
Estimating the Security of
Lattice-based Cryptosystems

Abstract. Encryption and signature schemes based on worst-case lattice problems are promis-
ing candidates for the post-quantum era, where classic number-theoretic assumptions are rendered
false. Although there have been many important results and breakthroughs in lattice cryptogra-
phy, the questions of how to systematically evaluate their security in practice and how to choose
secure parameters are still open. This is mainly due to the fact that most security proofs are essen-
tially asymptotic statements. In addition, the hardness of the underlying complexity assumption is
controlled by several interdependent parameters rather than just a simple bit length as in classic
schemes.

With our work, we close this gap by providing a handy framework that (1) distills a hardness
estimate out of a given parameter set and (2) relates the complexity of practical lattice-based
attacks to symmetric “bit security” for the first time. Our approach takes various security levels, or
attacker types, into account. Moreover, we use it to predict long-term security in a similar fashion
as the results that are collected on www.keylength.com. In contrast to the experiments by Gama
and Nguyen (Eurocrypt 2008), our estimates are based on precisely the family of lattices that is
relevant in cryptography.

Our framework can be applied in two ways: Firstly, to assess the hardness of the (few) proposed

parameter sets so far and secondly, to propose secure parameters in the first place. Our methodology

is applicable to essentially all lattice-based schemes that are based on the learning with errors

problem (LWE) or the small integer solution problem (SIS) and it allows us to compare efficiency

and security across different schemes and even across different types of cryptographic primitives.
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1. Introduction

Lattice-based cryptography has received a lot of attention in the last couple of years. Not only because
Gentry solved the long-standing problem of fully homomorphic encryption [Gen09], but mainly because
people were, for the first time, able to base security on worst-case assumptions rather than on average-
case assumptions. This was first pointed out by Ajtai [Ajt96] in a worst-case to average-case reduction.
In other words, successfully attacking a random instance of a cryptosystem immediately implies being
able to solve all instances of the underlying problem, such as finding short vectors in all lattices.

In addition, these lattice problems are considered to withstand quantum-computer attacks, whereas
factoring or discrete-logarithm-based systems are rendered insecure by the work of Shor [Sho97]. An-
other desirable trait of lattice problems is that they, unlike factoring, withstand subexponential-time
attacks.

However, the above advantages come at a price. Usually, the bit lengths of the involved keys are
at least O(n2 log(n)), where n is the natural system parameter. Fortunately, we can use ideal lattices,
introduced by Micciancio [Mic07] as well as Peikert and Rosen [PR06], that reduce the key size to
O(n log(n)) bits. Thus, in practice, choosing n as small as possible is crucial. To the best of our
knowledge, there is no work that systematically deals with selecting secure parameters or analyzing the
hardness of the employed assumptions. Indeed, the task is more involved than in the case of, say, RSA.
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Lattice cryptosystems have numerous parameters that affect security and dealing with n alone is not
sufficient.

So far, only Micciancio and Regev [MR08], Lyubashevky [Lyu09], as well as Lyubashevky and Mic-
ciancio [LM08] have proposed parameters for their schemes. In [MR08, Lyu09], this choice is based on
an interesting observation by Gama and Nguyen [GN08b]. They consider the Hermite Short Vector
Problem HSVP with parameter δ > 0 in lattices L of dimension d. There, the task is to find a vector
v with 0 < ‖v‖2 ≤ δdD(L)1/d, where D(L) is a lattice constant. In [GN08b], the authors analyze
“random lattices” according to the Goldstein-Mayer distribution [GM03] that are considered to provide
hard instances of HSVP. Their observation is that δ is the dominating parameter and d only plays a
minor role. They conjecture that HSVP seems reachable for δ ≈ 1.01 and “totally out of reach” for
δ < 1.005 in dimensions d ≥ 500 if the lattice does not have a special structure.

The good news is that, given d, the hardness estimate δ could be determined from the security
proof for the cryptosystem. The bad news is that cryptographic, typically called q-ary, lattices have a
particular structure that can be exploited in attacks. E.g., Micciancio and Regev describe this sublattice
attack in [MR08]. The bottom line is that solving δ-HSVP in q-ary lattices of dimension m is only as
hard as solving δ′-HSVP in dimension d < m and δ′ > δ. Thus, HSVP becomes strictly easier in q-ary
lattices because there is a certain “slack” in the required attack dimension.

With this knowledge, two unsatisfying options remain. The first involves Ajtai’s worst-case to average-
case reduction or its improvements [MR07, GPV08]. One could interpret the results of Gama and
Nguyen as observations about the worst-case problem. Ajtai’s worst-case problems are in dimension n,
while the typical attack against the cryptosystem needs to work in dimension Ω(

√
n log(n)). Hence, this

approach would work but it is overly conservative and the resulting parameters would be impractical.
The second possibility is using the results of Gama and Nguyen in dimension d, while demanding that
δ < 1.01 for security against current means. Basically, this is the methodology in [MR08, Lyu09] but it
only offers a yes/no certificate, i.e., the parameter set is either secure or insecure. In particular, it does
not offer security levels, such as 100 bits, meaning that the attack effort should be close to 2100 storage
times computation units.

With our work, we intend to provide a third option, with a focus on lattice-based encryption [Reg09,
GPV08, Pei09, SSTX09, LPR10] and signature schemes [GPV08, SSTX09, Lyu09, LM08, CHKP10,
Boy10] because they are the main building blocks of public-key cryptography. Nevertheless, our results
can be easily applied to more advanced schemes, such as identity-based encryption [GPV08], oblivious
transfer [PW08, PVW08], collision resistant hashing [LM06, ADL+08], secret key delegation [CHKP10],
and others.

We do not consider ad-hoc constructions like NTRU [HPS98] that fall outside the category of schemes
motivated by Ajtai’s work. The lattices that correspond to attacks on NTRU have a particular structure
and contain essentially one unusually short “trapdoor” vector. Random Ajtai, or q-ary, lattices do not
admit such a structure.

Apart from choosing secure parameters, we often wish to compare schemes with regard to their
security level. Say, we have scheme X and a new scheme Y , which is more efficient than X in the
sense that its public key is smaller, but at the expense of a stronger assumption. For a fair comparison,
we first need a methodology to generate parameter sets that yield comparable security levels. Now,
two things could happen: (1) the improvements in Y are still noticeable or (2) due to the stronger
assumption, Y requires, say, a larger dimension that effectively nullifies the proposed improvement.

Our Contribution. Inspired by the works of Lenstra and Verheul [LV01] and the subsequent
update by Lenstra [Len05], we propose a unified methodology for estimating security and selecting
secure parameters for all modern lattice-based cryptography. To this end, we adopt the handy notion
of dollar-days, i.e., equipment cost in dollar times attack time in days, as introduced in [Len05]. Our
methodology also includes 3 different attacker types, ranging from a resource-constrained “Hacker” to
an all-powerful “Intelligence agency”.
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We follow a modular three-tier approach: core analysis, experiments, and application.
Tier 1: At the core, there are our conjectures and observations about how the various parameters for
LWE and SIS influence the hardness of these problems in Section 3. In addition, via the duality of LWE
and SIS, we translate LWE instances into the language of SIS. Here, we manage to distill the hardness
into one single parameter.
Tier 2: Then, we establish a relation between the attack effort in practice and this single hardness
parameter by running a large number of experiments. In particular, this relation offers a way to
determine the equivalent symmetric bit-security. This is done by running practical attacks on feasible
instances of SIS, followed by a conservative extrapolation in Section 3. Like Gama and Nguyen [GN08b]
did in a different context, we observe that the complexity of lattice-based attacks is mainly governed
by δ. Therefore, we propose a function T (δ) that estimates the attack complexity in dollar-days for
δ ∈ (1, 1.02] in Section 3. There, we also demonstrate that current records in practical lattice basis
reduction support our findings. The underlying experiments can be easily replaced as soon as there
are more powerful algorithms. The other two tiers stay unchanged. Notice that new experiments are
not required if the algorithmic improvements are already covered by our double-Moore Law, i.e., we
already anticipate new attacks. Interestingly, our estimation shows that, today, δ = 1.009 is potentially
reachable with an effort of 40 million dollar-days. However, even a powerful intelligence agency with
over 100 billion dollar-days of resources should not be able to reach δ = 1.005 before the year 2050.
Tier 3: The third part is the application of our framework to cryptographic schemes in Section 4.
There are various potential applications. We can evaluate the security of proposed parameter sets in
the literature and find that some do not provide sufficient security. Similarly, we can use our formulae
in the reverse direction to output parameter sets for a given security level. Thus, we can make absolute
statements about individual cryptosystems, saying that schemes X with parameter set P (X) is secure
against a certain type of attacker until the year 2030. In addition, we can also make relative statements
across different SIS- and LWE-based schemes. For example, saying that SIS scheme X with parameters
P (X) is more, less, or as as secure as LWE scheme Y with parameters P (Y ). This allows a fair and
easy comparison, especially when new schemes are presented, and it also allows us to match the security
level of various primitives when used in a more complex protocol.

As an aside, we show a couple of interesting ideal (or ring) variants that have not been written
down explicitly before in the Appendix. In our opinion, three findings are particularly interesting. The
first is regarding ring-LWE, due to Lyubashevsky et al. [LPR10]. Using ideal lattices typically improves
bandwidth but our multi-bit ring-LWE and dual ring-LWE schemes demonstrate that ideal lattices make
the ciphertext larger and, when using hybrid encryption, they may waste space because the plaintext
space is larger than necessary. Also, when using ideal lattices in LWE, one requires a significantly
larger modulus. The second observation is that signature and encryption schemes that require a short
trapdoor-basis are rather impractical, mainly due to their huge, often gigabyte-sized secret key. The
result of Stehlé et al. [SSTX09] can improve this situation to some extent. However, one needs to keep
in mind that the signing procedure [GPV08, Pei10] for GPV, Bonsai, Ideal-GPV, and Ideal-Bonsai is
rather inefficient as it involves a Gram-Schmidt orthogonalization of the secret trapdoor matrix in high
dimensions. Finally, we would like to remark that when combining [SSTX09] and [LPR10] to obtain
an ideal version of trapdoor-LWE [GPV08], where the decision-LWE problem is hard1, there is a caveat.
The parameter relations required for [LPR10] are within the worst-case for the trapdoor generation
algorithm in [SSTX09]. As a result, one needs to resort to a sub-optimal setup for trapdoor generation
with rather large dimensions.

1The trapdoor-LWE construction in [SSTX09] only offers hardness of the search-LWE problem, making it necessary for
them to use generic hardcore bits and a subexponential-time reduction.
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2. Preliminaries

We denote with log the logarithm to base e, all other logarithms are specified, e.g., log2. Vectors
and matrices are written in boldface, e.g., v and M. The norm of a matrix M is defined to be
‖M‖ = maxi ‖mi‖, with mi being the columns of m. We write ‖v‖ for the Euclidean norm.

2.1. Lattices

In this work, we only require full-dimension lattices. A (full-dimensional) lattice in Rn is a discrete
subgroup Λ = {

∑n
i=1 xi bi |xi ∈ Z}, typically represented by a matrix B = [b1, . . . ,bn] ∈ Zn×n of

R-linearly independent vectors. The matrix B is a basis of the lattice Λ and we write Λ = Λ(B). The
number of linearly independent vectors in any such basis is the dimension dim(Λ) of the lattice. Given
any basis B of the lattice Λ, the determinant det(Λ) of the lattice is

√
det(BtB). It is an invariant of

the lattice. Another set of invariants is the successive minima. The i-th successive minimum λi(Λ) is
the smallest radius of a sphere that contains i linearly independent vectors in Λ. For a lattice Λ(B)
with B ∈ Rn×n define the (full-dimensional) dual lattice as the set of all x ∈ Rn with 〈x,y〉 ∈ Z for all
y ∈ Λ(B).

Problems. One of the main computational problems in lattices is the approximate shortest vector
problem (SVP). Given a basis B of Λ and an approximation factor γ ≥ 1, the task is to find a non-zero
vector v ∈ Λ with ‖v‖2 ≤ γλ1(Λ). A related problem is the approximate shortest independent vector
problem (SIVP), where given a basis B of Λ and an approximation factor γ, one is supposed to find a
set {v1, . . . ,vn} of linearly independent vectors in Λ such that maxi ‖vi‖2 ≤ γλn. For approximation
factors exponential in dim(Λ), the problem is solvable in polynomial time (in dim(Λ)) by the LLL
algorithm [LLL82] for approximation factors bigger than (4/3)dim(Λ). Using the block-wise algorithms
of [Sch87, GHGKN06, GN08a], even sub-exponential approximation factors are reachable in polynomial
time.

For polynomial approximation factors, which are relevant for cryptography, the best known algorithms
are exponential (space and time) [AKS01, MV10]. The algorithm mostly used in practice is the BKZ
algorithm [SE94]. Unfortunately, there is no theoretical average-case analysis of BKZ that could be
used for determining its complexity.

In cryptography, we use lattices of a special form, which we call q-ary : let q ∈ N, A ∈ Zn×mq , we

define Λ⊥q (A) = {v ∈ Zm : Av ≡ 0 (mod q)}. Its, up to scaling, dual lattice Λq(A) is defined as

{w ∈ Zn : ∃e ∈ ZmAte ≡ w (mod q)}, i.e., we have 1/q · Λ⊥q (A) = (Λq(A))∗. For a randomly chosen
A, prime q, and m > n, the determinant of the corresponding q-ary lattice is qn with high probability
and typically, we have m = Ω(n log(n)). A second type of cryptographic lattices are ideal lattices, which
can also be represented as a q-ary lattice.

The main computational problem in a q-ary lattice Λ⊥q (A) is the “short integer solution” problem

(SIS): given n,m, q,A ∈ Zn×mq , and a norm bound 1 ≤ ν < q, find v ∈ Λ⊥q (A) with 0 < ‖v‖2 ≤ ν.2

Basically, the SIS was introduced and analyzed by Ajtai [Ajt96] but there are numerous improvements to
the analysis in, e.g., [MR07, GPV08]. For Λq(A), we consider the “learning with errors“ problem (LWE):
given n,m, q,A ∈ Zn×mq , and m ”noisy“ inner products b = Ats + e mod q, where the components
of e are chosen from a centered, discretized normal distribution χα over Zq with standard deviation
αq/
√

2π. The task is to recover s ∈ Znq . Stated differently, given A,b, solve the bounded distance
decoding problem that is similar to finding the closest lattice vector to b because w = Ats is a lattice
vector that is close to b. Given w, one can easily recover s by linear algebra. This search version of LWE
is at least as hard as solving the decision problem, i.e., distinguish (A,b) from uniform. The problems
for ideal lattices are defined analogously.

Algorithmic View. In order to grasp lattice reduction algorithmically, the notion of Hermite-SVP
(HSVP) approximation seems more adequate than that of approximate SVP. In practice, it is unlikely

2We can restrict the problem to ν < q because the length-q vector (0, . . . , 0, q, 0, . . . , 0) is always in the lattice.
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that λ1 is known, therefore it is impossible to check the SVP-condition ‖v‖2 ≤ γλ1(Λ). HSVP asks for
a non-zero vector that satisfies ‖v‖2 ≤ δdim(Λ) det(Λ)1/ dim(Λ) for a given δ > 0, which can be easily
verified without knowing λ1.

Concerning the hardness of this problem, the lattice dimension certainly plays a role but Nguyen
and Gama show that δ is the dominating parameter. For random Goldstein-Mayer lattices, Gama
and Nguyen argue that δ = 1.01 seems to be an approximate limit for today’s lattice basis reduction
algorithms, even in high dimensions. For significantly smaller δ, the problem is intractable. This shows
that, from a theoretical point of view, δ can be considered to be the main parameter controlling the
hardness of HSVP. However, in cryptanalysis, we do not deal with random Goldstein-Mayer lattice
bases that have very large entries of bit length Ω(dim(Λ)), that are usually used to analyze lattice
reduction algorithms. We rather have bases with entries of bit length log2(q) = Ω(log2(n)). Here,
lattice reduction is potentially easier as we will discuss in the following.

Average-case Hardness. Both, LWE and SIS, are treated as average-case problems that are
directly related to cryptographic schemes with a randomly chosen matrix A. By a worst-case to average-
case reduction, they are provably at least as hard as all instances of SIVP in dimension n. In Section
3.2, we discuss how LWE can be interpreted as SIS in a related lattice.

Each instance of SIS can be naturally interpreted as an instance of the Hermite-SVP. Given SIS with
(n,m, q, ν), we compute δ = m

√
ν/qn/m and ask the Hermite-SVP solver to find v with 0 < ‖v‖2 ≤

δmqn/m. However, this direct translation is not the best possible attack. In [MR08], Micciancio and
Regev point out that one can solve the same problem in a significantly lower lattice dimension. They
assume the existence of a δ-HSVP solver for a fixed δ. Then, they argue that the optimum dimension for
solving SIS with (n,m, q) with this solver is d = min{

√
n log(q)/ log(δ),m}. Now, one removes m − d

random columns from A to obtain A′, reduce the d-dimensional lattice bases of Λ⊥q (A′), and pad a

short vector therein with zeros. The result is a rather sparse vector of norm ≤ δdqn/d in Λ⊥q (A).
Unfortunately, this approach is not directly applicable to cryptography because in practice, when

attacking a cryptosystem, the attacker will also take ν into account and employ stronger and stronger
HSVP solvers until a sufficiently short vector is found. Therefore, we need a re-interpretation of the
approach taken in [MR08] that involves ν instead of δ. This re-interpretation allows us to normalize
SIS(n,m, q, ν) by removing the ”slack“ in the dimension parameter m. The resulting distribution of
lattices is what we will analyze by directly applying lattice basis reduction. We defer the details to
Section 3.

Notice that the bases of ideal lattices have essentially the same structure and there is no lattice basis
reduction algorithm that can take significant advantage of the ideal structure. Therefore our analysis
carries over.

Worst-case Hardness. One might argue that, since there is a worst-case to average-case reduction,
one might simply treat Goldstein-Mayer lattices as worst-case lattices, apply the reduction, and analyze
the hardness of HSVP in dimension n in Goldstein-Mayer lattices with an appropriate δ. However, this
leads to security estimates that are too conservative because the worst-case to average-case reduction
seems far from tight, with respect to the involved lattice dimension and the approximation factor.
Nevertheless, the worst-case to average-case reduction helps in choosing sensible parameters for the
analyzed cryptosystems.

2.2. Lenstra’s Heuristic

The authors of [ECR09] describe an attacker model with attacker classes according to [BDR+96]; a
subset of these classes is shown in Table 1. We add an attacker called “Lenstra”, with an amount of
40M dollar-days, which was the value for a suitable attacker proposed by Lenstra in [Len05]. Following
the work of A.K. Lenstra and Verheul in [LV01], A.K. Lenstra proposed a slightly simplified framework
to choose secure cryptographic parameters in [Len05]. Let k be the security parameter and assume the
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Attacker class Budget Time Dollar-days

Hacker $400 1 d 400 DD
Lenstra 40M DD
Intelligence agency $300M 360 d 108B DD

Table 1: Attacker classes and corresponding budget for each attacker.

best attack against a given cryptosystem takes t(k) seconds on a machine that costs d dollars. Then,
the total ”cost“ of the attack is T (k) = d t(k)/(3600 · 24) dollar-days (DD). This notion is particularly
interesting when estimating attack cost against lattice cryptography, where attacks may be parallelized
with a time-money tradeoff.

Assume we have an estimate for the function T (k) for attacks against lattice-based cryptosystems.
Then, we can find the optimum k∗ such that T (k∗) ≥ T2009, where T2009 is chosen according to the last
column of Table 1. We choose 2009 as a reference date here because the employed compute server was
bought in that year.

Estimating Future Developments. First of all, we consider Moore’s Law, which states that
computing power doubles every 18 months. Secondly, we want to take cryptanalytic developments
against asymmetric primitives into account. Thus, we apply a combined degradation function 2−12/9

that Lenstra calls ”double Moore Law“. This is motivated by the algorithmic progress in the area
of integer factorization. As for lattice basis reduction, the algorithmic progress for practical strong
algorithms, such as BKZ, is hard to judge. While, there are recent results [GHGKN06, GN08a, GNR10]
showing that progress is indeed possible, there are no public implementations that beat BKZ in practice.

The above condition only yields secure parameters for the year 2009. For year y, k needs to satisfy
the inequality T (k) ≥ T2009 · 2(y−2009)·12/9 to be secure until year y.

Asymmetric primitives are often combined with symmetric ones. Hash functions are necessary to sign
long documents and block ciphers allow efficient hybrid encryption. We assume that these primitives
are available at any given time in the future and that they are only affected by Moore’s Law. Unlike
public-key primitives, block ciphers and hash functions can easily be replaced if there is a new attack.

3. Analysis

Let us first restrict our analysis to signature schemes, i.e., SIS-based schmes. The best known at-
tacks against these schemes involve a q-ary lattice Λ = Λ⊥q (A) of dimension m = Ω(n log(n)) and a
scheme-specific norm bound ν, which can be obtained by studying the security reductions. Later on,
in Section 3.2, we will see that attacking LWE-based encryption is quite naturally done by expressing
it as an SIS problem as well.

Thus, the main goal of this section is to determine the effort T2009 (in dollar-days) that is required
today for mounting attacks on SIS. From there, we can apply Lenstra’s Heuristic to estimate parameters
for the future.

In order to grasp the hardness of most of these problems, we have conducted experiments on 10-
100 random q-ary lattices per dimension m ∈ {100, 125, 150, 175, 200, 225, 250, 275, 300} and exponent
c ∈ {2, 3, 4, 5, 6, 7, 8} for the relation q ≥ nc. The number of experiments per dimension has been chosen
adaptively to focus on the interesting invervals. These parameters also determine n if we demand that
m > n log2(q). This setting covers even the hardest instances of SIS, where we demand the solution to
be binary, i.e., ν =

√
m. The existence of such vectors can be verified with a pidgeonhole argument

because the function fA(v) = Av mod q admits a collision (v,v′) ∈ ({0, 1}m)2 if qn/2m < 1. Such a
collision yields v − v′ ∈ Λ⊥q (A) with ‖v − v′‖2 ≤

√
m.

As mentioned earlier, we need to take attacks into account that do not require the full lattice dimension
m but rather work in a sub-dimension d. In Section 2, we have already explained that we require a
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re-interpretation of the approach taken in [MR08]. There, the sub-dimension d is determined by the
fixed capability δ of the employed HSVP solver, namely d =

√
n log(q)/ log(δ), without taking ν into

account. We need the following approach and let d be determined only via n, q, and ν.

Proposition 3.1 Let n ≥ 128, q ≥ n2, and ν < q. Let S be a δ-HSVP solver for variable δ. The
optimal dimension for solving SIS(n,m, q, ν) with S is d = min{x ∈ N : q2n/x ≤ ν}.

Proof. Notice that when removing m − d random columns from A to form a matrix A′ ∈ Zn×dq , the

resulting q-ary lattice Λ⊥q (A′) still has determinant qn with high probability. Observe that d > 2n as

otherwise q2n/d ≥ q > ν. Let k = d−n. Then, the probability that A′ generates Znq is
∏n−1
i=1 (1−qi−d) ≈

e−
q−k−q−d

q−1 ≈ e−
q−k

q−1 , which is already > 0.999999 for k ≥ 1.
The solver S finds lattice vectors of norm at most δdqn/d in dimension d. Given δ, the minimum

of this function is obtained for d =
√
n log2(q)/ log2(δ) (cf. [MR08]). Equivalently, this means that,

given d, one can solve HSVP for δ = 2n log2(q)/d2 . In consequence, a sufficiently good HSVP solver in
dimension d can find vectors for length δdqn/d = 2n log2(q)/dqn/d = q2n/d. Hence, we merely need to
ensure that q2n/d ≤ ν and that the solver S works for δ ≤ d

√
ν/qn/d. �

Note that, as mentioned in the above proof, the minimum attack dimension is d > 2n ≥ 256. Hence,
special algorithms that efficiently reach smaller δ in dimensions < 256, do not contradict our analysis.
To sum up, our analysis is based on the following conjecture.

Conjecture 1 For every n > 128, constant c ≥ 2, prime q ≥ nc, m = Ω(n log2(q)), and ν < q, the
best known approach to solve SIS with parameters (n, q,m, ν) involves solving δ-HSVP in dimension

d = min{x ∈ N : q2n/x ≤ ν} with δ = d
√
ν/qn/d.

3.1. Experimental Data

In our experiments, we have analyzed the running time of BKZ [SE94] with double floating-point
precision, a scalable HSVP-solver, as implemented in Shoup’s NTL [Sho] on a $1, 000 machine (AMD
Opteron CPU, running at 2.4 GHz). We apply BKZ in the sub-dimension d with an increasing block
size parameter, i.e., with decreasing δ, until a vector of the desired length is found. Mark that our
experiments only involve block size parameters ≤ 30 in order to avoid a known erratic behavior of the
implementation in NTL. Also, performing the experiments in rather small dimensions, we give quite a
conservative hardness estimate. Our first observation is that q plays a minor role if δ ∈ (1, 1.02]. To
see this, compare Figures 1(a) (q ≈ n2) and 1(c) (q ≈ n8). For δ ≤ 1.02, the graphs show the same
shape. This also holds for n2 ≤ q ≤ n8. Observe that the timings are in log-scale. The impact of the
dimension m is noticeable, but the slope of all graphs seems to be the same. The interesting part of
the figures is where δ is smaller than 1.015, i.e., the right side of the graphs. Here, the impact of the
parameter δ is compelling, and much more noticeable than the impact of the dimension m. Thus, we
can consider δ to be the main security parameter.

Figure 1(b) shows the averaged samples for q ≈ n3 that were used for the interpolation. The fitting in
Figure 1(d) was used to determine the hardness of attacks against lattice-based cryptosystems. For the
interesting area where δ < 1.015, the “extrapolated attack complexity” function nicely approximates
the data samples.

To arrive at very conservative estimates, we use SIS instances with a fix m = 175 and n, q accordingly
as our reference. For similar reasons, we choose a fix relation q ≈ n3 because all cryptosystems in
Appendix A require q > n2. Thus, from now on, we can treat δ as the main security parameter and

consider the cost function in dollar-days to be T (δ) = a21/(log2(δ)b) + c, for real constants a, b, c. We
use the (averaged) data samples in Figure 1(d) to find parameters a, b, c for the above function T (δ)
by a least-squares approximation. The resulting parameter c = 0.005 can be neglected for small δ.
Now, we can draw our main conjecture, where n ≥ 128 rules out unnaturally easy cases in small lattice
dimensions d < 256.
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Figure 1: Logarithmic time complexity for solving δ-HSVP in different dimensions and for different
moduli q. The x-axis corresponds to the Hermite factor δ.

Conjecture 2 Let all other parameters and relations as in Conjecture 1. For any δ ∈ (1, 1.015],
solving δ-HSVP (in normalized q-ary lattices) of dimension d involves an effort of at least T (δ) =

10−1521/(log2(δ)1.001) dollar-days.

Extrapolating T for smaller δ yields Figure 2. The horizontal bars correspond to today’s capabilities
of the attacker types in Table 1. Notice that the extrapolation has moderate slope for δ < 1.01 when
compared to the actual data.

3.2. Attacking LWE

In contrast to lattice signatures that rely on (search) SIS, lattice-based encryption schemes are usually
based on the decision LWE problem. While solving the search LWE problem also immediately solves
the corresponding decision problem, the reverse direction only holds via a polynomial-time reduction.
Thus, we choose to attack the decision problem because it presents the easier problem.

The most natural approach to distinguish (A,v) from uniform seems to be solving an instance of the
SIS problem. Evidence for this connection can be found in [MR08] and [SSTX09]. We can interpret the
decision-LWE problem as an instance of SIS in the dual lattice 1/qΛ⊥q (A) because finding a short vector
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Figure 2: Estimated time complexity of δ-HSVP for δ ∈ [1.003, 1.02]. The plots include horizontal lines,
illustrating today’s power of different attacker types.

w ∈ 1/qΛ⊥q (A) and checking whether 〈v,w〉 is close to Z solves the decision problem. Note that an
alternative interpretation is transforming an instance of the “bounded-distance decoding” problem in
the LWE-lattice into an instance of the approximate shortest vector problem via a well-known embedding
method [GGH97]. If v is close to Λq(A), its inner product with w will be close to an integer. To see
this, consider 〈v,w〉 = 〈Ats + e,w〉 = 〈Ats,w〉 + 〈e,w〉. Now, the first part of the sum is an integer
because Aw ≡ 0 (mod q). As for the second part, we have to consider | 〈e,w〉 |. The length of e in the
direction of w is short by design because we need to be able to decode and because it is drawn from a
relatively tight Gaussian with standard deviation αq/

√
2π in each direction. However, the attack only

works if both vectors are short. The length of w depends on how well we can cryptanalyze the lattice
1/qΛ⊥q (A). Following the reasoning in [MR08], we require ‖w‖ ≥ 1.5

√
2π/(αq) for the attack to fail as

it makes the distribution of 〈e,w〉 mod 1 essentially uniform.
In consequence, we can phrase decision-LWE in the language of SIS with with ν = 1.5

√
2π/α and

re-use the hardness estimates from Section 3.

3.3. Applying Lenstra’s Heuristic

Fix an attacker type A and let δA be infeasible for A today. Assuming the Lentra Heuristic in con-
junction with the “double Moore Law”, which takes algorithmic and technological advancement into
account, the inequality T (δ) ≥ T2009 · 212(y−2009)/9 for T2009 = T (δA) can be used in both directions,
i.e., compute a δ such that it is infeasible until the end of a given year y and vice versa. Note that the

inverse function is T−1(t) = 2(1/(log2(t−0.005)·1015))1/1.001 , where t is the amount of dollar days available.
For example, let A = “Int. agency”. Compared with the year 2009, it can manage t = 108 ·2124/3 billion
dollar-days in 2040. Thus, we require δ ≤ T−1(t) = 1.00548 for infeasibility until the end of 2040. Vice
versa, if an attack requires δ ≤ 1.00548, the corresponding lattice problem is at least intractable until
the end of 2040. Table 2 provides an overview of hard values for δ for the different attacker types until
2100. This table also allows a mapping between symmetric security and security parameters for lattice
cryptography. In addition, we include a column “standard” for a standard hash function (SHA-1) and
a standard block cipher (AES-128). The resulting parameter sets can be considered secure against
non-quantum adversaries until 2018.
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year Standard (2018) 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

bit security SHA/AES 75 82 88 95 102 108 115 122 128 135
λ 160 225 246 264 285 306 324 345 366 384 405
κ 128 150 164 176 190 204 216 230 244 256 270
Hacker 1.00993 1.01177 1.00965 1.00808 1.00702 1.00621 1.00552 1.00501 1.00458 1.00419 1.00389
Lenstra 1.00803 1.00919 1.00785 1.00678 1.00602 1.00541 1.00488 1.00447 1.00413 1.00381 1.00356
Int. agency 1.00710 1.00799 1.00695 1.00610 1.00548 1.00497 1.00452 1.00417 1.00387 1.00359 1.00336

Table 2: Infeasible parameters δ for HSVP. The upper rows present recommended post-quantum secure
symmetric key size κ and hash function length λ. Each of the lower cells contains an upper
bound for the HSVP-parameter δ, such that this problem is computationally hard for the given
attacker (row) until the end of a given year (column). According to Proposition 3.1 solving
δ-HSVP needs to be infeasible in dimensions d ≥ 256.

3.4. Post-quantum Secure Hash Functions and Symmetric Key Size

Encryption schemes and hash functions are rarely used without block ciphers and collision resistant
hash functions, respectively. Since we want to propose parameters for the post-quantum era, we also
want the symmetric ciphers and hash functions to be secure in this setting. In consequence, we need to
take Grover’s search algorithm for quantum computers into account [Gro96]. Basically, its effect is that
we have to double the key length of block ciphers that would be required in the non-quantum setting
for symmetric ciphers. The output length of hash functions has to be multiplied with 3/2. According
to the recommendations in [Len05] in conjunction with this doubling-law, we use the following formula
that computes the required key length for security until the end of a given year y. As a simplification,
we choose the symmetric parameters independently of the attacker type. A natural extension of our
work would be to let λ and κ be functions of the attacker’s resources. Here, we use the simple Moore
Law and the assumption that DES was secure in the year 1982, even against the strongest attacker.
Then, κ ≥ 2 d56 + 12(y − 1982)/18e is the proposed symmetric key length and λ ≥ 3κ/2 is the proposed
output length for hash functions. Using these formulae, we obtain the recommendations in Table 2.
Notice that some of the schemes require the hash function to act as a random oracle. One scheme
[Lyu09] even relies on “rewinding” the adversary to extract the solution to a hard problem. Generally,
this is not possible with quantum adversaries due to the no-cloning theorem. Hence, we implicitly
assume a stronger, quantum definition of the random oracle model or restrict the adversary to classical
random oracle queries.

This concludes the analysis. Table 2 and Conjecture 2 provide all the necessary tools for estimating the
security of all SIS and LWE-based cryptosystems. It also shows the equivalent level of symmetric security,
sometimes referred to as “bit security”. In the next section, we analyze the security of parameter sets
proposed in literature. In Appendix A, we apply our framework to propose secure parameter sets for
essentially all modern lattice-based signature and encryption schemes.

3.5. Comparison with Known Records in Lattice Reduction

There are currently two “lattice challenges” available online. The SVP challenge3 corresponds to
Goldstein-Mayer lattices that are well-suited to benchmark strong (non approximate) SVP solvers in
rather small dimensions < 200. The best participants found a vector of `2-norm 2781 in dimension
d = 112, which corresponds to δ = 1.009. However, a success in this challenge does not have any
immediate implication in our context, as the type of lattices differs and the dimensions involved are
smaller than 256.

The Ajtai challenge4 corresponds to lattices that are very similar to the ones we are studying here

3http://www.latticechallenge.org/svp-challenge
4http://www.latticechallenge.org
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n 136 166 192 214 233 233
q 2003 4093 8191 16381 32749 32749
α 0.0065 0.0024 0.0009959 0.00045 0.000217 0.000217
ν 5.8e2 1.6e3 3.8e3 8.4e3 1.7e4 1.7e4
d 326 376 421 460 497 497
δ 1.0098 1.0098 1.0099 1.0099 1.0099 1.0099
year 2006 2006 2005 2005 2005 2005
bit 72 72 72 72 72 72

n 512 512 512 1024
q 231.727 259.748 295.747 295.872

m 4 5 8 8
ν 5.6e8 1.3e10 2.6e10 6.4e10
d 1118 1823 2835 5471
δ 1.0091 1.0064 1.0042 1.0023
year 2010 2035 2077 2180
bit 75 92 120 188

Table 3: Parameters given in [MR08] (left) and [Lyu09] (right), optimal attack dimension d, and hard-
ness estimate δ. “year” denotes the expiration year of the parameter set and “bit” denotes the
corresponding “bit security”.

and there are challenges up to dimension 2000. More precisely, the Ajtai challenge asks to solve
SIS(n,m, q, ν) in a simplified setup where q = n, m ≈ 2n log(n), and ν < q. For the same n, this setup
yields slightly easier instances than for the setup in this paper. Here, the best participants found a
vector of length ≈ 107 in dimension m = 725. This corresponds to δ = 1.0103 and an optimal attack
dimension of d = 229 (cf. Proposition 3.1). Even though this result is still outside the relevant range for
our analysis, it confirms our estimates, saying that today, a “Hacker” should be able to solve the problem
for δ ≈ 1.011 and the adversary “Lenstra” might even solve it for δ ≈ 1.009 in 2010 (cf. Table 2).

4. Applying the Framework

There are essentially two “directions” for applying our analytic framework. In the “forward” direction,
we can take a cryptographic parameter set and an attacker type as input and output an equivalent
security level or even a prediction of how long this parameter set can be considered secure.

When working in the “reverse” direction, we analyze a given schemes parameters and their relations
as well as the corresponding worst-case to average-case reduction and, on input a year and an attacker
type, output a set of concrete parameters that can be considered secure against the given attacker type
until the given year.

As mentioned before, we can easily make relative statements as well: Given SIS scheme X with
parameters (n, q,m, ν) and LWE scheme Y with parameters (n, q,m, α), we can compute their hardness
parameters δX and δY . If δX < (>)δY , the instance of X is more (less) secure than the instance of Y .

In this section, we will only apply our framework in the first sense, i.e., to analyze the (few) parameter
sets that have been proposed in literature so far, regarding their exact security level. More concretely,
we estimate the security of the parameters presented for LWE encryption in [MR08], to Lyubashevsky’s
Fiat-Shamir signature scheme in [Lyu09] (cf. Table 3), and to the one-time signature scheme due to
Lyubashevsky and Micciancio [LM08]. Mark that neither of these authors make claims about the exact
security of there proposals because, prior to this work, there was no way of telling.

For SIS-based schemes [LM08, Lyu09], we analyze the corresponding security proof to determine the
relevant SIS instances. For LWE [MR08], we compute the corresponding SIS-parameters as outlined in
Section 3.2.

Since the parameter sets given in [MR08] (see Table 3) were specifically chosen to be secure against
attackers that can solve HSVP for δ ≥ 1.01, they do not provide sufficient security against the medium
adversary “Lenstra” and even the “Hacker” should be able to break them by 2020. In Appendix A, we
propose various parameter sets for LWE that provide more security. There, we also take the appropriate
message length for hybrid encryption into account.

For the Fiat-Shamir-type signature scheme in [Lyu09], we compute the SIS norm parameter ν =
2
√
mnnmdsdc, where ds is the norm bound for signing keys and dc controls the hashed message length.

The values differ from the ones in [Lyu09] because we express it in `2-norm, whereas they are given in
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`∞-norm in [Lyu09]. Note that the
√
mn factor corresponds to the dimension of ideal lattices, which is

typically denoted with nm as opposed to m in q-ary lattices.
The parameters in [Lyu09] are based on an assumed hash length of 160 bit, therefore the underlying

hash functions would only be secure until year 2018 (without taking quantum adversaries into account).
However, the lattice parameters are quite reasonable as shown in Table 3. All but the first parameter
set provide some security margin and with our framework, we can actually estimate how large it is.

The authors of [LM08] propose an exemplary parameter set for their one-time signature scheme.
They let n = 512, q ≈ 227, and m = 9. This leads to ν = 20q1/mn log2(n)

√
mn ≈ 2.2 · 108. Using this

parameter set, the attack dimension would be d = 999 and the hardness estimate is δ = 1.0097. Hence,
it would be insecure against the attacker “Lenstra” and the “Hacker” is expected to break it in the year
2020. Secure parameters can be found in the appendix.

Applying the framework in the other direction, i.e., estimating secure parameters sets based on the
constraints given in a cryptographic scheme, is also possible, as demonstrated in Appendix A.

5. Conclusions

With our framework to analyze the SIS and LWE problems, we have established a connection between
lattice problems and symmetric “bit security” for the first time. While our analysis reveals certain
weaknesses in the way parameters for lattice-based cryptosystems are currently proposed, it also provides
the tools to systematically do so for various levels of security.

We propose that the presented methodology should be used whenever a new cryptographic primitive
is presented to ensure that, concerning efficiency and security, it actually presents an improvement over
known work. Furthermore, our work can be used to compare the security levels of parameter sets for
entirely different cryptographic primitives, e.g., encryption and signature schemes. This is important
when both are used in a more complex protocol, where all components should provide approximately
the same level of security.

An additional application of our work is the proposition of parameters for lattice-based signature and
encryption schemes for which there were no known concrete parameter sets. Doing so has revealed that
all schemes that require trapdoor matrices (short bases) are far from practical and seem to require an
enormous effort to become so. On the other hand, we have also seen that there are quite competitive
signature and encryption schemes already, especially those working in ideal lattices. Refer to Appendix
A.3 for details.

To conclude, with our work we would like to draw renewed interest to the development of practical,
strong lattice basis reduction algorithms for large dimensions as well as to further optimizing the
parameter constraints for known lattice-based cryptosystems, which have mainly been of theoretic
interest so far.
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A. Selecting Secure Parameters

Here, we apply our framework in the “reverse” direction, i.e., we generate secure parameter sets out of
their original description, such that they require a small enough δ when attacked with an HSVP solver.
The resulting parameters are merely exemplary because most schemes allow various trade-offs.

We cover essentially every published lattice-based signature and encryption scheme and also some
unpublished variants. Moreover, due to our modular three-tier approach, it is easy to include new
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schemes in the future, that use LWE or SIS as their security assumption. For each scheme, one needs
to figure out the exact (not asymptotic) parameter relations and constraints as functions of the main
security parameter n. In addition, we let the worst-case to average-case reduction be a guiding principle
for choosing the modulus q. In conjunction with the average-case reduction from SIS (signatures) or
LWE (encryption), these parameter relations specify the type of lattice that needs to be “attacked” in
order to break the scheme. For signature schemes, the resulting instance of SIS immediately yields the
hardness estimate δ via Conjecture 1. As for encryption schemes, we need to exploit the duality of
SIS and LWE before making such a statement. Once we have the hardness estimate δ = δ(n), we can
easily determine the least n, such that it provides sufficient hardness against various attacker types and
for the desired period of time via Conjecture 2. All parameter sets correspond to security against the
attacker type “Lenstra” but the analysis easily extends to any other type.

We conclude this section with a set of remarks about our findings.
For some of the schemes, we require ideal lattices and some additional notation. We define ideal

lattices over the ring R = Zq[x]/〈f〉 for an irreducible polynomial f of degree n. The description A in q-
ary lattices is replaced by a small number of degree-n polynomials, denoted with â = (a1, . . . ,am) ∈ Rm.
Since Rm ∼= Zmnq , the parameter m is in Ω(log(n)) for ideal lattices. The resulting lattices dimension,
however, is mn = Ω(n log(n)). In addition, in ideal lattices, the matrix-vector product Av is replaced
with the product â~ v̂ :=

∑m
i=1 aivi (modulo f and q).

A.1. Signature Schemes

All modern lattice-based signature schemes are based on the hardness of the SIS problem. In other
words, for each scheme, we can easily describe an equivalent instance of SIS in terms of the parameters
n,m, q, ν that also fully determine the hardness estimate δ for HSVP. For our choices of n,m, and q,
by the following worst-case to average-case reduction, the SIS instances in dimension m are provably at
least as hard as all instances of the shortest vector problem in dimension n.

Proposition A.1 (Worst-case to Average-case [GPV08]) For any m ≤ poly(n), ν ≤ poly(n),
and for any prime q ≥ νω(

√
n log(n)), the average-case problem SIS(n,m, q, ν) is as hard as approxi-

mating the SIVP in the worst case within certain γ = νÕ(
√
n) factors.

Using the attacker dimension d of Proposition 3.1, we can compute δ = d
√
ν/qn/d. We let q be

governed by a constraint in the worst-case to average-case reduction. As this constraint introduces a
circular dependency, we typically choose a fixed relation q ≥ nt, for t ∈ N, before the other parameters
to resolve this issue. Having these relations at hand, we can also fix a δ and find suitable n,m, q, ν
such that they are valid parameters that guarantee security until the desired year. Combined with
the infeasible values for δ for each year and attacker type (Table 2) we generate tables that present
suitable parameters for each signature scheme. We propose exemplary parameters for GPV [GPV08],
Lyubashevsky’s treeless signature scheme [Lyu09], the ideal lattice variant of GPV, the Bonsai tree
scheme [CHKP10], its ideal lattice variant, and the Lyubashevsky-Micciancio one-time signature scheme
[LM08].

GPV Signatures. The GPV signature scheme [GPV08] is due to Gentry, Peikert, and Vaikuntanathan.
It benefits from the improved trapdoor generation algorithm in [AP09], which demands m1 ≥ (1 +
ϕ)n log2(q), m2 ≥ (4 + 2ϕ)n log2(q), m = m1 + m2, and odd prime q ≥ 3 (q has to satisfy q ≥
νω(
√
n log n), for the worst-case to average-case reduction). For our choices of n (n ≥ 100), m (m ≥

1000), and q (q ≥ n3), ϕ = 0.1 is a suitable choice. For ϕ = 0.1, the statistical distance from uniformity,
m2 · q−ϕn/2 in [AP09], is smaller than 2−80.

The most recent sampling algorithm [Pei10] improves the efficiency of the signature generation process
in GPV and in all derived schemes. However, it does not change the parameters.
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The GPV scheme is strongly unforgeable in the random oracle model as long as the respective instance

of SIS with norm bound ν = 2s
√
m is hard, for a Gaussian parameter s ≥ (1 + 20

√
m1) · ω

(√
log(n)

)
.

Choosing log(n) for ω
(√

log(n)
)

we get ν = 2(1 + 20
√
m1) log(n)

√
m.5

We choose m1 = d(1 + 0.1)n log2(q)e and m2 = d(4 + 0.2)n log2(q)e. For q we choose the smallest
prime bigger than nt for the smallest t such that q ≥ 2ν

√
n log2(n) (worst-case to average-case reduc-

tion). In our case, we could choose a prime q ≥ n4. Messages are mapped to Znq via a full-domain hash.

This set is always bigger than 2λ.
Here we describe the structure of the scheme, in order to compute the key and signature sizes. The

parameters for GPV are presented in Table 4.

Secret Key: S ∈ Zm×m with ‖S‖ ≤ 20n log(q). A close look at the trapdoor construction allows
to store the key in 2m1m2 + m1 log2(q)) bits, without storing the orthogonalized basis. This
implies that generating signatures gets a bit more expensive, as it requires computation of the
QR decomposition of the trapdoor basis.

Public Key: A ∈ Zn×mq , i.e, nm log2(q) bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384
Lenstra n

q
m1

m
|sk|
|pk|
|σ|

330
1.19e+10
12148
58531
137613
78904
154

289
6.98e+09
10396
50087
100780
57779
130

338
1.31e+10
12494
60198
145562
83462
158

391
2.34e+10
14815
71380
204654
117348
190

440
3.75e+10
17001
81913
269498
154538
221

489
5.72e+10
19222
92615
344507
197556
252

542
8.63e+10
21660
104359
437415
250834
286

592
1.23e+11
23989
115583
536545
307694
320

641
1.69e+11
26298
126709
644799
369782
353

695
2.33e+11
28871
139103
777112
445659
390

Table 4: Recommended parameters for GPV signatures. The rows correspond to attacker types and
the columns correspond to security until a given year. Sizes are in kilobytes (kB).

Ideal GPV. In [SSTX09], the authors explain how to create an ideal-lattice variant of the GPV sig-
nature, in order to reduce the key sizes of the secret and public key. This variant comes with Õ (n)
verification time and signature length. Here we apply their idea and instantiate the GPV scheme with
ideal lattices.

Choose k > 0 and n = 2k for the smallest possible k, σ = 1 and ρ = d1 + log3(q)e. The ring R is
R = Zq[x]/(xn + 1). Choose the norm bound d = s

√
mn. No bound on L̃ is known, but it is always

possible to assume L̃ ≤ L =
√

2n(9ρ+ σ). The dimension has to satisfy m ≥ (dlog2(q)e+ 1)(σ+ ρ), we

choose m equal to that bound. Choose the Gaussian parameter as s = L̃ log(n) =
√

2n(9ρ+ σ) · log(n).
The modulus q is chosen to be the smallest prime bigger than or equal to n7 satisfying q ≡ 3 (mod 8),
as in that case m > log2(q)/ log2(2d) and q > 4dmn

√
n log2(n) hold. With ‖σ‖2 ≤ d we have ν(2) = 2d

(in the Euclidean norm). We can use the same bound 2d in the maximum norm, i.e., ν = 2d.
The parameters for Ideal-GPV are presented in Table 5.
Here we describe the structure of the scheme, in order to compute the key and signature sizes. Instead

of storing the trapdoor basis, which implies the necessity to calculate orthogonalizations on the fly, it
would also we possible to store the Gram-Schmidt orthogonalized basis.

5This choice is suitable for all dimensions m ≥ 83; for those m, the smoothing parameter index ε (see [MR07, Pei07,
GPV08] for more details) is smaller than 2−79. This renders the statistical distance between a uniform distribution

and the “blurred” lattice negligible (i.e., 2−80). This is due to the fact that log(m) ≥
√

log(2m(1 + 1/ε))/π for m ≥ 83
and λ∞1 (Z∗) = 1 (a lattice constant) in [GPV08, Lemma 4.3], using [Pei07, Lemma 3.5].
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Secret Key: Trapdoor S ∈ Zmn×mn such that âŝi ≡ 0 mod q for every column ŝ in S (interpreted
as an element of Rm). The basis length is ‖S‖ ≤

√
2n(9ρ+ σ). When looking closely at the

construction, we find that the trapdoor can be reconstructed from σ(m − σ)n
√
σn + ρ(m −

ρ)n log2(3) bits.
Public Key: â ∈ Rm determining the ideal lattice, i.e., mn log2(q) bits.
Signature: σ ∈ Rm with ‖σ‖2 ≤ d, i.e., mn log2(d) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384
Lenstra n

q
m
|sk|
|pk|
|σ|

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

256
7.21e+16
2204
5072
3857
1151

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

512
9.22e+18
2688
14550
10584
2957

Table 5: Recommended parameters for Ideal-GPV signatures. The rows correspond to attacker types
and the columns correspond to security until a given year. Sizes are in kilobytes (kB).

Bonsai Trees. Here we describe the original Bonsai tree scheme by Cash, Hofheinz, Kiltz, and Peikert
[CHKP10]. It does not require random oracles for the security proof of existential unforgeability. A
modified version by Rückert [Rüc10] with essentially the same efficiency supports strong unforgeability.
The Bonsai tree scheme makes use of the [AP09] trapdoor, which was used in the GPV case as well.

The parameters are: m1 = d(1 + ϕ)n log2(q)e ,m2 = d(4 + 2ϕ)n log2(q)e, hashed message length λ,
total dimension m = m1 + (λ+ 1)m2.6 Again, we can use ϕ = 0.1. We choose the Gaussian parameter
s = (1 + 20

√
m1) log(n) and let q ≥ n5. If there exists a PPT attack against unforgeability on the

signature scheme, then there is a PPT algorithm attacking SIS for ν = 2s
√
m. For the overview of the

parameters, refer to Table 6.
Here we describe the keys and the signature of the scheme, in order to derive the key and signature

sizes.

Secret Key: S ∈ Z(m1+m2)×(m1+m2) with ‖S‖ ≤ 20n log(q). A close look at the trapdoor construction
allows to store the key in 2m1m2 + m1 log2(q)) bits, without storing the orthogonalized basis.
This implies that generating signatures gets a bit more expensive, as it requires computation of
the QR decomposition of the trapdoor basis.

Public Key: A0 ∈ Zn×(m1+m2)
q ,A

(k)
j ∈ Zn×m2

q , 2λ many, i.e., n(m1 + m2) log2(q) + 2λ · nm2 log2(q)
bits.

Signature: σ ∈ Zm with ‖σ‖2 ≤ s
√
m, i.e., m log2(s

√
m) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384
Lenstra n

q
m1

m2

m
|sk|
|pk|
|σ|

360
6.05e+12
16814
64199
10352853
263622
38483319
32290

322
3.46e+12
14755
56334
12746239
203006
41622485
39799

377
7.62e+12
17746
67758
16753972
293655
65819290
53067

436
1.58e+13
21027
80282
21295757
412243
99143682
68312

491
2.85e+13
24142
92177
26386764
543426
141070584
85551

547
4.90e+13
27364
104479
32102417
698141
194564698
105088

607
8.24e+13
30867
117854
38333417
888308
262099312
126602

663
1.28e+14
34179
130499
45186833
1089142
342149385
150405

718
1.91e+14
37468
143058
52539754
1308834
436157286
176114

779
2.87e+14
41155
157137
60538900
1579092
552063776
204315

Table 6: Recommended parameters for Bonsai signature scheme. The rows correspond to attacker types
and the columns correspond to security until a given year. Sizes are in kilobytes (kB).

6We apply the original construction due to Peikert, as mentioned in a footnote in [CHKP10].
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Note that there is an improvement due to Boyen [Boy10] that reduces the dimension of the generated
signatures at the expense of a stronger assumption. Unfortunately, this improvement does not seem to
yield practical parameters either.

Ideal Bonsai. Here we describe how to instantiate the Bonsai tree scheme of [CHKP10] with ideal
lattices. As the security reduction to a worst case problem is stated in the infinity norm (and this norm
is more natural for ideal lattices and ring elements) we describe the scheme using the infinity norm.
Following [SSTX09], the parameters are: n which is a power of 2, f = xn + 1, prime q ≡ 3 (mod 8),
σ = 1, ρ = dlog3(q) + 1e. The output length of a secure hash function is denoted by λ. We choose
L̃ =

√
2n(9ρ+ σ) as bound for the length of the trapdoor. R is again the ring Zq[x]/〈f〉. We use a

Gaussian parameter s = L̃ log(n) and d = s
√
mn.

It is required that m1 + m2 ≥ (dlog(q)e + 1)(σ + r). We can choose m1 = σ = 1 and m2 =
dlog (q) + 1e (σ + ρ)− 1. Let m = m1 + (λ+ 1)m2. Following the worst-case to average-case reduction
for ideal lattices, we choose a prime q ≥ n8 such that m > log2(q)/ log2(2d) and q > 4dmn

√
n log2(n).

The corresponding approximation factor for SIS is ν = 2d. The overview of the parameters for the Ideal
Bonsai scheme are presented in Table 7.

Here we describe the keys and the signature of the scheme, in order to derive the key and signature
sizes. Instead of storing the trapdoor basis, which implies the necessity to calculate orthogonalizations
on the fly, it would also we possible to store the Gram-Schmidt orthogonalized basis.

Secret Key: Trapdoor S ∈ Zmn×mn such that âŝi ≡ 0 mod q for every column ŝ in S (interpreted
as an element of Rm). The basis length is ‖S‖ ≤

√
2n(9ρ+ σ). When looking closely at the

construction, we find that the trapdoor can be reconstructed from σ(m − σ)n
√
σn + ρ(m −

ρ)n log2(3) bits.

Public Key: â0 ∈ Rm1+m2 , b̂
(k)
i for k ∈ {0, 1} and i ∈ {1, . . . , λ}, random elements in Rm2 , i.e.,

n log2(q) · (m1 +m2 + 2λm2) Bits

Signature: σ ∈ Rm with ‖σ‖2 ≤ s
√
mn, i.e., mn log2(s

√
mn) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384
Lenstra n

q
m1

m2

m
|sk|
|pk|
|σ|

512
4.72e+21
1
2447
393968
14639
1772856
635248

512
4.72e+21
1
2447
553023
14639
2488603
900169

1024
1.21e+24
1
3020
745941
42667
7459410
2562702

1024
1.21e+24
1
3020
800301
42667
8003010
2754533

1024
1.21e+24
1
3020
863721
42667
8637210
2978756

1024
1.21e+24
1
3020
927141
42667
9271410
3203399

1024
1.21e+24
1
3020
981501
42667
9815010
3396263

1024
1.21e+24
1
3020
1044921
42667
10449210
3621613

1024
1.21e+24
1
3020
1108341
42667
11083410
3847310

2048
3.09e+26
1
3595
1384076
120603
30449672
10080821

Table 7: Recommended parameters for Ideal Bonsai signature scheme. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes (kB).

It is noticeable that for the ideal Bonsai signature scheme, we need to choose a bigger modulus q
than for the original Bonsai tree scheme.

LM-OTS. The one-time signature scheme of [LM08] does not require random oracles, and it is
asymptotically optimal (almost linear in the security parameter n) in concerns of key size and signa-
ture/verification time. It is equipped with a security proof of worst-case complexity assumptions. Using
a tree construction it can be transformed into a regular signature scheme, with logarithmic overhead
[Mer89]. The LM-OTS scheme is based on the collision resistant hash function of [LM06, Mic07, PR06]:
H ∈ HR,m = {Hâ : â ∈ Rm} that maps elements from Rm to R. For a λ-bit message signing and

verification take time Õ(λ) + Õ(n), signature size is Õ(n).
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We fix the ring defining polynomial and operate in R = Zq[x]/〈xn + 1〉. We choose a prime q ≥ n3

and m = dlog(n)e, as proposed in the original work [LM08]. The main parameter n is chosen to be a
power of 2. Messages are encoded in {−1, 0, 1}n, but |{−1, 0, 1}n| ≥ 2λ does not introduce an additional
constraint here.

An attacker that, after seeing a signature/message pair, can output a valid signature of another
message, can use a polynomial-time algorithm to find a collision in the underlying hash function and
from this we derive ν = 20q1/mn log2(n)

√
mn for SIS. See Table 8 for the proposed LM-OTS parameters.

Secret Key: k̂ ∈ Rm, l̂ ∈ Rm with
∥∥∥k̂∥∥∥

∞
≤ 5 blog2(n)c q1/m,

∥∥∥̂l∥∥∥
∞
≤ 5n blog2(n)c q1/m, i.e, mn log2(5 blog2(n)c q1/m)+

mn log2(5n blog2(n)c q1/m) bits.

Public Key: H ∈ HR,m,H(k̂),H(̂l), i.e., mn log2(q) + 2 · n log2(q) bits. H is shared among all users and
generated from a trusted source of random bits, e.g., from the random bits of π.

Signature: σ ∈ Rm with ‖σ‖∞ ≤ 10q1/mn log2(n), i.e., mn log2(10q1/mn log2(n)) bits.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384
Lenstra n

q
m
|sk|
|pk|
|σ|

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

1024
1.07e+09
7
8.71
33.75
20.29

2048
8.59e+09
8
19.83
82.5
48.62

2048
8.59e+09
8
19.83
82.5
48.62

2048
8.59e+09
8
19.83
82.5
48.62

2048
8.59e+09
8
19.83
82.5
48.62

Table 8: Recommended parameters for LM-OTS signature scheme. The rows correspond to attacker
types and the columns correspond to security until a given year. Sizes are in kilobytes (kB).

Lyubashevsky Treeless Signatures. In [Lyu09] Lyubashevsky presents a signature scheme secure in
the random oracle model with key generation, signing, and verification time Õ(n). Its security is based
on the hardness of approximating the shortest, non-zero vector to within a factor of Õ

(
n2
)

in lattices
corresponding to ideals in R = Z[x]/〈xn + 1〉.

The parameters involved are: n, a power of 2, an integer m, an integer dc such that 2dc
(
n
dc

)
≥ 2λ (for

encoding messages), and a prime integer q ≥ (2ds + 1)m · 2−128/n.
If the scheme is not strongly unforgeable, then there exists a polynomial time algorithm that solves

SIS in every lattice corresponding to ideals in R for ν = 2
√
mn · nmdsdc.

We choose m = dlog2(n)e and compute the smallest dc such that 2dc
(
n
dc

)
≥ 2λ holds. Further, for

ds we choose the smallest value such that q ≥ 4m2n2.5dsdc log(n) and m > log(q)/ log(2mndsdc) hold
because of the worst-case to average-case reduction. This choice of parameters implies that finding
collisions in the underlying hash function is hard. Notice that the scheme allows various trade-offs. For
example, a larger ds increases the key size but allows for smaller m, as demonstrated in [Lyu09]. The
scheme has the following structure. See [Lyu09] for a full description of the numerous parameters. Our
proposed parameter sets are in Table 9.

Secret Key: ŝ ∈ Rm with ‖ŝ‖∞ ≤ ds, i.e, mn log2(2ds + 1) bits for a typically small ds.

Public Key: H ∈ HR,m,H(ŝ) ∈ R, i.e., n log2(q) bits. H is again global.

Signature: σ ∈ Rm with ‖σ‖∞ ≤ mndsdc, i.e., mn log2(2mndsdc + 1) bits.
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

λ 160 225 246 264 285 306 324 345 366 384
Lenstra n

q
m
dc
ds
|sk|
|pk|
|σ|

512
3.81e+12
9
23
13
2.67
2.61
12.03

512
7.25e+12
9
37
14
2.73
2.67
12.48

512
7.25e+12
9
41
14
2.73
2.67
12.56

512
1.32e+13
9
45
15
2.79
2.72
12.69

1024
4.77e+13
10
40
12
5.8
5.68
29.04

1024
1.03e+14
10
44
13
5.94
5.82
29.35

1024
1.03e+14
10
48
13
5.94
5.82
29.51

1024
1.03e+14
10
52
13
5.94
5.82
29.65

1024
1.03e+14
10
56
13
5.94
5.82
29.79

1024
1.03e+14
10
59
13
5.94
5.82
29.88

Table 9: Recommended parameters for treeless signatures. The rows correspond to attacker types and
the columns correspond to security until a given year. Sizes are in kilobytes (kB).

Our parameters for the year 2020 lead to comparable sizes for keys and signatures as the parameters
in the weakest sample instantiation of [Lyu09].

A.2. Encryption Schemes

We discuss the parameter choice for the multi-bit variant of Regev’s cryptosystem [Reg09, KTX07,
PVW08, MR08], the dual-LWE cryptosystem [GPV08, Pei09], and the trapdoor-LWE scheme [RS09,
Pei09]. For each scheme, we also present a “ring” version that uses an ideal lattice version of LWE
[LPR10]. After briefly recalling the LWE assumption, we describe its modification for rings and deal
with decryption errors.

The LWE Assumption. Let n ∈ N, m ≤ poly(n), q ≤ poly(n), and α > 0. Furthermore, let

A
$← Zn×mq , s

$← Znq , and e
$← χmα with χα being a discretized Gaussian distribution with standard

deviation αq/
√

2π and mean zero. A theorem in [Reg09] states that v ← Ats + e is indistinguishable
from uniform if α >

√
n/q by a worst-case to average-case reduction, i.e., solving decision LWE implies

solving several worst-case lattice problems in dimension n with approximation factors in Õ(n/α). Thus,
choosing a large α ensures worst-case hardness but it increases the probability of a decryption error. We
let this reduction govern the choice of α but there are further restrictions, coming from the individual
cryptosystems. Regev’s reduction relies on quantum computation but it was “dequantized” by Peikert
in [Pei09]. Although Peikert requires q = 2O(n) for the dequantization to work, we stick to q = poly(n).
It is more practical and, similar to SIS, the worst-case to average-case reduction should not be more than
a guideline for choosing actual parameters. Since there is a circular dependency in the parameters, we
will make a sensible choice for q before choosing the remaining parameters. Having chosen a complete
set of parameters, we verify that all constraints are satisfied.

The assumption that (A,v) is close to uniform helps in proving CPA security of all subsequent
constructions. In Regev’s LWE construction it is used to show indistinguishability of the public key
from uniform, while dual-LWE and trapdoor-LWE rely on this assumption for proving the same for the
ciphertexts. The uniform distribution of ciphertexts (Regev) and keys (dual, trapdoor) is ensured by
the particular choice of m by the leftover-hash lemma [HILL99]. To get 2−κ-uniformity, we essentially

require that
√
qn/ |D|m ≤ 2−κ, where D ⊂ Z is the set from which we choose our randomness.

Ring-LWE. Although the ring (or ideal) analogue of LWE in [LPR10] extends to arbitrary cyclotomic
number fields, we will work over a special ring for efficiency reasons and for ease of exposition. Our
particular ring R = Zq[x]/ 〈xn + 1〉 requires that n is a power of two and that q ≡ 1 (mod 2n).
Hence, instead of working over matrices, we now work over the ring R, over the subsets Dr = (Z ∩
{−br/2c , . . . , dr/2e})[x]/ 〈xn + 1〉 for r ≥ 1, as well as over the R-module Rm. Notice that D1 =
(Z ∩ {0, 1})[x]/ 〈xn + 1〉. Elements from the R-module Rm are denoted with a hat, x̂. There are
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two multiplications in Rm. The first is the usual component-wise x̂y = (x1y, . . . ,xmy) ∈ Rm and the
second is a convolution ~ : Rm×Rm → R, (x̂, ŷ) 7→

∑m
i=1 xiyi. Notice that, here, m is not Ω(n log(n))

but only Ω(log(n)). The total “dimension”, however, is again Ω(n log(n)) because R ∼= Znq .
Also, the error distribution is different for ring-LWE. The proofs in [LPR10] require an axis-aligned

ellipsoidal Gaussian distribution over R, which we will denote with χR,α. The per-axis Gaussian
parameters are bounded by α and the exact shape is inconsequential for our analysis. Hence, we omit
the details.

The corresponding decision problem becomes: Given â
$← Rm and either r̂

$← Rm or âs + ê ∈ Rm

for s
$← R and ê← χmR,α with certain per-axis parameters, the task is to distinguish the two cases. As

with LWE, ring-LWE offers a search-decision equivalence.
The worst-case to average-case reduction for ring-LWE is slightly more demanding than in (ordinary)

LWE. Roughly speaking, it states that distinguishing the ring-LWE distribution from uniform for
α >

√
n log(n)/q is equivalent to solving several ideal lattice problems with approximation factors in

Õ(n
√
n/α).

Again, the decision ring-LWE assumption is used to establish indistinguishability of keys (Regev)
and ciphertexts (dual, trapdoor) and the uniform distribution of ciphertexts (Regev) and keys (dual,
trapdoor) is now guaranteed by a ring-version of the leftover-hash lemma. The first ring-version due

to Micciancio [Mic07] essentially requires m = Ω̃(n), whereas m/n = Õ(1) is sufficient for regular LWE
for a negligible statistical distance from uniform. Otherwise, the statistical distance would not be small
enough for small, practical values of n. This is because of the complete splitting of xn + 1 is within the
worst case for regularity.

There is a second ring-version of the leftover-hash lemma that has been communicated to us by
Regev [Reg10]. It studies regularity of the convolution â~ x̂, where the ai are invertible in R, i.e., all
coefficients of ai are non-zero. We defer the details and work with the “normal” leftover hash lemma
by replacing m with nm for now.

As will become obvious below, ring-LWE helps reduce the public key size at the expense of having a
larger ciphertext and modulus. In addition, ring-LWE can improve the computational efficiency due to
fast FFT-multiplications in the employed polynomial rings.

Decryption Errors. For the decryption process to work, we need to bound the errors that are
induced during encryption. In each cryptosystem, the error comes from two sources. Firstly, a rounding
error of magnitude 1/(2q) that can be bounded with certainty by choosing a q that is sufficiently large.
We will assume q > 6, i.e., a rounding error of < 1/12. Secondly, there is an error x that follows a
normal distribution with parameter s. Thus, in principle, the error can be arbitrarily large. However,
there is a tail bound for Prob[ |x| ≥ ts], t ≥ 1. It states that e−πt

2

is a very good approximation (see,
e.g., [Pei07]). We want the decryption-error probability to be less than 2−80 in all ` components of the

ciphertext. Thus, we need 1− (1− e−πt2)` < 2−80.
For all relevant parameters, setting t = 5 is sufficient. In order for the relative total error to be less

than 1/4 (to be able to decrypt), we require that ts < 1/6. Consequently, we need to ensure that the
error is distributed with s = 1/30.

Hybrid Encryption. We assume that one uses hybrid encryption in practice. The employed block
cipher has key length κ and we want it to remain secure in the presence of quantum computers (see
Table 2).

Multi-bit LWE. The multi-bit version of Regev’s LWE cryptosystem [Reg09] looks as follows.

Secret Key: S
$← Zn×κq , i.e, nκ log2(q) bits.

Public Key: A
$← Zn×mq , P = AtS + E ∈ Zm×κq for E← χm×κα . The matrix A can be the same for all
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users, e.g., generated from the random bits of π. Using the HNF technique of [Mic01], the key is
reduced to (m− n)κ log2(q) bits.

Plaintext: k ∈ Zκ2 .

Ciphertext: u = Aa ∈ Znq , c = Pta + k q−1
2 , where a

$← {−br/2c , . . . , dr/2e}m, r ≥ 1. The ciphertext
has (n+ κ) log2(q) bits.

Decryption: c− Stu ≈ k q−1
2 .

We need to set α = 1/(30
√
m dr/2e) to eliminate decryption errors because then the accumulated error

in c is distributed as a Gaussian with parameter s = 1/30, which limits it to at most 1/6 per component
with high probability. For simplicity, we choose r = 2. Notice that other trade offs, e.g., choosing a
different (non-binary) alphabet or choosing a larger r, are possible and easy to implement.

We let q = q(n) be the smallest prime between 2n2 and 4n2 to resolve a circular dependency.
Then, we set m = m(n) = d((n+ κ) log2(q) + 2κ)/ log2(r + 1)e to tie the probability of being able to
distinguish ciphertexts from uniform to the symmetric security level, i.e., the probability is at most√
qn+κ/(r + 1)m ≤

√
qn+κ/(qn+κ22κ) = 2−κ. After taking all this into account, we propose various pa-

rameter sets in Table 10. Our parameters differ from the proposed sets of parameters in [MR08] as they
are chosen via a completely different methodology. In addition, our parameters do not yield decryption
errors but with negligible probability, whereas in [MR08] the error probability is only guaranteed to be
≤ 1/100 without an additional error correcting code.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256
Lenstra n

q
α
m
|sk|
|pk|
|C|

214
91621
5.47e-04
3719
55.1
54.8
0.7

191
72973
5.51e-04
3665
56.5
63.6
0.7

221
97687
5.12e-04
4234
73.3
80.3
0.8

253
128021
4.80e-04
4815
92.2
98
0.9

283
160183
4.54e-04
5400
113.5
118.7
1

314
197203
4.30e-04
6006
137.5
141.7
1.1

346
239441
4.10e-04
6609
163
165.1
1.2

376
282767
3.92e-04
7215
191.2
192
1.3

405
328051
3.77e-04
7811
221
220.6
1.5

438
383693
3.63e-04
8446
253.9
250.3
1.6

Table 10: Recommended parameters for multi-bit LWE. The rows correspond to attacker types and the
columns correspond to security until a given year. C is the ciphertext sizes and all sizes are
in kilobytes (kB).

Dual Ring-LWE. Gentry, Peikert, and Vaikuntanathan proposed a dual version of Regev’s cryptosys-
tem in [GPV08]. It is “dual” in the sense that public keys and ciphertexts are essentially exchanged.
Therefore, the LWE assumption ensures that ciphertexts are indistinguishable from random. The keys
are unconditionally random for the proposed parameters. When adapted to the ring setting, the dual
cryptosystem looks as follows.

Secret Key: r̂
$← Dm

r , i.e, mn log2(r + 1) bits.

Public Key: â
$← Rm, u = â~ r̂ ∈ R. Again, â is global and the key requires n log2(q) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: ĉ1 = âs + x̂1 ∈ Rm, c2 = us + x2 + k q−1
2 ∈ R, where x̂1 ← χmR,α, x2 ← χR,α and s

$← R.
The ciphertext has (m+ 1)n log2(q) bits.

Decryption: c2 − r̂~ ĉ1 ≈ k q−1
2 .

We need to set m = d(log2(q) + 2κ/n)/ log2(r + 1)e to achieve unconditional (2−κ) uniformity of u
and we choose q > n2.5. We use a binary secret key, which makes the ciphertext somewhat larger.
Full “duality” with multi-bit LWE is established with a ternary secret key (r = 2). When analyzing
the Gaussian error, we need to be more careful as it comes from two sources, r̂ ~ x̂1 and x2 in the
dual construction. The errors accumulate in a different way because of the convolution ~. Here, we
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have that r̂~ x̂1 + x̂2 is distributed like a Gaussian with parameter (
√
mn dr/2e+ 1)α. Hence, setting

α = 1/(30(
√
mn dr/2e+ 1)) Our proposed parameter sets are in Table 11.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256
Lenstra n

q
α
m
|sk|
|pk|
|C|

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

256
1049089
4.38e-04
22
0.7
0.6
14.4

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

512
5941249
2.98e-04
24
1.5
1.4
35.2

Table 11: Recommended parameters for dual ring-LWE. The rows correspond to attacker types and the
columns correspond to security until a given year. C is the ciphertext sizes and all sizes are
in kilobytes (kB).

Multi-bit Ring-LWE. The ring version of multi-bit ring-LWE can be defined as follows using the sets
R,Dr from above.

Secret Key: s
$← R, i.e, n log2(q) bits.

Public Key: â
$← Rm, p̂ = âs + ê ∈ Rm for ê ← χmR,α. The element â can be the same for all users.

The public-key size is mn log2(q) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: u = â~ r̂ ∈ R, c = p̂~ r̂+k q−1
2 ∈ R, where r̂

$← Dm
r . The ciphertext has 2n log2(q) bits.

Decryption: c− su ≈ k q−1
2 .

Notice that we actually encrypt more than κ bits because it is always less than the plaintext size n.
This slack can be used to simultaneously encapsulate more than one key. See above for the general
setup for ring-LWE. In order to be able to decrypt, we require that the accumulated error term ê ~ r̂
has a small max-norm of at most q/4. The accumulated error is now generated differently, namely as
a sum of m products of polynomials, where one polynomial is the error term and the second is always
a polynomial in Dr. Thus, the resulting error is a Gaussian with parameter ≤

√
mn dr/2eα and we

can set α = 1/(30
√
mn dr/2e) to eliminate decryption errors because then the error is distributed as a

Gaussian with parameter s = 1/30 and very likely to be less than 1/6 per component. For simplicity, we
let r = 2 as in multi-bit LWE. We let q = q(n) be the least prime > n2.5 according to the requirements
of our specific ring R that are discussed above.

Then, we set m = m(n) = d(2κ/n+ log2(q))/ log2(r + 1)e to make u 2−κ-uniform by Micciancio’s
ring version of the leftover hash lemma. Again, we only show one option of choosing the parameters.
For example, a bigger r allows smaller m and therefore smaller key sizes, but bigger errors. We propose
various parameter sets in Table 12.
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year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256
Lenstra n

q
α
m
|sk|
|pk|
|C|

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

256
1049089
5.57e-04
14
0.6
8.8
1.3

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.80e-04
15
1.4
21.1
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

512
5941249
3.68e-04
16
1.4
22.5
2.8

Table 12: Recommended parameters for multi-bit ring-LWE. The rows correspond to attacker types and
the columns correspond to security until a given year. C is the ciphertext sizes and all sizes
are in kilobytes (kB).

Dual-LWE. Gentry, Peikert, and Vaikuntanathan proposed a dual version of Regev’s cryptosystem
in [GPV08]. It is “dual” in the sense that public keys and ciphertexts are essentially exchanged.
Therefore, the LWE assumption ensures that ciphertexts are indistinguishable from random. The keys
are unconditionally random for the proposed parameters. We use a variant of the scheme in [Pei09].

Secret Key: X
$← {−br/2c , . . . , dr/2e}m×κ2 for r ≥ 1, i.e, mκ log2(r + 1) bits.

Public Key: A
$← Zn×mq , U = AX ∈ Zn×κq . Again, A is global. The key requires nκ log2(q) bits.

Plaintext: k ∈ Zκ2 .

Ciphertext: c1 = Ats + x1 ∈ Zmq , c2 = Uts + x2 + k q−1
2 ∈ Zκq , where x1 ← χmα , x2 ← χκα and s

$← Znq .
The ciphertext has (m+ κ) log2(q) bits.

Decryption: c2 −Xtc1 ≈ k q−1
2

We do not explicitly consider the dequantization of LWE in [Pei09] as it requires q = 2O(n), which
dramatically increases the public-key size. Moreover, by choosing q ≤ poly(n), the encryption process is
slightly simpler. Here, we let q = q(n) be the smallest prime between 2n2 and 4n2 to resolve a circular
dependency. As for the secret key, we choose r = 1 to demonstrate how small the secret key can be,
but choosing X from a larger set has the advantage of a smaller ciphertext (but bigger accumulted
errors). The desired trade off depends on the target application. To ensure that the public key is within
distance 2−κ from uniform, we set m = d(n log2(q) + 2κ)/ log2(r + 1)e. Then, the statistical distance
is at most

√
qnκ/(r + 1)mκ ≤

√
qnκ/(qnκ22κ) = 2−κ. As for α, we need to ensure that the induced

errors, distributed according to a Gaussian with parameter at most α(
√
m dr/2e+ 1), are less than 1/6.

Thus, setting α = 1/(30(
√
m dr/2e+ 1)) is sufficient. Given these relations among the parameters, we

propose secure parameter sets in Table 13.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256
Lenstra n

q
α
m
|sk|
|pk|
|C|

215
92459
5.32e-04
3803
59.4
55.4
7.9

190
72211
5.65e-04
3367
61.7
56.2
6.9

220
96821
5.21e-04
3972
79.5
72.9
8.4

253
128021
4.82e-04
4645
99.8
92.2
10

284
161323
4.52e-04
5294
122.8
114
11.6

314
197203
4.27e-04
5932
147.7
137.5
13.2

347
240829
4.04e-04
6636
175
163.6
15

377
284261
3.86e-04
7291
204.7
191.8
16.6

407
331301
3.70e-04
7952
236.9
222.3
18.3

440
387203
3.54e-04
8680
271.3
255.2
20.2

Table 13: Recommended parameters for dual-LWE. The rows correspond to attacker types and the
columns correspond to security until a given year. C is the ciphertext sizes and all sizes are
in kilobytes (kB).
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Trapdoor Ring-LWE. In this section, we show how to combine the result in [LPR10] with an earlier
work on an ideal version of LWE [SSTX09]. There, the authors show how to generate a trapdoor for LWE
as in trapdoor-LWE (similar to the construction in [AP09]). However, their result does not guarantee
the hardness of the LWE decision problem, which is why they rely on generic hardcore bits and a
subexponential-time reduction. To eliminate this need, we demonstrate that their trapdoor generation
algorithm also works in the setting of [LPR10]. We focus on the “rounding-off” version of trapdoor
ring-LWE because the construction in [SSTX09] does not bound the length L̃ of the orthogonalized
trapdoor. It only guarantees that the basis itself has length at most L. Neverthelesse, our approach
generalizes to the “nearest-plane” version (see trapdoor-LWE for the details). The scheme works as
follows.

Public Key: â ∈ Rm, u
$← R. Notice that â cannot be global here as it contains a trapdoor. Fortu-

nately, u can be the same for all users. Thus, |pk| = mn log2(q) bits.

Secret Key: T ∈ Zmn×mn such that ât̂i ≡ 0 mod q for every column t̂ in T (interpreted as an element
of Rm). The basis length is ‖T‖ ≤ L =

√
2n(9ρ+ σ). When looking closely at the construction,

we find that the trapdoor can be reconstructed from σ(m− σ)n
√
σn+ ρ(m− ρ)n log2(3) bits.

Plaintext: k ∈ D1, i.e., κ ≤ n.

Ciphertext: ĉ1 = âs+ x̂1 ∈ Rm, c2 = us+x2 +k bq/2c ∈ R, where x̂1 ← χmR,α, x2 ← χR,α and s
$← R.

The ciphertext has (mn+ n) log2(q) bits.

The parameters σ and ρ control the success probability of the trapdoor generator and the unifor-
mity of â, respectively. Furthermore, the influence the total lattice dimension mn, namely, m =
(dlog2(q) + σe)(σ + ρ). Unfortunately, the setting required in [LPR10] is within the worst-case for the
trapdoor generation algorithm in [SSTX09]. Particularly, the fact that xn + 1 splits completely into n
degree-1 polynomials over Zq makes it necessary to increase the overall lattice dimension. In particular,
we require ρ = Ω(κ+log(q)) instead of just ρ = O(log(q)) (as in ideal GPV) to ensure a well-distributed
â.

We fix σ = 1, resulting in a slightly skewed (≤ 1−(1−1/q)n distance) distribution, where a1 is always
invertible in R and a success probability ≥ (1− 1/q)n that converges to 1 as n increases. This does not
harm security. However, we require that the remaining ai, i > 1, are within 2−κ distance from uniform.
To this end, it is sufficient to set ρ = (y+log2(q))/ log2(3) for y = 1/2

√
8κ+ 16 log log2(q) + 1+1+2κ+

4 log log2(q). Alternatively, we can re-run the algorithm until we obtain â with only non-zero coefficients.
Then, the modified regularity lemma holds and we can use ρ = ρ(n) ≥ d(2κ/n+ log2(q))/ log2(3)e.

The induced error is a rounding error ≤ 1/4 if q ≥ 2L
√
m and a Gaussian with parameter ≤ αL.

The Gaussian error needs to be < 1/4, i.e., setting α = 1/(L20) is sufficient. An admissible q is the
smallest prime ≥ 2n2.5 with q ≡ 1 (mod 2n). Table 14 shows the resulting parameter sets.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256
Lenstra n

q
α
m
|sk|
|pk|
|C|

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

256
2100737
1.89e-04
368
446
242
242

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

512
11867137
1.30e-04
425
1248
624
626

Table 14: Recommended parameters for trapdoor ring-LWE with “rounding-off”. The rows correspond
to attacker types and the columns correspond to security until a given year. C is the ciphertext
sizes and all sizes are in kilobytes (kB).

Trapdoor-LWE. The trapdoor-LWE cryptosystem [GPV08, Pei09] is similar to dual-LWE. The main
difference is that the secret key is a trapdoor T for the lattice Λ⊥q (A), i.e., a short basis thereof. It is
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generated via [AP09]. The secret key X in dual-LWE disappears and we cannot share the matrix A
among all users. The scheme comes in two flavours. The first uses what is called “rounding-off” for
decryption and the second involves Babai’s nearest plane algorithm [Bab86]. The advantage of Babai’s
algorithm is that we can correct bigger errors compared to rounding-off. However, rounding-off is more
efficient. We describe both in the following.

Obviously, trapdoor-LWE has numerous caveats when compared to its “trapdoor-less” counterparts.
It should not be used for plain CPA encryption but it is, e.g., necessary for constructing chosen-
ciphertext (CCA) secure encryption [PW08, RS09, Pei09] based on LWE by essentially applying Θ(n)
independent trapdoors to the same input.

Let L = ‖T‖ = maxi(‖ti‖2) be the basis length, where the ti are the columns of T. Similarly, we

denote the basis length of the Gram-Schmidt orthogonalization T̃ of T with L̃.

Public Key: A ∈ Zn×mq , U
$← Zn×κq . Notice that A cannot be global here as it contains a trapdoor.

Fortunately, U can be the same for all users. Thus, |pk| = nm log2(q) bits.

Secret Key: T ∈ Zm×m such that AT ≡ 0 mod q. By looking closely at the construction in [AP09], we
find that it can be restored from just 2m1m2 + m1 log2(q) bits for “rounding-off” and 2m1m2 +
m1 log2(q) + 64 ∗ (m1 +m2)m1 for “nearest-plane” because one needs the Gram-Schmidt orthog-
onalization. Here, we assume a IEEE 754 double precision data type is sufficient. The length is
L̃ ≤ 1 + 20

√
m1 for “rounding-off” and L ≤ 20n log(q) for “nearest-plane”.

Plaintext: k ∈ Zκt .

Ciphertext: c1 = Ats + x1 ∈ Zmq , c2 = Uts + x2 + k q−1
2 ∈ Zκq , where x1 ← χmα , x2 ← χκα and s

$← Znq .
The ciphertext has (m+ κ) log2(q) bits.

Decryption: Recover s from c1, using the trapdoor. Then, c2 −Uts ≈ k q−1
2 .

The parameters m = m1 + m2 is determined by the trapdoor algorithm in [AP09]. The algorithm
requires m1 = d(1 + ϕ)n log2(q)e and m2 = d(4 + 2ϕ)n log2(q)e, where q depends on the decryption
method as we will see below and ϕ is chosen 0.1 as explained in the GPV signature case.

In both variants, decryption recovers s from c1 and then k from c2. The induced error is a rounding
error ≤ 1/4 if q ≥ 2L

√
m (q ≥ 2L̃

√
m) and a Gaussian with parameter ≤ αL (rounding-off) or ≤ αL̃

(Nearest plane). The Gaussian error needs to be < 1/4, i.e., setting α = 1/(L20) or α = 1/(L̃20) is
sufficient. The advantage of the “nearest plane” approach becomes obvious as we can have a bigger
α and with that a harder worst-case problem. This also affects q because we require q >

√
n/α in

the worst-case to average-case reduction. An admissible q is the smallest prime between n4 and 2n4

(rounding-off), or between n3 and 2n3 (nearest plane). Table 15 shows the resulting parameter sets for
“nearest plane”.

year 2018 2010 2020 2030 2040 2050 2060 2070 2080 2090

κ 128 150 164 176 190 204 216 230 244 256
Lenstra n

q
α
m
|sk|
|pk|
|C|

259
17373989
3.02e-05
33015
1811121
25104
97

229
12008999
3.25e-05
28545
1354059
18766
82

264
18399749
2.98e-05
33768
1894872
26262
100

302
27543611
2.76e-05
39560
2600580
36044
120

338
38614483
2.58e-05
45149
3387284
46948
139

373
51895141
2.44e-05
50667
4265727
59126
159

410
68921003
2.31e-05
56583
5320089
73739
181

445
88121141
2.20e-05
62249
6438898
89246
201

480
1.11e+08
2.10e-05
67978
7678583
106431
223

517
1.38e+08
2.02e-05
74099
9123402
126460
245

Table 15: Recommended parameters for trapdoor-LWE with “nearest-plane”. The rows correspond to
attacker types and the columns correspond to security until a given year. C is the ciphertext
sizes and all sizes are in kilobytes (kB).
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A.3. Remarks

When looking at how modestly the parameters need to grow with increasing security demands, we clearly
see one of the advantages for lattice-based cryptography. The downside is that all schemes that require
an actual trapdoor are quite impractical. Here, our secret key sizes reflect the least number of bits that
are necessary to reconstruct the trapdoor. This introduces a significant computational overhead as the
Gram-Schmidt orthogonalization of the trapdoor is often required. Storing the orthogonalization of the
matrix, however, results in a secret key that is bigger by magnitudes.

A general observation regarding ideal lattices over the ring Zq[x]/(xn + 1) is that it is desirable for
efficient implementations but it does not allow a fine-grained parameter selection because n needs to be
a power of 2. In consequence, some of the proposed parameter sets provide more security than required.

Signatures. All signature schemes using a trapdoor come with large key, in the order of megabytes
or even gigabytes, and signature sizes. The most practical scheme is the Treeless signature scheme
(requiring random oracles). The LM-OTS scheme has small keys and signatures, but it is only “one-
time”. The GPV and Bonsai schemes, even when instantiated with ideal lattices, are far from being
practical.

Encryption. Regarding lattice-based encryption schemes, there is no perfect choice. The most
suitable scheme depends on the exact application scenario. However, there is a simple classification:
multi-bit (ring-)LWE offers the smallest ciphertexts, dual (ring-)LWE has the smallest public keys, and
trapdoor (ring-)LWE gives rise to CCA secure encryption. For plain CPA encryption, using trapdoor-
LWE is discouraged because it is rather impractical due to its huge secret key. The effect of using the
respective “ring” variants is a significant improvement of the public-key size and of the computational
efficiency. Furthermore, it improves the secret-key size. The caveat is that the modulus q increases, and
with it the ciphertext size. Regarding the ring-version trapdoor-LWE, we conclude that it helps reduce
both, the secret- and public-key sizes at the expense of a rather large ciphertext.
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