(SIS), respectively. Moreover, our results are easily applicable to all modern lattice-based

cryptography, such as identity-based encryption or collision-resistant hash functions.
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1. Introduction

Lattice-based cryptography has received a lot of attention in the last couple of years. Not only
because Gentry solved the long-standing problem of fully homomorphic encryption [Gen09], but
mainly because people were, for the first time, able to base security on worst-case assumptions
rather than on average-case assumptions. This was first pointed out by Ajtai [Ajt96] in a worst-
case to average-case reduction. In other words, successfully attacking a random instance of a
cryptosystem immediately implies being able to solve all instances of the underlying problem,
such as finding short vectors in a lattice.

In addition, these lattice problems are considered to withstand quantum-computer attacks,
whereas factoring or discrete-logarithm-based systems are rendered insecure by the work of
Shor [Sho97]. Another desireable trait of lattice problems is that they, unlike factoring, with-
stand subexponential-time attacks.

However, the above advantages come at a price. Usually, the bit lengths of the involved
keys are at least O(n2 log(n)), where n is the natural system parameter. Fortunately, we can
use ideal lattices, introduced by Micciancio [Mic07] as well as Peikert and Rosen [PR06], that
reduce the key size to O(n log(n)) bits. Thus, in practice, choosing n as small as possible is
crucial. To the best of our knowledge, there is no work that systematically deals with selecting
secure parameters for lattice-based cryptography. Indeed, the task is more involved than in
the case of, say, RSA. Lattice cryptosystems have numerous parameters that affect security
and dealing with n alone is not sufficient.

So far, only Micciancio and Regev [MR08] and Lyubashevky [Lyu09] have proposed se-
cure parameters for their schemes based on an interesting observation by Gama and Nguyen
[GN08b]. They consider the Hermite Short Vector Problem HSVP with parameter δ ≥ 1 in
lattices L of dimension d. There, the task is to find a vector v with 0 < ‖v‖2 ≤ δdD(L)1/d,
where D(L) is a lattice constant. In [GN08b], the authors analyze “random lattices” according
to the Goldstein-Mayer distribution [GM03] that are considered to provide hard instances of
HSVP. Their observation is that δ is the dominating parameter and d only plays a minor role.
They conjecture that HSVP is infeasible for δ < 1.01 and “totally out of reach” for δ < 1.005
in dimensions d ≥ 500 if the lattice does not have a special structure.

The good news is that, given d, the hardness estimate δ could be determined from the
security proof for the cryptosystem. The bad news is that cryptographic, typically called q-
ary, lattices have a particular structure that can be exploited in attacks. Micciancio and Regev
describe this sublattice attack in [MR08]. The bottom line is that solving δ-HSVP in q-ary
lattices of dimension m is only as hard as solving δ′-HSVP in dimension d < m and δ′ > δ.
Thus, HSVP becomes strictly easier in q-ary lattices because there is a certain “slack” in the
required attack dimension. Moreover, the numbers involved are bounded by q ≤ poly(n),
whereas random Goldstein-Mayer lattices require that q is exponential in n.

With this knowledge, two unsatisfying options remain. The first involves Ajtai’s worst-
case to average-case reduction or its improvements [MR07, GPV08]. One could interpret the
results of Gama and Nguyen as observations about the worst-case problem. Ajtai’s worst-case
problems are in dimension n, while the typical attack against the cryptosystem needs to work
in dimension O(

√
n log(n)). Hence, this approach would work but it is overly conservative

and the resulting parameters would be impractical. The second possibility is using the results
of Gama and Nguyen in dimension d, while demanding that δ < 1.01 for security against
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current means. Basically, this is the methodology in [MR08, Lyu09] but it only offers a yes/no
certificate, i.e., the parameter set is either secure or insecure. In particular, it does not offer
security levels, such as 100 bits, meaning that the attack effort should be close to 2100 storage
times computations units.

With our work, we intend to provide a third option, with a focus on lattice-based en-
cryption [Reg09, GPV08, Pei09, SSTX09, LRP10] and signature schemes [GPV08, SSTX09,
Lyu09, LM08, CHKP10] because they are the main building blocks of public-key cryptography.
Nevertheless, our results can be easily applied to more advanced schemes, such as identity-
based encryption [GPV08], oblivious transfer [PW08, PVW08], collision resistant hashing
[LM06, ADL+08], secret key delegation [CHKP10], and others. We do not consider schemes
like NTRU [HPS98] that come without a security proof because secure parameters for this
efficient scheme are already known and standardized. With our work, we rather demonstrate
how practical (or impractical) certain provably secure schemes currently are.

Our Contribution. Inspired by the works of Lenstra and Verheul [LV01] and the sub-
sequent update by Lenstra [Len05], we propose a unified methodology for selecting secure
parameters for all modern lattice-based cryptography. To this end, we adopt the handy notion
of dollar-days, i.e., equipment cost in dollar times attack time in days, as introduced in [Len05].
Our methodology also includes 3 different attacker types, ranging from a resource-constrained
“Hacker” to an all-powerful “Intelligence agency”.

We follow a modular three-tier approach: core analysis, experiments, and application.
Tier 1: At the core, there are our conjectures and observations about how the various param-
eters for LWE and SIS influence the hardness in Section 3. In addition, via the duality of LWE
and SIS, we translate LWE instances into the language of SIS. Here, we manage to distill the
hardness into one single parameter. Furthermore, we model future algorithmic and technolog-
ical developments with a “double Moore Law”, i.e., the required attack effort decreases by a
factor 2 every 9 months.
Tier 2: Then, we establish a relation between the attack effort in practice and this single
hardness parameter by running a large number of experiments. In particular, this relation
offers a way to determine the equivalent symmetric bit-security. This is done by running prac-
tical attacks on feasible instances of SIS, followed by a conservative extrapolation in Section
3. Like Gama and Nguyen [GN08b] did in a different context, we observe that the complexity
of lattice-based attacks is mainly governed by δ. Therefore, we propose a function T (δ) that
estimates the attack complexity in dollar-days for δ ∈ (1, 1.02] in Section 3. The underlying
experiments can be easily replaced as soon as there are more powerful algorithms. The other
two tiers stay unchanged. Notice that new experiments are not required if the algorithmic
improvements are already covered by our double-Moore Law, i.e., we already anticipate new
attacks. Interestingly, our estimation shows that, today, δ = 1.01 is potentially reachable with
an effort of 40 million dollar-days. However, even a powerful intelligence agency with over 100
billion dollar-days of resources should not be able to reach δ = 1.005 before the year 2050.
Tier 3: The third part is the application of our framework to cryptographic schemes in Section
4. Since, so far, most results in lattice-based cryptography have been merely asymptotic, it
was necessary to close the gap towards an exact security treatment in each scheme. Thus, our
descriptions offer new insights regarding the exact parameter relations and also a comprehen-
sive comparison of the state-of-the-art in lattice cryptography. Once there is such a detailed
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Signature Scheme |sk| |pk| |σ|
GPV 204 654 117 348 190

Ideal-GPV 5 072 3 857 1 151

Bonsai 412 243 99 143 682 68 312

Ideal-Bonsai 42 667 8 003 010 2 754 533

Treeless 2.7 2.7 12.7

LM-OTS 8.7 33.8 20.3

Encryption Scheme |sk| |pk| |C|
Multi-bit LWE 92.2 98 0.9

Multi-bit Ring-LWE 0.6 8.8 1.3

Dual LWE 99.8 92.2 10

Dual Ring-LWE 0.7 0.6 14.4

Trapdoor LWE (rounding-off) 266 656 152 909 350

Trapdoor LWE (nearest plan) 2 600 580 36 004 120

Trapdoor Ring-LWE 1 248 624 626

Table 1: Summary of key, signature, and ciphertext sizes in kilobytes for security until the
year 2030 against reasonably powerful adversaries. The figures in bold-face denote
the optimum in each category.

scheme description, it is easy to apply our framework to propose parameter sets that are secure
until a given year and against a given attacker type. Table 1 provides a brief summary of our
findings. It shows the most important size parameters for all signature and encryption schemes
under consideration.

As an aside, we show a couple of ideal (or ring) variants that have not been written down ex-
plicitly before. In our opinion, three findings are particularly interesting. The first is regarding
ring-LWE, due to Lyubashevsky et al. [LRP10]. Using ideal lattices typically improves band-
width but our multi-bit ring-LWE and dual ring-LWE schemes demonstrate that ideal lattices
make the ciphertext larger and, when using hybrid encryption, they may waste space because
the plaintext space is larger than necessary. Also, when using ideal lattices in LWE, one re-
quires a significantly larger modulus. The second observation is that signature and encryption
schemes that require a short trapdoor-basis are rather impractical, mainly due to their huge,
often gigabyte-sized secret key. The result of Stehlé et al. [SSTX09] can improve this situation
to some extent. However, one needs to keep in mind that the signing procedure [GPV08, Pei10]
for GPV, Bonsai, Ideal-GPV, and Ideal-Bonsai is rather inefficient and requires floating-point
arithmetic as it involves a Gram-Schmidt orthogonalization of the secret trapdoor. Finally, we
would like to remark that when combinding [SSTX09] and [LRP10] to obtain an ideal version
of trapdoor-LWE [GPV08], where the decision-LWE problem is hard1, there is a caveat. The
parameter relations required for [LRP10] are within the worst-case for the trapdoor generation
algorithm in [SSTX09]. As a result, one needs to resort to a sub-optimal setup for trapdoor
generation with rather large dimensions.

2. Preliminaries

We denote with log (x) the logarithm to base e, all other logarithms are specified, e.g., log2 (x).
Vectors and matrices are written in bold, e.g., v and M. The norm of a matrix M is defined to
be ‖M‖ = maxi ‖mi‖, with mi being the columns of m. We write ‖v‖ for the Euclidean norm.
With a slight abuse of notation, the norm of a polynomial in Zq[X] is defined as the norm
of the corresponding coefficient vector if the coefficients are small and need not be reduced
modulo q.

1The trapdoor-LWE construction in [SSTX09] only offers hardness of the search-LWE problem, making it
necessary for them to use generic hardcore bits and a subexponential-time reduction.
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2.1. Lattices

A lattice in Rn is a discrete subgroup Λ = {
∑d

i=1 xi bi |xi ∈ Z}, generated by a matrix
B = [b1, . . . ,bd] ∈ Zn×d of R-linearly independent vectors (d ≤ n). The matrix B is a basis of
the lattice Λ and we write Λ = Λ(B). For d ≥ 2, there are infinitely many bases for the same
lattice. The number of linearly independent vectors in any such basis is the dimension dim(Λ)
of the lattice. Given any basis B of the lattice Λ, the determinant det(Λ) of the lattice is√

det(BtB). It is an invariant of the lattice. Another invariant is the first successive minimum
λ1(Λ), which is the Euclidean length of the shortest, non-zero vector in Λ. For a lattice Λ(B)
with B ∈ Rn×n define the dual lattice as the set of all x ∈ Rn with 〈x,y〉 ∈ Z for all y ∈ Λ(B).

Problems. One of the main computational problems in lattices is the approximate shortest
vector problem (SVP). Given a basis B of Λ and an approximation factor γ ≥ 1, the task is
to find a non-zero vector v ∈ Λ with ‖v‖2 ≤ γλ1(Λ). For approximation factors exponential
in dim(Λ), the problem is solvable in polynomial time (in dim(Λ)) by the LLL algorithm
[LLL82] for approximation factors bigger than (4/3)dim Λ. Using the block-wise algorithms
of [Sch87, GHGKN06, GN08a], even sub-exponential approximation factors are reachable in
polynomial time.

For polynomial approximation factors, which are relevant for cryptography, the best known
algorithms are exponential (space and time) [AKS01, MV10]. The algorithm mostly used in
practice is the BKZ algorithm [SE94].

In cryptography, we use lattices of special structure, which we call q-ary : let q ∈ N, A ∈
Zn×mq , we define Λ⊥q (A) = {v ∈ Zm : Av ≡ 0 (mod q)}. Its, up to scaling, dual lattice Λq(A)

is defined as {w ∈ Zn : ∃e ∈ ZmAte ≡ w (mod q)}, i.e., we have 1/q · Λ⊥q (A) = (Λq(A))∗.
The determinant of a q-ary lattice is qn and typically, we have m = Ω(n log(n)). A second
type of cryptographic lattices are ideal lattices. In ideal lattices over the ring R = Zq[x]/〈f〉
for an irreducible polynomial f of degree n, the description A is replaced by a small number of
degree-n polynomials, denoted with â = (a1, . . . ,am) ∈ Rm. Since Rm ∼= Zmnq , the parameter
m is in Ω(log(n)) for ideal lattices. In addition, in ideal lattices, the matrix-vector product
Av is replaced with the convolution product â~ v̂ :=

∑m
i=1 aivi (modulo f and q).

The main computational problem in a q-ary lattice Λ⊥q (A) is the “short integer solution”

problem (SIS): given n,m, q,A ∈ Zn×mq , and a norm bound ν, find v ∈ Λ⊥q (A) with 0 <
‖v‖2 ≤ ν. Basically, the SIS was introduced and analyzed by Ajtai [Ajt96] but there are
numerous improvements to the analysis in, e.g., [MR07, GPV08]. For Λq(A), we consider the
“learning with errors“ problem (LWE): given n,m, q,A ∈ Zn×mq , and m ”noisy“ inner products
b = Ats+ e mod q, where the components of e are chosen from a centered, discretized normal
distribution χα over Zq with standard deviation αq/

√
2π. The task is to recover s ∈ Znq . Stated

differently, given A,b, solve the bounded distance decoding problem that is similar to finding
the closest lattice vector to b because w = Ats is a lattice vector that is close to b. Given
w, one can easily recover s by linear algebra. This search version of LWE is at least as hard
as solving the decision problem, i.e., distinguish (A,b) from uniform. Finally, the Shortest
Independent Vectors Problem SIVP asks to find n linearly independent vectors vi in a lattice,
that minimize the quantity maxi ‖vi‖2. The problems for ideal lattices are defined analogously.
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Algorithmic View. In order to grasp lattice reduction algorithmically, the notion of
Hermite-SVP (HSVP) approximation seems more adequate than that of approximate SVP. In
practice, it is unlikely that λ1 is known, therefore it is impossible to check the SVP-condition
‖v‖2 ≤ γλ1(Λ). HSVP asks for a non-zero vector that satisfies ‖v‖2 ≤ δdim(Λ) det(Λ)1/dim(Λ)

for a given δ ≥ 1, which can be easily verified without knowing λ1.
Concerning the hardness of this problem, the lattice dimension certainly plays a role but

Nguyen and Gama show that δ is the dominating parameter. For random Goldstein-Mayer
lattices, Gama and Nguyen argue that solving the problem for δ ≥ 1.01 may be possible even in
high dimensions. For smaller δ, the problem is intractable. For every ε > 0, δ-HSVP is solvable
for δ = 1+ε in time polynomial in the lattice dimension and in 1/ε [Sch87, GHGKN06, GN08a].
This shows that, from a theoretical point of view, δ can be considered to be the main parameter
controlling the hardness of HSVP. However, in cryptanalysis, we do not deal with random
Goldstein-Mayer lattice bases that have very large entries of bit length 2Ω(dim(Λ)). We rather
have bases with entries of bit length log2(q) = Ω(log2(n)). Here, lattice reduction is potentially
easier as we will discuss in the following.

Average-case Hardness. Both, LWE and SIS, are treated as average-case problems that
are directly related to cryptographic schemes with a randomly chosen matrix A. By a worst-
case to average-case reduction, they are provably at least as hard as all instances of SIVP in
dimension n. In Section 4.2, we discuss how LWE can be interpreted as SIS in a related lattice.

Each instance of SIS can be naturally interpreted as an instance of the Hermite-SVP. Given
SIS with (n,m, q, ν), we compute δ = m

√
ν/qn/m and ask the Hermite-SVP solver to find v

with 0 < ‖v‖2 ≤ δmqn/m. However, this direct translation is not the best possible attack. In
[MR08], Micciancio and Regev point out that one can solve the same problem in a significantly
lower lattice dimension. They assume the existence of a δ-HSVP solver for a fixed δ. Then,
they argue that the optimum dimension for solving SIS with (n,m, q) with this solver is d =
min{

√
n log(q)/ log(δ),m}. Now, one removes m − d random columns from A to obtain A′,

reduce the d-dimensional lattice bases of Λ⊥q (A′), and pad a short vector therein with zeros.

The result is a rather sparse vector of norm ≤ δdqn/d in Λ⊥q (A).
Unfortunately, this approach is not directly applicable to cryptography because in practice,

when attacking a cryptosystem, the attacker will also take ν into account and employ stronger
and stronger HSVP solvers until a sufficiently short vector is found. Therefore, we need a
re-interpretation of their result that involves ν instead of δ. This re-interpretation allows us to
normalize SIS(n,m, q, ν) by removing the ”slack“ in the dimension parameter m. The resulting
distribution of lattices is what we will analyze by directly applying lattice basis reduction. We
defer the details to Section 3.

Notice that the bases of ideal lattices have essentially the same structure and there is no
lattice basis reduction algorithm that can take significant advantage of the ideal structure.
Therefore our analysis carries over.

Worst-case Hardness. One might argue that, since there is a worst-case to average-case
reduction, one might simply treat Goldstein-Mayer lattices as worst-case lattices, apply the
reduction, and analyze the hardness of HSVP in dimension n in Goldstein-Mayer lattices with
an appropriate δ. However, this leads to security estimates that are too conservative because
the worst-case to average-case reduction seems far from tight, with respect to the involved
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Attacker class Budget Time Dollar-days

Hacker $400 1 d 400 DD
Lenstra 40M DD
Intelligence agency $300M 360 d 108B DD

Table 2: Attacker classes and corresponding budget for each attacker.

lattice dimension and the approximation factor.

2.2. Lenstra’s Heuristic

The authors of [ECR09] describe an attacker model with attacker classes according to [BDR+96];
a subset of these classes is shown in Table 2. We add an attacker called “Lenstra”, with an
amount of 40M dollar-days, which was the value for a suitable attacker proposed by Lenstra
in [Len05]. Following the work of A.K. Lenstra and Verheul in [LV01], A.K. Lenstra pro-
posed a slightly simplified framework to choose secure cryptographic parameters in [Len05].
Let k be the security parameter and assume the best attack against a given cryptosystem
takes t(k) seconds on a machine that costs d dollars. Then, the total ”cost“ of the attack is
T (k) = d t(k)/(3600 · 24) dollar-days (DD). This notion is particularly interesting when es-
timating attack cost against lattice cryptography, where attacks may be parallelized with a
time-money tradeoff.

Assume we have an estimate for the function T (k) for attacks against lattice-based cryp-
tosystems. Then, we can find the optimum k∗ such that T (k∗) ≥ T2009, where T2009 is chosen
according to the last column of Table 2. We choose 2009 as a reference date here because the
employed compute server was bought in that year.

Estimating Future Developments. First of all, we consider Moore’s Law, which states
that computing power doubles every 18 months. Secondly, we want to take cryptanalytic devel-
opments against asymmetric primitives into account. Thus, we apply a combined degradation
function 2−12/9 that Lenstra calls ”double Moore Law“. This is motivated by the algorithmic
progress in the area of integer factorization. As for lattice basis reduction, the algorithmic
progress for practical strong algorithms, such as BKZ, is hard to judge. While, there are re-
cent results [GN08a, GHGKN06, GNR10] showing that progress is indeed possible, there are
no public implementations that beat BKZ in practice.

The above condition only yields secure parameters for the year 2009. For year y, k needs to
satisfy the inequality T (k) ≥ T2009 · 2(y−2009)·12/9 to be secure until year y.

Asymmetric primitives are often combined with symmetric ones. Hash functions are neces-
sary to sign long documents and block ciphers allow efficient hybrid encryption. We assume
that these primitives are available at any given time in the future and that they are only
affected by Moore’s Law. Unlike public-key primitives, block ciphers and hash functions can
easily be replaced if there is a new attack.
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3. Analysis

Before we can propose actual parameters, we need to assess the practical hardness of the
underlying problem. As we will see in Section 4, the best known attacks against the most
recent signature and encryption schemes involve a q-ary lattice Λ = Λ⊥q (A) of dimension
m = Ω(n log(n)) and the SIS problem with a scheme-specific norm bound ν. The required
norm bound can be obtained by studying the security reductions. Thus, the main goal of this
section is to determine the effort T2009 (in dollar-days) that is required today for mounting
these attacks. From there, we can apply Lenstra’s Heuristic to estimate parameters for the
future.

In order to grasp the hardness of most of these problems, we have conducted experiments
on 10-100 random q-ary lattices per dimension m ∈ {100, 125, 150, 175, 200, 225, 250, 275, 300}
and exponent c ∈ {2, 3, 4, 5, 6, 7, 8} for the relation q ≥ nc. The number of experiments per
dimension has been chosen adaptively to focus on the interesting invervals. These parameters
also determine n if we demand that m > n log2(q). This setting covers even the hardest
instances of SIS, where we demand the solution to be binary, i.e., ν =

√
m. The existence of

such vectors can be easily verified with a pidgeonhole argument because the function fA(v) =
Av mod q admits a collision (v,v′) ∈ {0, 1}m × {0, 1}m if qn/2m < 1. Such a collision yields
v − v′ ∈ Λ⊥q (A) with ‖v − v′‖2 ≤

√
m.

As mentioned earlier, we need to take attacks into account that do not require the full
lattice dimension m but rather work in a sub-dimension d. In Section 2, we have already
explained that we require a re-interpretation of the approach taken in [MR08]. There, the sub-
dimension d is determined by the fixed capability δ of the employed HSVP solver, namely d =√
n log(q)/ log(δ), without taking ν into account. We need the following reciprocal appraoch

and let d be determined only via n, q, and ν.

Proposition 3.1 Let S be a δ-HSVP for variable δ. The optimal dimension for solving
SIS(n,m, q, ν) with S is d = min{x ∈ N : q2n/x ≤ ν}.

Proof. The solver S finds lattice vectors of norm at most δdqn/d in dimension d. Given δ, the
minimum of this function is obtained for d =

√
n log(q)/ log(δ) (cf. [MR08]). Equivalently, this

means that, given d, one can solve HSVP for δ = 2n log2(q)/d2 . In consequence, a sufficiently
good HSVP solver in dimension d can find vectors for length δdqn/d = 2n log2(q)/dqn/d = q2n/d.
Hence, we merely need to ensure that q2n/d ≤ ν and that the solver S works for δ ≤ d

√
ν/qn/d.

To sum up, we assume the following conjecture.

Conjecture 1 For every n ∈ N>0, constant c ≥ 2, prime q ≥ nc, m > n log2(q), and ν < q,
the best known approach to solve SIS with parameters (n, q,m, ν) involves solving δ-HSVP in
dimension d = min{x ∈ N : q2n/x ≤ ν} with δ = d

√
ν/qn/d.

In our experiments, we have analyzed the running time of BKZ [SE94] with double floating-
point precision, a scalable HSVP-solver, as implemented in Shoup’s NTL [Sho] on a $1, 000
machine.2 We apply BKZ with an increasing block size parameter, i.e., decreasing δ, until
a vector of the desired length is found. Our first observation is that q plays a minor role if

2An AMD Opteron, running at 2.4 GHz.
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Figure 1: Estimated time complexity of δ-HSVP for δ ∈ [1.003, 1.02]. The plots include hori-
zontal lines, illustrating today’s power of different attacker types.

δ ∈ (1, 1.02]. To see this, compare Figures 2(a) (q ≈ n2) and 2(c) (q ≈ n8) in Appendix A.
For δ ≤ 1.02, the graphs show the same shape. This also holds for n2 ≤ q ≤ n8. Observe that
the timings are in log-scale. Although the dimension plays a noticeable role, the hardness of
HSVP is mainly governed by δ and different dimensions result in slightly shifted cost functions.
To arrive at very conservative estimates, we use SIS instances with a fix m = 175 and n, q
accordingly as our reference.3 For similar reasons, we choose a fix relation q ≈ n3 because all
cryptosystems in Section 4 require q > n2. Thus, from now on, we can treat δ as the main
security parameter and consider the cost function in dollar-days to be T (δ) = a2−(log2(δ)b) + c,
for real constants a, b, c. We use the (averaged) data samples in Figure 2(d) to find parameters
a, b, c for the above function T (δ) by a least-squares approximation. Now, we can draw our
main conjecture, where n ≥ 100 rules out unnaturally easy cases in small lattice dimensions.

Conjecture 2 Let all other parameters and relations as in Conjecture 1. For n ≥ 100 and
any δ ∈ (1, 1.015], solving δ-HSVP (in normalized q-ary lattices) of dimension d involves an
effort of at least T (δ) = 10−152−(log2(δ)1.001) + 0.005 dollar-days.

Extrapolating T for smaller δ yields Figure 1. The horizontal bars correspond to today’s
capabilities of the attacker types in Table 2. Notice that the extrapolation has moderate slope
for δ < 1.01 when compared to the actual data.

3.1. Applying Lenstra’s Heuristic

Fix an attacker type A and let δA be infeasible for A today. Assuming the Lentra Heuristic
in conjunction with the “double Moore Law”, which takes algorithmic and technological ad-
vancement into account, the inequality T (δ) ≥ T2009 · 212(y−2009)/9 for T2009 = T (δA) can be
used in both directions, i.e., compute a δ such that it is infeasible until the end of a given

3Choosing a rather small problem dimension m, and therefore a small attack dimension d, is very conservative
but it also guarantees that we can average over many data samples for small δ. Our choice was also influenced
by the fact that the BKZ algorithm tends to behave badly in large dimensions for block size parameters
bigger than 30. With our experiments we avoid this potential bias.
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year Standard (2018) 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

bit security SHA/AES 75 82 88 95 102 108 115 122 128 135

λ 160 225 246 264 285 306 324 345 366 384 405

κ 128 150 164 176 190 204 216 230 244 256 270

Hacker 1.00993 1.01177 1.00965 1.00808 1.00702 1.00621 1.00552 1.00501 1.00458 1.00419 1.00389

Lenstra 1.00803 1.00919 1.00785 1.00678 1.00602 1.00541 1.00488 1.00447 1.00413 1.00381 1.00356

Int. agency 1.00710 1.00799 1.00695 1.00610 1.00548 1.00497 1.00452 1.00417 1.00387 1.00359 1.00336

Table 3: Infeasible parameters δ for HSVP. The upper rows present recommended post-
quantum secure symmetric key size κ and hash function length λ. Each of the lower
cells contains an upper bound for the HSVP-parameter δ, such that this problem
is computationally hard for the given attacker (row) until the end of a given year
(column).

year y and vice versa. Note that the inverse function is T−1(t) = 2(1/(log2(t−0.005)·1015))1/1.001 ,
where t is the amount of dollar days available. For example, let A = “Int. agency”. Com-
pared with the year 2009, it can manage t = 108 · 2124/3 billion dollar-days in 2040. Thus, we
require δ ≤ T−1(t) = 1.00548 for infeasibility until the end of 2040. Vice versa, if an attack
requires δ ≤ 1.00548, the corresponding lattice problem is at least intractable until the end of
2040. Table 3 provides an overview of hard values for δ for the different attacker types until
2100. This table also allows a mapping between symmetric security and security parameters
for lattice cryptography. In addition, we include a column “standard” for a standard hash
function (SHA-1) and a standard block cipher (AES-128). The resulting parameter sets can
be considered secure against non-quantum adversaries until 2018.

3.2. Post-quantum Secure Hash Functions and Symmetric Key Size

Encryption schemes and hash functions are rarely used without block ciphers and collision
resistant hash functions, respectively. Since we want to propose parameters for the post-
quantum era, we also want the symmetric ciphers and hash functions to be secure in this
setting. In consequence, we need to take Grover’s search algorithm for quantum computers
into account [Gro96]. Basically, its effect is that we have to double the key length of block
ciphers that would be required in the non-quantum setting for symmetric ciphers. The output
length of hash functions has to be multiplied with 3/2. According to the recommendations
in [Len05] in conjunction with this doubling-law, we use the following formula that computes
the required key length for security until the end of a given year y. As a simplification, we
choose the symmetric parameters independently of the attacker type. A natural extension of
our work would be to let λ and κ be functions of the attacker’s resources. Here, we use the
simple Moore Law and the assumption that DES was secure in the year 1982, even against the
strongest attacker. Then, κ ≥ 2 d56 + 12(y − 1982)/18e is the proposed symmetric key length
and λ ≥ 3κ/2 is the proposed output length for hash functions. Using these formulae, we obtain
the recommendations in Table 3. Notice that some of the schemes require the hash function to
act as a random oracle. One scheme [Lyu09] even relies on “rewinding” the adversary to extract
the solution to a hard problem. Generally, this is not possible with quantum adversaries due
to the no-cloning theorem. Hence, we implicitly assume a stronger, quantum definition of the
random oracle model or restrict the adversary to classical random oracle queries.
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This concludes the analysis. Table 3 and Conjecture 2 provide all the necessary tools for
estimating secure parameters for all SIS and LWE-based cryptosystems in the next section. It
also shows the equivalent level of symmetric security, sometimes referred to as “bit security”.

4. Estimating Secure Parameters

We cover essentially every published lattice-based signature and encryption scheme and also
some unpublished variants. Moreoever, due to our modular three-tier approach, it is easy to
include new schemes in the future, that use LWE or SIS as their security assumption. For each
scheme, one needs to figure out the exact (not asymptotic) parameter relations and constraints
as functions of the main security parameter n. In addition, we let the worst-case to average-
case reduction be a guiding principle for choosing the modulus q. In conjunction with the
average-case reduction from SIS (signatures) or LWE (encryption), these parameter relations
specify the type of lattice that needs to be “attacked” in order to break the scheme. For
signature schemes, the resulting instance of SIS immediately yields the hardness estimate δ
via Conjecture 1. As for encryption schemes, we need to exploit the duality of SIS and LWE
before making such a statement. Once we have the hardness estimate δ = δ(n), we can easily
determine the least n, such that it provides sufficient hardness against various attacker types
and for the desired period of time via Conjecture 2. We restrict this section to a selection
of schemes with interesting properties and refer the interested reader to Appendix B for the
remaining ones.

4.1. Signature Schemes

All lattice-based signature schemes are based on the hardness of the SIS problem. In other
words, for each scheme, we can easily describe an equivalent instance of SIS in terms of the
parameters n,m, q, ν that also fully determine the hardness estimate δ for HSVP. For our
choices of n,m, and q, by worst-case to average-case reduction, the SIS instances in dimension
m are provably at least as hard as all instances of the shortest vector problem in dimension n.

Using the attacker dimension d of Proposition 3.1, we can compute δ = d
√
ν/qn/d. We let

q be governed by a constraint in the worst-case to average-case reduction. As this constraint
introduces a circular dependency, we typically choose a fixed relation q ≥ nt, for t ∈ N, before
the other parameters to resolve this issue. Having these relations at hand, we can also fix a δ
and find suitable n,m, q, ν such that they are valid parameters that guarantee security until
the desired year. Combined with the infeasible values for δ for each year and attacker type
(Table 3) we generate tables that present suitable parameters for each signature scheme. In
this chapter, we present excerpts of the complete parameter tables for each signature scheme,
which are given in Appendix C. More precisely, we present the signature scheme of GPV
[GPV08] and Lyubashevsky’s treeless signature scheme [Lyu09]. In Appendix B.1 we present
the ideal lattice variant of GPV, the Bonsai tree scheme [CHKP10] and its ideal lattice variant,
and the one-time signature scheme of [LM08].

GPV Signatures. The GPV signature scheme [GPV08] is due to Gentry, Peikert, and Vaikun-
tanathan. It benefits from the improved trapdoor generation algorithm in [AP09], which de-
mands m1 ≥ (1 + ϕ)n log2(q), m2 ≥ (4 + 2ϕ)n log2(q), m = m1 +m2, and odd prime q ≥ 3 (q
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has to satisfy q ≥ νω(
√
n log n), for the worst-case to average-case reduction). For our choices

of n (n ≥ 100), m (m ≥ 1000), and q (q ≥ n3), ϕ = 0.1 is a suitable choice. For ϕ = 0.1, the
statistical distance from uniformity, m2 · q−ϕn/2 in [AP09], is smaller than 2−80.

The GPV scheme is strongly unforgeable in the random oracle model as long as the respective
instance of SIS with norm bound ν = 2s

√
m is hard, for a Gaussian parameter s ≥ (1+20

√
m1)·

ω
(√

log(n)
)

. Choosing log(n) for ω
(√

log(n)
)

we get ν = 2(1 + 20
√
m1) log(n)

√
m.4

We choose m1 = d(1 + 0.1)n log2(q)e and m2 = d(4 + 0.2)n log2(q)e. For q we choose the
smallest prime bigger than nt for the smallest t such that q ≥ 2ν

√
n log2(n) (worst-case to

average-case reduction). In our case, we could choose a prime q ≥ n4. Messages are mapped
to Znq via a full-domain hash. This set is always bigger than 2λ.

Here we describe the structure of the scheme, in order to compute the key and signature
sizes. The parameters for GPV are presented in Table 4.

Secret Key: S ∈ Zm×m with ‖S‖ ≤ 20n log(q). A close look at the trapdoor construction
allows to store the key in 2m1m2 +m1 log2(q)) bits, without storing the orthogonalized
basis. This implies that generating signatures gets a bit more expensive, as it requires
computation of the QR decomposition of the trapdoor basis.

Public Key: A ∈ Zn×mq , i.e, nm log2(q) bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m1

m
|sk|
|pk|
|σ|

330
1.19e+10
12148
58531
137613
78904
154

289
6.98e+09
10396
50087
100780
57779
130

338
1.31e+10
12494
60198
145562
83462
158

391
2.34e+10
14815
71380
204654
117348
190

440
3.75e+10
17001
81913
269498
154538
221

489
5.72e+10
19222
92615
344507
197556
252

542
8.63e+10
21660
104359
437415
250834
286

592
1.23e+11
23989
115583
536545
307694
320

641
1.69e+11
26298
126709
644799
369782
353

695
2.33e+11
28871
139103
777112
445659
390

Table 4: Recommended parameters for GPV signatures. The rows correspond to attacker types
and the columns correspond to security until a given year. Sizes are in kilobytes (kB).

Lyubashevsky Treeless Signatures. In [Lyu09] Lyubashevsky presents a signature scheme
secure in the random oracle model with key generation, signing, and verification time Õ (n).
Its security is based on the hardness of approximating the shortest, non-zero vector to within
a factor of Õ

(
n2
)

in lattices corresponding to ideals in R = Z[x]/〈xn + 1〉.
The parameters involved are: n, a power of 2, an integer m, an integer dc such that 2dc

(
n
dc

)
≥

2λ (for encoding messages), and a prime integer q ≥ (2ds + 1)m · 2−128/n.
If the scheme is not strongly unforgeable, then there exists a polynomial time algorithm that

solves SIS in every lattice corresponding to ideals in R for ν = 2
√
m · nmdsdc.

4This choice is suitable for all dimensions m ≥ 83; for those m, the smoothing parameter index ε (see [MR07,
Pei07, GPV08] for more details) is smaller than 2−79. This renders the statistical distance between a
uniform distribution and the “blurred” lattice negligible (i.e., 2−80). This is due to the fact that log(m) ≥√

log(2m(1 + 1/ε))/π for m ≥ 83 and λ∞1 (Z∗) = 1 (a lattice constant) in [GPV08, Lemma 4.3], using [Pei07,
Lemma 3.5].
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We choose m = dlog2(n)e and compute the smallest dc such that 2dc
(
n
dc

)
≥ 2λ holds.

Further, for ds we choose the smallest value such that q ≥ 4m2n2.5dsdc log(n) and m >
log(q)/ log(2mndsdc) hold because of the worst-case to average-case reduction. This choice
of parameters implies that finding collisions in the underlying hash function is hard. Notice
that the scheme allows various trade-offs. For example, a larger ds increases the key size but
allows for smaller m, as demonstrated in [Lyu09]. The scheme has the following structure. See
[Lyu09] for a full description of the numerous parameters. Our proposed parameter sets are in
Table 5.

Secret Key: ŝ ∈ Rm with ‖ŝ‖∞ ≤ ds, i.e, mn log2(2ds + 1) bits for a typically small ds.

Public Key: H ∈ HR,m,H(ŝ) ∈ R, i.e., n log2(q) bits. H is again global.

Signature: σ ∈ Rm with ‖σ‖∞ ≤ mndsdc, i.e., mn log2(2mndsdc + 1) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m
dc
ds
|sk|
|pk|
|σ|

512
3.81e+12
9
23
13
2.67
2.61
12.03

256
1.76e+12
8
48
18
1.3
1.27
5.44

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

512
1.32e+13
9
60
15
2.79
2.72
12.93

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

Table 5: Recommended parameters for treeless signatures. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes
(kB).

Our parameters for the year 2020 lead to comparable sizes for keys and signatures as the
parameters in the weakest sample instantiation of [Lyu09].

4.2. Encryption Schemes

In contrast to lattice signatures that rely on (search) SIS, lattice-based encryption schemes
are usually based on the decision LWE problem. After pointing out the relation of these two
problems, we have a close look at LWE, its parameters, and properties. Then, we discuss the
parameter choices for the multi-bit variant of Regev’s cryptosystem [Reg09, KTX07, PVW08,
MR08], the dual-LWE cryptosystem [GPV08, Pei09], and the trapdoor-LWE scheme [RS09,
Pei09]. For each scheme, we also present a “ring” version that uses an ideal lattice version of
LWE [LRP10]. We assume that one uses hybrid encryption in practice. The employed block
cipher has key length κ and we want it to remain secure in the presence of quantum computers
(see Table 3).

In the following, we only show selected parameter sets. The full tables are in Appendix D.

The LWE Assumption. Let n ∈ N, m ≤ poly(n), q ≤ poly(n), and α > 0. Furthermore,

let A
$← Zn×mq , s

$← Znq , and e
$← χmα with χα being a discretized Gaussian distribution with

standard deviation αq/
√

2π and mean zero. A theorem in [Reg09] states that v ← Ats + e
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is indistinguishable from uniform if α >
√
n/q by a worst-case to average-case reduction, i.e.,

solving decision LWE implies solving several worst-case lattice problems in dimension n with
approximation factors in Õ(n/α). Thus, choosing a large α ensures worst-case hardness but it
increases the probability of a decryption error. We let this reduction govern the choice of α but
there are further restrictions, coming from the individual cryptosystems. Regev’s reduction
relies on quantum computation but it was “dequantized” by Peikert in [Pei09]. Although
Peikert requires q = 2O(n) for the dequantization to work, we stick to q = poly(n). It is more
practical and, similar to SIS, the worst-case to average-case reduction should not be more
than a guideline for choosing actual parameters. Since there is a circular dependency in the
parameters, we will make a sensible choice for q before choosing the remaining parameters.
Having chosen a complete set of parameters, we verify that all constraints are satisfied.

The assumption that (A,v) is close to uniform helps in proving CPA security of all sub-
sequent constructions. In Regev’s LWE construction it is used to show indistinguishability of
the public key from uniform, while dual-LWE and trapdoor-LWE rely on this assumption for
proving the same for the ciphertexts. The uniform distribution of ciphertexts (Regev) and keys
(dual, trapdoor) is ensured by the particular choice of m by the leftover-hash lemma [HILL99].
To get 2−κ-uniformity, we essentially require that

√
qn/ |D|m ≤ 2−κ, where D ⊂ Z is the set

from which we choose our randomness.

Ring-LWE. Although the ring (or ideal) analogue of LWE in [LRP10] extends to arbitrary
cyclotomic number fields, we will work over a special ring for efficiency reasons and for ease
of exposition. Our particular ring R = Zq[x]/ 〈xn + 1〉 requires that n is a power of two and
that q ≡ 1 (mod 2n). Hence, instead of working over matrices, we now work over the ring R,
over the subsets Dr = (Z∩{−br/2c , . . . , dr/2e})[x]/ 〈xn + 1〉 for r ≥ 1, as well as over the R-
module Rm. Notice that D1 = (Z∩{0, 1})[x]/ 〈xn + 1〉. Elements from the R-module Rm are
denoted with a hat, x̂. There are two multiplications in Rm. The first is the usual component-
wise x̂y = (x1y, . . . ,xmy) ∈ Rm and the second is a convolution ~ : Rm × Rm → R,
(x̂, ŷ) 7→

∑m
i=1 xiyi. Notice that, here, m is not Ω(n log(n)) but only Ω(log(n)). The total

“dimension”, however, is again Ω(n log(n)) because R ∼= Znq .
Also, the error distribution is different for ring-LWE. The proofs in [LRP10] require an axis-

aligned ellipsoidal Gaussian distribution over R, which we will denote with χR,α. The per-axis
Gaussian parameters are bounded by α and the exact shape is inconsequential for our analysis.
Hence, we omit the details.

The corresponding decision problem becomes: Given â
$← Rm and either r̂

$← Rm or

âs + ê ∈ Rm for s
$← R and ê ← χmR,α with certain per-axis parameters, the task is to

distinguish the two cases. As with LWE, ring-LWE offers a search-decision equivalence.
The worst-case to average-case reduction for ring-LWE is slightly more demanding than in

(ordinary) LWE. Roughly speaking, it states that distinguishing the ring-LWE distribution
from uniform for α >

√
n log(n)/q is equivalent to solving several ideal lattice problems with

approximation factors in Õ(n
√
n/α).

Again, the decision ring-LWE assumption is used to establish indistinguishability of keys
(Regev) and ciphertexts (dual, trapdoor) and the uniform distribution of ciphertexts (Regev)
and keys (dual, trapdoor) is now guaranteed by a ring-version of the leftover-hash lemma. The
first ring-version due to Micciancio [Mic07] essentially requires m = Ω̃(n), whereas m/n = Õ(1)
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is sufficient for regular LWE for a negligible statistical distance from uniform. Otherwise, the
statistical distance would not be small enough for small, practical values of n. This is because
of the complete splitting of xn + 1 is within the worst case for regularity.

There is a second ring-version of the leftover-hash lemma that has been communicated to
us by Regev [Reg10]. It studies regularity of the convolution â~ x̂, where the ai are invertible
in R, i.e., all coefficients of ai are non-zero. We defer the details and work with the “normal”
leftover hash lemma by replacing m with nm.

As will become obvious below, ring-LWE helps reduce the public key size at the expense of
having a larger ciphertext and modulus. In addition, ring-LWE can improve the computational
efficiency due to fast FFT-multiplications in the employed polynomial rings.

Again, we simplify the choice of q to resolve a circular dependency.

Attacking LWE. As pointed out by Micciancio and Regev in [MR08], the most natural
approach to distinguish (A,v) from uniform is solving an instance of the SIS problem. An
even more compelling reason for this approach is the quantum reduction from SIS to search-
LWE in [SSTX09]. We can interpret the decision-LWE problem as an instance of SIS in the
dual lattice 1/qΛ⊥q (A) because finding a short vector w ∈ 1/qΛ⊥q (A) and checking whether
〈v,w〉 is close to Z solves the decision problem. An alternative interpretation is transforming
an instance of the “bounded-distance decoding” problem in the LWE-lattice into an instance
of the approximate shortest vector problem via a well-known embedding method [GGH97].
If v is close to Λq(A), its inner product with w will be close to an integer. To see this,
consider 〈v,w〉 =

〈
Ats + e,w

〉
=
〈
Ats,w

〉
+ 〈e,w〉. Now, the first part of the sum is an

integer because Aw ≡ 0 (mod q). As for the second part, we have to consider | 〈e,w〉 |. The
length of e in the direction of w is short by design because we need to be able to decode and
because it is drawn from a relatively tight Gaussian with standard deviation αq/

√
2π in each

direction. However, the attack only works if both vectors are short. The length of w depends
on how well we can cryptanalyze the lattice 1/qΛ⊥q (A). Following the reasoning in [MR08], we

require ‖w‖ ≥ 1.5
√

2π/(αq) for the attack to fail as it makes the distribution of 〈e,w〉 mod 1
essentially uniform.

In consequence, we can phrase decision-LWE in the language of SIS with with ν = 1.5
√

2π/α
and use the hardness estimates in Section 3.

Decryption Errors. For the decryption process to work, we need to bound the errors
that are induced during encryption. In each cryptosystem, the error comes from two sources.
Firstly, a rounding error of magnitude 1/(2q) that can be bounded with certainty by choosing
a q that is sufficiently large. We will assume q > 6, i.e., a rounding error of < 1/12. Secondly,
there is an error x that follows a normal distribution with parameter s. Thus, in principle,
the error can be arbitrarily large. However, there is a tail bound for Prob[ |x| ≥ ts], t ≥ 1. It
states that e−πt

2
is a very good approximation (see, e.g., [Pei07]). We want the decryption-

error probability to be less than 2−80 in all ` components of the ciphertext. Thus, we need
1− (1− e−πt2)` < 2−80.

For all relevant parameters, setting t = 5 is sufficient. In order for the relative total error to
be less than 1/4 (to be able to decrypt), we require that ts < 1/6. Consequently, we need to
ensure that the error is distributed with s = 1/30.

Multi-bit LWE. The multi-bit version of Regev’s LWE cryptosystem [Reg09] looks as follows.
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Secret Key: S
$← Zn×κq , i.e, nκ log2(q) bits.

Public Key: A
$← Zn×mq , P = AtS + E ∈ Zm×κq for E ← χm×κα . The matrix A can be the

same for all users, e.g., generated from the random bits of π. Using the HNF technique
of [Mic01], the key is reduced to (m− n)κ log2(q) bits.

Plaintext: k ∈ Zκ2 .

Ciphertext: u = Aa ∈ Znq , c = Pta + k q−1
2 , where a

$← {−br/2c , . . . , dr/2e}m, r ≥ 1. The
ciphertext has (n+ κ) log2(q) bits.

Decryption: c− Stu ≈ k q−1
2 .

We need to set α = 1/(30
√
m dr/2e) to eliminate decryption errors because then the accumu-

lated error in c is distributed as a Gaussian with parameter s = 1/30, which limits it to at
most 1/6 per component with high probability. For simplicity, we choose r = 2. Notice that
other trade offs, e.g., choosing a different (non-binary) alphabet or choosing a larger r, are
possible and easy to implement.

We let q = q(n) be the smallest prime between 2n2 and 4n2 to resolve a circular dependency.
Then, we set m = m(n) = d((n+ κ) log2(q) + 2κ)/ log2(r + 1)e to tie the probability of being
able to distinguish ciphertexts from uniform to the symmetric security level, i.e., the probabil-
ity is at most

√
qn+κ/(r + 1)m ≤

√
qn+κ/(qn+κ22κ) = 2−κ. After taking all this into account,

we propose various parameter sets in Table 6. Our parameters differ from the proposed sets
of parameters in [MR08] as they are chosen via a completely different methodology. In addi-
tion, our parameters do not yield decryption errors but with negligible probability, whereas
in [MR08] the error probability is only guaranteed to be ≤ 1/100 without an additional error
correcting code.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

214
91621
5.47e-04
3719
55.1
54.8
0.7

191
72973
5.51e-04
3665
56.5
63.6
0.7

221
97687
5.12e-04
4234
73.3
80.3
0.8

253
128021
4.80e-04
4815
92.2
98
0.9

283
160183
4.54e-04
5400
113.5
118.7
1

314
197203
4.30e-04
6006
137.5
141.7
1.1

346
239441
4.10e-04
6609
163
165.1
1.2

376
282767
3.92e-04
7215
191.2
192
1.3

405
328051
3.77e-04
7811
221
220.6
1.5

438
383693
3.63e-04
8446
253.9
250.3
1.6

Table 6: Recommended parameters for multi-bit LWE. The rows correspond to attacker types
and the columns correspond to security until a given year. C is the ciphertext sizes
and all sizes are in kilobytes (kB).

Dual Ring-LWE. Gentry, Peikert, and Vaikuntanathan proposed a dual version of Regev’s
cryptosystem in [GPV08]. It is “dual” in the sense that public keys and ciphertexts are
essentially exchanged. Therefore, the LWE assumption ensures that ciphertexts are indistin-
guishable from random. The keys are unconditionally random for the proposed parameters.
When adapted to the ring setting, the dual cryptosystem looks as follows.

Secret Key: r̂
$← Dm

r , i.e, mn log2(r + 1) bits.

Public Key: â
$← Rm, u = â~ r̂ ∈ R. Again, â is global and the key requires n log2(q) bits.
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Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: ĉ1 = âs + x̂1 ∈ Rm, c2 = us + x2 + k q−1
2 ∈ R, where x̂1 ← χmR,α, x2 ← χR,α and

s
$← R. The ciphertext has (m+ 1)n log2(q) bits.

Decryption: c2 − r̂~ ĉ1 ≈ k q−1
2 .

We need to set m = d(log2(q) + 2κ/n)/ log2(r + 1)e to achieve unconditional (2−κ) uniformity
of u and we choose q > n2.5. We use a binary secret key, which makes the ciphertext somewhat
larger. Full “duality” with multi-bit LWE is established with a ternary secret key (r = 2). When
analyzing the Gaussian error, we need to be more careful as it comes from two sources, r̂~ x̂1

and x2 in the dual construction. The errors accumulate in a different way because of the
convolution ~. Here, we have that r̂ ~ x̂1 + x̂2 is distributed like a Gaussian with parameter
(
√
mn dr/2e + 1)α. Hence, setting α = 1/(30(

√
mn dr/2e + 1)) Our proposed parameter sets

are in Table 7.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

Table 7: Recommended parameters for dual ring-LWE. The rows correspond to attacker types
and the columns correspond to security until a given year. C is the ciphertext sizes
and all sizes are in kilobytes (kB).

Trapdoor Ring-LWE. In this section, we show how to combine the result in [LRP10] with an
earlier work on an ideal version of LWE [SSTX09]. There, the authors show how to generate
a trapdoor for LWE as in trapdoor-LWE (similar to the construction in [AP09]). However,
their result does not guarantee the hardness of the LWE decision problem, which is why they
rely on generic hardcore bits and a subexponential-time reduction. To eliminate this need, we
demonstrate that their trapdoor generation algorithm also works in the setting of [LRP10]. We
focus on the “rounding-off” version of trapdoor ring-LWE because the construction in [SSTX09]
does not bound the length L̃ of the orthogonalized trapdoor. It only guarantees that the basis
itself has length at most L. Neverthelesse, our approach generalizes to the “nearest-plane”
version (see trapdoor-LWE for the details). The scheme works as follows.

Public Key: â ∈ Rm, u
$← R. Notice that â cannot be global here as it contains a trapdoor.

Fortunately, u can be the same for all users. Thus, |pk| = mn log2(q) bits.

Secret Key: T ∈ Zmn×mn such that ât̂i ≡ 0 mod q for every column t̂ in T (interpreted as an
element of Rm). The basis length is ‖T‖ ≤ L =

√
2n(9ρ+ σ). When looking closely at

the construction, we find that the trapdoor can be reconstructed from σ(m− σ)n
√
σn+

ρ(m− ρ)n log2(3) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.
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Ciphertext: ĉ1 = âs + x̂1 ∈ Rm, c2 = us + x2 + k bq/2c ∈ R, where x̂1 ← χmR,α, x2 ← χR,α

and s
$← R. The ciphertext has (mn+ n) log2(q) bits.

The parameters σ and ρ control the success probability of the trapdoor generator and the uni-
formity of â, respectively. Furthermore, the influence the total lattice dimension mn, namely,
m = (dlog2(q) + σe)(σ+ρ). Unfortunately, the setting required in [LRP10] is within the worst-
case for the trapdoor generation algorithm in [SSTX09]. Particularly, the fact that xn+1 splits
completely into n degree-1 polynomials over Zq makes it necessary to increase the overall lat-
tice dimension. In particular, we require ρ = Ω(κ + log(q)) instead of just ρ = O(log(q)) (as
in ideal GPV) to ensure a well-distributed â.

We fix σ = 1, resulting in a slightly skewed (≤ 1− (1− 1/q)n distance) distribution, where
a1 is always invertible in R and a success probability ≥ (1 − 1/q)n that converges to 1 as n
increases. This does not harm security. However, we require that the remaining ai, i > 1, are
within 2−κ distance from uniform. To this end, it is sufficient to set ρ = (y + log2(q))/ log2(3)
for y = 1/2

√
8κ+ 16 log log2(q) + 1 + 1 + 2κ + 4 log log2(q). Alternatively, we can re-run the

algorithm until we obtain â with only non-zero coefficients. Then, the modified regularity
lemma holds and we can use ρ = ρ(n) ≥ d(2κ/n+ log2(q))/ log2(3)e.

The induced error is a rounding error ≤ 1/4 if q ≥ 2L
√
m and a Gaussian with parameter

≤ αL. The Gaussian error needs to be < 1/4, i.e., setting α = 1/(L20) is sufficient. An
admissible q is the smallest prime ≥ 2n2.5 with q ≡ 1 (mod 2n). Table 8 shows the resulting
parameter sets.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

Table 8: Recommended parameters for trapdoor ring-LWE with “rounding-off”. The rows cor-
respond to attacker types and the columns correspond to security until a given year.
C is the ciphertext sizes and all sizes are in kilobytes (kB).

5. Conclusions

When looking at how modestly the parameters need to grow with increasing security demands,
we clearly see one of the advantages for lattice-based cryptography. The downside is that all
schemes that require an actual trapdoor are quite impractical. Here, our secret key sizes
reflect the least number of bits that are necessary to reconstruct the trapdoor. This introduces
a significant computational overhead as the Gram-Schmidt orthogonalization of the trapdoor
is often required. Storing the orthogonalization of the matrix, however, results in asecret key
that is bigger by magnitudes.

A general observation regarding ideal lattices over the ring Zq[x]/(xn + 1) is that it is
desireable for efficient implementations but it does not allow a fine-grained parameter selection
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because n needs to be a power of 2. In consequence, some of the proposed paramter sets provide
more security than required.

Signatures. All signature schemes using a trapdoor come with large key, in the order of
megabytes or even gigabytes, and signature sizes. The most practical scheme is the Treeless
signature scheme (requiring random oracles). The LM-OTS scheme has small keys and signa-
tures, but it is only “one-time”. The GPV and Bonsai schemes, even when instantiated with
ideal lattices, are far from being practical.

Encryption. Regarding lattice-based encryption schemes, there is no perfect choice. The
most suitable scheme depends on the exact application scenario. However, there is a simple
classification: multi-bit (ring-)LWE offers the smallest ciphertexts, dual (ring-)LWE has the
smallest public keys, and trapdoor (ring-)LWE gives rise to CCA secure encryption. For plain
CPA encryption, using trapdoor-LWE is discouraged because it is rather impractical due to its
huge secret key. The effect of using the respective “ring” variants is a significant improvement of
the public-key size and of the computational efficiency. Furthermore, it improves the secret-key
size. The caveat is that the modulus q increases, and with it the ciphertext size. Regarding the
ring-version trapdoor-LWE, we conclude that it helps reduce both, the secret- and public-key
sizes at the expense of a rather large ciphertext.
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A. Experimental Data

The Figures 2(a) and 2(c) show that the running time of BKZ behaves quite similar for various
q and small δ. Here, we compare q ≈ n2 with q ≈ n8, whereas Figure 2(b) shows the averaged
samples for q ≈ n3 that were used for the interpolation in Section 3. It appears that the
impact of q is negligible, the graphs in the three figures are comparable. The impact of the
dimension m is noticeable, but the slope of all graphs seems to be the same. The interesting
part of the figures is where δ is smaller than 1.015, i.e., the right side of the graphs. Here,
the impact of the Hermite factor δ is compelling, and much more noticeable than the impact
of the dimension m. Thus, we can consider δ to be the main security parameter. The fitting
curve of Figure 2(d) was used to determine the key sizes in this paper. For the interesting area
where δ < 1.015, the “extrapolated attack complexity” function nicely approximates the data
samples. Hence, it is a valid basis for estimating the attack effort for δ < 1.01.

B. Further Schemes

B.1. Signature Schemes

Ideal GPV. In [SSTX09], the authors explain how to create an ideal-lattice variant of the
GPV signature, in order to reduce the key sizes of the secret and public key. This variant comes
with Õ(n) verification time and signature length. Here we apply their idea and instantiate the
GPV scheme with ideal lattices.

Choose k > 0 and n = 2k for the smallest possible k, σ = 1 and ρ = d1 + log3(q)e. The
ring R is R = Zq[x]/(xn + 1). Choose the norm bound d = s

√
m. No bound on L̃ is known,

but it is always possible to assume L̃ ≤ L =
√

2n(9ρ+ σ). The dimension has to satisfy
m ≥ (dlog2(q)e+ 1)(σ+ρ), we choose m equal to that bound. Choose the Gaussian parameter
as s = L̃ log(n) =

√
2n(9ρ+ σ) · log(n). The modulus q is chosen to be the smallest prime

bigger than or equal to n7 satisfying q ≡ 3 (mod 8), as in that case m > log2(q)/ log2(2d) and
q > 4dmn

√
n log2(n) hold. With ‖σ‖2 ≤ d we have ν(2) = 2d (in the Euclidean norm). We

can use the same bound 2d in the maximum norm, i.e., ν = 2d.
The parameters for Ideal-GPV are presented in Table 9.
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(a) Logarithmic running time in seconds for prime q ≈
n2 and selected 100 ≤ m ≤ 300 and 1.01 < δ ≤ 1.04.
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(b) Logarithmic running time in seconds for prime q ≈
n3 and selected 100 ≤ m ≤ 300 and 1.01 < δ ≤ 1.04.
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(c) Logarithmic running time in seconds for prime q ≈
n8 and selected 100 ≤ m ≤ 300 and 1.01 < δ ≤ 1.04.
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Figure 2: Logarithmic time complexity for solving δ-HSVP in different dimensions and for
different moduli q. The x-axis corresponds to the Hermite factor δ.

Here we describe the structure of the scheme, in order to compute the key and signature sizes.
Instead of storing the trapdoor basis, which implies the necessity to calculate orthogonalizations
on the fly, it would also we possible to store the Gram-Schmidt orthogonalized basis.

Secret Key: Trapdoor S ∈ Zmn×mn such that âŝi ≡ 0 mod q for every column ŝ in S (in-
terpreted as an element of Rm). The basis length is ‖S‖ ≤

√
2n(9ρ+ σ). When look-

ing closely at the construction, we find that the trapdoor can be reconstructed from
σ(m− σ)n

√
σn+ ρ(m− ρ)n log2(3) bits.

Public Key: â ∈ Rm determining the ideal lattice, i.e., mn log2(q) bits.

Signature: σ ∈ Rm with ‖σ‖2 ≤ d, i.e., mn log2(d) bits.
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m
|sk|
|pk|
|σ|

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

Table 9: Recommended parameters for Ideal-GPV signatures. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes
(kB).

Bonsai Trees. Here we describe the original Bonsai tree scheme by Cash, Hofheinz, Kiltz,
and Peikert [CHKP10]. It does not require random oracles for the security proof of existential
unforgeability. A modified version by Rückert [Rüc10] with essentially the same efficiency
supports strong unforgeability. The Bonsai tree scheme makes use of the [AP09] trapdoor,
which was used in the GPV case as well.

The parameters are: m1 = d(1 + ϕ)n log2(q)e ,m2 = d(4 + 2ϕ)n log2(q)e, hashed message
length λ, total dimension m = m1 + (λ + 1)m2.5 Again, we can use ϕ = 0.1. We choose the
Gaussian parameter s = (1 + 20

√
m1) log(n) and let q ≥ n5. If there exists a PPT attack

against unforgeability on the signature scheme, then there is a PPT algorithm attacking SIS
for ν = 2s

√
m. For the overview of the parameters, refer to Table 10.

Here we describe the keys and the signature of the scheme, in order to derive the key and
signature sizes.

Secret Key: S ∈ Z(m1+m2)×(m1+m2) with ‖S‖ ≤ 20n log(q). A close look at the trapdoor
construction allows to store the key in 2m1m2 + m1 log2(q)) bits, without storing the
orthogonalized basis. This implies that generating signatures gets a bit more expensive,
as it requires computation of the QR decomposition of the trapdoor basis.

Public Key: A0 ∈ Zn×(m1+m2)
q ,A

(k)
j ∈ Zn×m2

q , 2λ many, i.e., n(m1 + m2) log2(q) + 2λ ·
nm2 log2(q) bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

360
6.05e+12
16814
64199
10352853
263622
38483319
32290

322
3.46e+12
14755
56334
12746239
203006
41622485
39799

377
7.62e+12
17746
67758
16753972
293655
65819290
53067

436
1.58e+13
21027
80282
21295757
412243
99143682
68312

491
2.85e+13
24142
92177
26386764
543426
141070584
85551

547
4.90e+13
27364
104479
32102417
698141
194564698
105088

607
8.24e+13
30867
117854
38333417
888308
262099312
126602

663
1.28e+14
34179
130499
45186833
1089142
342149385
150405

718
1.91e+14
37468
143058
52539754
1308834
436157286
176114

779
2.87e+14
41155
157137
60538900
1579092
552063776
204315

Table 10: Recommended parameters for Bonsai signature scheme. The rows correspond to
attacker types and the columns correspond to security until a given year. Sizes are
in kilobytes (kB).

5We apply the original construction due to Peikert, as mentioned in a footnote in [CHKP10].
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Ideal Bonsai. Here we describe how to instantiate the Bonsai tree scheme of [CHKP10] with
ideal lattices. As the security reduction to a worst case problem is stated in the infinity norm
(and this norm is more natural for ideal lattices and ring elements) we describe the scheme
using the infinity norm. Following [SSTX09], the parameters are: n which is a power of 2,
f = xn+1, prime q ≡ 3 (mod 8), σ = 1, ρ = dlog3(q) + 1e. The output length of a secure hash
function is denoted by λ. We choose L̃ =

√
2n(9ρ+ σ) as bound for the length of the trapdoor.

R is again the ring Zq[x]/〈f〉. We use a Gaussian parameter s = L̃ log(n) and d = s
√
mn.

It is required that m1 + m2 ≥ (dlog(q)e + 1)(σ + r). We can choose m1 = σ = 1 and
m2 = dlog (q) + 1e (σ+ ρ)− 1. Let m = m1 + (λ+ 1)m2. Following the worst-case to average-
case reduction for ideal lattices, we choose a prime q ≥ n8 such that m > log2(q)/ log2(2d)
and q > 4dmn

√
n log2(n). The corresponding approximation factor for SIS is ν = 2d. The

overview of the parameters for the Ideal Bonsai scheme are presented in Table 11.
Here we describe the keys and the signature of the scheme, in order to derive the key

and signature sizes. Instead of storing the trapdoor basis, which implies the necessity to
calculate orthogonalizations on the fly, it would also we possible to store the Gram-Schmidt
orthogonalized basis.

Secret Key: Trapdoor S ∈ Zmn×mn such that âŝi ≡ 0 mod q for every column ŝ in S (in-
terpreted as an element of Rm). The basis length is ‖S‖ ≤

√
2n(9ρ+ σ). When look-

ing closely at the construction, we find that the trapdoor can be reconstructed from
σ(m− σ)n

√
σn+ ρ(m− ρ)n log2(3) bits.

Public Key: â0 ∈ Rm1+m2 , b̂
(k)
i for k ∈ {0, 1} and i ∈ {1, . . . , λ}, random elements in Rm2 ,

i.e., n log2(q) · (m1 +m2 + 2λm2) Bits

Signature: σ ∈ Rm with ‖σ‖2 ≤ s
√
mn, i.e., mn log2(s

√
mn) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

512
4.72e+21
1
2447
393968
14639
1772856
635248

512
4.72e+21
1
2447
553023
14639
2488603
900169

1024
1.21e+24
1
3020
745941
42667
7459410
2562702

1024
1.21e+24
1
3020
800301
42667
8003010
2754533

1024
1.21e+24
1
3020
863721
42667
8637210
2978756

1024
1.21e+24
1
3020
927141
42667
9271410
3203399

1024
1.21e+24
1
3020
981501
42667
9815010
3396263

1024
1.21e+24
1
3020
1044921
42667
10449210
3621613

1024
1.21e+24
1
3020
1108341
42667
11083410
3847310

2048
3.09e+26
1
3595
1384076
120603
30449672
10080821

Table 11: Recommended parameters for Ideal Bonsai signature scheme. The rows correspond
to attacker types and the columns correspond to security until a given year. Sizes
are in kilobytes (kB).

It is noticeable that for the Ideal Bonsai signature scheme, we need to choose the modulus
q much higher than for the GPV schemes and the original Bonsai scheme. This is due to the
worst-case to average-case reduction for ideal lattices.

LM-OTS. The one-time signature scheme of [LM08] does not require random oracles, and it
is asymptotically optimal (almost linear in the security parameter n) in concerns of key size
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and signature/verification time. It is equipped with a security proof of worst-case complexity
assumptions. Using a tree construction it can be transformed into a regular signature scheme,
with logarithmic overhead [Mer89]. The LM-OTS scheme is based on the collision resistant
hash function of [LM06, Mic07, PR06]: H ∈ HR,m = {Hâ : â ∈ Rm} that maps elements from
Rm to R. For a λ-bit message signing and verification take time Õ(λ) + Õ(n), signature size
is Õ(n).

We fix the ring defining polynomial and operate in R = Zq[x]/〈xn + 1〉. We choose a prime
q ≥ n3 and m = dlog(n)e, as proposed in the original work [LM08]. The main parameter n is
chosen to be a power of 2. Messages are encoded in {−1, 0, 1}n, but |{−1, 0, 1}n| ≥ 2λ does
not introduce an additional constraint here.

An attacker that, after seeing a signature/message pair, can output a valid signature of
another message, can use a polynomial-time algorithm to find a collision in the underlying
hash function and from this we derive ν = 20q1/mn log2(n)

√
m for SIS. See Table 12 for the

proposed LM-OTS parameters.

Secret Key: k̂ ∈ Rm, l̂ ∈ Rm with
∥∥∥k̂∥∥∥

∞
≤ 5 blog2(n)c q1/m,

∥∥∥̂l∥∥∥
∞
≤ 5n blog2(n)c q1/m, i.e,

mn log2(5 blog2(n)c q1/m) +mn log2(5n blog2(n)c q1/m) bits.

Public Key: H ∈ HR,m,H(k̂),H(̂l), i.e., mn log2(q) + 2 · n log2(q) bits. H is shared among all
users and generated from a trusted source of random bits, e.g., from the random bits of
π.

Signature: σ ∈ Rm with ‖σ‖∞ ≤ 10q1/mn log2(n), i.e., mn log2(10q1/mn log2(n)) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Lenstra n
q
m
|sk|
|pk|
|σ|

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

Table 12: Recommended parameters for LM-OTS signature scheme. The rows correspond to
attacker types and the columns correspond to security until a given year. Sizes are
in kilobytes (kB).

B.2. Encryption Schemes

Multi-bit Ring-LWE. The ring version of multi-bit ring-LWE can be defined as follows using
the sets R,Dr from Section 4.2.

Secret Key: s
$← R, i.e, n log2(q) bits.

Public Key: â
$← Rm, p̂ = âs + ê ∈ Rm for ê← χmR,α. The element â can be the same for all

users. The public-key size is mn log2(q) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: u = â ~ r̂ ∈ R, c = p̂ ~ r̂ + k q−1
2 ∈ R, where r̂

$← Dm
r . The ciphertext has

2n log2(q) bits.
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Decryption: c− su ≈ k q−1
2 .

Notice that we actually encrypt more than κ bits because it is always less than the plaintext
size n. This slack can be used to simultaneously encapsulate more than one key. See above for
the general setup for ring-LWE. In order to be able to decrypt, we require that the accumulated
error term ê~ r̂ has a small max-norm of at most q/4. The accumulated error is now generated
differently, namely as a sum of m products of polynomials, where one polynomial is the error
term and the second is always a polynomial in Dr. Thus, the resulting error is a Gaussian
with parameter ≤

√
mn dr/2eα and we can set α = 1/(30

√
mn dr/2e) to eliminate decryption

errors because then the error is distributed as a Gaussian with parameter s = 1/30 and very
likely to be less than 1/6 per component. For simplicity, we let r = 2 as in multi-bit LWE. We
let q = q(n) be the least prime > n2.5 according to the requirements of our specific ring R that
are discussed above.

Then, we set m = m(n) = d(2κ/n+ log2(q))/ log2(r + 1)e to make u 2−κ-uniform by Mic-
ciancio’s ring version of the leftover hash lemma. Again, we only show one option of choosing
the parameters. For example, a bigger r allows smaller m and therefore smaller key sizes, but
bigger errors. We propose various parameter sets in Table 13.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

Table 13: Recommended parameters for multi-bit ring-LWE. The rows correspond to attacker
types and the columns correspond to security until a given year. C is the ciphertext
sizes and all sizes are in kilobytes (kB).

Dual-LWE. Gentry, Peikert, and Vaikuntanathan proposed a dual version of Regev’s cryp-
tosystem in [GPV08]. It is “dual” in the sense that public keys and ciphertexts are essentially
exchanged. Therefore, the LWE assumption ensures that ciphertexts are indistinguishable from
random. The keys are unconditionally random for the proposed parameters. We use a variant
of the scheme in [Pei09].

Secret Key: X
$← {−br/2c , . . . , dr/2e}m×κ2 for r ≥ 1, i.e, mκ log2(r + 1) bits.

Public Key: A
$← Zn×mq , U = AX ∈ Zn×κq . Again, A is global. The key requires nκ log2(q)

bits.

Plaintext: k ∈ Zκ2 .

Ciphertext: c1 = Ats + x1 ∈ Zmq , c2 = Uts + x2 + k q−1
2 ∈ Zκq , where x1 ← χmα , x2 ← χκα and

s
$← Znq . The ciphertext has (m+ κ) log2(q) bits.

Decryption: c2 −Xtc1 ≈ k q−1
2
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We do not explicitly consider the dequantization of LWE in [Pei09] as it requires q = 2O(n),
which dramatically increases the public-key size. Moreover, by choosing q ≤ poly(n), the
encryption process is slightly simpler. Here, we let q = q(n) be the smallest prime between 2n2

and 4n2 to resolve a circular dependency. As for the secret key, we choose r = 1 to demonstrate
how small the secret key can be, but choosing X from a larger set has the advantage of a
smaller ciphertext (but bigger accumulted errors). The desired trade off depends on the target
application. To ensure that the public key is within distance 2−κ from uniform, we set m =
d(n log2(q) + 2κ)/ log2(r + 1)e. Then, the statistical distance is at most

√
qnκ/(r + 1)mκ ≤√

qnκ/(qnκ22κ) = 2−κ. As for α, we need to ensure that the induced errors, distributed
according to a Gaussian with parameter at most α(

√
m dr/2e + 1), are less than 1/6. Thus,

setting α = 1/(30(
√
m dr/2e + 1)) is sufficient. Given these relations among the parameters,

we propose secure parameter sets in Table 14.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

215
92459
5.32e-04
3803
59.4
55.4
7.9

190
72211
5.65e-04
3367
61.7
56.2
6.9

220
96821
5.21e-04
3972
79.5
72.9
8.4

253
128021
4.82e-04
4645
99.8
92.2
10

284
161323
4.52e-04
5294
122.8
114
11.6

314
197203
4.27e-04
5932
147.7
137.5
13.2

347
240829
4.04e-04
6636
175
163.6
15

377
284261
3.86e-04
7291
204.7
191.8
16.6

407
331301
3.70e-04
7952
236.9
222.3
18.3

440
387203
3.54e-04
8680
271.3
255.2
20.2

Table 14: Recommended parameters for dual-LWE. The rows correspond to attacker types and
the columns correspond to security until a given year. C is the ciphertext sizes and
all sizes are in kilobytes (kB).

Trapdoor-LWE. The trapdoor-LWE cryptosystem [GPV08, Pei09] is similar to dual-LWE. The
main difference is that the secret key is a trapdoor T for the lattice Λ⊥q (A), i.e., a short basis
thereof. It is generated via [AP09]. The secret key X in dual-LWE disappears and we cannot
share the matrix A among all users. The scheme comes in two flavours. The first uses what is
called “rounding-off” for decryption and the second involves Babai’s nearest plane algorithm
[Bab86]. The advantage of Babai’s algorithm is that we can correct bigger errors compared to
rounding-off. However, rounding-off is more efficient. We describe both in the following.

Obviously, trapdoor-LWE has numerous caveats when compared to its “trapdoor-less” coun-
terparts. It should not be used for plain CPA encryption but it is, e.g., necessary for con-
structing chosen-ciphertext (CCA) secure encryption [PW08, RS09, Pei09] based on LWE by
essentially applying Θ(n) independent trapdoors to the same input.

Let L = ‖T‖ = maxi(‖ti‖2) be the basis length, where the ti are the columns of T. Similarly,
we denote the basis length of the Gram-Schmidt orthogonalization T̃ of T with L̃.

Public Key: A ∈ Zn×mq , U
$← Zn×κq . Notice that A cannot be global here as it contains a

trapdoor. Fortunately, U can be the same for all users. Thus, |pk| = nm log2(q) bits.

Secret Key: T ∈ Zm×m such that AT ≡ 0 mod q. By looking closely at the construction in
[AP09], we find that it can be restored from just 2m1m2 +m1 log2(q) bits for “rounding-
off” and 2m1m2 +m1 log2(q) + 64 ∗ (m1 +m2)m1 for “nearest-plane” because one needs
the Gram-Schmidt orthogonalization. Here, we assume a IEEE 754 double precision data
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type is sufficient. The length is L̃ ≤ 1 + 20
√
m1 for “rounding-off” and L ≤ 20n log(q)

for “nearest-plane”.

Plaintext: k ∈ Zκt .

Ciphertext: c1 = Ats + x1 ∈ Zmq , c2 = Uts + x2 + k q−1
2 ∈ Zκq , where x1 ← χmα , x2 ← χκα and

s
$← Znq . The ciphertext has (m+ κ) log2(q) bits.

Decryption: Recover s from c1, using the trapdoor. Then, c2 −Uts ≈ k q−1
2 .

The parameters m = m1 + m2 is determined by the trapdoor algorithm in [AP09]. The
algorithm requires m1 = d(1 + ϕ)n log2(q)e and m2 = d(4 + 2ϕ)n log2(q)e, where q depends
on the decryption method as we will see below and ϕ is chosen 0.1 as explained in the GPV
signature case.

In both variants, decryption recovers s from c1 and then k from c2. The induced error is
a rounding error ≤ 1/4 if q ≥ 2L

√
m (q ≥ 2L̃

√
m) and a Gaussian with parameter ≤ αL

(rounding-off) or ≤ αL̃ (Nearest plane). The Gaussian error needs to be < 1/4, i.e., setting
α = 1/(L20) or α = 1/(L̃20) is sufficient. The advantage of the “nearest plane” approach
becomes obvious as we can have a bigger α and with that a harder worst-case problem. This
also affects q because we require q >

√
n/α in the worst-case to average-case reduction. An

admissible q is the smallest prime between n4 and 2n4 (rounding-off), or between n3 and 2n3

(nearest plane). Table 15 shows the resulting parameter sets for “nearest plane”. See Appendix
D for “rounding-off”.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Lenstra n
q
α
m
|sk|
|pk|
|C|

259
17373989
3.02e-05
33015
1811121
25104
97

229
12008999
3.25e-05
28545
1354059
18766
82

264
18399749
2.98e-05
33768
1894872
26262
100

302
27543611
2.76e-05
39560
2600580
36044
120

338
38614483
2.58e-05
45149
3387284
46948
139

373
51895141
2.44e-05
50667
4265727
59126
159

410
68921003
2.31e-05
56583
5320089
73739
181

445
88121141
2.20e-05
62249
6438898
89246
201

480
1.11e+08
2.10e-05
67978
7678583
106431
223

517
1.38e+08
2.02e-05
74099
9123402
126460
245

Table 15: Recommended parameters for trapdoor-LWE with “nearest-plane”. The rows corre-
spond to attacker types and the columns correspond to security until a given year.
C is the ciphertext sizes and all sizes are in kilobytes (kB).
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C. Secure Parameters for Lattice-based Signature Schemes

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Hacker n
q
m1

m
|sk|
|pk|
|σ|

267
5.08e+09
9470
45628
83634
47949
117

226
2.61e+09
7777
37469
56405
32334
95

275
5.72e+09
9805
47243
89657
51404
122

328
1.16e+10
12062
58116
135670
77789
152

377
2.02e+10
14197
68403
187940
107765
182

426
3.29e+10
16373
78886
249953
143327
212

479
5.26e+10
18766
90418
328358
188295
245

528
7.77e+10
21012
101240
411653
236067
277

578
1.12e+11
23334
112427
507647
291119
310

632
1.60e+11
25872
124656
624077
357898
347

Lenstra n
q
m1

m
|sk|
|pk|
|σ|

330
1.19e+10
12148
58531
137613
78904
154

289
6.98e+09
10396
50087
100780
57779
130

338
1.31e+10
12494
60198
145562
83462
158

391
2.34e+10
14815
71380
204654
117348
190

440
3.75e+10
17001
81913
269498
154538
221

489
5.72e+10
19222
92615
344507
197556
252

542
8.63e+10
21660
104359
437415
250834
286

592
1.23e+11
23989
115583
536545
307694
320

641
1.69e+11
26298
126709
644799
369782
353

695
2.33e+11
28871
139103
777112
445659
390

Int. agency n
q
m1

m
|sk|
|pk|
|σ|

373
1.94e+10
14021
67556
183313
105112
179

332
1.21e+10
12235
58948
139584
80032
155

381
2.11e+10
14373
69252
192632
110456
184

434
3.55e+10
16732
80615
261031
149677
217

483
5.44e+10
18949
91297
334780
191971
248

532
8.01e+10
21197
102130
418925
240235
280

585
1.17e+11
23661
114003
521976
299340
315

635
1.63e+11
26014
125340
630945
361835
349

684
2.19e+11
28344
136567
749025
429559
382

737
2.95e+11
30890
148832
889603
510179
419

Table 16: Recommended parameters for GPV signatures. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes
(kB).

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Hacker n
q
m
|sk|
|pk|
|σ|

256
7.21e+16
2204
5072
3857
1151

128
5.63e+14
1683
1605
1288
413

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

Lenstra n
q
m
|sk|
|pk|
|σ|

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

Int. agency n
q
m
|sk|
|pk|
|σ|

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

Table 17: Recommended parameters for Ideal GPV signatures. The rows correspond to at-
tacker types and the columns correspond to security until a given year. Sizes are in
kilobytes (kB).
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Hacker n
q
m1

m2

m
|sk|
|pk|
|σ|

293
2.16e+12
13206
50423
8131309
162635
23739505
24964

253
1.04e+12
11109
42414
9596673
115087
23594146
29413

308
2.77e+12
14004
53470
13221094
182881
40987861
41245

368
6.75e+12
17252
65871
17473067
277532
66744255
55354

423
1.35e+13
20298
77500
22185298
384164
99723757
71157

478
2.50e+13
23401
89347
27452930
510578
142287328
89007

538
4.51e+13
26843
102490
33336093
671813
198217071
109166

593
7.33e+13
30045
114716
39721781
841634
264393051
131191

649
1.15e+14
33347
127324
46761255
1036780
345491597
155658

710
1.80e+14
36987
141223
54407842
1275461
445907591
182465

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

360
6.05e+12
16814
64199
10352853
263622
38483319
32290

322
3.46e+12
14755
56334
12746239
203006
41622485
39799

377
7.62e+12
17746
67758
16753972
293655
65819290
53067

436
1.58e+13
21027
80282
21295757
412243
99143682
68312

491
2.85e+13
24142
92177
26386764
543426
141070584
85551

547
4.90e+13
27364
104479
32102417
698141
194564698
105088

607
8.24e+13
30867
117854
38333417
888308
262099312
126602

663
1.28e+14
34179
130499
45186833
1089142
342149385
150405

718
1.91e+14
37468
143058
52539754
1308834
436157286
176114

779
2.87e+14
41155
157137
60538900
1579092
552063776
204315

Int. agency n
q
m1

m2

m
|sk|
|pk|
|σ|

406
1.10e+13
19350
73881
11914191
349125
50966345
37497

368
6.75e+12
17252
65871
14904098
277532
56907817
47007

424
1.37e+13
20354
77714
19215712
386287
86583181
61395

483
2.63e+13
23686
90434
23988696
523082
125803800
77523

538
4.51e+13
26843
102490
29338983
671813
174403982
95746

594
7.39e+13
30104
114940
35316684
844933
235476156
116285

654
1.20e+14
33644
128457
41782169
1055320
311381825
138711

710
1.80e+14
36987
141223
48900145
1275461
400694391
163535

766
2.64e+14
40366
154124
56603874
1519125
506241981
190578

826
3.85e+14
44022
168083
64755977
1806742
631657725
219415

Table 18: Recommended parameters for Bonsai signature scheme. The rows correspond to
attacker types and the columns correspond to security until a given year. Sizes are
in kilobytes (kB).

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Hacker n
q
m1

m2

m
|sk|
|pk|
|σ|

512
4.72e+21
1
2447
393968
14639
1772856
635248

512
4.72e+21
1
2447
553023
14639
2488603
900169

512
4.72e+21
1
2447
604410
14639
2719845
986234

512
4.72e+21
1
2447
648456
14639
2918052
1060162

1024
1.21e+24
1
3020
863721
42667
8637210
2978756

1024
1.21e+24
1
3020
927141
42667
9271410
3203399

1024
1.21e+24
1
3020
981501
42667
9815010
3396263

1024
1.21e+24
1
3020
1044921
42667
10449210
3621613

1024
1.21e+24
1
3020
1108341
42667
11083410
3847310

1024
1.21e+24
1
3020
1162701
42667
11627010
4041026

Lenstra n
q
m1

m2

m
|sk|
|pk|
|σ|

512
4.72e+21
1
2447
393968
14639
1772856
635248

512
4.72e+21
1
2447
553023
14639
2488603
900169

1024
1.21e+24
1
3020
745941
42667
7459410
2562702

1024
1.21e+24
1
3020
800301
42667
8003010
2754533

1024
1.21e+24
1
3020
863721
42667
8637210
2978756

1024
1.21e+24
1
3020
927141
42667
9271410
3203399

1024
1.21e+24
1
3020
981501
42667
9815010
3396263

1024
1.21e+24
1
3020
1044921
42667
10449210
3621613

1024
1.21e+24
1
3020
1108341
42667
11083410
3847310

2048
3.09e+26
1
3595
1384076
120603
30449672
10080821

Int. agency n
q
m1

m2

m
|sk|
|pk|
|σ|

1024
1.21e+24
1
3020
486221
42667
4862210
1651662

512
4.72e+21
1
2447
553023
14639
2488603
900169

1024
1.21e+24
1
3020
745941
42667
7459410
2562702

1024
1.21e+24
1
3020
800301
42667
8003010
2754533

1024
1.21e+24
1
3020
863721
42667
8637210
2978756

1024
1.21e+24
1
3020
927141
42667
9271410
3203399

1024
1.21e+24
1
3020
981501
42667
9815010
3396263

1024
1.21e+24
1
3020
1044921
42667
10449210
3621613

2048
3.09e+26
1
3595
1319366
120603
29026052
9598118

2048
3.09e+26
1
3595
1384076
120603
30449672
10080821

Table 19: Recommended parameters for Ideal Bonsai signature scheme. The rows correspond
to attacker types and the columns correspond to security until a given year. Sizes
are in kilobytes (kB).
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Hacker n
q
m
dc
ds
|sk|
|pk|
|σ|

256
1.13e+12
8
30
17
1.28
1.25
5.25

256
1.76e+12
8
48
18
1.3
1.27
5.44

256
1.76e+12
8
56
18
1.3
1.27
5.49

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

512
1.32e+13
9
60
15
2.79
2.72
12.93

512
1.32e+13
9
60
15
2.79
2.72
12.93

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

Lenstra n
q
m
dc
ds
|sk|
|pk|
|σ|

512
3.81e+12
9
23
13
2.67
2.61
12.03

256
1.76e+12
8
48
18
1.3
1.27
5.44

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

512
1.32e+13
9
60
15
2.79
2.72
12.93

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

Int. agency n
q
m
dc
ds
|sk|
|pk|
|σ|

512
3.81e+12
9
23
13
2.67
2.61
12.03

512
7.25e+12
9
37
14
2.73
2.67
12.48

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

512
1.32e+13
9
50
15
2.79
2.72
12.78

512
1.32e+13
9
55
15
2.79
2.72
12.86

1024
1.03e+14
10
48
13
5.94
5.82
29.51

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

Table 20: Recommended parameters for treeless signatures. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes
(kB).

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384

Hacker n
q
m
|sk|
|pk|
|σ|

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

Lenstra n
q
m
|sk|
|pk|
|σ|

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

Int. agency n
q
m
|sk|
|pk|
|σ|

1024
1.07e+09
7
8.71
33.75
20.29

512
1.34e+08
7
4.11
15.19
9.39

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

2048
8.59e+09
8
19.83
82.5
48.62

Table 21: Recommended parameters for LM-OTS signature scheme. The rows correspond to
attacker types and the columns correspond to security until a given year. Sizes are
in kilobytes (kB).
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D. Secure Parameters for Lattice-based Encryption Schemes

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Hacker n
q
α
m
|sk|
|pk|
|C|

177
62659
5.87e-04
3228
44.1
47.7
0.6

153
46819
5.93e-04
3156
43.5
55
0.6

183
67003
5.47e-04
3717
58.7
70.8
0.7

216
93319
5.08e-04
4306
76.6
87.9
0.8

246
121039
4.77e-04
4885
96.3
107.6
0.9

276
152363
4.51e-04
5472
118.3
129.4
1

309
190979
4.27e-04
6084
142.9
152.3
1.1

338
228509
4.08e-04
6670
168.9
177.8
1.2

368
270859
3.91e-04
7277
197.8
205.8
1.3

401
321611
3.75e-04
7907
229.3
234.6
1.5

Lenstra n
q
α
m
|sk|
|pk|
|C|

214
91621
5.47e-04
3719
55.1
54.8
0.7

191
72973
5.51e-04
3665
56.5
63.6
0.7

221
97687
5.12e-04
4234
73.3
80.3
0.8

253
128021
4.80e-04
4815
92.2
98
0.9

283
160183
4.54e-04
5400
113.5
118.7
1

314
197203
4.30e-04
6006
137.5
141.7
1.1

346
239441
4.10e-04
6609
163
165.1
1.2

376
282767
3.92e-04
7215
191.2
192
1.3

405
328051
3.77e-04
7811
221
220.6
1.5

438
383693
3.63e-04
8446
253.9
250.3
1.6

Int. agency n
q
α
m
|sk|
|pk|
|C|

240
115201
5.23e-04
4066
63.1
59.8
0.8

217
94201
5.26e-04
4016
65.7
69.6
0.7

247
122021
4.92e-04
4589
83.6
86.9
0.8

279
155689
4.63e-04
5174
103.4
105.2
1

309
190979
4.39e-04
5763
125.7
126.5
1.1

339
229847
4.18e-04
6360
150.4
149.9
1.2

371
275299
3.99e-04
6966
176.8
173.9
1.3

401
321611
3.83e-04
7574
206
201.4
1.4

431
371549
3.68e-04
8188
237.5
231
1.5

463
428741
3.55e-04
8811
270.7
260.9
1.6

Table 22: Recommended parameters for multi-bit LWE. The rows correspond to attacker types
and the columns correspond to security until a given year. C is the ciphertext sizes
and all sizes are in kilobytes (kB).

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Hacker n
q
α
m
|sk|
|pk|
|C|

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.38e-04
15
0.6
9.4
1.3

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

Int. agency n
q
α
m
|sk|
|pk|
|C|

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

Table 23: Recommended parameters for multi-bit ring-LWE. The rows correspond to attacker
types and the columns correspond to security until a given year. C is the ciphertext
sizes and all sizes are in kilobytes (kB).
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Hacker n
q
α
m
|sk|
|pk|
|C|

176
61961
5.92e-04
3058
47.8
43.8
6.2

151
45613
6.37e-04
2638
48.3
42.8
5.3

182
66271
5.75e-04
3243
64.9
58.4
6.7

215
92459
5.25e-04
3899
83.8
76.2
8.2

245
120067
4.89e-04
4515
104.7
95.9
9.7

275
151253
4.59e-04
5140
128
117.8
11.2

308
189733
4.31e-04
5833
153.8
142.4
12.9

338
228509
4.09e-04
6478
181.9
168.9
14.6

369
272329
3.90e-04
7151
213
198.4
16.3

401
321611
3.72e-04
7849
245.3
229.3
18.1

Lenstra n
q
α
m
|sk|
|pk|
|C|

215
92459
5.32e-04
3803
59.4
55.4
7.9

190
72211
5.65e-04
3367
61.7
56.2
6.9

220
96821
5.21e-04
3972
79.5
72.9
8.4

253
128021
4.82e-04
4645
99.8
92.2
10

284
161323
4.52e-04
5294
122.8
114
11.6

314
197203
4.27e-04
5932
147.7
137.5
13.2

347
240829
4.04e-04
6636
175
163.6
15

377
284261
3.86e-04
7291
204.7
191.8
16.6

407
331301
3.70e-04
7952
236.9
222.3
18.3

440
387203
3.54e-04
8680
271.3
255.2
20.2

Int. agency n
q
α
m
|sk|
|pk|
|C|

242
117133
4.99e-04
4331
67.7
63.7
9.2

217
94201
5.26e-04
3886
71.2
65.7
8.1

247
122021
4.89e-04
4502
90.1
83.6
9.6

280
156817
4.57e-04
5185
111.4
103.8
11.3

310
192229
4.31e-04
5822
135
126.2
12.9

340
231223
4.09e-04
6467
161
150.9
14.5

373
278261
3.89e-04
7179
189.3
177.9
16.3

403
324839
3.72e-04
7839
220.1
207.2
18

433
374981
3.58e-04
8506
253.4
238.8
19.8

465
432457
3.44e-04
9218
288.1
272.1
21.7

Table 24: Recommended parameters for dual-LWE. The rows correspond to attacker types and
the columns correspond to security until a given year. C is the ciphertext sizes and
all sizes are in kilobytes (kB).

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Hacker n
q
α
m
|sk|
|pk|
|C|

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

Int. agency n
q
α
m
|sk|
|pk|
|C|

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

Table 25: Recommended parameters for dual ring-LWE. The rows correspond to attacker types
and the columns correspond to security until a given year. C is the ciphertext sizes
and all sizes are in kilobytes (kB).
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Hacker n
q
α
m
|sk|
|pk|
|C|

303
8.43e+09
2.50e-07
52952
112633
64579
214

257
4.36e+09
3.04e-07
43619
76433
43820
171

311
9.35e+09
2.43e-07
54598
119746
68656
221

369
1.85e+10
1.99e-07
66710
178758
102496
279

423
3.20e+10
1.69e-07
78239
245874
140986
334

477
5.18e+10
1.47e-07
89979
325179
186472
392

534
8.13e+10
1.29e-07
102576
422599
242336
455

587
1.19e+11
1.16e-07
114455
526127
301717
515

641
1.69e+11
1.05e-07
126709
644800
369782
578

699
2.39e+11
9.46e-08
140026
787448
451594
647

Lenstra n
q
α
m
|sk|
|pk|
|C|

372
1.92e+10
1.97e-07
67344
182165
104454
281

326
1.13e+10
2.30e-07
57701
133741
76682
236

380
2.09e+10
1.92e-07
69039
191451
109780
290

438
3.68e+10
1.63e-07
81480
266656
152909
350

491
5.81e+10
1.42e-07
93055
347798
199438
407

545
8.82e+10
1.26e-07
105029
443049
254065
467

603
1.32e+11
1.12e-07
118070
559879
321079
533

656
1.85e+11
1.02e-07
130138
680174
390068
596

709
2.53e+11
9.31e-08
142337
813660
466625
659

767
3.46e+11
8.50e-08
155825
975150
559252
730

Int. agency n
q
α
m
|sk|
|pk|
|C|

419
3.08e+10
1.71e-07
77378
240490
137899
330

373
1.94e+10
1.96e-07
67556
183314
105113
282

427
3.32e+10
1.68e-07
79102
251326
144113
338

485
5.53e+10
1.44e-07
91736
338006
193823
400

538
8.38e+10
1.28e-07
103466
429953
246563
459

592
1.23e+11
1.15e-07
115583
536545
307694
521

649
1.77e+11
1.03e-07
128537
663548
380528
587

703
2.44e+11
9.40e-08
140950
797878
457574
652

756
3.27e+11
8.65e-08
153257
943276
540968
717

813
4.37e+11
7.95e-08
166620
1114943
639417
788

Table 26: Recommended parameters for trapdoor-LWE with “rounding-off”. The rows corre-
spond to attacker types and the columns correspond to security until a given year.
C is the ciphertext sizes and all sizes are in kilobytes (kB).

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Hacker n
q
α
m
|sk|
|pk|
|C|

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

Lenstra n
q
α
m
|sk|
|pk|
|C|

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

Int. agency n
q
α
m
|sk|
|pk|
|C|

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

Table 27: Recommended parameters for trapdoor ring-LWE with “rounding-off”. The rows
correspond to attacker types and the columns correspond to security until a given
year. C is the ciphertext sizes and all sizes are in kilobytes (kB).
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256

Hacker n
q
α
m
|sk|
|pk|
|C|

213
9663629
3.39e-05
26196
1140287
15805
75

182
6028571
3.72e-05
21727
784507
10872
60

218
10360241
3.34e-05
26927
1204874
16699
77

257
16974611
3.03e-05
32714
1778370
24649
96

293
25153763
2.81e-05
38178
2422009
33570
115

328
35287561
2.63e-05
43588
3157106
43757
134

366
49027919
2.46e-05
49558
4081103
56565
155

400
64000031
2.34e-05
54976
5021991
69610
175

435
82312877
2.23e-05
60623
6106663
84645
195

473
1.06e+08
2.12e-05
66827
7420702
102857
218

Lenstra n
q
α
m
|sk|
|pk|
|C|

259
17373989
3.02e-05
33015
1811121
25104
97

229
12008999
3.25e-05
28545
1354059
18766
82

264
18399749
2.98e-05
33768
1894872
26262
100

302
27543611
2.76e-05
39560
2600580
36044
120

338
38614483
2.58e-05
45149
3387284
46948
139

373
51895141
2.44e-05
50667
4265727
59126
159

410
68921003
2.31e-05
56583
5320089
73739
181

445
88121141
2.20e-05
62249
6438898
89246
201

480
1.11e+08
2.10e-05
67978
7678583
106431
223

517
1.38e+08
2.02e-05
74099
9123402
126460
245

Int. agency n
q
α
m
|sk|
|pk|
|C|

290
24389003
2.82e-05
37719
2364202
32767
113

260
17576017
3.01e-05
33166
1827900
25334
98

296
25934341
2.79e-05
38637
2480515
34383
117

333
36926047
2.60e-05
44368
3271146
45337
137

368
49836043
2.46e-05
49875
4133561
57291
156

403
65450849
2.33e-05
55457
5110328
70834
176

441
85766147
2.21e-05
61598
6304984
87390
199

475
1.07e+08
2.12e-05
67156
7493796
103872
219

510
1.33e+08
2.03e-05
72936
8839481
122522
241

547
1.64e+08
1.95e-05
79107
10398669
144130
264

Table 28: Recommended parameters for trapdoor-LWE with “nearest-plane”. The rows corre-
spond to attacker types and the columns correspond to security until a given year.
C is the ciphertext sizes and all sizes are in kilobytes (kB).
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