
Improved Agreeing-Gluing Algorithm

Igor Semaev

Department of Informatics, University of Bergen, Norway
igor@ii.uib.no

Abstract. A system of algebraic equations over a finite field is called sparse if each equation
depends on a low number of variables. Finding efficiently solutions to the system is an un-
derlying hard problem in the cryptanalysis of modern ciphers. In this paper a deterministic
Improved Agreeing-Gluing Algorithm is introduced. The expected running time of the new
Algorithm on uniformly random instances of the problem is rigorously estimated. The esti-
mate is at present the best theoretical bound on the complexity of solving average instances
of the problem. In particular, this is a significant improvement over those in our earlier pa-
pers [10, 11]. In sparse Boolean equations a gap between the worst case and the average time
complexity of the problem has significantly increased.

1 Introduction

1.1 The problem and motivation

Let (q, l, n,m) be a quadruple of natural numbers, where q is a prime power. Then Fq denotes a
finite field with q elements and X = {x1, x2, . . . , xn} is a set of variables from Fq. By Xi, 1 ≤ i ≤ m
we denote subsets of X of size li ≤ l. The system of equations

f1(X1) = 0, . . . , fm(Xm) = 0 (1)

is considered, where fi are polynomials over Fq and they only depend on variablesXi. Such equations
are called l-sparse. A solution to (1) over Fq is an assignment in Fq to all n variables X that satisfies
all equations (1). That is a vector of length n over Fq provided the variables X are somehow ordered.
The main goal is to find all solutions over Fq. We suggest a deterministic Improved Agreeing-Gluing
(IAG) Algorithm. It is presented by two variations. The expected complexity of one variation is
rigorously estimated assuming uniform distribution on the problem instances; see Section 1.2 for
detail. The results provide a significant improvement over earlier average time complexity estimates
in [10, 11].

The approach, which exploits the sparsity of equations and doesn’t depend on their algebraic
degree, was studied in [14, 8, 10, 11]. These are guess-and-determine algorithms. In sparse equations
the number of guesses on a big enough variable set Y and the time to produce them is much lower
than q|Y | due to the Search Algorithm; see Section 6. Previously, no preference was made on which
variables to guess. We now argue that guessing values of some particular variables leads to better
asymptotic complexity bounds.

Gröbner bases algorithm was designed to solve general algebraic equation systems; see for in-
stance [5]. In Boolean case, where q = 2 and m = n, the conjectural average complexity bound
is higher than 2n bit operations except for quadratic equations [1]. The best heuristic bound is
then of order 1.7n [13]. In contrast, our estimates are rigorous mathematical statements and very

low exponential functions themselves even in non quadratic case. Sparse equations may be encoded
by a CNF formula and solved with a Sat-solving software. The asymptotical complexity of mod-
ern Sat-solvers, as MiniSat, is unknown, though they may be fast in practice [3] for relatively low
parameters.

The article was motivated by applications in cryptanalysis. Modern ciphers are product, the
mappings they implement are compositions of not so many functions in a low number of variables.
The similar is true for asymmetric ciphers. Intermediate variables are introduced to simplify equa-
tions, describing the cipher, and to get a system of sparse equations. For a more general type of
sparse equations, Multiple Right Hand Side linear equations describing in particular AES; see [9].
An efficient solution of the equations breaks the cipher.

Let Y be an ordered string of variables and a be an Fq-vector of the same length. We say that
a is a vector in variables Y , or Y -vector, if the entries of a may be assigned to the variables Y , for
instance, in case of fixation.

1.2 Probabilistic model

We look for the set of all solutions to (1) over Fq, so we only consider for fi polynomials of degree at
most q − 1 in each variable. Obviously, the equation fi(Xi) = 0 is determined by the pair (Xi, Vi),
where Vi is the set of Xi-vectors, where fi is zero. Given q, n, m, and l1, . . . , lm ≤ l, uniform
distribution on instances is assumed. As any particular information on equations is beforehand
assumed unknown, this looks the most fair probabilistic model to compute expected complexities.
The uniformity means

1. the equations in (1) are independently generated. Each equation fi(Xi) = 0 is determined by

2. the subset Xi of size li taken uniformly at random from the set of all possible li-subsets of X,
that is with the probability

(
n
li

)−1,

3. and the polynomial fi taken uniformly at random and independently of Xi from the set of all
polynomials of degree ≤ q−1 in each of variables Xi. In other words, with the equal probability

q−q
li

.

Running time of any deterministic solving algorithm is a random variable under that model. We
assume that m/n tends to d ≥ 1 as q and l are fixed and n tends to infinity.

Table 1. Algorithms’ running time: q = 2 and m = n.

l 3 4 5 6

the worst case, [6] 1.324n 1.474n 1.569n 1.637n

Gluing1, expectation, [10] 1.262n 1.355n 1.425n 1.479n

Gluing2, expectation, [10] 1.238n 1.326n 1.393n 1.446n

Agreeing-Gluing, expectation, [11] 1.113n 1.205n 1.276n 1.334n

r 2 3 3 4
Weak Improved Agreeing-Gluing, expectation 1.029n 1.107n 1.182n 1.239n

.

2 Previous Ideas and the New Approach

One earlier method [10] is based on subsequent computing solutions Uk to the equation subsystems:
f1(X1), . . . , fk(Xk) for k = 1, . . . ,m. Gluing procedure extends instances Uk to instances Uk+1 by
walking throughout a search tree. In the end, all system solutions are Um. The running time is
determined by the maximal of |Uk|. Gluing2 is a time-memory trade-off variation of the basis
Gluing1 Algorithm. See Table 1 for their running time expectation in case of n Boolean equations
in n variables and a variety of l.

In Agreeing-Gluing Algorithm [11] we only extend those intermediate solutions from Uk that do
not contradict with the rest of the equations fk+1(Xk+1) = 0, . . . , fm(Xm) = 0. That makes lots of
search tree branches cut and implies a better average time complexity.

Let Zr denote variables that occur in at least r equations (1). The new method has two variations.
In the Strong IAG Algorithm the largest r, where Zr is not empty, is taken. Then Zr-vectors that
do not contradict any of (1) are generated by the Search Algorithm; see Section 6. We denote them
Wr. For each a ∈ Wr the variables Zr are substituted by the entries of a. New l-sparse equations
in a smaller variable set X \ Zr are to solve. One then recursively computes Wr−1 and so on. It is
enough to obtain W2 as all system solutions are then easy to deduce; see Lemma 1 below.

In the Weak IAG Algorithm r is a parameter. The vectors Wr are generated by the Search
Algorithm. The variables Zr are substituted by the entries of a ∈Wr. New equations, in case r ≥ 3,
are encoded by a CNF formula and local search algorithm is applied to find all solutions. Two
last lines in Table 1 show expected complexity of the Weak IAG Algorithm and the optimal value
of r. The expected complexity of the Strong IAG Algorithm is not presented in this article. The
Agreeing-Gluing Algorithm [11] is a particular case of the present method for r = 1.

3 Trivially unsolvable equations

The probability that a randomly chosen equation in l variables is solvable over Fq, i.e., admits at

least one solution over Fq, is 1 − (1 − 1
q)q

l

. So the probability the equation system (1) is trivially

unsolvable(at least one of the equations has no solutions over Fq) is 1 −
[
1− (1− 1

q)q
l
]m

. This

value tends to 1 as l and q are fixed and m = dn tends to infinity. It is very easy to recognize,
with some average complexity R, a trivially unsolvable equation system. However, for small d that
only gives a negligible contribution to the average complexity estimate while it is exponential. Let
Q denote average complexity of a deterministic algorithm on all instances of (1). Let Q1 denote
average complexity of the algorithm on the instances of (1) which are not trivially unsolvable, i.e.,
each equation has at least one solution over Fq. In both cases uniform distribution is assumed. By
the conditional expectation formula,

Q =

[
1− (1− 1

q
)q
l

]dn
Q1 +

(
1−

[
1− (1− 1

q
)q
l

]dn)
R.

Therefore, Q1 <
[
1− (1− 1

q)q
l
]−dn

Q. For q = 2 and d = 1 that will affect the bound at l = 3:

in case of the Weak IAG Algorithm, Q1 becomes bounded by 1.033n. For all other l the influence
is negligible: estimates for Q and Q1 are almost identical. For larger d = 1 + δ the contribution
is larger, but Q becomes sub-exponential fast. So Q1 remains bounded by a very low exponential

function at least for low δ. In fact, we believe that Q1 becomes sub-exponential too, though it is
not proved here.

4 Notation and Example

Let r ≥ 1 and Zr(k) denote the set of variables that appear in at least r of X1, . . . , Xk, so Zr(m) =
Zr. Let a be a Zr(k)-vector. Assume (Xi, Vi) is one of the equations. If Xi * Zr(k), then Vi(a)
denotes projections to variables Xi \ Zr(k) of b ∈ Vi, where b and a agree on common variables
Xi ∩Zr(k). In other words, Vi(a) are solutions in variables Xi \Zr(k) to fi(Xi) = 0 after the Zr(k)
get substituted by the entries of a. If Xi ⊆ Zr(k) and the projection of a to Xi does not appear in
Vi, then we write Vi(a) = ∅. Otherwise, Vi(a) 6= ∅. It is obvious that Vi(a) = ∅ iff the fixation of
Zr(k) by constants a contradicts the equation (Xi, Vi).

Let Wr(k) be the set of Zr(k)-vectors a such that Vi(a) 6= ∅ for all i = 1, . . . ,m. In Section 5
a procedure, called Search Algorithm, that extends instances Wr(k) to Wr(k + 1) is described. Its
output is Wr = Wr(m). Three cases should be studied separately.

Case r = 1. Then Um = W1, all system solutions in variables X1 ∪ . . . ∪Xm. Extending W1(k)
to W1(k + 1) by walking over a search tree is the Agreeing-Gluing Algorithm [11].

Case r = 2. Remark that variables in Xi \ Z2 are different for different 1 ≤ i ≤ m.

Lemma 1. Let Xi1 , Xi2 , . . . , Xis be all variable sets such that Xij * Z2. After reordering of vari-
ables it holds that

Um =
⋃
a∈W2

{a} × Vi1(a)× Vi2(a) . . .× Vis(a). (2)

Example Let the system of three Boolean equations be given:

x1 x2 x3
0 0 1
1 0 0
1 1 1
1 0 1

,

x3 x4 x5
0 0 0
1 0 1
1 1 1
0 0 1

,

x5 x6 x7
0 0 0
0 1 1
1 1 0
1 0 1

.

Then Z2(2) = {x3} and Z2(3) = {x3, x5} and the directed products (2) are:

x3 x5 x1 x2 x4 x6 x7
0 0 1 0 × 0 × 0 0

1 1
0 1 1 0 × 0 × 1 0

0 1
1 1 0 0 × 0 × 1 0

1 1 1 0 1
1 0

.

So 16 solutions to the system are represented by three strings of length 2, that is by 0, 0, and 0, 1,
and 1, 1 related to variables x3, x5.

Case r ≥ 3. The Search Algorithm returns some a ∈ Wr. The variables Zr are substituted by
the entries of a. The problem is represented in a conjunctive normal form (CNF) with the clause
length of at most l1 = dlog2 qe l and in n1 = dlog2 qe |X \ Zr| Boolean variables. Local search

algorithm, described in [4], is used to find all solutions. In worst case, that takes O(N(2− 2
l1+1)n1)

bit operations to find N solutions. Other estimates, e.g. presented in the first line of Table 1, do
not improve the overall results for q = 2.

5 Weak IAG Algorithm

We define a rooted search tree. The tree has at most m + 1 levels numbered 0, 1, . . . ,m. The root
at level 0 is labeled by ∅. Vertices at level k are labeled by vectors Wr(k) or ∅ if Zr(k) = ∅. Let a
be a level k vertex. It is connected to a level k+ 1 vertex b whenever a is a sub-vector of b. Remark
that Zr(k) ⊆ Zr(k + 1). We now describe the Algorithm.

Stage 1(Search Algorithm) It starts at the root. Let the Algorithm be at a level k vertex a
which is extended to b with a projection of Vk+1(a) to variables Zr(k + 1) \ Zr(k). If b does
not contradict to any of the equations , then b is a level k + 1 vertex. The Algorithm walks to
that. Otherwise, another projection is taken to extend a. If all the projections are exhausted,
the Algorithm backtracks to level k − 1. This stage output is Wr = Wr(m).

Stage 2 Let the Algorithm achieve a vertex a ∈Wr. If r = 1, then a is a system solution. If r = 2,
then the system solutions are deduced with (2). If r ≥ 3, a system of l-sparse equations in
variables X \Zr after substituting Zr by constants a is solved with local search. If no vertex at
level m is hit , then the system has no solution.

Fig. 1. The search tree.

Theorem 1. Let r < 3, then the algorithm running time is O
(
m
∑m−1
i=r |Wr(i)|

)
operations with

vectors over Fq of length at most n. Let r ≥ 3, then running time is O
(
m
∑m−1
i=r |Wr(i)|+ |Wr| cn−|Zr|

)
operations, where c = (2− 2

ldlog2 qe+1)dlog2 qe.

|Wr(k)| are random variables that depend on sets X1, . . . , Xm and the polynomials f1, . . . , fm.
In Section 8 we estimate the maximal of their expectations. The expectation of |Wr| cn−|Zr| is
estimated in Section 9. For a range of r the estimates are computed with an optimization software
like MAPLE. Remark that the computation does not depend on n. One then finds r such that the
running time expectation is minimal.

The search tree for the example system is presented in Fig. 1, where r = 2. Level 2 vertices are
labeled by W2(2) = {(0), (1)}, vectors in variables Z2(2) = {x3}. The vertices at level 3 are labeled
by W2(3) = {(0, 0), (0, 1), (1, 1)}, vectors in variables Z2(3) = {x3, x5}.

6 General Search Algorithm

Given Y ⊆ X, find all Y -vectors over Fq that do not contradict any of equations (1). Take a
subset sequence Y1 ⊆ Y2 ⊆ . . . ⊆ Ys = Y . That defines a search tree. The root is labeled by
∅, the vertices at level 1 ≤ k ≤ s are labeled by Yk-vectors Vk that do not contradict any of
(1). Vertices a and b at subsequent levels are connected if a is a sub-vector of b. The algorithm
walks throughout the tree by constructing instances Vk with backtracking. The running time is
proportional to |V1|q|Y2\Y1|+|V2|q|Y3\Y2|+. . .+|Vs−1|q|Ys\Ys−1| operations. One may take a sequence
of subsets that minimizes the running time. In IAG Algorithms the sequence is Zr(r) ⊆ Zr(r+1) ⊆
. . . ⊆ Zr(m) = Zr. In practice, one may check whether Yk-vector a contradicts the whole system
(1) but not only each of the equations taken separately. One then runs the Agreeing Algorithm [9,
12] after the variables Yk get substituted by constants a.

7 Tools

In this Section we collect miscellaneous auxiliary statements. Let η = η(x, y) be any variable that
depends on two independent discrete random variables x and y. Then Ey η = Ey η(x, y) denotes
the expectation of η, where y is generated to its initial distribution.

Lemma 2. [11] For the full expectation of η = η(x, y) we have

Ex,y η = Ex(Ey(η)).

Random Allocations Theory studies random allocations of particles(balls) into boxes, see [7].
Let k complexes of particles be independently and uniformly allocated into n boxes, li ≤ n particles
at the i-th allocation. This means that at the i-th allocation any li boxes are occupied with the
equal probability

(
n
li

)−1. This is how variable sets X1, . . . , Xm are generated according to Section
1.2. Let ν1, . . . , νn be the string of box frequencies, that is νi is the number of particles in the i-th
box after k such allocations. Let A = A(ν1, . . . , νn) be any event depending on the frequencies νi.
Let also Pr(A| l1, . . . , lk) denote the probability of the event A under the allocation by complexes.

Lemma 3.

Pr(A| l1, . . . , lk) ≤ Pr(A| 1, . . . , 1)∏k
i=1 (1− 1/n) . . . (1− (li − 1)/n)

,

where Pr(A| 1, . . . , 1) is the probability of A under condition that L = l1 + . . . + lk particles are
allocated one after the other, i.e., L of 1’s in the expression Pr(A| 1, . . . , 1).

Proof. Let L particles be independently allocated into n boxes one after the other. Let B denote the
event that the first l1 particles were allocated into different boxes, the following l2 were allocated
into different boxes etc, until the last lk particles were allocated into different boxes. In other
words, the event B occurs if the particles are allocated by complexes of size l1, l2, . . . , lk. Then
Pr(B) =

∏k
i=1 (1− 1/n) . . . (1− (li − 1)/n) as the particles were allocated independently. By the

complete probability formula we get

Pr(A| 1, . . . , 1) = Pr(B) Pr(A| B) + Pr(B̄) Pr(A| B̄)

≥ Pr(B) Pr(A| B) = Pr(B) Pr(A| l1, . . . , lk)

as Pr(A|B) = Pr(A| l1, . . . , lk).

Let fn(z) =
∑∞
k=0 an,k z

k, where an,k ≥ 0, be an analytic function for any natural n.

Lemma 4. For any real z0 > 0

an,k ≤
fn(z0)

zk0
.

Proof. The expansion of fn has only nonnegative coefficients, so an,k z
k
0 ≤ fn(z0).

To minimize the estimate one takes a positive root z0 to

∂(n ln f(z)− k ln z)

∂z
= 0

if there exist any. In case there is only one root, the Lemma estimate is proportional to the main
term of the asymptotic expansion for an,k with saddle point method as n and k tend to infinity; see
[2]. Lemma 4 estimate is then asymptotically close to the real value of an,k. We use this observation
in Lemmas 5, 6 and 10.

Let µr = µr(t, n) be the number of boxes with just r particle after uniform allocation of t

particles one after the other into n boxes. Let E (x
µr1
1 . . . x

µrs
s) be the expectation of the random

variable x
µr1
1 . . . x

µrs
s , where x1, . . . , xs are any variables. By definition,

E (x
µr1
1 . . . x

µrs
s) =

∑
k1,...,ks

Pr(µr1 = k1, . . . ,µrs = ks) x
k1
1 . . . xkss .

Theorem 2 in Chapter 2, Section 1 of [7] states

∞∑
t=0

nt zt

t!
E (x

µr1
1 . . . x

µrs
s) =

(
ez +

zr1

r1!
(x1 − 1) + . . .+

zrs

rs!
(xs − 1)

)n
. (3)

In particular, we get

∞∑
t=0

nt zt

t!
E (x

µ0
0 . . . x

µr−1

r−1) =

(
ez + (x0 − 1) + . . .+

zr−1

(r − 1)!
(xr−1 − 1)

)n
.

We there put x0 = . . . = xr−1 = 0 and get(
ez − 1− z . . .− zr−1

(r − 1)!

)n
=

∞∑
t=nr

ntzt

t!
Pr(µ0 = 0, . . . ,µr−1 = 0)

as Pr(µ0 = 0, . . . ,µr−1 = 0) = 0 for t < nr. Let g(z) = ez − 1− z . . .− zr−1

(r−1)! .

Lemma 5. Let r ≥ 1. For any natural number t ≥ nr

Pr(µ0(t, n) = 0, . . . ,µr−1(t, n) = 0) ≤ gn(x0) t!

xt0 n
t
,

where x0 is the only nonnegative root of the equation n
x
(
ex−1−x...− xr−2

(r−2)!

)
ex−1−x...− xr−1

(r−1)!

= t.

Proof. Let t > nr. Then the equation has the only positive solution x0. The statement is true by

Lemma 4. Let t = nr, then x0 = 0. One sees that gn(x0) t!
xt0 n

t is defined at x0 = 0 and equal to (n r)!
(r!)n nn r .

On the other hand, one directly computes

Pr(µ0(nr, n) = 0, . . . ,µr−1(nr, n) = 0) =
(nr)!

(r!)n nnr
.

It follows from (3) that

∞∑
t=0

nt zt

t!
E (x

µ1
1 . . . x

µr−1

r−1) =

(
ez + z(x1 − 1) + . . .+

zr−1

(r − 1)!
(xr−1 − 1)

)n
. (4)

Substitute xi = xi for i = 1, . . . , r − 1. Then

∑
t≥k

nt zt xk

t!
Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = k)

=

∞∑
t=0

nt zt

t!
E (xµ1+2µ2+...+(r−1)µr−1)

=

[
ez −

(
z + . . .+

zr−1

(r − 1)!

)
+

(
zx+ . . .+

(zx)r−1

(r − 1)!

)]n
.

because Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = k) = 0 if t < k. We again denote zx by x, then

∑
t≥k

nt zt−k xk

t!
Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = k)

=

[
ez −

(
z + . . .+

zr−1

(r − 1)!

)
+

(
x+ . . .+

xr−1

(r − 1)!

)]n
.

We now put z = 0. Therefore,

(
1 + x+ . . .+

xr−1

(r − 1)!

)n
=

(r−1)n∑
t=0

nt xt

t!
Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = t).

We remark that the probability is zero if t > (r − 1)n. Let h(x) = 1 + x . . .+ xr−1

(r−1)! .

Lemma 6. Let r ≥ 1. For any natural number t such that (r − 1)n ≥ t ≥ 0 we have

Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = t) ≤ hn(y0)

yt0

t!

nt
,

where y0 is the only nonnegative root (including ∞) of the equation n
x
(
1+x+...+ xr−2

(r−2)!

)
1+x+...+ xr−1

(r−1)!

= t.

Proof. Let (r − 1)n > t > 0. Then the equation has the only positive solution y0. The estimate is
true by Lemma 4. Let t = 0, then y0 = 0 and the Lemma is true as both the sides of the inequality
are 1. Let t = (r − 1)n, then y0 = ∞. The right hand side of the inequality is defined at y0 = ∞
and equal to t!

((r−1)!)n nt . On the other hand,

Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = t) = Pr (µr−1(t, n) = n) =
t!

((r − 1)!)n nt
.

Lemma 7. For every integer number k ≥ 0 it holds that

kke−k ≤ k! ≤ kke−k
√

2π(k + 1).

8 Complexity Estimate. Stage 1

We now estimate the expectation of |Wr(k)|. Its maximum in k will be estimated with (13).

Theorem 2. Let the variable sets X1, . . . , Xm be fixed while the polynomials f1, . . . , fm generated
according to the probabilistic model. Then

Ef1,...,fm |Wr(k)| = q|Zr(k)|
m∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr(k)|

)
.

Proof. We fix an Fq-vector a in variables Zr(k) and compute Pr(a ∈ Wr(k)), the probability that
a doesn’t contradict any of fi(Xi) = 0. As fi are independent,

Pr(a ∈Wr(k)) =

m∏
i=1

Pr(Vi(a) 6= ∅).

One sees Pr(Vi(a) = ∅) = (1− 1
q)q
|Xi\Zr(k)|

doesn’t depend on a. So Ef1,...,fm |Wr(k)| =

∑
a

Pr(a ∈Wr(k)) = q|Zr(k)|Pr(a ∈Wr(k)) = q|Zr(k)|
m∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr(k)|

)
.

By Lemma 2, E|Wr(k)| = EX1,...,Xm (Ef1,...,fm |Wr(k)|). So

E|Wr(k)| = EX1,...,Xm

(
q|Zr(k)|

m∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr(k)|

))
. (5)

According to the probabilistic model, X1, . . . , Xm are uniformly allocated into the whole variable
set X of size n. So we use the language of particle allocation into n boxes from now. In particular,
Zr(k) is the set of boxes with at least r particles after uniform allocation by complexes of size
l1, . . . , lk. We split the last product

E|Wr(k)| = EX1,...,Xm

q|Zr(k)| k∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr(k)|

) m∏
j=k+1

(
1− (1− 1

q
)q
|Xj\Zr(k)|

) .

We use the conditional expectation formula under the condition A = A(U, t1, . . . , tk). The event A
occurs if Zr(k) = U and |Xi \ U | = ti, where i = 1, . . . , k. We get

E|Wr(k)| =
∑
U

∑
t1,...,tk

q|U |
k∏
i=1

(
1− (1− 1

q
)q
ti

)
E(A) Pr(A), (6)

where U runs over all subsets of X and 0 ≤ ti ≤ li. We denoted

E(A) = EX1,...,Xm

 m∏
j=k+1

(
1− (1− 1

q
)q
|Xj\Zr(k)|

)∣∣∣∣∣∣A
 .

We remark that for any fixed A = A(U, t1, . . . , tk) the probability Pr(A) and the expectation E(A)
are increasing if all li become l. So it is enough to upper bound E|Wr(k)| in case li = l only. We
now estimate the probability of the event A, where |U | = u.

Lemma 8. Let L = lk and T = t1 + . . .+ tk. Then

Pr(A) ≤
(
u
n

)L−T (n−u
n

)T
P1(L− T, u) P2(T, n− u)

∏k
i=1

(
l
ti

)∏l−1
i=1 (1− i

n)k
,

where

P1(L− T, u) = Pr(µ0(L− T, u) = 0, . . . ,µr−1(L− T, u) = 0),

P2(T, n− u) = Pr(µ1(T, n− u) + 2µ2(T, n− u) + . . .+ (r − 1)µr−1(T, n− u) = T).

Proof. Assume 0 < u < n and r ≥ 2, otherwise the statement is easy with Lemma 3. Let the event
B occur if |Xi \ U | = ti for i = 1, . . . , k. Then Pr(A) = Pr(B)Pr(A|B).

Pr(B) =

k∏
i=1

Pr(|Xi \ U | = ti) =

k∏
i=1

(
u
l−ti

)(
n−u
ti

)(
n
l

) =

=

k∏
i=1

(
l

ti

) (u
n

)l−ti (n− u
n

)ti (1− 1
u) . . . (1− l−ti−1

u)(1− 1
n−u) . . . (1− ti−1

n−u)

(1− 1
n) . . . (1− l−1

n)

=

(
u
n

)L−T (n−u
n

)T ∏k
i=1

(
l
ti

)∏l−1
i=1 (1− i

n)k

k∏
i=1

(1− 1

u
) . . . (1− l − ti − 1

u
)(1− 1

n− u
) . . . (1− ti − 1

n− u
).

The event A|B occurs if and only if the following two events A1 and A2 occur simultaneously.
First, the complexes of l − t1, . . . , l − tk particles are allocated into |U | = u boxes, where each box

is occupied by at least r particles. Second, the complexes of t1, . . . , tk particles are allocated into
|X \U | = n−u boxes, where each box is occupied by at most r−1 particles. These are independent
events. Therefore Pr(A|B) = Pr(A1)Pr(A2).

Let µ′s(t1, . . . , tk, n) be the number of boxes with exactly s particles after k uniform allocations
into n boxes by complexes of t1, . . . , tk particles. The event A1 occurs if and only if µ′i(l− t1, . . . , l−
tk, u) = 0 for i = 0, . . . , r − 1. The event A2 occurs if and only if µ′i(t1, . . . , tk, n− u) = 0 for i ≥ r.
The latter is equivalent to

µ′1(t1, . . . , tk, n− u) + 2µ′2(t1, . . . , tk, n− u) + . . .+ (r − 1)µ′r−1(t1, . . . , tk, n− u) = T.

By Lemma 3,

Pr(A1) ≤ P1(L− T, u)∏k
i=1 (1− 1

u) . . . (1− l−ti−1
u)

and

Pr(A2) ≤ P2(T, n− u)∏k
i=1 (1− 1

n−u) . . . (1− ti−1
n−u)

So Pr(A) = Pr(B)Pr(A|B) =

= Pr(B)Pr(A1)Pr(A2) ≤
(
u
n

)L−T (n−u
n

)T
P1(L− T, u) P2(T, n− u)

∏k
i=1

(
l
ti

)∏l−1
i=1 (1− i

n)k
.

Lemma 9. E(A) = E(u), where

E(u) =

m∏
j=k+1

EXj

(
1− (1− 1

q
)q
|Xj\U|

)
does not depend on the set U but rather on its size u.

Proof. For any X1, . . . , Xk, where A occurs

EXk+1,...,Xm

 m∏
j=k+1

(
1− (1− 1

q
)q
|Xj\Zr(k)|

)∣∣∣∣∣∣A
 =

m∏
j=k+1

EXj

(
1− (1− 1

q
)q
|Xj\U|

)
.

That doesn’t depend on X1, . . . , Xk. By Lemma 2, E(A) = EX1,...,Xk(EXk+1,...,Xm(. . .)) = E(u).
The value depends on the size of the set U and not on the set itself.

From (6) we get

E|Wr(k)| =
n∑
u=0

(
n

u

)
qu E(u)

∑
t1,...,tk

k∏
i=1

(
1− (1− 1

q
)q
ti

)
Pr(A) (7)

as Pr(A) only depends on u, t1, . . . , tk. From (7) by Lemmas 8 and 9,

E|Wr(k)| ≤ 1∏l−1
i=1(1− i

n)k

n∑
u=0

(
n

u

)
qu E(u) (8)

×
L∑
T=0

CT

(u
n

)L−T (n− u
n

)T
P1(L− T, u) P2(T, n− u),

where CT =
∑
t1+...+tk=T

∏k
i=1

(
l
ti

) (
1− (1− 1

q)q
ti
)
. Let f(z) =

∑l
t=0

(
l
t

) (
1− (1− 1

q)q
t
)
zt. It is

obvious fk(z) =
∑lk
T=0 CT z

T .

Lemma 10. For every 0 ≤ T ≤ l k we have CT ≤ fk(z0)

zT0
, where z0 is the only nonnegative root(

including ∞ for T = lk) to the equation k

∑l
t=1 t (lt)

(
1−(1− 1

q)
qt
)
zt∑l

t=0 (lt)(1−(1−
1
q)
qt) zt

= T.

Let u = βn, then

EXi(1− (1− 1

q
)q
|Xi\U|

) = 1−
l∑
t=0

(
u
l−t
)(
n−u
t

)(
n
l

) (1− 1

q
)q
t

= 1−
l∑
t=0

(
βn
l−t
)(
n−βn
t

)(
n
l

) (1− 1

q
)q
t

.

By taking limn→∞, we get

Lemma 11. Let |U | = βn, where 0 ≤ β ≤ 1 as n tends to ∞, then

EXi(1− (1− 1

q
)q
|Xi\U|

) = F (β) +O(
1

n
),

where F (β) = 1−
∑l
t=0

(
l
t

)
βl−t(1− β)t(1− 1

q)q
t

and O(1
n) is uniformly bounded in β.

Lemmas 9 and 11 imply E(u) ≤ (F (β) + ε)m−k, where ε is any positive number and n is big
enough. Let L = αn and T = γn. So m−k

n = m
n −

α
l and

E(u) ≤ (F (β) + ε)(d−
α
l)n (9)

for any positive ε as n tends to ∞. By Lemma 5, P1(L− T, u) ≤ gu(x0) (L−T)!

xL−T0 uL−T
. Therefore,

P1(L− T, u) ≤

[
gβ(x0)

xα−γ0

(
α− γ
βe

)α−γ
+ ε

]n
, (10)

for any positive ε and big enough n, where x0 is the only nonnegative root of the equation

β
x
(
ex−1−x...− xr−2

(r−2)!

)
ex−1−x...− xr−1

(r−1)!

= α− γ. By Lemma 6, P2(T, n− u) ≤ hn−u(y0) T !

yT0 (n−u)T . Therefore,

P2(T, n− u) ≤
[
h1−β(y0)

yγ0

(
γ

(1− β)e

)γ
+ ε

]n
, (11)

for any positive ε and big enough n, where y0 is a nonnegative root of the equation (1−β)
v
(
1+y+...+ yr−2

(r−2)!

)
1+y+...+ yr−1

(r−1)!

=

γ. By Lemma 10,

CT ≤
(
f
α
l (z0)

zγ0

)n
, (12)

where z0 is the only nonnegative root to α
l

∑l
t=1 t (

l
t)
(
1−(1− 1

q)
qt
)
zt∑l

t=0 (lt) (1−(1− 1
q)
qt) zt

= γ. From (8) with (10), (11),

(12) and (9) we now get

E|Wr(k)| ≤ n(lm+ 1) max

[
qβ f

α
l (z0) gβ(x0) h1−β(v0) (α− γ)α−γ γγ

ββ (1− β)1−β (z0v0)γ xα−γ0 eα
F (β)d−

α
l + ε

]n
,

for any positive ε and big enough n, where Lemma 7 was used to bound the binomial coefficient(
n
u

)
. Therefore,

E|Wr(k)| ≤
[
max

(
qβ f

α
l (z0) gβ(x0) h1−β(y0) (α− γ)α−γ γγ

ββ (1− β)1−β (z0y0)γ xα−γ0 eα
F (β)d−

α
l

)
+ ε

]n
(13)

for any positive ε and big enough n. The maximum is over 0 ≤ β ≤ 1 and 0 ≤ γ ≤ α. We remark that
the parameters α, β, γ should satisfy rβ ≤ α− γ and (r− 1)(1−β) ≤ γ, otherwise P1(L−T, u) = 0
or P2(T, n − u) = 0. The complexity of the first stage is upper bounded by the maximum of (13)
over 0 ≤ α ≤ dl. For any q, l, d, r that maximum may be computed with an advanced optimization
package like MAPLE.

9 Complexity Estimate. Stage 2

Let r ≥ 3. Let Wr = Wr(m) and Zr = Zr(m). Let X1, . . . , Xm be fixed and f1, . . . , fm randomly
generated. Then one proves that Ef1,...,fm

(
|Wr|cn−|Zr|

)
is the expected complexity to compute all

solutions, where c is defined in Theorem 1. Similarly to Theorem 2,

E
(
|Wr|cn−|Zr|

)
= EX1,...,Xm

(
q|Zr|cn−|Zr|

m∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr|

))
.

Let L = lm. Similarly to (8),

E
(
|Wr| cn−|Zr|

)
≤ 1∏l−1

i=1(1− i
n)m

n∑
u=0

(
n

u

)
qucn−u

×
L∑
T=0

CT

(u
n

)L−T (n− u
n

)T
P1(L− T, u) P2(T, n− u),

where CT =
∑
t1+...+tm=T

∏m
i=1

(
l
ti

) (
1− (1− 1

q)q
ti
)

. Therefore,

E
(
|Wr| cn−|Zr|

)
≤

[
max

(
qβc1−β fd(z0) gβ(x0) h1−β(y0) (dl − γ)dl−γ γγ

ββ (1− β)1−β (z0y0)γ xdl−γ0 edl

)
+ ε

]n
(14)

for any positive ε and big enough n. The maximum is over 0 ≤ β ≤ 1 and 0 ≤ γ ≤ dl. We
remark that the parameters α, β, γ should satisfy rβ ≤ dl − γ and (r − 1)(1 − β) ≤ γ, otherwise
P1(L− T, u) = 0 or P2(T, n− u) = 0.

References

1. M. Bardet, J.-C.Faugére, and B. Salvy, Complexity of Gröbner basis computation for semi-regular overde-
termined sequences over F2 with solutions in F2, Research report RR–5049, INRIA, 2003.

2. E.T. Copson, Asymptotic expansions, Cambridge University Press, 1965.
3. N. T. Courtois and G. V. Bard, Algebraic Cryptanalysis of the Data Encryption Standard, Crypt. ePrint

Arch., report 2006/402.

4. E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. M. Kleinberg, C. H. Papadimitriou, P. Raghavan,
U. Schning,A deterministic (2− 2/(k + 1))n algorithm for k-SAT based on local search. Theor. Comput.
Sci. 289(2002), pp.69–83.

5. J.-C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), in
ISSAC 2002, pp. 75 – 83, ACM Press, 2002.

6. K. Iwama, Worst-Case Upper Bounds for kSAT, The Bulletin of the EATCS, vol. 82(2004), pp. 61–71.
7. V. Kolchin, A. Sevast’yanov, and V. Chistyakov, Random allocations, John Wiley & Sons, 1978.
8. H. Raddum, Solving non-linear sparse equation systems over GF (2) using graphs, University of Bergen,

preprint, 2004.
9. H. Raddum, I. Semaev, Solving Multiple Right Hand Sides linear equations, Des. Codes Cryptogr., vol.49

(2008), pp.147–160.
10. I. Semaev, On solving sparse algebraic equations over finite fields, Des. Codes Cryptogr., vol. 49 (2008),

pp.47–60.
11. I. Semaev, Sparse algebraic equations over finite fields, SIAM J. on Comp., vol. 39(2009), pp. 388-409.
12. I. Semaev, Sparse Boolean equations and circuit lattices, Des. Codes Cryptogr.,(2010), to appear.
13. B.-Y. Yang, J-M. Chen, and N.Courtois, On asymptotic security estimates in XL and Gröbner bases-

related algebraic cryptanalysis, LNCS 3269, pp. 401–413, Springer-Verlag, 2004.
14. A. Zakrevskij, I. Vasilkova,Reducing large systems of Boolean equations,4th Int.Workshop on Boolean

Problems, Freiberg University, September, 21–22, 2000.

