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Abstract

Boneh and Franklin constructed the first practical
Identity-Based Encryption (IBE) scheme in 2001. They also
defined a formal security model for IBE and proved their
scheme (BF-IBE) to be secure in the random oracle model
under the computational Bilinear Diffie-Hellman assump-
tion. However, few years later, Galindo [10] pointed out a
flawed step in its proof of chosen ciphertext attack (CCA)
security and claimed that it is possible to fixed it with-
out changing the original scheme and underlying assump-
tion. In the same paper, Galindo provided a revised proof
with a looser security reduction. Shortly afterwards, Nish-
ioka [17] attempted to extend Galindo’s idea to achieve a
tighter security reduction. Unfortunately, we find that there
are some lapses in their mending works, which make their
proofs not infallible. In this paper, except pointing out the
defects in the aforementioned proofs, we also illustrate how
to fix their proofs. Besides, we provide a security proof for
BF-IBE in selective identity model. Furthermore, we prove
BF-IBE is fully secure in the random oracle model if con-
fining its identity space to a finite set.

1 Introduction

Identity-Based Encryption (IBE) allows a party to en-
crypt a message using the recipient’s identity as a public
key. Such property simplifies key management and avoids
the use of digital certificates. This can be very useful in ap-
plications such as email system where the recipient is often
off-line and unable to present a public-key certificate while
the sender encrypts a message.

Since Shamir proposed the concept of IBE in 1984 [19],
various Identity-Based signature (IBS) and authentication
(IBA) schemes have been proposed, but secure and fully
functional IBE scheme was not found until Boneh and
Franklin [3], Cocks [8] and Sakai et al. [18] presented three

IBE schemes in 2001, respectively. Among those solutions,
Boneh and Franklin’s scheme (BF-IBE) happen to be the
most practical one. In order to prove the security of BF-IBE,
Boneh and Franklin [3] introduced new security model to fit
the Identity-Based setting, then proved its security assum-
ing the hardness of computational Bilinear Diffie-Hellman
problem. Because BF-IBE is the first fully functional prac-
tical IBE scheme, even though its security is given in the
heuristic model (the random oracle model [16]), it still has
had a great influence on later designs and analyses of cryp-
tographic schemes. Numerous schemes [1] [5] [13] [14]
[15] are based on BF-IBE schemes.

The original security proof of BF-IBE was long believed
correct until 2005, Galindo [10] pointed out a flawed step in
one security reduction for CCA security. Galindo claimed
that the flawed step could be fixed by his new security re-
duction without changing both the scheme and the underly-
ing assumption if the efficiency of the security reduction
is sacrificed. In the same year, Nishioka [17] enhanced
Galindo’s idea to provide another proof with tighter secu-
rity reduction. Up to present, no one doubts the correctness
of their mending proofs.

1.1 Our contributions

We first re-examine the flawed steps in the original proof
of BF-IBE exhibited in [4] and analyze the reason why it
fails. Then we identify some questionable issues in the sub-
sequent revised security proofs proposed by Galindo [10]
and Nishioka [17], respectively. Both of their proofs begin
with a doubtable hypothesis that the simulator know the ex-
act number of queries qH that the adversary will make even
at the beginning of the CCA game. Apart from this com-
mon issue, for Galindo’s proof the simulation algorithm is
not well defined, which leads the probability of perfect sim-
ulation is immeasurable. In addition, in the challenge step
the behavior of the adversary is inconsistency to the defi-
nition of CCA security. For Nishioka’s proof, the compu-
tation of the probability that the simulator does not aborts



is not right. We show that their proofs could be fixed by a
minor modification, i.e. replacing the particular of qH with
the upper bound of qH . As the last contribution, we pro-
vide a security proof of BF-IBE in selective identity model.
Moreover, we show that BF-IBE can be proved to be fully
secure in the random oracle model if confining its identity
space to a finite set.

1.2 Organization

In next section 2, we give the background information
about the related security definitions and assumptions. In
Section 3 we briefly review the BF-IBE scheme and its
original security proof. In Section 4 we identify some ques-
tionable issues in the subsequent revised proofs proposed
by Galindo [10] and Nishioka [17] and illustrate how to
fix them. In Section 5 we prove BF-IBE is secure in the
selective-ID model. Finally, we conclude the paper in Sec-
tion 6.

2 Preliminaries

We briefly review the groups with efficiently computable
bilinear maps that will be used throughout the paper. For
more details, we recommend the reader to previous litera-
ture [4].
Bilinear Map. G1 and G2 be two groups of large prime
order q. A map e : G1 ×G1 → G2 is said as an admissible
bilinear map if the following three properties hold.

1. Bilinear. e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1

and all a, b ∈ Z∗q .

2. Non-degenerate. e(P, P ) 6= 1.

3. Computable. There is an efficient algorithm to com-
pute e(P,Q) for any P,Q ∈ G1.

Bilinear Diffie-Hellman (BDH) Parameter Generator. A
BDH parameter generator G is an algorithm which takes a
security parameter k ∈ Z+ as input and outputs two groups
of prime order q and an admissible bilinear map e : G1 ×
G1 → G2. We describe it as G(1k) = 〈q,G1,G2, e〉.
Computational Bilinear Diffie-Hellman Problem. Given
the tuple (P, aP, bP, cP ) for some a, b, c ∈ Z∗q , P ∈ G1,
to compute the e(P, P )abc ∈ G2. An adversary A is said
to have at least advantage ε in solving CBDH problem if
Pr
[
A(P, aP, bP, cP ) = e(P, P )abc

]
≥ ε.

2.1 Security Notions

Recall that an IBE system consists of four algo-
rithms [19] [4]: Setup, Extract, Encrypt, and Decrypt. The
Setup algorithm generates system parameters params and a
master secret master-key. The Extract algorithm uses the

master-key to generate the private key corresponding to a
given identity. The Encrypt algorithm encrypts messages
for a given identity (using the system parameters) and the
Decrypt algorithm decrypts ciphertext using the private key.
The message space isM. The ciphertext space is C.
Chosen Ciphertext Security for Identity-Based Encryp-
tion. An IBE scheme E is said to be secure against adap-
tively chosen ciphertext attack (IND-ID-CCA) if no prob-
abilistic polynomial time (PPT) algorithm A has a non-
negligible advantage against the challenger in the following
game:
Setup. The challenger runs the Setup algorithm. It gives
the adversary the resulting system parameters params and
keeps the master-key to itself.
Phase 1. The adversary A issues queries q1, . . . , qm where
query qi is one of:

• Extraction query 〈IDi〉. The challenger responds by
running algorithm Extract to generate the private key
di corresponding to IDi and sends di to A.

• Decryption query 〈IDi, Ci〉. The challenger responds
by running algorithm Extract to generate the private
key di corresponding to IDi. It then runs algorithm
Decrypt to decrypt the ciphertext Ci using the private
key di and sends the resulting plaintext to A.

These queries may be asked adaptively, that is, each query
qi may depends on the replies to q1, . . . , qi−1.
Challenge. Once the adversary A decides that Phase 1 is
over it outputs two equal length plaintexts M0,M1 ∈ M
and an identity IDch on which it wishes to be challenged.
The only constraint is that IDch did not appear in any private
key extraction query in Phase 1. The challenger picks a ran-
dom bit c ∈ {0, 1} and sets C = Encrypt(params, ID,Mc).
It sends C as the challenge to A.
Phase 2. A issues more queries qm+1, . . . , qr where qi is
one of:

• Extraction query 〈IDi〉 6= 〈ID〉. Challenger responds
as in Phase 1.

• Decryption query 〈IDi, Ci〉 6= 〈ID, C〉. Challenger re-
sponds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess. Finally, A outputs a guess c′ ∈ {0, 1} and wins the
game if c = c′.

We refer to such an adversary A as an IND-ID-CCA ad-
versary, and define the adversary A’s advantage over the
scheme E by AdvE,A(k) =

∣∣Pr[c = c′]− 1
2

∣∣, where k is the
security parameter. The probability is over the random bits
used by the challenger and the adversary.

Definition 2.1. An IBE scheme E is IND-ID-CCA secure



if for any PPT IND-ID-CCA adversary A the advantage
AdvE,A(k) is negligible.

Selective-ID model. Boneh and Franklin [3] defined the
adaptive chosen ciphertext security for IBE systems by the
above game. We refer to it as full IBE security model.
In this model, the adversary can issue both adaptive cho-
sen ciphertext queries and adaptive chosen identity queries.
Eventually, the adversary adaptively chooses the identity it
wishes to attack and asks for a semantic security challenge
for this identity. Canetti, Halevi, and Katz [6] [7] defined a
slightly weaker security model, called selective-ID security
model, in which the adversary must commit ahead of time
(non-adaptively) to the identity it intends to attack. More
precisely, it is defined using the following game:
Init. The adversary outputs an identity IDch where it wishes
to be challenged.
Setup and Phase 1 are same as in IND-ID-CCA game.
Phase 1. Same as in IND-ID-CCA game.
Challenge. Once the adversary decides that Phase 1 is over
it outputs two equal length plaintexts M0,M1 on which it
wishes to be challenged. The challenger picks a random
bit c ∈ {0, 1} and sets the challenge ciphertext to C =
Encrypt(params, IDch,Mc). It sends C as the challenge to
the adversary.
Phase 2 and Guess are same as in IND-ID-CCA game.

We refer to such an adversaryA as an IND-sID-CCA ad-
versary. We define the advantage of the adversary A over
scheme E by AdvE,A(k) =

∣∣Pr[c = c′]− 1
2

∣∣. The proba-
bility is over the random bit used by the challenger and the
adversary.

Definition 2.2. An IBE system E is IND-sID-CCA secure
if for any PPT IND-sID-CCA adversary A the advantage
AdvE,A(k) is negligible.

3 Boneh-Franklin’s IBE Scheme

In this section, we first briefly review the BF-IBE
scheme, and then investigate its original proof [3]. Boneh
and Franklin named their full scheme as FullIdent. In or-
der to make the presentation easier, they introduced the
BasicIdent and two public key encryption (PKE) scheme
called BasicPub and BasicPubhy . BasicIdent which has
only CPA security, is a simplified version of FullIdent,
BasicPub is a PKE scheme derived from BasicIdent, and
BasicPubhy is a PKE scheme obtained by applying the
Fujisaki-Okamoto conversion [11] to BasicPub. Here fol-
lows the description of FullIdent.
Setup. Given a security number k ∈ Z+, the algorithm

run G generate 〈q,G1,G2, e〉. Choose a random gen-
erator P ∈ G1. Pick a random s ∈ Z∗q as the mas-
ter secret and set Ppub = sP . Choose four crypto-

graphic hash function H1 : {0, 1}∗ → G1, H2 : G2 →
{0, 1}n for some n, H3 : {0, 1}n × {0, 1}n → Z∗q ,
and H4 : {0, 1}n → {0, 1}n. The system parame-
ters are params = 〈q,G1,G2, e, n, P, Ppub, Hi〉. The
master-key is s ∈ Z∗q .

Extract. For a given string ID ∈ {0, 1}∗ the algorithm com-
putes QID = H1(ID) ∈ G∗1, and sets the private key dID

to be dID = sQID where s is the master-key.
Encrypt. To encrypt M ∈ M under the public key ID do

the following: (1) compute QID = H1(ID) ∈ G∗1, (2)
choose a random σ ∈ {0, 1}n, (3) set r = H3(σ,M),
and set the ciphertext to be C = 〈rP, σ ⊕H2(grID),M ⊕
H4(σ)〉 where gID = e(QID, Ppub) ∈ G2.

Decrypt. Let C = 〈U, V,W 〉 be a ciphertext encrypted
using the public key ID. If U /∈ G∗1 reject the ciphertext.
To decrypt C using the private key dID ∈ G∗1 do: (1)
Compute V ⊕ H2(e(dID, U)) = σ. (2) Compute W ⊕
H4(σ) = M . (3) Set r = H3(σ,M). Test that U =
rP . If not, reject the ciphertext. (4) Output M as the
decryption of C.

This completes the description of FullIdent.
The security reductions from CBDH assumption

to FullIdent and BasicIdent follows the diagram below.

FullIdent BasicPubhy BasicPub CBDH

A(t, ε)

OO�
�
�

Red 4 // A3(t3, ε3)

OO�
�
�

Red 3 // A1(t1, ε1)

OO�
�
�

Red 1 // B(t′, ε′)

OO�
�
�

BasicIdent oo ___ A2(t2, ε2)

Red 2

OO

The following results are presented in [4]. Hereafter, qE ,
qD, and qHi

denote the number of extraction, decryption
and random oracle Hi queries, respectively.
Reduction 1. Suppose there is an IND-CPA adversary A1

has the advantage ε(k) against BasicPub and A1 makes at
most qH2 queries to the random oracle H2. Then there is an
algorithm B that solves the CBDH problem with advantage
at least 2ε(k)/qH2 in running time O(time(A1)).
Reduction 2. Suppose there is an IND-ID-CPA adver-
sary A2 that has advantage ε(k) against BasicIdent and
makes at most qE private key extraction queries, and at
most qH2 queries to the random oracle H2. Then there is
an IND-CPA adversary A1 against BasicPub with advan-
tage at least ε(k)/e(1 + qE) in running time O(time(A2)).
Here e ≈ 2.71 is the base of the natural logarithm.
From Reduction 1 and Reduction 2, we get:
Result 1. BasicIdent is IND-ID-CPA secure assuming the
CBDH is hard in groups generated by G. Concretely, sup-
pose there is an IND-ID-CPA adversary A2 that has advan-
tage ε(k) against BasicIdent. If A2 makes at most qE > 0
private key extraction queries and qH2 hash queries to H2.



Then there is an algorithm B that solves CBDH with advan-
tage at least 2ε(k)

e(1+qE)·qH2
.

Reduction 3. Using the Fujisaki-Okamoto transforma-
tion Boneh and Franklin introduce BasicPubhy which is
IND-CCA secure. Suppose there is an IND-CCA adversary
A3 that has advantage ε(k) against BasicPubhy and makes
at most qD decryption queries, and at most qH3 , qH4 queries
to the random oracles H3, H4 respectively. Then there ex-
ists an IND-CPA adversary A1 against BasicPub with ad-
vantage at least [(ε(k) + 1)(1− 2/q)qD − 1]/2(qH3 + qH4)
in running time O(time(A3)).
Reduction 4. Suppose there is an IND-ID-CCA adversary
A that has advantage ε(k) against FullIdent. Suppose A
makes at most qE private key extraction queries, at most qD
decryption queries, and at most qH1 queries to the random
oracle H1. Then there exists an IND-CCA adversary A3

against BasicPubhy with advantage at least ε(k)/e(1+qE+
qD) in running time O(time(A)).
From Reduction 1, Reduction 3 and Reduction 4, we have:
Result 2. FullIdent is IND-ID-CCA secure assuming
CBDH is hard in groups generated by G. Concretely, sup-
pose there is an IND-ID-CPA adversary A that has ad-
vantage ε(k) against BasicIdent. If A makes at most
qE > 0 private key extraction queries, at most qD de-
cryption queries, and at most qH2 , qH3 , qH4 hash queries
to H2, H3, H4, respectively. Then there is an al-
gorithm B that solves CBDH with advantage at least[

ε(k)
e(1+qE+qD)+1 (1− 2/q)qD − 1

]
/qH2(qH3 + qH4).

3.1 Analysis of Reduction 4 in BF-IBE

The aim of that Reduction 4 is constructing an IND-CCA
adversary A3 against BasicPubhy by interacting with an
IND-ID-CCA adversary A against FullIdent. Next we list
two lapses in Reduction 4 of BF-IBE, which is the Lemma
4.6 [4].

• Issue 1. In Phase 1, when A issues a decryption
query 〈IDi, Ci〉, where Ci = 〈Ui, Vi,Wi〉 = 〈rP, σ ⊕
H2(e(Qi, Ppub)r),M ⊕ H4(σ)〉. According to the
above algorithm, if coini = 1, A3 will modify Ci as
C ′i = 〈U ′i , V ′i ,W ′i 〉 = 〈biUi, Vi,Wi〉 and then relay
C ′i to its challenger. When the challenger decrypts C ′i
using the private key dID, it does:

1. Compute V ′i ⊕ H2(e(dID, U
′
i)) = Vi ⊕

H2(e(dID, biUi)) = σ ⊕ H2(e(Qi, Ppub)r) ⊕
H2(e(sQID, birP )) = σ. This step recovers the
random chosen σ ∈ {0, 1}n exactly.

2. Compute W ′i ⊕H4(σ) = Wi ⊕H4(σ) = M ⊕
H4(σ) ⊕ H4(σ) = M . This step recovers the
original plaintext M exactly.

3. Set r = H3(σ,M). Test whether U ′i = rP .
Note that bi is randomly chosen from Z∗q and
H3 is a random oracle model not controlled
by A3. These facts imply that the probabil-
ity of H3(σ,M) 6= bir is 1 − 1/q, and there-
fore challenger will reject the modified ciphertext
with overwhelming probability as BasicPubhy is
IND-CCA secure.

Thereby, A3 can not employ the decryption oracle of
BasicPubhy to answer decryption queries issued by A
if the corresponding coini = 1.

• Issue 2. In the Challenge stage, A outputs IDch
and two M0, M1 on which it wishes to be chal-
lenged. A3 gives its challenger M0,M1 as the mes-
sages that it wishes to be challenged on. The chal-
lenger gives A3 the ciphertext C = 〈U, V,W 〉 =
〈rP, σ ⊕ H2(e(QID, Ppub)r),Mc ⊕ H4(σ)〉 such that
C is the encryption of Mc for random c ∈ {0, 1}. Let
〈IDch, Q, b, coin〉 be the corresponding tuple on the
H list

1 . According to the above algorithm, if coin =
0 A3 aborts the game and the attack fails, other-
wise A3 will modify C to be C ′ = 〈U ′, V ′,W ′〉 =
〈b−1U, V,W 〉 and relays C ′ to A as the challenge ci-
phertext. Boneh and Franklin claimed that C ′ is also
a proper FullIdent encryption result of Mc under the
public key IDch = Q = bQID. However, if C ′ is
a valid ciphertext of Mc in FullIdent, we have r′ =
rb−1, H4(σ) = H4(σ′), H4(σ) = r, H4(σ′) = r′.
These facts imply that b = 1. Be aware of that b is ran-
domly chosen from Z∗q , thereby the probability that C ′

is a valid ciphertext corresponding to Mc in FullIdent
is 1− 1/q. On the other hand, for the same reason ex-
plained in Issue 1,Awill reject the modified ciphertext
with overwhelming probability.

Therefore, these two lapses render the Reduction 4 in the
original proof invalid. By the way, Galindo only found out
Issue 1 in [10].

3.2 Flipping coin technique

In the proof of Reduction 2, Boneh and Franklin bor-
rowed the technique from Coron’s analysis of the Full Do-
main Hash signature scheme [9], which we refer to it as
flipping coin technique. More precisely, A1 answers H1

queries according to the result of flipping a coin when sim-
ulating the H1 random oracle for A2, i.e. before answer-
ing a new H1-query at IDi, A2 will generate a random
coin ∈ {0, 1} with probability Pr[coin = 0] = δ,

• If coin = 0, return Qi = biP ∈ G∗1.
• If coin = 1, return Qi = biQID ∈ G∗1.



In Phase 1, only when coini = 0 could A1 answer the pri-
vate key query 〈IDi〉 properly, because Qi = biP enables
A1 to extract the private key as di = biPpub. In the Chal-
lenge stage, only the case coini = 1 allows A1 to utilize
A2’s guess to win the game, because Qi = biQID enables
A2 to make use of the homomorphic relationship.

Waters [20] generalized such “flipping coin technique”
as Partitioning Reduction: creating a reduction algorithm B
that partitions the identity space into two parts (1) identi-
ties for which it can create private keys; (2) identities that
it can use in the challenge phase. simulator hopes that the
extraction/decryption queries and the challenge identity fall
favorably in the partition, then the simulation is identical
to the real attack in the adversary’s view and the attack suc-
cesses. The partition of identity space is only determined by
the simulator (the distribution of coin) and independent to
adversary’s particular behavior, thus enables the possibility
of perfect simulation computable.

When Boneh and Franklin applied this identical tech-
nique in Reduction 4, it does not work for both the chal-
lenger and the adversary A will check the validity of ci-
phertext, as pointed out in Issue 1 and Issue 2. The reason
is that Fujisaki and Okamoto transformation [12] removes
the homomorphic relationship between the ciphertext and
its corresponding key, ill-formed ciphertext will be rejected
with overwhelming probability, thereby the simulation fails.

4 Analysis of Galindo and Nishioka’s Proofs

In this section we investigate the two subsequent revised
proofs provided by Galindo and Nishioka, respectively.

4.1 Galindo’s proof

Galindo [10] tried to fix the Reduction 4 by modifying
the simulation method of random oracle H1. His revised
proof of Reduction 4 is shown as follows.
Setup. Same as BF-IBE’s.
H1-queries. Before initializing H list

1 , A3 selects a random
j ← {1, . . . , qH1}. WhenA queriesH1 at IDi,A3 responds
as follows: if i 6= j, it picks bi ← Z∗q and sets Qi = biP ,
adds 〈IDi, Qi, bi〉 to the list. If i = j, it setsQi = QID, adds
〈IDi, Qi, ∗〉 to the list. Finally, A3 sends Qi to A.
Phase 1 - Extraction queries. WhenA asks for the private
key of IDi,A3 runs the above algorithm and getsH1(IDi) =
Qi, where 〈IDi, Qi, bi〉 is the corresponding entry in H list

1 .
If i = j, then A3 aborts the game. Otherwise, it sets di =
biPpub. Finally, A3 gives di to A.
Phase 1 - Decryption queries. A3 answers to decryption
query 〈IDi, Ci〉 as follows. It runs H1-queries algorithm
and let 〈IDi, Qi, bi〉 ∈ H list

1 . If i 6= j, then A3 retrieves
the private key di and decrypts Ci using the decryption

algorithm. If i = j, then Qi = QID, and the decryp-
tion of 〈IDi, Ci〉 is the same as the decryption of Ci under
BasicPubhy . Then, A3 asks its challenger to decrypt Cj
and relays the answer to A.
Challenge. A outputs a public key IDch and two messages
M0, M1 on which it wishes to be challenged. A3 proceeds
as follows. If IDch 6= IDj , it aborts the game and the attack
against BasicPubhy failed. Otherwise, it sends M0, M1 to
its own challenger and gets back C, the encryption of Mc

for a random bit c under BasicPubhy . Finally, A3 relays
C to A, which is an also encryption of Mc under IDch for
FullIdent.
The Phase 2 and Guess stage are identical to BF-IBE’s.
In this game A3’s simulation can be aborted for two rea-
sons: (1) in Phase 1 A issues the private key query of IDj ,
or (2) in Challenge stage, the challenge identity IDch 6= IDj .
Note that A3 will not abort in Phase 2, since in this case A
is not allowed to query the private key for IDch = IDj .

Let E1 be the event that A3 aborts due to (1), E2 be the
event that A3 aborts due to (2). The probability that A3

does not abort is Pr[¬E1 ∧ ¬E2] = Pr[¬E2|¬E1] Pr[¬E1].
Galindo deemed that the upper bound for Pr[E1] was

qE/qH1 , since the maximum number of private extraction
queries is qE ; the lower bound for Pr[¬E2|¬E1], that is the
probability thatA choose IDj as the challenge identity, was
1/qH1 . Therefore, he concluded

Pr[A3 does not abort] ≥ 1
qH1

(
1− qE

qH1

)
Now we point out three issues which may be overlooked

in Galindo’s proof.

• Issue 1. According to the definition of IND-ID-CCA
game, qH1 is unknown to the challenger A3 until the
end of the game. So the execution of A3’s selecting
a random j ← {1, . . . , qH1} at the beginning of sim-
ulation is questionable. In the other side, in order to
provide a general and valid proof, the construction of
A3 should be independent of the concrete behavior of
adversaryA. In a word, this issue make the proof does
not hold in a general sense.

• Issue 2. Even Issue 1 could be ignored, here fol-
lows issue 2. In the challenge stage, when A outputs
the target identity IDch, the simulator need to judge if
IDch = IDj . In fact, the exact number ofH1 queriesA
in Phase 1 may differ from different adversaries in dif-
ferent games. Moreover, in some cases whether “IDj”
exists is unknown, thus the probability of “A3 does not
abort” is immeasurable. For example, suppose the ran-
dom j = 10 and an A issues only three H1 queries
in Phase 1, then the so called IDj even does not ex-
ist. At least, it is fair to say the simulation algorithm is



not well defined, although the underlying idea may be
correct.

• Issue 3. Even both Issue 1 and Issue 2 could be fixed,
there is issue 3 following. The result of Pr[¬E2|¬E1] ≥
1/qH1 is implied from the hypothesis that in the chal-
lenge stage the adversary A will randomly picks the
target IDch from the current H list

1 . First, due to the
same reason of Issue 2, whether the so called “IDj”
exists is a question, thereby the probability Pr[IDch =
IDj ] is not well defined itself. Second, this goes against
the definition of IND-ID-CCA which states that the tar-
get IDch can be chosen without any restriction, in par-
ticular outside the current H list

1 . Someone may argue
that if the adversary A does not choose IDch from the
current H list

1 , the advantage against the IND-ID-CCA
game is statistically close to 0. Remember thatA could
issue the corresponding H1 query in Phase 2. Besides,
there is no evidence gurantees that the adversaryAwill
choose the target identity uniformly from either inside
or outside the current H list

1 .

From the above analyses, we think the revised proof pro-
posed by Galindo is not infallible.

4.2 Nishioka’s proof

In IndoCrypt 2005, Nishioka gave a new proof for the
security of BF-IBE scheme in [17], claimed that it has
a tighter security reduction than had been previously be-
lieved. Realizing that there are some problems in Galindo’s
proof, Nishioka claimed that Galindo’s proof could be re-
vised by his new proof. Unfortunately, we think the new
proof share the similar fundamental problems as Galindo’s
proof.

Nishioka’s proof for Reduction 4 is quite similar to
Galindo’s proof except three minor alterations. The first
alteration is in the simulation of H1-queries: in [10] A3

selects a random j ∈ {1, . . . , 1 + qH1}, while in [17] A3

selects a random j ∈ {1, . . . , 1 + qH1 + qD}. The second
alteration is in [17]A3 maintains two lists named as H list1

1

and H list2
1 , where L1 and L2 are their corresponding size.

H list1
1 is used to save A3’s responses to H1-queries and

decryption queries, while H list2
1 is used to save A3’s re-

sponses to extraction queries. The last alternation is replac-
ing IDi = IDj with i = L1 − 1 in the challenge stage. The
rest parts are identical to Galindo’s proof.

In order to compute the probability that A3 does not
abort during the simulation, Nishioka defines E1 as the
event that A3 issues a private key query IDj which corre-
sponds to the tuple 〈IDj , QID, ∗〉 on H list1

1 during Phase
1 or 2, and defines E2 as the event that A sets the chal-
lenge identity IDch that does not correspond to the tu-
ple 〈IDj , QID, ∗〉 on H list1

1 . Then Nishioka claimed that

Pr[A3 does not abort] = Pr[¬E1 ∧ ¬E2] = Pr[¬E2] ≥
1/(1 + qH1 + qD) (Equation. 2 in Section 3.2 in [17]). We
summarize the lapses in Nishioka’s proof as follows.

• Issue 1. The execution of A3’s selecting a random
j ← {1, . . . , 1 + qH1 + qD} when initializing H list1

1

is doubtable. The reason is the same as Issue 1 of
Galindo’s proof.

• Issue 2. The computation of Pr[A3 does not abort] =
Pr[¬E1 ∧ ¬E2] = Pr[¬E2] ≥ 1/(1 + qH1 + qD) is
not correct, because the author missed to count in the
contribution of event E1. The result should be cor-
rected as Pr[A3 does not abort] = Pr[¬E1 ∧ ¬E2] =
Pr[¬E2|¬E1]Pr[¬E1] ≥ 1

1+qH1+qD

(
1− qE

1+qH1+qD

)
These two issues render Nishioka’s proof for Reduction 4
not intact.

4.3 How to fix their Proofs

The main idea of proving Reduction 4 is suppose there is
an IND-ID-CCA adversary A against FullIdent with advan-
tage ε(k), then create an IND-CCA adversary A3 against
BasicPubhy with the help of A. The validness of Reduc-
tion 4 is determined by the possibility of A3 does not abort
during simulation. Galindo and Nishioka dumped the “flip-
ping coin technique” by pre-specifying a index at the begin-
ning of the game. Their constructions of simulate algorithm
are related to the concrete behavior of distinct adversaries,
which make their proof lose generality.

We summarize the guidelines that a valid IND-ID-CCA
proof should follows.

• The construction of the simulator should be general.
More exactly, the simulation algorithm should be in-
dependent of the adversary’s particular behavior, such
as the exact number H1 queries, extraction/decryption
queries a adversary makes in Phase 1 and Phase 2.
Otherwise the reduction is not a general one.

• The adversary must be handled strictly according to
the definition of the IND-ID-CCA game, no extra hy-
pothesis should be imposed on it, such as (1) Which
target identity it will choose in the challenge stage?
(2) How does the adversary choose the target identity?
From which set and the choices comply to what prob-
abilistic distribution?

• The simulation algorithm must ensure the probability
of perfect simulation to be computable, thereby the ad-
vantage of the simulator against the underlying prob-
lem is measurable. Otherwise the security reduction is
meaningless.

How to fix their proofs? Note that the adversary is mod-
eled as an polynomial time algorithm, thereby the number



of H1 queries, extraction queries and decryption queries
are parameterized by the security parameter k. Thus we
can simply fix Issue 1 of Galindo and Nishioka’s proof
by substituting qH1 or 1 + qH1 + qD with a sufficiently
large number N to initialize H list (e.g. set N as the upper
bound for the number of total queries an adversary issues
during the IND-ID-CCA game, according to common prac-
tice N = 260 is a natural choice). Issue 2 and Issue 3 of
Galindo’s proof could be fixed by well defining the simu-
lation algorithm, i.e. using the current size of the H list to
replace a particular IDi, thereby make the simulation algo-
rithm well defined. Issue 2 of Nishioka’s proof has been
corrected in the above related analysis.

5 IND-sID-CCA security of BF-IBE

In this section, we provide a security proof for BF-IBE in
selective-ID model, then try to achieve fully security based
on it.

Theorem 5.1. Let H1 be a random oracle. Then FullIdent
is IND-sID-CCA secure assuming the CBDH assumption is
hard in groups generated by G. Concretely, suppose there
is an IND-sID-CCA adversary A that has advantage ε(k)
against the FullIdent. Then there is an IND-CCA adversary
A3 that has advantage ε(k) against BasicPubhy . Its run-
ning time is O(time(A)).

Proof. We construct an IND-CCA adversary A3 that uses
A to gain advantage against BasicPubhy . The game
starts with the challenger first generates the public key
Kpub = 〈q,G1,G2, e, n, P, Ppub, QID, H2, H3, H4〉 and a
private key dID = sQID. The challenger gives Kpub to al-
gorithm A3. A3 mounts an IND-CCA attack on the the key
Kpub using the help of algorithmA. A3 interacts withA as
follows.
Init. A outputs an identity IDch where it wishes to be chal-
lenged.
Setup. Same as BF-IBE’s.
H1-queries. To respond to H1 queries, A3 maintains a list
of tuples 〈IDi, Qi, bi〉 which is referred as H list

1 . The list
is initially empty. When A queries H1 at a point IDi, A3

responds as follows:

1. If the query IDi already appears on theH list
1 in a tuple

〈IDi, Qi, bi〉 then A3 responds with H1(IDi) = Qi.

2. Otherwise, if IDi = IDch, A3 sets bi = ∗ and
Qi = QID; else A3 generates a random bi ∈ Z∗q and
computes Qi = biP .

3. A3 adds the tuple 〈IDi, Qi, bi〉 to H list
1 and responds

to A with H1(IDi) = Qi.

Phase 1 - Extraction queries. When A asks for the pri-
vate key associate to IDi, A3 runs the above algorithm and

gets H1(IDi) = Qi, where 〈IDi, Qi, bi〉 is the correspond-
ing entry in H list

1 . Observing that Qi = biP , therefore the
corresponding private key is di = biPpub. Finally,A3 gives
di to A. The request 〈IDch〉 will be denied.
Phase 1 - Decryption queries. Let 〈IDi, Ci〉 be a decryp-
tion query issued by algorithm A. Let Ci = 〈Ui, Vi,Wi〉.
When IDi 6= IDch, A3 runs H1-queries algorithm and
let 〈IDi, Qi, bi〉 ∈ H list

1 , then retrieves the private key di
and decrypts Ci using the decryption algorithm. If IDi =
IDch, A3 relays the decryption query with the ciphertext
〈Ui, Vi,Wi〉 to the challenger and relays the challenger’s
response back to A.
Challenge. Once A decides that Phase 1 is over and out-
puts two messages M0,M1 which it wishes to be chal-
lenged on. A3 responds as follows: first A3 gives its chal-
lenger the message M0,M1. The challenger responds with
a BasicPubhy ciphertext C = 〈U, V,W 〉 such that C is the
encryption of Mc for a random c ∈ {0, 1}. Next, A3 re-
sponds to A with the challenge C.
Phase 2 - Private key queries. A3 responds to the extrac-
tion queries in the same way as it did in Phase 1.
Phase 2 - Decryption queries. A3 responds to the decryp-
tion queries in the same way as it did in Phase 1 except that
〈IDi, Ci〉 = 〈IDch, C〉 is denied.
Guess. Eventually, adversary A outputs a guess c′ for c.
Algorithm A3 outputs c′ as its guess for c.

All the responses toH1-queries are as in real attack since
each response is uniformly and independently in G∗1. All
the responses to private key extraction queries and decryp-
tion queries are valid. Algorithm A3 wouldn’t abort during
the simulation because A’s view is identical to its view in
the real attack. By definition of algorithm A, we have that∣∣Pr[c = c′]− 1

2

∣∣ ≥ ε(k). Note that Pr[A3does not abort] =
1, this shows that A3’s advantage against BasicPubhy is at
least ε(k) as required.

In the selective model, the identity space can always be
“tightly” partitioned, so the reduction is tighter linked to the
chosen ciphertext security of BasicPubhy .

5.1 Selective secure implies fully secure

In [2] Boneh and Boyen proved the following theorem
which quantifies the relationship between selective-ID IBE
security and fully IBE security in the random oracle model.

Theorem 5.2. Let E be a selective-ID secure IBE. Suppose
identities in E are n-bits long. Let H be a hash function
H : {0, 1}∗ → {0, 1}n modeled as a random oracle. Then
EH is a fully secure IBE in the random oracle model. The
reduction factor is 1/N , where N is the maximum number
of oracle calls to H that the adversary can make.



As to BF-IBE scheme, if we first hash arbitrary identi-
ties in {0, 1}∗ to binary strings of length n using a collision
resistant function with n-bits output, such as SHA-1 whose
output is 160 bits, then it is easy to demonstrate BF-IBE is
fully secure according to Theorem 5.1 and Theorem 5.2.

6 Conclusion

In this paper, we identify some defects in the previous
proofs of BF-IBE. While the original proof [3] fails for the
manipulated ciphertext will be rejected by the decryption
oracle, the subsequent proofs [10] [17] which intended to
fix the problem also have some questionable issues. We
show that Galindo and Nishioka’s proofs could be mended
by maximizing the number of queries. We also present an-
other proof by confining the identity space into a finite set.

It is fair to say the aforementioned proofs are valid in the
practical view, but far from perfect in theoretical view for
two reasons: (1) both of them were proved via Reduction
4, Reduction 3 and Reduction 1, which happens to be the
reason make the security reduction looser; (2) the simula-
tion algorithms are implicitly depicted by a heuristic upper
boundN for the number of queries the adversary can make.
For this reason, we think how to give a elegant and tighter
proof for BF-IBE scheme in the full IBE security model
under the CBDH assumption is still a interesting problem.
Our future work is reducing the CCA security of BF-IBE
directly to some underlying assumption without the inter-
mediate reductions.
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