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Abstract. Boneh and Franklin constructed the first practical Identity-Based En-
cryption scheme (IBE) in 2001. They also defined a formal security model for
IBE and proved their scheme (BF-IBE) to be secure in the random oracle model
assuming the computational Bilinear Diffie-Hellman (CBDH) assumption holds.
However, few years later, Galindo [1] pointed out a flawed step in its proof against
adaptively chosen ciphertext attack (CCA) and claimed that the flaw can be fixed
without changing the original scheme and the underlying assumption. In the same
paper, Galindo provided a revised proof with a looser security reduction. Shortly
afterwards, Nishioka [2] attempted to extend Galindo’s idea to achieve a tighter
security reduction. Unfortunately, we find that there are some lapses in their
proofs, which make their proofs not infallible in the sense of CCA security for
IBE setting. Zhang and Imai [3] proposed a another proof for BF-IBE in which
the simulator simulates itself all the oracles. However, we show that there ex-
ists a inconspicuous lapse in the simulation of hash functions, which renders the
simulator can not answer all the queries to the oracles coherently. In this paper,
besides pointing out the lapses existed in the aforementioned proofs, we present a
new proof for the CCA security of BF-IBE which relies on a stronger assumption,
namely gap Bilinear Diffie-Hellman (GBDH) assumption.

Key words: identity-based encryption, security reduction, chosen ciphertext se-
curity

1 Introduction

Identity-Based Encryption (IBE) allows a party to encrypt a message using the recipi-
ent’s identity as a public key. Such property simplifies key management and avoids the
use of digital certificates. This can be very useful in applications such as email system
where the recipient is often off-line and unable to present a public-key certificate while
the sender encrypts a message.

Since Shamir proposed the concept of IBE in 1984 [4], various Identity-Based Sig-
nature (IBS) and Authentication (IBA) schemes have been proposed, but secure and
fully functional IBE scheme was not found until Boneh and Franklin [5], Cocks [6] and
Sakai et al. [7] presented three IBE schemes in 2001, respectively. Among those solu-
tions, Boneh and Franklin’s one happen to be the most practical one. In order to prove
the security of BF-IBE, Boneh and Franklin [8] introduced new security definitions to fit



the Identity-Based setting, then proved its security in the random oracle model assum-
ing the hardness of computational Bilinear Diffie-Hellman problem [8]. For this reason,
BF-IBE has received much attention and has had a great influence on later designs
and analysis of cryptographic settings. z Numerous schemes [9] [10] [11] [12] [13] are
based on BF-IBE scheme.
Fixed proofs about BF-IBE. The original security proof of BF-IBE was long believed
correct until 2005, Galindo [1] pointed out a flawed step in the security reduction for
CCA security. Galindo claimed that the flawed step could be fixed by his new security
reduction without changing both the scheme and the underlying assumption if the effi-
ciency of the security reduction is sacrificed. In the same year, Nishioka [2] enhanced
Galindo’s idea to provide another proof with tighter security reduction. In the same
year, Zhang and Imai [3] proposed a new proof of BF-IBE, which was claimed essen-
tially improved previously known results. Up to present, there is no doubt about the
correctness of their fixed proofs.

1.1 Our contributions

Reflect previous proofs of BF-IBE. After re-examine the flawed step in BF-IBE’s
original CCA security proof exhibited in [8] and analyse why it fails, we point out the
lapses in the subsequent revised security proofs proposed Galindo [1], Nishioka [2] and
Zhang et.al [3], respectively. Galindo’s proof and Nishioka’s proof are similar. Both of
their proofs begin with a doubtable assumption that the challenger know the number of
queries which adversary will make at the beginning of the CCA game. In the challenge
step, the behavior of adversary goes against the strict definition of a CCA adversary. In
Zhang and Imai’s proof [3], the simulator simulates itself all the oracles: theHi oracles,
extraction oracle, encryption oracle and decryption oracle. However, we find that the
answers to the oracles are not coherent, which makes the simulation is not identical to
the real attack in adversary’s view.

Present a new proof of BF-IBE. Since BF-IBE scheme has been used as a primitive for
numerous cryptographic protocols, the security of BF-IBE implies direct consequences
for many other schemes [9] [10] [11] [12] [13]. It is necessary to provide a correct
proof without flaws. Motivated by this, we provide a new proof of BF-IBE which em-
ploys the proof technique used in [14] [15]. We reduce the CCA security of BF-IBE
directly to the underlying intractable problem without intermediate steps. We also re-
mark that our security reduction is based on the gap Bilinea Diffie-Hellman (GBDH)
assumption, which is a little stronger than the computational Bilinear Diffie-Hellman
(CBDH) assumption used in the original proof.

1.2 Organization

In Section 2, we give the background information on security definitions and com-
plexity assumptions. Section 3 briefly revisits BF-IBE scheme and its orginal security
proof. In Section 4 we analysz the lapses in the subsequent revised proofs proposed by
Galindo [1] and Nishioka [2], respectively. In Section 5 we point out an inconspicuous
lapse in Zhang and Imai’s proof [3]. Section 6 shows that if restricting the identities
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space to a finite set, then the full security of BF-IBE can be achieved from its selec-
tive-ID security. In Section 7 we present a new proof for BF-IBE relying on the GBDH
assumption in the random oracle model. Finally, we conclude the paper in Section 8.

2 Preliminaries

We briefly review the groups equipped with efficiently computable bilinear maps. For
more details, we recommend the reader to previous literature [8].
Bilinear Map. Let G1 and G2 be two groups of prime order q. A map e : G1×G1 → G2

is said as an admissible bilinear map if the following three properties hold.
1. Bilinear. e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z∗q .

2. Non-degenerate. e(P, P ) 6= 1.

3. Computable. There is an efficient algorithm to compute e(P,Q) for any P,Q ∈ G1.
Bilinear Diffie-Hellman (BDH) Parameter Generator. A BDH parameter generator
G is an algorithm which takes a security parameter k ∈ Z+ as input and outputs two
groups of prime order q and an admissible bilinear map e : G1×G1 → G2. We describe
it as G(1k)→ (q,G1,G2, e).

2.1 Complexity Assumptions

Given groups G1 and G2 of prime order q, a blinear map e : G1 × G1 → G2 and a
generator P of G1, we introduce three complexity assumptions as follows.
Computational Bilinear Diffie-Hellman Problem (CBDH). The CBDH problem [16]
[5] is given the tuple (P, aP, bP, cP ) for some a, b, c ∈ Z∗q , compute the e(P, P )abc ∈
G2. An adversary A is said to have at least advantage ε in solving CBDH problem if
Pr
[
A(P, aP, bP, cP ) = e(P, P )abc

]
≥ ε.

Decisional Bilinear Diffie-Hellman Problem (DBDH). For random a, b, c, z ∈ Z∗q and
a fair coin β. If β = 1 the challenger outputs a tuple (P, aP, bP, cP, Z = e(P, P )abc) ∈
D1. Else, it outputs a tuple (P, aP, bP, cP, Z = e(P, P )z) ∈ D2. The adversary is
expected to output a guess β′ of β. An adversaryA is said to have at least an ε advantage
in solving the DBDH problem if

∣∣Pr[β = β′]− 1
2

∣∣ ≥ ε. Tuples from D1 are denoted as
“BDH” tuples in contrast to those from D2 which will be called “random tuples”. A
DBDH oracle can determine whether a tuple (P, aP, bP, cP, Z) is a real “BDH” tuple.

Gap Bilinear Diffie-Hellman Problem (GBDH). The GBDH problem is given a CBDH
challenge (P, aP, bP, cP ), to compute e(P, P )abc with the help of a DBDH oracle.

2.2 Security Notions

Recall that an IBE scheme consists of four algorithms [4] [8]: Setup, Extract, Encrypt,
and Decrypt. The Setup algorithm generates system parameters params and a master
secret master-key. The Extract algorithm uses the master-key to generate the private
key corresponding to a given identity. The Encrypt algorithm encrypts messages for
a given identity (using the system parameters) and the Decrypt algorithm decrypts ci-
phertext using the private key. The message space isM. The ciphertext space is C.
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Chosen Ciphertext Security for IBE. An IBE scheme E is said to be secure against
adaptively chosen ciphertext attack (IND-ID-CCA) if no probabilistic polynomial time
(PPT) algorithm A has a non-negligible advantage against the challenger in the follow-
ing game:

Setup. The challenger takes the security parameter and runs the Setup algorithm. It
gives the adversary the resulting system parameters and keeps the master secret to itself.

Phase 1. The adversary issues queries q1, . . . , qm where query qi is one of:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Extract to
generate the private key di corresponding to IDi. It sends di to the adversary A.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm Extract
to generate the private key di corresponding to IDi. It then runs algorithm Decrypt
to decrypt the ciphertext Ci using the private key di. It sends the resulting plaintext
to the adversary A.

These queries may be asked adaptively, that is, each query qi may depend on the replies
to q1, . . . , qi−1.

Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts M0,M1 ∈ M and an identity ID on which it wishes to be challenged. The
only constraint is that ID did not appear in any private key extraction query in Phase 1.
The challenger picks a random bit β ∈ {0, 1} and sets C = Encrypt(params, ID,Mβ).
It sends C as the challenge to the adversary.

Phase 2. The adversary issues more queries qm+1, . . . , qr where qi is one of:

– Extraction query 〈IDi〉 6= ID. Challenger responds as in Phase 1.

– Decryption query 〈IDi, Ci〉 6= 〈ID, C〉. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.

Guess. Finally, the adversary outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We refer to such an adversaryA as an IND-ID-CCA adversary. We define adversary
A’s advantage over the scheme E by AdvCCA

E,A (k) =
∣∣Pr[c = c′]− 1

2

∣∣ , where k is the
security parameter. The probability is over the random bits used by the challenger and
the adversary. Similarly, the IND-ID-CPA security notion can be defined by using a
similar game as the one above but disallowing decryption queries. The advantage of an
adversary A is defined by AdvCPA

E,A(k) =
∣∣Pr[β = β′]− 1

2

∣∣.
Definition 2.1 We say that an IBE scheme E is IND-ID-CCA (IND-ID-CPA) secure
if for any probabilistic polynomial time IND-ID-CCA (IND-ID-CPA) adversary A the
advantage AdvCCA

E,A (k)
(
AdvCPA

E,A(k)
)

is negligible.

Selective-ID model. Boneh and Franklin [5] defined the adaptive chosen ciphertext
security for IBE systems by the above game. We refer to it as full IBE security model.
In this model, the adversary can issue both adaptive chosen private key queries and
adaptive chosen ciphertext queries. Eventually, the adversary adaptively chooses the
identity it wishes to attack and asks for a semantic security challenge for this identity.
Canetti, Halevi, and Katz [17] [18] defined a slightly weaker security model, called
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selective-ID security model, in which the adversary must commit ahead of time (non-
adaptively) to the identity it intends to attack. More precisely, it is defined using the
following game:
Init. The adversary outputs an identity IDch where it wishes to be challenged.

Setup and Phase 1 are same as in IND-ID-CCA game.

Phase 1. Same as in IND-ID-CCA game.

Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts M0,M1 on which it wishes to be challenged. The challenger picks a random
bit β ∈ {0, 1} and sets the challenge ciphertext to C = Encrypt(params, IDch,Mβ). It
sends C as the challenge to the adversary.

Phase 2 and Guess are same as in IND-ID-CCA game.
We refer to such an adversary A as an IND-sID-CCA adversary. The advantage of

the adversary A is defined by AdvE,A(k) =
∣∣Pr[β = β′]− 1

2

∣∣, where the probability is
over the random bit used by the challenger and the adversary.

Definition 2.2 An IBE system E is IND-sID-CCA secure if for any PPT IND-sID-CCA
adversary A the advantage AdvE,A(k) is negligible.

3 Boneh-Franklin’s IBE Scheme

In this section, we briefly describe BF-IBE scheme [5] and examine the original proof.
Boneh and Franklin named their full scheme as FullIdent. In order to make the pre-
sentation easier, they also define the BasicIdent and two public key encryption (PKE)
scheme called BasicPub and BasicPubhy . BasicIdent which has only CPA security, is
a simplified version of FullIdent, BasicPub is a PKE scheme derived from BasicIdent,
and BasicPubhy is a PKE scheme obtained by applying the Fujisaki-Okamoto conver-
sion [19] to BasicPub. We first review the FullIdent in Figure 1.

A series of security reductions for FullIdent and BasicIdent follows the diagram
below:

FullIdent BasicPubhy BasicPub CBDH

A(t, ε)

OO�
�
�

Reduce 4// A3(t3, ε3)

OO�
�
�

Reduce 3 // A1(t1, ε1)

OO�
�
�

Reduce 1 // B(t′, ε′)

OO�
�
�

BasicIdent oo ___ A2(t2, ε2)

Reduce 2

OO

The following results are presented in [8]. Hereafter, let qE , qD, and qHi
denote the

number of extraction, decryption and Hi random oracle queries, respectively.
Reduction 1. Suppose there is an IND-CPA adversary A1 has the advantage ε(k)
against BasicPub and A1 makes at most qH2 queries to the random oracle H2. Then
there is an algorithmB that solves the CBDH problem with advantage at least 2ε(k)/qH2

in running time O(time(A1)).
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BF-IBE(FullIdent)

Setup(1k): Extract(ID, params,master-key)
s← Z∗

q ; Ppub = sP QID = H1(ID)
params = (q,G1,G2, e, n, P, Ppub, Hi) dID = sQID.
H1 : {0, 1}∗ → G1,
H2 : G2 → {0, 1}n,
H3 : {0, 1}n × {0, 1}n → Z∗

q ,
H4 : {0, 1}n → {0, 1}n.

Encrypt(ID, params,M) Decrypt(C, params, dID)
QID = H1(ID); Parse C = 〈U, V,W 〉.
σ ← {0, 1}n, r = H3(σ,M); If U /∈ G1, return ⊥
U = rP ; Compute σ = V ⊕H2(e(dID, U)).
V = σ ⊕H2(e(Ppub, QID)r); Compute M = W ⊕H4(σ).
W = M ⊕H4(σ); Set r = H3(σ,M). If U 6= rP , return ⊥.
C = 〈U, V,W 〉. Output M as the decryption of C.

Fig. 1. The algorithms of FullIdent

Reduction 2. Suppose there is an IND-ID-CPA adversary A2 that has advantage ε(k)
against BasicIdent and makes at most qE private key extraction queries, and at most
qH2 queries to the random oracle H2. Then there is an IND-CPA adversary A1 against
BasicPub with advantage at least ε(k)/e(1 + qE) in running time O(time(A2)). Here
e ≈ 2.71 is the base of the natural logarithm.

From Reduction 1 and Reduction 2, we get:

Result 1. BasicIdent is IND-ID-CPA secure assuming the CBDH is hard in groups
generated by G. Concretely, suppose there is an IND-ID-CPA adversary A2 that has
advantage ε(k) against BasicIdent. If A2 makes at most qE > 0 private key extraction
queries and qH2 hash queries to H2. Then there is an algorithm B that solves CBDH
with advantage at least 2ε(k)

e(1+qE)·qH2
.

Reduction 3. Using the Fujisaki-Okamoto transformation Boneh and Franklin intro-
duce BasicPubhy which is IND-CCA secure. Suppose there is an IND-CCA adver-
sary A3 that has advantage ε(k) against BasicPubhy and makes at most qD decryp-
tion queries, and at most qH3 , qH4 queries to the random oracles H3, H4 respectively.
Then there exists an IND-CPA adversary A1 against BasicPub with advantage at least
[(ε(k) + 1)(1− 2/q)qD − 1]/2(qH3 + qH4) in running time O(time(A3)).
Reduction 4. Suppose there is an IND-ID-CCA adversary A that has advantage ε(k)
against FullIdent. Suppose A makes at most qE private key extraction queries, at most
qD decryption queries, and at most qH1 queries to the random oracleH1. Then there ex-
ists an IND-CCA adversary A3 against BasicPubhy with advantage at least ε(k)/e(1 +
qE + qD) in running time O(time(A)).
From Reduction 1, Reduction 3 and Reduction 4, we have:

Result 2. FullIdent is IND-ID-CCA secure assuming CBDH is hard in groups generated
by G. Concretely, suppose there is an IND-ID-CPA adversary A that has advantage
ε(k) against BasicIdent. If A makes at most qE > 0 private key extraction queries, at
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most qD decryption queries, and at most qH2 , qH3 , qH4 hash queries to H2, H3, H4,
respectively. Then there is an algorithm B that solves CBDH with advantage at least[

ε(k)
e(1+qE+qD)+1 (1− 2/q)qD − 1

]
/qH2(qH3 + qH4).

3.1 Analysis of Reduction 4 in BF-IBE

The aim of Reduction 4 is constructing an IND-CCA adversary A3 against BasicPubhy

by interacting with an IND-ID-CCA adversary A against FullIdent. Next we list two
lapses in Reduction 4 of BF-IBE, which is the Lemma 4.6 in [8].

– Issue 1. In Phase 1, when A issues a decryption query 〈IDi, Ci〉, where Ci =
〈Ui, Vi,Wi〉 = 〈rP, σ⊕H2(e(Qi, Ppub)r),M ⊕H4(σ)〉. According to the above
algorithm, if coini = 1,A3 will modifyCi asC ′i = 〈U ′i , V ′i ,W ′i 〉 = 〈biUi, Vi,Wi〉
and then relay C ′i to its challenger. When the challenger decrypts C ′i using the
private key dID, it does:
1. Compute V ′i⊕H2(e(dID, U

′
i)) = Vi⊕H2(e(dID, biUi)) = σ⊕H2(e(Qi, Ppub)r)

⊕H2(e(sQID, birP )) = σ. This step recovers the random chosen σ ∈ {0, 1}n
exactly.

2. Compute W ′i ⊕H4(σ) = Wi ⊕H4(σ) = M ⊕H4(σ) ⊕H4(σ) = M . This
step recovers the original plaintext M exactly.

3. Set r = H3(σ,M). Test whether U ′i = rP . Note that bi is randomly cho-
sen from Z∗q and H3 is a random oracle model not controlled by A3. These
facts imply that the probability of H3(σ,M) 6= bir is 1 − 1/q, and therefore
challenger will reject the modified ciphertext with overwhelming probability
as BasicPubhy is IND-CCA secure.

Thereby, A3 can not employ the decryption oracle of BasicPubhy to answer de-
cryption queries issued by A if the corresponding coini = 1.

– Issue 2. In the Challenge stage, A outputs IDch and two equal length M0, M1

on which it wishes to be challenged. A3 gives its challenger M0,M1 as the mes-
sages that it wishes to be challenged on. The challenger gives A3 the ciphertext
C = 〈U, V,W 〉 = 〈rP, σ ⊕H2(e(QID, Ppub)r),Mc ⊕H4(σ)〉 such that C is the
encryption ofMβ for random β ∈ {0, 1}. Let 〈IDch, Q, b, coin〉 be the correspond-
ing tuple on theH list

1 . According to the above algorithm, if coin = 0A3 aborts the
game and the attack fails, otherwiseA3 will modify C to be C ′ = 〈U ′, V ′,W ′〉 =
〈b−1U, V,W 〉 and relays C ′ to A as the challenge ciphertext. Boneh and Franklin
claimed that C ′ is also a proper FullIdent encryption result of Mc under the public
key IDch = Q = bQID. However, if C ′ is a valid ciphertext of Mc in FullIdent, we
have r′ = rb−1, H4(σ) = H4(σ′), H4(σ) = r, H4(σ′) = r′. These facts imply
that b = 1. Be aware of that b is randomly chosen from Z∗q , thereby the probability
that C ′ is a valid ciphertext of Mβ in FullIdent is 1 − 1/q. On the other hand, for
the same reason explained in Issue 1, A will reject the modified ciphertext with
overwhelming probability.

Therefore, these two lapses render the Reduction 4 in the original proof invalid. By the
way, Galindo only noticed Issue 1 in [1].
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3.2 Flipping coin technique

In the proof of Reduction 2, Boneh and Franklin borrowed the technique from Coron’s
analysis of the Full Domain Hash signature scheme [20], which we refer to it as flip-
ping coin technique. More precisely, A1 answers H1 queries according to the result
of flipping a coin when simulating the H1 random oracle for A2, i.e. before answer-
ing a new H1-query at IDi, A2 will generate a random coin ∈ {0, 1} with probability
Pr[coin = 0] = δ,

– If coin = 0, return Qi = biP ∈ G∗1.
– If coin = 1, return Qi = biQID ∈ G∗1.

In Phase 1, only when coini = 0 couldA1 answer the private key query 〈IDi〉 properly,
because Qi = biP enables A1 to extract the private key as di = biPpub. In the Chal-
lenge stage, only the case coini = 1 allows A1 to utilize A2’s guess to win the game,
because Qi = biQID enables A2 to make use of the homomorphic relationship.

Waters [21] generalized such “flipping coin technique” as Partitioning Reduction:
creating a reduction algorithm B that partitions the identity space into two parts (1)
identities for which it can create private keys; (2) identities that it can use in the chal-
lenge phase. Simulator hopes that the extraction/decryption queries and the challenge
identity fall favorably in the partition, then the simulation is identical to the real attack
in the adversary’s view and the attack succeeds. The partition of identity space is only
determined by the simulator (the distribution of coin) and independent to adversary’s
particular behavior, which enables the possibility of perfect simulation computable.

When Boneh and Franklin applied this identical technique to Reduction 4, it does
not work. Because both the challenger and the adversaryA will check the validity of ci-
phertext, as pointed out in Issue 1 and Issue 2. The reason is that Fujisaki and Okamoto
transformation [19] removes the homomorphic relationship between the ciphertext and
its corresponding key, malformed ciphertext will be rejected with overwhelming prob-
ability, thereby the simulation fails.

4 Analysis of Galindo and Nishioka’s Proofs

In this section we investigate the two subsequent revised proofs provided by Galindo
and Nishioka, respectively.

4.1 Galindo’s proof

Galindo [1] tried to fix the Reduction 4 by modifying the simulation method of random
oracle H1. His revised proof of Reduction 4 is shown as follows.
Setup. Same as BF-IBE’s.

H1-queries. Before initializing H list
1 , A3 selects a random j ← {1, . . . , qH1}. When

A queries H1 at IDi, A3 responds as follows: if i 6= j, it picks bi ← Z∗q and sets
Qi = biP , adds 〈IDi, Qi, bi〉 to the list. If i = j, it sets Qi = QID, adds 〈IDi, Qi, ∗〉 to
the list. Finally, A3 sends Qi to A.
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Phase 1 - Extraction queries. When A asks for the private key of IDi, A3 runs the
above algorithm and gets H1(IDi) = Qi, where 〈IDi, Qi, bi〉 is the corresponding entry
in H list

1 . If i = j, then A3 aborts the game. Otherwise, it sets di = biPpub. Finally, A3

gives di to A.

Phase 1 - Decryption queries. A3 answers to decryption query 〈IDi, Ci〉 as follows. It
runs H1-queries algorithm and let 〈IDi, Qi, bi〉 ∈ H list

1 . If i 6= j, then A3 retrieves the
private key di and decrypts Ci using the decryption algorithm. If i = j, then Qi = QID,
and the decryption of 〈IDi, Ci〉 is the same as the decryption of Ci under BasicPubhy .
Then, A3 asks its challenger to decrypt Cj and relays the answer to A.

Challenge. A outputs a public key IDch and two messages M0, M1 on which it wishes
to be challenged. A3 proceeds as follows. If IDch 6= IDj , it aborts the game and the
attack against BasicPubhy failed. Otherwise, it sendsM0,M1 to its own challenger and
gets back C, the encryption of Mβ for a random bit β ∈ {0, 1} under BasicPubhy .
Finally, A3 relays C to A, which is an also encryption of Mβ under IDch for FullIdent.

The Phase 2 and Guess stage are identical to BF-IBE’s.
In this gameA3’s simulation can be aborted for two reasons: (1) in Phase 1A issues the
private key query of IDj , or (2) in Challenge stage, the challenge identity IDch 6= IDj .
Note that A3 will not abort in Phase 2, since in this case A is not allowed to query the
private key for IDch = IDj .

Let E1 be the event that A3 aborts due to (1), E2 be the event that A3 aborts due to
(2). The probability that A3 does not abort is Pr[¬E1 ∧ ¬E2] = Pr[¬E2|¬E1] Pr[¬E1].

Galindo deemed that the upper bound for Pr[E1] was qE/qH1 , since the maximum
number of private extraction queries is qE ; the lower bound for Pr[¬E2|¬E1], that is
the probability that A choose IDj as the challenge identity, was 1/qH1 . Therefore, he
concluded

Pr[A3 does not abort] ≥ 1
qH1

(
1− qE

qH1

)
Now we point out three issues which may be overlooked in Galindo’s proof.

– Issue 1. According to the definition of IND-ID-CCA game, qH1 is unknown to
the challenger A3 until the end of the game. So the execution of A3’s selecting
a random j ← {1, . . . , qH1} at the beginning of simulation is questionable. In
the other side, in order to provide a general and valid proof, the construction of
A3 should be independent of the concrete behaviour of adversary A, such as how
many queires A issues. In a word, this issue make the proof does not hold in a
general sense.

– Issue 2. Even Issue 1 could be ignored, here follows issue 2. In the challenge stage,
whenA outputs the target identity IDch, the simulator need to judge if IDch = IDj .
In fact, the exact number of H1 queries that A issues in Phase 1 may differ from
different adversaries in different simulations. Moreover, in some cases whether
“IDj” exists is unknown, thus the probability of “A3 does not abort” is immea-
surable. For example, suppose the random j = 10 and an A issues only three H1

queries in Phase 1, then the so called IDj does not even exist. It is fair to say the
simulation algorithm is not well defined.
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– Issue 3. Even both Issue 1 and Issue 2 could be fixed, there is issue 3 following.
The result of Pr[¬E2|¬E1] ≥ 1/qH1 is implied from the hypothesis that in the chal-
lenge stage the adversary A will randomly picks the target IDch from the current
H list

1 . First, due to the same reason of Issue 2, whether the so called “IDj” exists
is a question, thereby the probability Pr[IDch = IDj ] is not well defined itself. Sec-
ond, this goes against the definition of IND-ID-CCA which states that the target
IDch can be chosen without any restriction, in particular outside the current H list

1 .
Someone may argue that if the adversaryA does not choose IDch from the current
H list

1 , the advantage against the IND-ID-CCA game will be statistically closed to
0. Remember that A could issue the corresponding H1-query in Phase 2. Besides,
there is no evidence guarantees that the adversaryA will choose the target identity
uniformly from either inside or outside the current H list

1 .

From the above analyses, we think the proof proposed by Galindo is not infallible.

4.2 Nishioka’s proof

In IndoCrypt 2005, Nishioka gave a new proof for the security of BF-IBE scheme in [2],
claimed that it has a tighter security reduction than had been previously believed. Real-
izing that there are some problems in Galindo’s proof, Nishioka claimed that Galindo’s
proof could be revised by his new proof. Unfortunately, we think the new proof shares
the similar fundamental problems as Galindo’s proof.

Nishioka’s proof for Reduction 4 is similar to Galindo’s proof except three minor
alterations. The first alteration is in the simulation of H1-queries: in [1] A3 selects a
random j ∈ {1, . . . , 1 + qH1}, while in [2] A3 selects a random j ∈ {1, . . . , 1 + qH1 +
qD}. The second alteration is in [2]A3 maintains two lists named asH list1

1 andH list2
1 ,

where L1 and L2 are their corresponding size. H list1
1 is used to save A3’s responses

to H1-queries and decryption queries, while H list2
1 is used to save A3’s responses to

extraction queries. The last alternation is replacing IDi = IDj with i = L1 − 1 in the
challenge stage. The rest parts are identical to Galindo’s proof.

In order to compute the probability that A3 does not abort during the simulation,
Nishioka defines E1 as the event that A3 issues a private key query IDj which cor-
responds to the tuple 〈IDj , QID, ∗〉 on H list1

1 during Phase 1 or 2, and defines E2
as the event that A sets the challenge identity IDch that does not correspond to the
tuple 〈IDj , QID, ∗〉 on H list1

1 . Then Nishioka claimed that Pr[A3 does not abort] =
Pr[¬E1 ∧ ¬E2] = Pr[¬E2] ≥ 1/(1 + qH1 + qD) (Equation. 2 in Section 3.2 in [2]). We
summarise the lapses in Nishioka’s proof as follows.

– Issue 1. The execution of A3’s selecting a random j ← {1, . . . , 1 + qH1 + qD}
when initializing H list1

1 is doubtable. The reason is same as Issue 1 of Galindo’s
proof.

– Issue 2. The computation of Pr[A3 does not abort] = Pr[¬E1 ∧¬E2] = Pr[¬E2] ≥
1/(1 + qH1 + qD) is not correct. In fact,

Pr[A3 does not abort] = Pr[¬E1 ∧ ¬E2] = Pr[¬E1]Pr[¬E2|¬E1]
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where

Pr[¬E2|¬E1] =
1+qH1+qD∑

i

Pr[j = i]Pr[B answers H1(IDch) with QID)|j = i]

=
1

1 + qH1 + qD

1+qH1+qD∑
i

Pr[B answers H1(IDch) with QID|j = i]

For any fixed i, Pr[B answers H1(IDch) with QID|j = i] is immeasurable, thereby
the probability of Pr[A3 does not abort] is immeasurable.

These two issues render Nishioka’s proof for Reduction 4 not correct.

Remark 1. Galindo and Nishioka abandoned the “flip coin technique” by straightfor-
ward simulation. However, from the above analysis we find that straightforward simu-
lation makes the the probability of perfect simulation immeasurable. Their proofs can
not be fixed even by maximising the values of qHi , qE and qD in the setup phase.

5 Zhang and Imai’s proof

Zhang and Imai gave a new proof of the BF-IBE in [3]. The main difference lies in that
they directly reduce the CCA security of BF-IBE to the underlying CBDH problem, not
the IND-CCA security of BasicPubhy . However, we find in their proof, the simulator
fails to simulate “properly”, which means the IND-ID-CCA adversary A could distin-
guish the simulation from real attacks. Before we point out the concrete issues, we first
have a glance at their proof.
B is given the a CDBH instance (P, aP, bP, cP ) ∈ (G1)4 whose goal is to output

e(P, P )abc. B simulates all the Hi functions.
Setup. Same as in BF-IBE.

H1-queries. Same as in BF-IBE, except replace QID with P2.

H2,H3,H4-queries. B proceedsH2,H3 andH4 queries using the same method: when
a Hi-query comes, if there is an such entry on Hi-list, B returns the corresponding
result to A; otherwise, B chooses a random value for the query and adds it into Hi-list.

Extraction queries. Same as in BF-IBE.

Decryption queries. When a query (ID, C = 〈U, V,W 〉) comes, B searches H1-
list for (ID), H2-list for (t), H3-list for a tuple (σ,M) and H4-list for (σ) such that
(ID,M, r, t, σ) such that satisfying below equations: 1)QID = H1(ID); 2) r = H3(σ,M)
and U = rP ; 3) t = e(Ppub, QID)r and V = σ ⊕H2(t); 4) W = M ⊕H4(σ). If there
exists such an M and associated (ID, σ, r, t) in those lists, B returns M to A as the
answer. Otherwise, B returns “reject” to B.

Challenge. On A’s input ID and M0, M1 , let the corresponding tuple in H list
1 is

(ID, QID, s, coin). If coin = 0, B aborts the simulation; otherwise, B chooses a ran-
dom v∗ ∈ {0, 1}n, β ∈ {0, 1} and sets V = Mβ ⊕ v∗ and W = {0, 1}n. Especially, B
sets U = P3s

−1
and returns C = 〈U, V,W 〉 to A as the challenge ciphertext.
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B keeps interacting with A until A halts or aborts. Finally, when A terminates, B
chooses an arbitrary t from H2-list and computes ts

−1
as its answer to the CDBH prob-

lem. This completes the decryption of B.
Next, we point out the lapses in their proof.

– Issue 1. First it is obliged to correct two typos in the above proof. (1) According
to the encryption algorithm, V = Mβ ⊕ v∗ should be corrected as V = σ ⊕ v∗.
(2) The authors set U = (P3)s

−1
, then B should answers t as its answer to the

CDBH problem but not ts
−1

. It is easy to verify that when QID = P2 = sbP , the
associated dID = sabP , therefore t = e(U, dID) = e(s−1cP, sabP ) = e(P, P )abc

is exactly the answer we need.
– Issue 2. B should answer all extraction queries and Hi-queries “properly”, and re-

turns the “proper” challenge ciphertext, which means B should simulates the real
attack scenario perfectly. In the challenge stage, whenA submits the target identity
ID and two messages M0, M1, B is expected to return a valid ciphertext of Mβ . In
order to do so,B need to pick a random σ and queryH3-oracle for r = H3(σ,Mβ),
then queries theH2-oracle for v = H2(e(Ppub, QID)r), at last queryH4-oracle for
H4(σ). The key point is B should manage to make r = c (U = P3) and at the same
time ensure all the queries are indistinguishable in A’s view. Zhang and Imai gen-
erated the challenge ciphertext by implicitly assigning H2(e(Ppub, QID)r

∗
) with a

random v∗ ∈ Zq and assigningH4(σ∗) with random w∗ ∈ {0, 1}n, thus implicitly
means that the underlying σ∗ must satisfy H3(σ∗,Mβ) = r∗ and H4(σ∗) = w∗.
However, the ciphertext is not a valid encryption result of Mβ . Note that both
e(Ppub, QID)r

∗
and σ∗ are unknown to B, thus renders B’ simulation for H2, H3

and H4 are not coherent in the game. For example, if A explicitly issues a query
e(Ppub, QID)r

∗
to H2-oracle, (σ∗,Mβ) to H3-oracle and σ∗ to H4-oracle (either

in Phase 1 or Phase 2), then B actually assigns two different value for the same
input with overwhelming probability, which goes against the definition of random
oracle model and makes simulation distinguishable from real attack.

– Issue 3. In the simulation of decryption oracle, B answers the decryption queries
by searching all Hi-lists. Let alone the low efficiency it causes, the authors think
for every valid ciphertext C, there must have existed corresponding Hi-queries
records in Hi-lists. In other words, they think it is impossible (with probability
less than 1/2n) for an attacker to obtain a valid ciphertext without making corre-
sponding queries. We have to argue that this hypothesis is too strong. In real attack,
it is easy for an attacker to obtain some valid ciphertexts by eavesdropping.

These issues make their proof not infallible.
We summarise the guidelines that a valid IND-ID-CCA proof should follows.

– The construction of the simulator should be general. More exactly, the simulation
algorithm should be independent of the adversary’s particular behavior, such as the
exact number random oracle queries, extraction/decryption queries an adversary
makes in Phase 1 and Phase 2.

– The adversary must be handled strictly according to the definition of IND-ID-CCA
game, no extra hypothesis should be imposed on it, such as how does the adver-
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sary choose the target identity? From which set or the choices comply to what
probabilistic distribution?

– The simulation algorithm must ensure the probability of perfect simulation to be
computable, thereby the advantage of the simulator against the underlying problem
is measurable. Otherwise the security reduction is meaningless.

– The simulation should be identical to real attack in the adversary view. In the
random oracle model, the simulator should simulate all the random oracle models
coherently.

6 IND-sID-CCA implies IND-ID-CCA

This section shows that if imposing a little constraint to FullIdent, then we can obtain
its fully security based on its selective-ID security.

In [22] Boneh and Boyen proved the following theorem which quantifies the rela-
tionship between selective-ID IBE security and fully IBE security in the random oracle
model.

Theorem 6.1 Let E be a (t, qE , ε) selective-ID secure IBE. Suppose identities in E are
n-bits long. Let H be a hash function H : {0, 1}∗ → {0, 1}n modeled as a random
oracle. H converts E to EH by the process of hashing the identity ID with H before
using ID. Then EH is a (t, qE , ε′) fully secure IBE (in the random oracle model) for
ε′ ≈ qH · ε, where qH is the maximum number of oracle calls to H that the adversary
can make.

This theorem inspires us to prove IND-ID-CCA security via IND-sID-CCA security.
Next we first prove that BF-IBE in secure in selective-ID model, then achieve the secu-
rity in the full model by applying Theorem 6.1.

Theorem 6.2 Let H1 be a random oracle. Then FullIdent is IND-sID-CCA secure as-
suming the CBDH assumption is hard in groups generated by G. Concretely, suppose
there is an IND-sID-CCA adversary A that has advantage ε(k) against the FullIdent.
Then there is an IND-CCA adversary A3 that has advantage ε(k) against BasicPubhy .
Its running time is O(time(A)).

Proof. We construct an IND-CCA adversary A3 that uses A to gain advantage against
BasicPubhy . The game starts with the challenger first generates the public key Kpub =
〈q,G1,G2, e, n, P, Ppub, QID, H2, H3, H4〉 and a private key dID = sQID. The chal-
lenger givesKpub to algorithmA3.A3 mounts an IND-CCA attack on the the keyKpub

using the help of algorithm A. A3 interacts with A as follows.
Init. A outputs an identity IDch where it wishes to be challenged.

Setup. Same as BF-IBE’s.

H1-queries. To respond to H1 queries,A3 maintains a list of tuples 〈IDi, Qi, bi〉 which
is referred as H list

1 . The list is initially empty. When A queries H1 at a point IDi, A3

responds as follows:
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1. If the query IDi already appears on the H list
1 in a tuple 〈IDi, Qi, bi〉 then A3 re-

sponds with H1(IDi) = Qi.

2. Otherwise, if IDi = IDch, A3 sets bi = ∗ and Qi = QID; else A3 generates a
random bi ∈ Z∗q and computes Qi = biP .

3. A3 adds the tuple 〈IDi, Qi, bi〉 to H list
1 and responds to A with H1(IDi) = Qi.

Phase 1 - Extraction queries. WhenA asks for the private key associate to IDi,A3 runs
the above algorithm and gets H1(IDi) = Qi, where 〈IDi, Qi, bi〉 is the corresponding
entry in H list

1 . Observing that Qi = biP , therefore the corresponding private key is
di = biPpub. Finally, A3 gives di to A. The request 〈IDch〉 will be denied.

Phase 1 - Decryption queries. Let 〈IDi, Ci〉 be a decryption query issued by algorithm
A. Let Ci = 〈Ui, Vi,Wi〉. When IDi 6= IDch, A3 runs H1-queries algorithm and let
〈IDi, Qi, bi〉 ∈ H list

1 , then retrieves the private key di and decrypts Ci using the de-
cryption algorithm. If IDi = IDch, A3 relays the decryption query with the ciphertext
〈Ui, Vi,Wi〉 to the challenger and relays the challenger’s response back to A.

Challenge. Once A decides that Phase 1 is over and outputs two messages M0,M1

which it wishes to be challenged on. A3 responds as follows: first A3 gives its chal-
lenger the message M0,M1. The challenger responds with a BasicPubhy ciphertext
C = 〈U, V,W 〉 such that C is the encryption of Mβ for a random β ∈ {0, 1}. Next,A3

responds to A with the challenge C.

Phase 2 - Private key queries. A3 responds to the extraction queries in the same way
as it did in Phase 1.

Phase 2 - Decryption queries. A3 responds to the decryption queries in the same way
as it did in Phase 1 except that 〈IDi, Ci〉 = 〈IDch, C〉 is denied.

Guess. Eventually, adversary A outputs a guess β′ for β. Algorithm A3 outputs β′ as
its guess for β.

All the responses to H1-queries are as in real attack since each response is uni-
formly and independently distributed in G∗1. All the responses to private key extraction
queries and decryption queries are valid. So algorithm A3 would not abort during the
simulation. By definition of algorithm A, we have that

∣∣Pr[c = c′]− 1
2

∣∣ ≥ ε(k). Note
that Pr[A3 does not abort] = 1, this shows that A3’s advantage against BasicPubhy is
at least ε(k) as required. �

As to BF-IBE’s FullIdent scheme, if we first hash arbitrary identities in {0, 1}∗ to bi-
nary strings of length n using a collision resistant function with n-bits output (such as
SHA-1 whose output is 160 bits). Taking n = 160 as the length of identities in IBE
system is a natural choice. We denote the resulting scheme as FullIdentH . We note that
the selective-ID security of an IBE system is not weakened if additional restrictions on
the identities are imposed (indeed, this only tightens the constraints on the adversary
and relaxes those on the simulator). Thus FullIdentH is also selective-ID secure accord-
ing to Theorem 6.2. Finally, as a straightforward result of Theorem 6.1, we conclude
FullIdentH is fully secure in the random oracle model.

Remark 2. This proof works but is not a satisfying one, because we prove it by imposing
a constraint to the original scheme.
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7 The New proof of BF-IBE

The IND-ID-CCA security of BF-IBE was proven via Reduction 4, Reduction 3 and
Reduction1 in the original paper [8] [1] [2]. However, this happens to be the reason why
their proofs failed: the IND-ID-CCA security of FullIdent and the IND-CCA security of
BasicPubhy are not meaningfully linked. Zhang and Imai [3] realized this and tried to
reduce the security directly to the underlying hard problem. Unfortunately, they failed
because they cannot answer all the queries coherently. Inspired by the proof technique
used in [15], we can use decisional oracle ODBDH(·) to ensure all the responses to
queries coherent.

In this section, we give a new proof of BF-IBE based on the GBDH assumption in
the random oracle model. We directly reduce the security of BF-IBE to the intractability
of GBDH problem and only require H1, H2, H3 to be random oracles.

Theorem 7.1 Let the hash functionsH1,H2 andH3 be random oracles. Then FullIdent
is chosen ciphertext secure assuming GBDH is hard in groups generated by G. Con-
cretely, suppose there is an IND-ID-CCA adversary A that has advantage ε(k) and A
makes at most qE extraction queries, at most qD decryption queires, and at most qHi

queries to Hi oracles, respectively. Then there is a GBDH algorithm B has advantage

AdvB(k) ≥
ε(k)

e(1 + qE)

(
1− qH3

2n
)

in running time O(time(A)).

Here e is the base of natural logarithm, n is the message size. Our aim is construct a
GBDH adversary B with the help of an IND-ID-CCA adversary A.

Proof. Suppose B is given a instance (P, aP, bP, cP,ODBDH) of the GBDH problem
where ODBDH(·) is a decisional oracle to judge whether (P, aP, bP, cP, Z) is a valid
BDH tuple. B is expected to output T ∈ G2 satisfying T = e(P, P )abc.
Setup. B gives A params = 〈q,G1,G2, e, n, P, Ppub, H1, H2, H3, H4〉 as the system
parameters, where n is the length of plaintext, and H1, H2 and H3 are random oracles
controlled by B. B sets Ppub as aP .

Phase 1- H1 queries. B maintains a list L1 which contains tuples (IDj , Qj , sj , coinj).
When a query 〈IDi〉 comes, if there is already an entry (IDi, Qi, si, coini) in L1, B
replies it with Qi. Otherwise, B flips a biased coin with Pr[coin = 0] = δ (δ will
be decided later), picks a random s ∈ Z∗q ; if coin = 0 computes Qi = sP , else
computes Q = sbP . B adds the tuple (IDi, Qi, s, coin) to the L1 and responds to A
with H1(IDi) = Qi.

Phase 1- H2 queries. H2 hashes an element ω ∈ G2 to a value h ∈ {0, 1}n. According
to the proof technique already used in [14] [15], these queries are processed using two
lists L2 and L′2 which are initially empty:

– L2 contains tuples (ω, h2) which indicates a hash value h2 ∈ {0, 1}n was previ-
ously assigned to ω.
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– L′2 contains tuples (Q,U, ω∗, h′2) which means B has implicitly assigned a hash
value h′2 ∈ {0, 1}n to some ω∗ satisfying ODBDH(P, Ppub, Q, U, ω∗) = 1, al-
though ω∗ is unknown yet.

More precisely, when A submits a query ω to H2(·),
– B first checks if there is an entry (ω, h2) in L2 list. If it does, h2 is returned to A.

– Else, for every tuple (Q,U) in L′2, B submits (P, Ppub, Q, U, ω) to the ODBDH(·)
oracle to decide whether it is a valid BDH tuple. If it is for some existing entry
(Q,U, ω∗, h2), B adds (ω, h2) to L2 and deletes the entry from L′2. (B processes
in this way in order to behave coherently. Otherwise B will run a risk of explicitly
assigning two different h2 for the same ω.) If there is no such entry in L′2 satisfying
(P, Ppub, Q, U, ω) is a valid BDH tuple, B assigns a random h2 ∈ {0, 1}n to ω,
adds (ω, h2) into L2. At last, B returns h2 to A.

Phase 1- H3 queries. B maintains a list contains tuples (σ,M, h3). We refer to the
list as L3, which is initially empty. When a query (σ,M) comes, if there is an entry
(σ,M, h3) on H3 list, B returns h3 toA; otherwise, B choose h3 ∈ Z∗q , returns h3 toA
and adds (σ,M, h3) to L3.

Phase 1- Private key queries. When a private key query 〈IDi〉 comes (we can assume
ID has already in L1 list), B find the corresponding tuple (IDi, Qi, si, coini) in L1. If
coini = 1, B reports “abort” and quits the simulation. If coini = 0, B sets di = aQi =
siPpub = siaP which is a valid private key for IDi, and then returns di to A.

Phase 1- Decryption queries. When a query (ID, C) comes. B searches in L1 for
Q = H1(ID).

– If the associated coin = 0, B obtains the private key for ID. Then use the private
key to respond to the decryption query.

– If coin = 1, B searches ω in L2 which satisfying O(P, Ppub, Q, U, ω) = 1. If
ωj is such an entry, computes σ = V ⊕ h2,j (h2,j = H2(ωj)) and responds
the query according to the decryption algorithm. If there isn’t, for every entry
(Qi, Ui) in L′2, B checks whether e(Q,U) = e(Qi, Ui). If (Qj , Uj) is such an
entry, computes σ = V ⊕ h′2,j and responds the query according to the decryp-
tion algorithm. (e(Q,U) = e(Qi, Ui) indicates that the underlying ω is same, for
e3(Ppub, Q, U) = e3(Ppub, Qi, Ui). The notation e3 is defined as e3(aP, bP, cP ) =
e(P, P )abc.)

– Otherwise, B randomly chooses a h′2 ∈ {0, 1}n and adds (Q,U, ω∗, h′2) in L′2. ω∗

is an unknown value which satisfies ODBDH(P, Ppub, Q, U, ω∗) = 1. B computes
σ = V ⊕ h′2 and carries on the decryption algorithm to respond the query.
(In this way, B can always answers the decryption queries coherently.)

Challenge. Once A decides that Phase 1 is over it outputs two messages M0, M1 and
an target identity IDch on which it wishes to be challenged. Let (ID, Q, s, coin) be the
corresponding entry in L1. If coin = 0, B aborts and reports “failure”, because A is
of no help in B’s endeavor in such a situation. Otherwise, let β ∈ {0, 1} be a random
bit, B sets U = cP , picks a random σ∗ ∈ {0, 1}n which is not in the current L3 list,
thus implicitly implies H3(σ∗,Mβ) = c, although c is unknown. In order to simulate
perfectly, B obtains the hash value of H2(e(Ppub, Q)c) in the following steps.
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– Check whether L2 contains an entry which satisfiesOOBDH(P, Ppub, Q, U, ωj) =
1. If it does, set the hash value of H2(e(Ppub, Q)c) as h2,j = H2(ωj).

– Else check whether L′2 contains an entry satisfying e(Qj , Uj) = e(Q,U). If it
does, set the hash value of H2(e(Ppub, Q)c) as h′2,j = H2(ω∗j ).

– Otherwise, B chooses a random h′2 ∈ {0, 1}n and adds (Q,U, ω∗, h′2) into L′2. Set
the hash value of H2(e(Ppub, Q)c) as h′2.

B computes V = Mβ ⊕H2(e(Ppub, Q)c) and W = M ⊕H4(σ∗). Finally, B responds
A with ciphertext C = 〈U, V,W 〉.
Phase 2- Private key queries. B responds to private key queries in the same way as it
did in Phase 1 except disallowing the query 〈IDch〉.
Phase 2- Decryption queries. B responds to decryption queries in the same way as it
did in Phase 1 except disallowing the query 〈IDch, C〉.
Phase 2- Hi queries. B responds to H1 and H2 queries identically as it did in Phase
1. For H3-oracle, when B comes with a query (σ,M) = (σ∗,Mβ), it reports “failure”
and terminates. (The reason of B has to abort in this case is it does not know the value
r = H3(σ∗,Mβ)). Else B responds to H3 queries the same way as it did in Phase 1.

We denotes the event that A issues (σ∗,Mβ) query to H3 oracle as AskH3.

Guess. EventuallyA outputs a guess β′ for β, thenB terminates the IND-ID-CCA game.

When the game between A and B terminates, no matter what the reason is, B searches
the entry (ω, h2) in L2 which satisfying ODBDH(P, Ppub, Q, U, ω) = 1 and computes
(ω)s

−1
as its answer to the GBDH problem. It is easy to verify the correctness observing

that ω = e(dID, U) = e(sabP, cP ) = e(P, P )abcs.
Claim. We denotes the event that A issues e(dID, U) query to H2-oracle as AskH2.
From the above analysis we know that as soon as AskH2 occurs, the attack to GBDH
problem succeeds. If algorithm B does not abort during the simulation before AskH2

occurs then A’s view is identical to its view in the real attack, because B simulates Hi-
oracles coherently and all the responses to extraction queries and decryption queries are
valid. On the other hand, A guesses the right β′ = β means AskH2 must have occured.
Therefore, according to the definition of A, the probability of B finding the wanted
tuple (ω, h2) in L2 is at least ε.

Note that different from other similar proofs, B can gain the advantage against the
underlying GBDH problem even beforeA outputs its final guess. It suffices to compute
the probability of B does not abort before AskH2 occurs. We denote such probability as
Pr[Success].
B may terminates before AskH2 occurs for the following three events.

1. E1 is the event that A issues private key queries while the corresponding coin = 1
during Phase 1 and Phase 2.

2. E2 is the event that A chooses the target IDch while the corresponding coin = 0 in
the Challenge phase.

3. E3 is the event that AskH3 occurs before AskH2 occurs. (B is unable to extract the
underlying hash value r = c).
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According to the decryption algorithm, if AskH2 happens, the corresponding AskH3

follows with high probability. On the contrary, the probability of that AskH3 happens
before the AskH2 is less than qH3/2

n, where 2n is the cardinal of σ space. Because the
chance that a random string σ equals to σ∗ is at most 1/2n and this happens at most
qH3 times. Note that AskH3 will lead to the termination of the game, but AskH2 has
occurred before it with overwhelmingly probability.

Combines all above, the probability of perfect simulation before AskH2 occurs is

Pr[Success] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3] = δqE (1− δ)
(
1− qH3

2n
)

Using the same mathematical technique in [8], the lower bound is maximized at δopt =
1− 1/(qE + 1), thus

Pr[Success] ≥ 1
e(1 + qE)

(
1− qH3

2n
)

The bound on time complexity can be verified easily. This proves the result as required.
�

In order to answer decryption queries coherently, B has to call the ODBDH(·)-
oracle at most qDqH2 times. In order to return a proper and valid ciphertext, B has to
call the ODBDH(·)-oracle at most qH2 times. If we add (Q,U) as two extra inputs to
H2 function, i.e. replace H2(e(Ppub, QID)r) with H2(Q,U, e(Ppub, QID)r)) in the en-
cryption algorithm and replaceH2(e(dID, U)) asH2(Q,U, e(dID, U)) in the decryption
algorithm, we can save (qH2 + qDqH2) times call to ODBDH(·)-oracle. A similar ob-
servation was made by Cramer and Shoup [14] in their security proof of the Hashed
ElGamal KEM.

8 Conclusion

In this paper, we point out the flaws in some previous proofs of BF-IBE. We notice that
by restricting all the identities of BF-IBE are n-bits long, we can prove its full security
based on its selective-ID security. Besides, we give a new proof for BF-IBE based on
the GBDH problem in the random oracle model. However, we think how to provide an
elegant proof of BF-IBE relying on the original CBDH assumption is still a interesting
problem.
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