A Reflection on the Security Proofs of Boneh-Franklin Identity-Based Encryption

Yu Chen
Institute of Software, School of Electronics Engineering and Computer Science
Peking University, Beijing, China
Email: cycosmic@gmail.com

Abstract

Boneh and Franklin constructed the first practical Identity-Based Encryption scheme (IBE) in 2001. They also defined a formal security model for IBE and proved their scheme (BF-IBE) to be secure in the random oracle model assuming the computational Bilinear Diffie-Hellman (CBDH) assumption holds. However, few years later, Galindo [1] pointed out a flawed step in its proof against adaptively chosen ciphertext attack (CCA) and claimed that the flaw can be fixed without changing the original scheme and the underlying assumption. In the same paper, Galindo provided a revised proof with a looser security reduction. Shortly afterwards, Nishioka [2] attempted to extend Galindo's idea to achieve a tighter security reduction. Unfortunately, we find that there are some lapses in their proofs, which make their proofs not infallible in the sense of CCA security for IBE setting. Zhang and Imai [3] proposed a another proof for BF-IBE in which the simulator simulates itself all the oracles. However, we show that there exists a inconspicuous lapse in the simulation of hash functions, which renders the simulator can not answer all the queries to the oracles coherently. In this paper, besides pointing out the lapses existed in the aforementioned proofs, we present a new proof for the CCA security of BF-IBE which relies on a stronger assumption, namely gap Bilinear Diffie-Hellman (GBDH) assumption.

Key words: identity-based encryption, security reduction, chosen ciphertext security

1 Introduction

Identity-Based Encryption (IBE) allows a party to encrypt a message using the recipient's identity as a public key. Such property simplifies key management and avoids the use of digital certificates. This can be very useful in applications such as email system where the recipient is often off-line and unable to present a public-key certificate while the sender encrypts a message.

Since Shamir proposed the concept of IBE in 1984 [4], various Identity-Based Signature (IBS) and Authentication (IBA) schemes have been proposed, but secure and fully functional IBE scheme was not found until Boneh and Franklin [5], Cocks [6] and Sakai et al. [7] presented three IBE schemes in 2001, respectively. Among those solutions, Boneh and Franklin's one happen to be the most practical one. In order to prove the security of BF-IBE, Boneh and Franklin [8] introduced new security definitions to fit
the Identity-Based setting, then proved its security in the random oracle model assuming the hardness of computational Bilinear Diffie-Hellman problem [8]. For this reason, BF-IBE has received much attention and has had a great influence on later designs and analysis of cryptographic settings. z Numerous schemes [9] [10] [11] [12] [13] are based on BF-IBE scheme.
Fixed proofs about BF-IBE. The original security proof of BF-IBE was long believed correct until 2005, Galindo [1] pointed out a flawed step in the security reduction for CCA security. Galindo claimed that the flawed step could be fixed by his new security reduction without changing both the scheme and the underlying assumption if the efficiency of the security reduction is sacrificed. In the same year, Nishioka [2] enhanced Galindo's idea to provide another proof with tighter security reduction. In the same year, Zhang and Imai [3] proposed a new proof of BF-IBE, which was claimed essentially improved previously known results. Up to present, there is no doubt about the correctness of their fixed proofs.

1.1 Our contributions

Reflect previous proofs of BF-IBE. After re-examine the flawed step in BF-IBE's original CCA security proof exhibited in [8] and analyse why it fails, we point out the lapses in the subsequent revised security proofs proposed Galindo [1], Nishioka [2] and Zhang et.al [3], respectively. Galindo's proof and Nishioka's proof are similar. Both of their proofs begin with a doubtable assumption that the challenger know the number of queries which adversary will make at the beginning of the CCA game. In the challenge step, the behavior of adversary goes against the strict definition of a CCA adversary. In Zhang and Imai's proof [3], the simulator simulates itself all the oracles: the H_{i} oracles, extraction oracle, encryption oracle and decryption oracle. However, we find that the answers to the oracles are not coherent, which makes the simulation is not identical to the real attack in adversary's view.
Present a new proof of BF-IBE. Since BF-IBE scheme has been used as a primitive for numerous cryptographic protocols, the security of BF-IBE implies direct consequences for many other schemes [9] [10] [11] [12] [13]. It is necessary to provide a correct proof without flaws. Motivated by this, we provide a new proof of BF-IBE which employs the proof technique used in [14] [15]. We reduce the CCA security of BF-IBE directly to the underlying intractable problem without intermediate steps. We also remark that our security reduction is based on the gap Bilinea Diffie-Hellman (GBDH) assumption, which is a little stronger than the computational Bilinear Diffie-Hellman (CBDH) assumption used in the original proof.

1.2 Organization

In Section 2, we give the background information on security definitions and complexity assumptions. Section 3 briefly revisits BF-IBE scheme and its orginal security proof. In Section 4 we analysz the lapses in the subsequent revised proofs proposed by Galindo [1] and Nishioka [2], respectively. In Section 5]we point out an inconspicuous lapse in Zhang and Imai's proof [3]. Section 6 shows that if restricting the identities
space to a finite set, then the full security of BF-IBE can be achieved from its selec-tive-ID security. In Section 7 we present a new proof for BF-IBE relying on the GBDH assumption in the random oracle model. Finally, we conclude the paper in Section 8 .

2 Preliminaries

We briefly review the groups equipped with efficiently computable bilinear maps. For more details, we recommend the reader to previous literature [8].
Bilinear Map. Let \mathbb{G}_{1} and \mathbb{G}_{2} be two groups of prime order q. A map $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ is said as an admissible bilinear map if the following three properties hold.

1. Bilinear. $e(a P, b Q)=e(P, Q)^{a b}$ for all $P, Q \in \mathbb{G}_{1}$ and all $a, b \in \mathbb{Z}_{q}^{*}$.
2. Non-degenerate. $e(P, P) \neq 1$.
3. Computable. There is an efficient algorithm to compute $e(P, Q)$ for any $P, Q \in \mathbb{G}_{1}$.

Bilinear Diffie-Hellman (BDH) Parameter Generator. A BDH parameter generator \mathcal{G} is an algorithm which takes a security parameter $k \in \mathbb{Z}^{+}$as input and outputs two groups of prime order q and an admissible bilinear map $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$. We describe it as $\mathcal{G}\left(1^{k}\right) \rightarrow\left(q, \mathbb{G}_{1}, \mathbb{G}_{2}, e\right)$.

2.1 Complexity Assumptions

Given groups \mathbb{G}_{1} and \mathbb{G}_{2} of prime order q, a blinear map $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ and a generator P of \mathbb{G}_{1}, we introduce three complexity assumptions as follows.
Computational Bilinear Diffie-Hellman Problem (CBDH). The CBDH problem [16] [5] is given the tuple $(P, a P, b P, c P)$ for some $a, b, c \in \mathbb{Z}_{q}^{*}$, compute the $e(P, P)^{a b c} \in$ \mathbb{G}_{2}. An adversary \mathcal{A} is said to have at least advantage ϵ in solving CBDH problem if $\operatorname{Pr}\left[\mathcal{A}(P, a P, b P, c P)=e(P, P)^{a b c}\right] \geq \epsilon$.
Decisional Bilinear Diffie-Hellman Problem (DBDH). For random $a, b, c, z \in \mathbb{Z}_{q}^{*}$ and a fair coin β. If $\beta=1$ the challenger outputs a tuple $\left(P, a P, b P, c P, Z=e(P, P)^{a b c}\right) \in$ D_{1}. Else, it outputs a tuple $\left(P, a P, b P, c P, Z=e(P, P)^{z}\right) \in D_{2}$. The adversary is expected to output a guess β^{\prime} of β. An adversary \mathcal{A} is said to have at least an ϵ advantage in solving the DBDH problem if $\left|\operatorname{Pr}\left[\beta=\beta^{\prime}\right]-\frac{1}{2}\right| \geq \epsilon$. Tuples from D_{1} are denoted as "BDH" tuples in contrast to those from D_{2} which will be called "random tuples". A DBDH oracle can determine whether a tuple $(P, a P, b P, c P, Z)$ is a real " BDH " tuple.
Gap Bilinear Diffie-Hellman Problem (GBDH). The GBDH problem is given a CBDH challenge ($P, a P, b P, c P$), to compute $e(P, P)^{a b c}$ with the help of a DBDH oracle.

2.2 Security Notions

Recall that an IBE scheme consists of four algorithms [4] [8]: Setup, Extract, Encrypt, and Decrypt. The Setup algorithm generates system parameters params and a master secret master-key. The Extract algorithm uses the master-key to generate the private key corresponding to a given identity. The Encrypt algorithm encrypts messages for a given identity (using the system parameters) and the Decrypt algorithm decrypts ciphertext using the private key. The message space is \mathcal{M}. The ciphertext space is \mathcal{C}.

Chosen Ciphertext Security for IBE. An IBE scheme \mathcal{E} is said to be secure against adaptively chosen ciphertext attack (IND-ID-CCA) if no probabilistic polynomial time (PPT) algorithm \mathcal{A} has a non-negligible advantage against the challenger in the following game:
Setup. The challenger takes the security parameter and runs the Setup algorithm. It gives the adversary the resulting system parameters and keeps the master secret to itself.
Phase 1. The adversary issues queries q_{1}, \ldots, q_{m} where query q_{i} is one of:

- Extraction query $\left\langle\mathrm{ID}_{i}\right\rangle$. The challenger responds by running algorithm Extract to generate the private key d_{i} corresponding to ID_{i}. It sends d_{i} to the adversary \mathcal{A}.
- Decryption query $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle$. The challenger responds by running algorithm Extract to generate the private key d_{i} corresponding to ID_{i}. It then runs algorithm Decrypt to decrypt the ciphertext C_{i} using the private key d_{i}. It sends the resulting plaintext to the adversary \mathcal{A}.
These queries may be asked adaptively, that is, each query q_{i} may depend on the replies to q_{1}, \ldots, q_{i-1}.
Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts $M_{0}, M_{1} \in \mathcal{M}$ and an identity ID on which it wishes to be challenged. The only constraint is that ID did not appear in any private key extraction query in Phase 1. The challenger picks a random bit $\beta \in\{0,1\}$ and sets $C=\operatorname{Encrypt(params,~ID,~} M_{\beta}$). It sends C as the challenge to the adversary.
Phase 2. The adversary issues more queries q_{m+1}, \ldots, q_{r} where q_{i} is one of:
- Extraction query $\left\langle\mathrm{ID}_{i}\right\rangle \neq \mathrm{ID}$. Challenger responds as in Phase 1.
- Decryption query $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle \neq\langle\mathrm{ID}, C\rangle$. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess. Finally, the adversary outputs a guess $\beta^{\prime} \in\{0,1\}$ and wins the game if $\beta=\beta^{\prime}$.
We refer to such an adversary \mathcal{A} as an IND-ID-CCA adversary. We define adversary \mathcal{A} 's advantage over the scheme \mathcal{E} by $\operatorname{Adv} v_{\mathcal{E}, \mathcal{A}}^{\mathrm{CCA}}(k)=\left|\operatorname{Pr}\left[c=c^{\prime}\right]-\frac{1}{2}\right|$, where k is the security parameter. The probability is over the random bits used by the challenger and the adversary. Similarly, the IND-ID-CPA security notion can be defined by using a similar game as the one above but disallowing decryption queries. The advantage of an adversary \mathcal{A} is defined by $A d v_{\mathcal{E}, \mathcal{A}}^{\mathrm{CPA}}(k)=\left|\operatorname{Pr}\left[\beta=\beta^{\prime}\right]-\frac{1}{2}\right|$.

Definition 2.1 We say that an IBE scheme \mathcal{E} is IND-ID-CCA (IND-ID-CPA) secure if for any probabilistic polynomial time IND-ID-CCA (IND-ID-CPA) adversary \mathcal{A} the advantage $A d v_{\mathcal{E}, \mathcal{A}}^{\mathrm{CCA}}(k)\left(\operatorname{Adv} v_{\mathcal{E}, \mathcal{A}}^{\mathrm{CPA}}(k)\right)$ is negligible.

Selective-ID model. Boneh and Franklin [5] defined the adaptive chosen ciphertext security for IBE systems by the above game. We refer to it as full IBE security model. In this model, the adversary can issue both adaptive chosen private key queries and adaptive chosen ciphertext queries. Eventually, the adversary adaptively chooses the identity it wishes to attack and asks for a semantic security challenge for this identity. Canetti, Halevi, and Katz [17] [18] defined a slightly weaker security model, called
selective-ID security model, in which the adversary must commit ahead of time (nonadaptively) to the identity it intends to attack. More precisely, it is defined using the following game:
Init. The adversary outputs an identity $\mathrm{ID}_{c h}$ where it wishes to be challenged.
Setup and Phase 1 are same as in IND-ID-CCA game.
Phase 1. Same as in IND-ID-CCA game.
Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts M_{0}, M_{1} on which it wishes to be challenged. The challenger picks a random bit $\beta \in\{0,1\}$ and sets the challenge ciphertext to $C=\operatorname{Encrypt}\left(\right.$ params, $\left.\mathrm{ID}_{c h}, M_{\beta}\right)$. It sends C as the challenge to the adversary.
Phase 2 and Guess are same as in IND-ID-CCA game.
We refer to such an adversary \mathcal{A} as an IND-sID-CCA adversary. The advantage of the adversary \mathcal{A} is defined by $A d v_{\mathcal{E}, \mathcal{A}}(k)=\left|\operatorname{Pr}\left[\beta=\beta^{\prime}\right]-\frac{1}{2}\right|$, where the probability is over the random bit used by the challenger and the adversary.

Definition 2.2 An IBE system \mathcal{E} is IND-sID-CCA secure if for any PPT IND-sID-CCA adversary \mathcal{A} the advantage $A d v_{\mathcal{E}, \mathcal{A}}(k)$ is negligible.

3 Boneh-Franklin's IBE Scheme

In this section, we briefly describe BF-IBE scheme [5] and examine the original proof. Boneh and Franklin named their full scheme as Fullldent. In order to make the presentation easier, they also define the Basicldent and two public key encryption (PKE) scheme called BasicPub and BasicPub ${ }^{h y}$. Basicldent which has only CPA security, is a simplified version of Fullldent, BasicPub is a PKE scheme derived from Basicldent, and BasicPub ${ }^{h y}$ is a PKE scheme obtained by applying the Fujisaki-Okamoto conversion [19] to BasicPub. We first review the Fullldent in Figure 1.

A series of security reductions for Fulldent and Basicldent follows the diagram below:

The following results are presented in [8]. Hereafter, let q_{E}, q_{D}, and $q_{H_{i}}$ denote the number of extraction, decryption and H_{i} random oracle queries, respectively.
Reduction 1. Suppose there is an IND-CPA adversary \mathcal{A}_{1} has the advantage $\epsilon(k)$ against BasicPub and \mathcal{A}_{1} makes at most $q_{H_{2}}$ queries to the random oracle H_{2}. Then there is an algorithm \mathcal{B} that solves the CBDH problem with advantage at least $2 \epsilon(k) / q_{H_{2}}$ in running time $O\left(\operatorname{time}\left(\mathcal{A}_{1}\right)\right)$.

BF -IBE(Fulldent)	
Setup $\left(1^{k}\right):$	Extract(ID, params, master-key)
$s \leftarrow \mathbb{Z}_{q}^{*} ; P_{\text {pub }}=s P$	$Q_{\mathrm{ID}}=H_{1}(\mathrm{ID})$
params $=\left(q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, n, P, P_{\text {pub }}, H_{i}\right)$	$d_{\mathrm{ID}}=s Q_{\mathrm{ID}}$.
$H_{1}:\{0,1\}^{*} \rightarrow \mathbb{G}_{1}$,	
$H_{2}: \mathbb{G}_{2} \rightarrow\{0,1\}^{n}$,	
$H_{3}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow \mathbb{Z}_{q}^{*}$,	
$H_{4}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$.	
Encrypt(ID, params, $M)$	Decrypt $\left(C\right.$, params, $\left.d_{\mathrm{ID}}\right)$
$Q_{\mathrm{ID}}=H_{1}(\mathrm{ID}) ;$	Parse $C=\langle U, V, W\rangle$.
$\sigma \leftarrow\{0,1\}^{n}, r=H_{3}(\sigma, M) ;$	If $U \notin \mathbb{G}_{1}$, return \perp
$U=r P ;$	Compute $\sigma=V \oplus H_{2}\left(e\left(d_{\mathrm{ID}}, U\right)\right)$.
$V=\sigma \oplus H_{2}\left(e\left(P_{p u b}, Q_{\mathrm{ID}}\right)^{r}\right) ;$	Compute $M=W \oplus H_{4}(\sigma)$.
$W=M \oplus H_{4}(\sigma) ;$	Set $r=H_{3}(\sigma, M)$. If $U \neq r P$, return \perp.
$C=\langle U, V, W\rangle$.	Output M as the decryption of C.

Fig. 1. The algorithms of Fullldent

Reduction 2. Suppose there is an IND-ID-CPA adversary \mathcal{A}_{2} that has advantage $\epsilon(k)$ against Basicldent and makes at most q_{E} private key extraction queries, and at most $q_{H_{2}}$ queries to the random oracle H_{2}. Then there is an IND-CPA adversary \mathcal{A}_{1} against BasicPub with advantage at least $\epsilon(k) / e\left(1+q_{E}\right)$ in running time $O\left(\operatorname{time}\left(\mathcal{A}_{2}\right)\right)$. Here $e \approx 2.71$ is the base of the natural logarithm.
From Reduction 1 and Reduction 2, we get:
Result 1. Basicldent is IND-ID-CPA secure assuming the CBDH is hard in groups generated by \mathcal{G}. Concretely, suppose there is an IND-ID-CPA adversary \mathcal{A}_{2} that has advantage $\epsilon(k)$ against Basicldent. If \mathcal{A}_{2} makes at most $q_{E}>0$ private key extraction queries and $q_{H_{2}}$ hash queries to H_{2}. Then there is an algorithm \mathcal{B} that solves CBDH with advantage at least $\frac{2 \epsilon(k)}{e\left(1+q_{E}\right) \cdot q_{H_{2}}}$.
Reduction 3. Using the Fujisaki-Okamoto transformation Boneh and Franklin introduce BasicPub ${ }^{h y}$ which is IND-CCA secure. Suppose there is an IND-CCA adversary \mathcal{A}_{3} that has advantage $\epsilon(k)$ against BasicPub ${ }^{h y}$ and makes at most q_{D} decryption queries, and at most $q_{H_{3}}, q_{H_{4}}$ queries to the random oracles H_{3}, H_{4} respectively. Then there exists an IND-CPA adversary \mathcal{A}_{1} against BasicPub with advantage at least $\left[(\epsilon(k)+1)(1-2 / q)^{q_{D}}-1\right] / 2\left(q_{H_{3}}+q_{H_{4}}\right)$ in running time $O\left(\right.$ time $\left.\left(\mathcal{A}_{3}\right)\right)$.
Reduction 4. Suppose there is an IND-ID-CCA adversary \mathcal{A} that has advantage $\epsilon(k)$ against Fullldent. Suppose \mathcal{A} makes at most q_{E} private key extraction queries, at most q_{D} decryption queries, and at most $q_{H_{1}}$ queries to the random oracle H_{1}. Then there exists an IND-CCA adversary \mathcal{A}_{3} against BasicPub ${ }^{h y}$ with advantage at least $\epsilon(k) / e(1+$ $\left.q_{E}+q_{D}\right)$ in running time $O($ time $(\mathcal{A}))$.
From Reduction 1, Reduction 3 and Reduction 4, we have:
Result 2. Fullldent is IND-ID-CCA secure assuming CBDH is hard in groups generated by \mathcal{G}. Concretely, suppose there is an IND-ID-CPA adversary \mathcal{A} that has advantage $\epsilon(k)$ against Basicldent. If \mathcal{A} makes at most $q_{E}>0$ private key extraction queries, at
$\operatorname{most} q_{D}$ decryption queries, and at most $q_{H_{2}}, q_{H_{3}}, q_{H_{4}}$ hash queries to H_{2}, H_{3}, H_{4}, respectively. Then there is an algorithm \mathcal{B} that solves CBDH with advantage at least $\left[\frac{\epsilon(k)}{e\left(1+q_{E}+q_{D}\right)+1}(1-2 / q)^{q_{D}}-1\right] / q_{H_{2}}\left(q_{H_{3}}+q_{H_{4}}\right)$.

3.1 Analysis of Reduction 4 in BF-IBE

The aim of Reduction 4 is constructing an IND-CCA adversary \mathcal{A}_{3} against BasicPub ${ }^{h y}$ by interacting with an IND-ID-CCA adversary \mathcal{A} against Fullldent. Next we list two lapses in Reduction 4 of BF-IBE, which is the Lemma 4.6 in [8].

- Issue 1. In Phase 1, when \mathcal{A} issues a decryption query $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle$, where $C_{i}=$ $\left\langle U_{i}, V_{i}, W_{i}\right\rangle=\left\langle r P, \sigma \oplus H_{2}\left(e\left(Q_{i}, P_{p u b}\right)^{r}\right), M \oplus H_{4}(\sigma)\right\rangle$. According to the above algorithm, if $\operatorname{coin}_{i}=1, \mathcal{A}_{3}$ will modify C_{i} as $C_{i}^{\prime}=\left\langle U_{i}^{\prime}, V_{i}^{\prime}, W_{i}^{\prime}\right\rangle=\left\langle b_{i} U_{i}, V_{i}, W_{i}\right\rangle$ and then relay C_{i}^{\prime} to its challenger. When the challenger decrypts C_{i}^{\prime} using the private key d_{ID}, it does:

1. Compute $V_{i}^{\prime} \oplus H_{2}\left(e\left(d_{\mathrm{ID}}, U_{i}^{\prime}\right)\right)=V_{i} \oplus H_{2}\left(e\left(d_{\mathrm{ID}}, b_{i} U_{i}\right)\right)=\sigma \oplus H_{2}\left(e\left(Q_{i}, P_{\text {pub }}\right)^{r}\right)$ $\oplus H_{2}\left(e\left(s Q_{\mathrm{ID}}, b_{i} r P\right)\right)=\sigma$. This step recovers the random chosen $\sigma \in\{0,1\}^{n}$ exactly.
2. Compute $W_{i}^{\prime} \oplus H_{4}(\sigma)=W_{i} \oplus H_{4}(\sigma)=M \oplus H_{4}(\sigma) \oplus H_{4}(\sigma)=M$. This step recovers the original plaintext M exactly.
3. Set $r=H_{3}(\sigma, M)$. Test whether $U_{i}^{\prime}=r P$. Note that b_{i} is randomly chosen from \mathbb{Z}_{q}^{*} and H_{3} is a random oracle model not controlled by \mathcal{A}_{3}. These facts imply that the probability of $H_{3}(\sigma, M) \neq b_{i} r$ is $1-1 / q$, and therefore challenger will reject the modified ciphertext with overwhelming probability as BasicPub ${ }^{h y}$ is IND-CCA secure.
Thereby, \mathcal{A}_{3} can not employ the decryption oracle of BasicPub ${ }^{h y}$ to answer decryption queries issued by \mathcal{A} if the corresponding $\operatorname{coin}_{i}=1$.

- Issue 2. In the Challenge stage, \mathcal{A} outputs $\mathrm{ID}_{\text {ch }}$ and two equal length M_{0}, M_{1} on which it wishes to be challenged. \mathcal{A}_{3} gives its challenger M_{0}, M_{1} as the messages that it wishes to be challenged on. The challenger gives \mathcal{A}_{3} the ciphertext $C=\langle U, V, W\rangle=\left\langle r P, \sigma \oplus H_{2}\left(e\left(Q_{\mathrm{ID}}, P_{\text {pub }}\right)^{r}\right), M_{c} \oplus H_{4}(\sigma)\right\rangle$ such that C is the encryption of M_{β} for random $\beta \in\{0,1\}$. Let $\left\langle\mathrm{ID}_{c h}, Q, b\right.$, coin \rangle be the corresponding tuple on the $H_{1}^{\text {list }}$. According to the above algorithm, if coin $=0 \mathcal{A}_{3}$ aborts the game and the attack fails, otherwise \mathcal{A}_{3} will modify C to be $C^{\prime}=\left\langle U^{\prime}, V^{\prime}, W^{\prime}\right\rangle=$ $\left\langle b^{-1} U, V, W\right\rangle$ and relays C^{\prime} to \mathcal{A} as the challenge ciphertext. Boneh and Franklin claimed that C^{\prime} is also a proper Fullldent encryption result of M_{c} under the public key $\mathrm{ID}_{c h}=Q=b Q_{\mathrm{ID}}$. However, if C^{\prime} is a valid ciphertext of M_{c} in Fullldent, we have $r^{\prime}=r b^{-1}, H_{4}(\sigma)=H_{4}\left(\sigma^{\prime}\right), H_{4}(\sigma)=r, H_{4}\left(\sigma^{\prime}\right)=r^{\prime}$. These facts imply that $b=1$. Be aware of that b is randomly chosen from \mathbb{Z}_{q}^{*}, thereby the probability that C^{\prime} is a valid ciphertext of M_{β} in Fullldent is $1-1 / q$. On the other hand, for the same reason explained in Issue $1, \mathcal{A}$ will reject the modified ciphertext with overwhelming probability.

Therefore, these two lapses render the Reduction 4 in the original proof invalid. By the way, Galindo only noticed Issue 1 in [1].

3.2 Flipping coin technique

In the proof of Reduction 2, Boneh and Franklin borrowed the technique from Coron's analysis of the Full Domain Hash signature scheme [20], which we refer to it as flipping coin technique. More precisely, \mathcal{A}_{1} answers H_{1} queries according to the result of flipping a coin when simulating the H_{1} random oracle for \mathcal{A}_{2}, i.e. before answering a new H_{1}-query at $\mathrm{ID}_{i}, \mathcal{A}_{2}$ will generate a random coin $\in\{0,1\}$ with probability $\operatorname{Pr}[$ coin $=0]=\delta$,

- If coin $=0$, return $Q_{i}=b_{i} P \in \mathbb{G}_{1}^{*}$.
- If coin $=1$, return $Q_{i}=b_{i} Q_{\mathrm{ID}} \in \mathbb{G}_{1}^{*}$.

In Phase 1 , only when $\operatorname{coin}_{i}=0$ could \mathcal{A}_{1} answer the private key query $\left\langle\mathrm{ID}_{i}\right\rangle$ properly, because $Q_{i}=b_{i} P$ enables \mathcal{A}_{1} to extract the private key as $d_{i}=b_{i} P_{p u b}$. In the Challenge stage, only the case $\operatorname{coin}_{i}=1$ allows \mathcal{A}_{1} to utilize \mathcal{A}_{2} 's guess to win the game, because $Q_{i}=b_{i} Q_{\mathrm{ID}}$ enables \mathcal{A}_{2} to make use of the homomorphic relationship.

Waters [21] generalized such "flipping coin technique" as Partitioning Reduction: creating a reduction algorithm \mathcal{B} that partitions the identity space into two parts (1) identities for which it can create private keys; (2) identities that it can use in the challenge phase. Simulator hopes that the extraction/decryption queries and the challenge identity fall favorably in the partition, then the simulation is identical to the real attack in the adversary's view and the attack succeeds. The partition of identity space is only determined by the simulator (the distribution of coin) and independent to adversary's particular behavior, which enables the possibility of perfect simulation computable.

When Boneh and Franklin applied this identical technique to Reduction 4, it does not work. Because both the challenger and the adversary \mathcal{A} will check the validity of ciphertext, as pointed out in Issue 1 and Issue 2. The reason is that Fujisaki and Okamoto transformation [19] removes the homomorphic relationship between the ciphertext and its corresponding key, malformed ciphertext will be rejected with overwhelming probability, thereby the simulation fails.

4 Analysis of Galindo and Nishioka's Proofs

In this section we investigate the two subsequent revised proofs provided by Galindo and Nishioka, respectively.

4.1 Galindo's proof

Galindo [1] tried to fix the Reduction 4 by modifying the simulation method of random oracle H_{1}. His revised proof of Reduction 4 is shown as follows.
Setup. Same as BF-IBE's.
H_{1}-queries. Before initializing $H_{1}^{\text {list }}, \mathcal{A}_{3}$ selects a random $j \leftarrow\left\{1, \ldots, q_{H_{1}}\right\}$. When \mathcal{A} queries H_{1} at $\mathrm{ID}_{i}, \mathcal{A}_{3}$ responds as follows: if $i \neq j$, it picks $b_{i} \leftarrow \mathbb{Z}_{q}^{*}$ and sets $Q_{i}=b_{i} P$, adds $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle$ to the list. If $i=j$, it sets $Q_{i}=Q_{\mathrm{ID}}$, adds $\left\langle\mathrm{ID}_{i}, Q_{i}, *\right\rangle$ to the list. Finally, \mathcal{A}_{3} sends Q_{i} to \mathcal{A}.

Phase 1 - Extraction queries. When \mathcal{A} asks for the private key of $\mathrm{ID}_{i}, \mathcal{A}_{3}$ runs the above algorithm and gets $H_{1}\left(\mathrm{ID}_{i}\right)=Q_{i}$, where $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle$ is the corresponding entry in $H_{1}^{\text {list }}$. If $i=j$, then \mathcal{A}_{3} aborts the game. Otherwise, it sets $d_{i}=b_{i} P_{\text {pub }}$. Finally, \mathcal{A}_{3} gives d_{i} to \mathcal{A}.
Phase 1 - Decryption queries. \mathcal{A}_{3} answers to decryption query $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle$ as follows. It runs H_{1}-queries algorithm and let $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle \in H_{1}^{\text {list }}$. If $i \neq j$, then \mathcal{A}_{3} retrieves the private key d_{i} and decrypts C_{i} using the decryption algorithm. If $i=j$, then $Q_{i}=Q_{\mathrm{ID}}$, and the decryption of $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle$ is the same as the decryption of C_{i} under BasicPub ${ }^{h y}$. Then, \mathcal{A}_{3} asks its challenger to decrypt C_{j} and relays the answer to \mathcal{A}.
Challenge. \mathcal{A} outputs a public key $\mathrm{ID}_{c h}$ and two messages M_{0}, M_{1} on which it wishes to be challenged. \mathcal{A}_{3} proceeds as follows. If $\mathrm{ID}_{c h} \neq \mathrm{ID}_{j}$, it aborts the game and the attack against BasicPub ${ }^{h y}$ failed. Otherwise, it sends M_{0}, M_{1} to its own challenger and gets back C, the encryption of M_{β} for a random bit $\beta \in\{0,1\}$ under BasicPub ${ }^{h y}$. Finally, \mathcal{A}_{3} relays C to \mathcal{A}, which is an also encryption of M_{β} under ID ${ }_{c h}$ for Fullident.
The Phase 2 and Guess stage are identical to BF-IBE's.
In this game \mathcal{A}_{3} 's simulation can be aborted for two reasons: (1) in Phase $1 \mathcal{A}$ issues the private key query of ID_{j}, or (2) in Challenge stage, the challenge identity $\mathrm{ID}_{c h} \neq \mathrm{ID}_{j}$. Note that \mathcal{A}_{3} will not abort in Phase 2, since in this case \mathcal{A} is not allowed to query the private key for $\mathrm{ID}_{c h}=\mathrm{ID}_{j}$.

Let \mathcal{E}_{1} be the event that \mathcal{A}_{3} aborts due to (1), \mathcal{E}_{2} be the event that \mathcal{A}_{3} aborts due to (2). The probability that \mathcal{A}_{3} does not abort is $\operatorname{Pr}\left[\neg \mathcal{E}_{1} \wedge \neg \mathcal{E}_{2}\right]=\operatorname{Pr}\left[\neg \mathcal{E}_{2} \mid \neg \mathcal{E}_{1}\right] \operatorname{Pr}\left[\neg \mathcal{E}_{1}\right]$.

Galindo deemed that the upper bound for $\operatorname{Pr}\left[\mathcal{E}_{1}\right]$ was $q_{E} / q_{H_{1}}$, since the maximum number of private extraction queries is q_{E}; the lower bound for $\operatorname{Pr}\left[\neg \mathcal{E}_{2} \mid \neg \mathcal{E}_{1}\right]$, that is the probability that \mathcal{A} choose ID_{j} as the challenge identity, was $1 / q_{H_{1}}$. Therefore, he concluded

$$
\operatorname{Pr}\left[\mathcal{A}_{3} \text { does not abort }\right] \geq \frac{1}{q_{H_{1}}}\left(1-\frac{q_{E}}{q_{H_{1}}}\right)
$$

Now we point out three issues which may be overlooked in Galindo's proof.

- Issue 1. According to the definition of IND-ID-CCA game, $q_{H_{1}}$ is unknown to the challenger \mathcal{A}_{3} until the end of the game. So the execution of \mathcal{A}_{3} 's selecting a random $j \leftarrow\left\{1, \ldots, q_{H_{1}}\right\}$ at the beginning of simulation is questionable. In the other side, in order to provide a general and valid proof, the construction of \mathcal{A}_{3} should be independent of the concrete behaviour of adversary \mathcal{A}, such as how many queires \mathcal{A} issues. In a word, this issue make the proof does not hold in a general sense.
- Issue 2. Even Issue 1 could be ignored, here follows issue 2. In the challenge stage, when \mathcal{A} outputs the target identity $\mathrm{ID}_{c h}$, the simulator need to judge if $\mathrm{ID}_{c h}=\mathrm{ID}_{j}$. In fact, the exact number of H_{1} queries that \mathcal{A} issues in Phase 1 may differ from different adversaries in different simulations. Moreover, in some cases whether "ID ${ }_{j}$ " exists is unknown, thus the probability of " \mathcal{A}_{3} does not abort" is immeasurable. For example, suppose the random $j=10$ and an \mathcal{A} issues only three H_{1} queries in Phase 1, then the so called ID_{j} does not even exist. It is fair to say the simulation algorithm is not well defined.
- Issue 3. Even both Issue 1 and Issue 2 could be fixed, there is issue 3 following. The result of $\operatorname{Pr}\left[\neg \mathcal{E}_{2} \mid \neg \mathcal{E}_{1}\right] \geq 1 / q_{H_{1}}$ is implied from the hypothesis that in the challenge stage the adversary \mathcal{A} will randomly picks the target $\mathrm{ID}_{c h}$ from the current $H_{1}^{\text {list }}$. First, due to the same reason of Issue 2 , whether the so called " $I D_{j}$ " exists is a question, thereby the probability $\operatorname{Pr}\left[1 \mathrm{D}_{c h}=\mathrm{ID}_{j}\right]$ is not well defined itself. Second, this goes against the definition of IND-ID-CCA which states that the target $\mathrm{ID}_{c h}$ can be chosen without any restriction, in particular outside the current $H_{1}^{l i s t}$. Someone may argue that if the adversary \mathcal{A} does not choose $\mathrm{ID}_{c h}$ from the current $H_{1}^{\text {list }}$, the advantage against the IND-ID-CCA game will be statistically closed to 0 . Remember that \mathcal{A} could issue the corresponding H_{1}-query in Phase 2. Besides, there is no evidence guarantees that the adversary \mathcal{A} will choose the target identity uniformly from either inside or outside the current $H_{1}^{l i s t}$.

From the above analyses, we think the proof proposed by Galindo is not infallible.

4.2 Nishioka's proof

In IndoCrypt 2005, Nishioka gave a new proof for the security of BF-IBE scheme in [2], claimed that it has a tighter security reduction than had been previously believed. Realizing that there are some problems in Galindo's proof, Nishioka claimed that Galindo's proof could be revised by his new proof. Unfortunately, we think the new proof shares the similar fundamental problems as Galindo's proof.

Nishioka's proof for Reduction 4 is similar to Galindo's proof except three minor alterations. The first alteration is in the simulation of H_{1}-queries: in [1] \mathcal{A}_{3} selects a random $j \in\left\{1, \ldots, 1+q_{H_{1}}\right\}$, while in [2] \mathcal{A}_{3} selects a random $j \in\left\{1, \ldots, 1+q_{H_{1}}+\right.$ $\left.q_{D}\right\}$. The second alteration is in [2] \mathcal{A}_{3} maintains two lists named as $H_{1}^{\text {list } 1}$ and $H_{1}^{\text {list } 2}$, where L_{1} and L_{2} are their corresponding size. $H_{1}^{\text {list } 1}$ is used to save \mathcal{A}_{3} 's responses to H_{1}-queries and decryption queries, while $H_{1}^{\text {list2 }}$ is used to save \mathcal{A}_{3} 's responses to extraction queries. The last alternation is replacing $\mathrm{ID}_{i}=\mathrm{ID}_{j}$ with $i=L_{1}-1$ in the challenge stage. The rest parts are identical to Galindo's proof.

In order to compute the probability that \mathcal{A}_{3} does not abort during the simulation, Nishioka defines \mathcal{E}_{1} as the event that \mathcal{A}_{3} issues a private key query ID_{j} which corresponds to the tuple $\left\langle\mathrm{ID}_{j}, Q_{\mathrm{ID}}, *\right\rangle$ on $H_{1}^{\text {list } 1}$ during Phase 1 or 2 , and defines \mathcal{E}_{2} as the event that \mathcal{A} sets the challenge identity $\mathrm{ID}_{c h}$ that does not correspond to the tuple $\left\langle\mathrm{ID}_{j}, Q_{\mathrm{ID}}, *\right\rangle$ on $H_{1}^{\text {list } 1}$. Then Nishioka claimed that $\operatorname{Pr}\left[\mathcal{A}_{3}\right.$ does not abort $]=$ $\operatorname{Pr}\left[\neg \mathcal{E}_{1} \wedge \neg \mathcal{E}_{2}\right]=\operatorname{Pr}\left[\neg \mathcal{E}_{2}\right] \geq 1 /\left(1+q_{H_{1}}+q_{D}\right)$ (Equation. 2 in Section 3.2 in [2]). We summarise the lapses in Nishioka's proof as follows.

- Issue 1. The execution of \mathcal{A}_{3} 's selecting a random $j \leftarrow\left\{1, \ldots, 1+q_{H_{1}}+q_{D}\right\}$ when initializing $H_{1}^{\text {list } 1}$ is doubtable. The reason is same as Issue 1 of Galindo's proof.
- Issue 2. The computation of $\operatorname{Pr}\left[\mathcal{A}_{3}\right.$ does not abort $]=\operatorname{Pr}\left[\neg \mathcal{E}_{1} \wedge \neg \mathcal{E}_{2}\right]=\operatorname{Pr}\left[\neg \mathcal{E}_{2}\right] \geq$ $1 /\left(1+q_{H_{1}}+q_{D}\right)$ is not correct. In fact,

$$
\operatorname{Pr}\left[\mathcal{A}_{3} \text { does not abort }\right]=\operatorname{Pr}\left[\neg \mathcal{E}_{1} \wedge \neg \mathcal{E}_{2}\right]=\operatorname{Pr}\left[\neg \mathcal{E}_{1}\right] \operatorname{Pr}\left[\neg \mathcal{E}_{2} \mid \neg \mathcal{E}_{1}\right]
$$

where

$$
\begin{aligned}
\operatorname{Pr}\left[\neg \mathcal{E}_{2} \mid \neg \mathcal{E}_{1}\right] & \left.=\sum_{i}^{1+q_{H_{1}}+q_{D}} \operatorname{Pr}[j=i] \operatorname{Pr}\left[\mathcal{B} \text { answers } H_{1}\left(\mathrm{ID}_{\text {ch }}\right) \text { with } Q_{\mathrm{DD}}\right) \mid j=i\right] \\
& =\frac{1}{1+q_{H_{1}}+q_{D}} \sum_{i}^{1+q_{H_{1}}+q_{D}} \operatorname{Pr}\left[\mathcal{B} \text { answers } H_{1}\left(\mathrm{ID}_{c h}\right) \text { with } Q_{\mathrm{ID}} \mid j=i\right]
\end{aligned}
$$

For any fixed $i, \operatorname{Pr}\left[\mathcal{B}\right.$ answers $H_{1}\left(\mathrm{ID}_{c h}\right)$ with $\left.Q_{\mathrm{ID}} \mid j=i\right]$ is immeasurable, thereby the probability of $\operatorname{Pr}\left[\mathcal{A}_{3}\right.$ does not abort $]$ is immeasurable.

These two issues render Nishioka's proof for Reduction 4 not correct.
Remark 1. Galindo and Nishioka abandoned the "flip coin technique" by straightforward simulation. However, from the above analysis we find that straightforward simulation makes the the probability of perfect simulation immeasurable. Their proofs can not be fixed even by maximising the values of $q_{H_{i}}, q_{E}$ and q_{D} in the setup phase.

5 Zhang and Imai's proof

Zhang and Imai gave a new proof of the BF-IBE in [3]. The main difference lies in that they directly reduce the CCA security of BF-IBE to the underlying CBDH problem, not the IND-CCA security of BasicPub ${ }^{h y}$. However, we find in their proof, the simulator fails to simulate "properly", which means the IND-ID-CCA adversary \mathcal{A} could distinguish the simulation from real attacks. Before we point out the concrete issues, we first have a glance at their proof.
\mathcal{B} is given the a CDBH instance $(P, a P, b P, c P) \in\left(\mathbb{G}_{1}\right)^{4}$ whose goal is to output $e(P, P)^{a b c} . \mathcal{B}$ simulates all the H_{i} functions.
Setup. Same as in BF-IBE.
H_{1}-queries. Same as in BF-IBE, except replace $Q_{\text {ID }}$ with P_{2}.
H_{2}, H_{3}, H_{4}-queries. \mathcal{B} proceeds H_{2}, H_{3} and H_{4} queries using the same method: when a H_{i}-query comes, if there is an such entry on H_{i}-list, \mathcal{B} returns the corresponding result to \mathcal{A}; otherwise, \mathcal{B} chooses a random value for the query and adds it into H_{i}-list.
Extraction queries. Same as in BF-IBE.
Decryption queries. When a query (ID, $C=\langle U, V, W\rangle)$ comes, \mathcal{B} searches H_{1-} list for (ID), H_{2}-list for $(t), H_{3}$-list for a tuple (σ, M) and H_{4}-list for (σ) such that (ID, M, r, t, σ) such that satisfying below equations: 1) $\left.Q_{\mathrm{ID}}=H_{1}(\mathrm{ID}) ; 2\right) r=H_{3}(\sigma, M)$ and $U=r P$; 3) $t=e\left(P_{\text {pub }}, Q_{\mathrm{ID}}\right)^{r}$ and $\left.V=\sigma \oplus H_{2}(t) ; 4\right) W=M \oplus H_{4}(\sigma)$. If there exists such an M and associated (ID, σ, r, t) in those lists, \mathcal{B} returns M to \mathcal{A} as the answer. Otherwise, \mathcal{B} returns "reject" to \mathcal{B}.
Challenge. On \mathcal{A} 's input ID and M_{0}, M_{1}, let the corresponding tuple in $H_{1}^{\text {list }}$ is (ID, Q_{ID}, s, coin $)$. If coin $=0, \mathcal{B}$ aborts the simulation; otherwise, \mathcal{B} chooses a ran$\operatorname{dom} v^{*} \in\{0,1\}^{n}, \beta \in\{0,1\}$ and sets $V=M_{\beta} \oplus v^{*}$ and $W=\{0,1\}^{n}$. Especially, \mathcal{B} sets $U=P 3^{s^{-1}}$ and returns $C=\langle U, V, W\rangle$ to \mathcal{A} as the challenge ciphertext.
\mathcal{B} keeps interacting with \mathcal{A} until \mathcal{A} halts or aborts. Finally, when \mathcal{A} terminates, \mathcal{B} chooses an arbitrary t from H_{2}-list and computes $t^{s^{-1}}$ as its answer to the CDBH problem. This completes the decryption of \mathcal{B}.

Next, we point out the lapses in their proof.

- Issue 1. First it is obliged to correct two typos in the above proof. (1) According to the encryption algorithm, $V=M_{\beta} \oplus v^{*}$ should be corrected as $V=\sigma \oplus v^{*}$.
(2) The authors set $U=\left(P_{3}\right)^{s^{-1}}$, then \mathcal{B} should answers t as its answer to the CDBH problem but not $t^{s^{-1}}$. It is easy to verify that when $Q_{\mathrm{ID}}=P_{2}=s b P$, the associated $d_{\mathrm{ID}}=s a b P$, therefore $t=e\left(U, d_{\mathrm{ID}}\right)=e\left(s^{-1} c P, s a b P\right)=e(P, P)^{a b c}$ is exactly the answer we need.
- Issue 2. \mathcal{B} should answer all extraction queries and H_{i}-queries "properly", and returns the "proper" challenge ciphertext, which means \mathcal{B} should simulates the real attack scenario perfectly. In the challenge stage, when \mathcal{A} submits the target identity ID and two messages $M_{0}, M_{1}, \mathcal{B}$ is expected to return a valid ciphertext of M_{β}. In order to do so, \mathcal{B} need to pick a random σ and query H_{3}-oracle for $r=H_{3}\left(\sigma, M_{\beta}\right)$, then queries the H_{2}-oracle for $v=H_{2}\left(e\left(P_{p u b}, Q_{\mathrm{ID}}\right)^{r}\right)$, at last query H_{4}-oracle for $H_{4}(\sigma)$. The key point is \mathcal{B} should manage to make $r=c\left(U=P_{3}\right)$ and at the same time ensure all the queries are indistinguishable in \mathcal{A} 's view. Zhang and Imai generated the challenge ciphertext by implicitly assigning $H_{2}\left(e\left(P_{p u b}, Q_{\mathrm{ID}}\right)^{r^{*}}\right)$ with a random $v^{*} \in \mathbb{Z}_{q}$ and assigning $H_{4}\left(\sigma^{*}\right)$ with random $w^{*} \in\{0,1\}^{n}$, thus implicitly means that the underlying σ^{*} must satisfy $H_{3}\left(\sigma^{*}, M_{\beta}\right)=r^{*}$ and $H_{4}\left(\sigma^{*}\right)=w^{*}$. However, the ciphertext is not a valid encryption result of M_{β}. Note that both $e\left(P_{p u b}, Q_{\mathrm{ID}}\right)^{r^{*}}$ and σ^{*} are unknown to \mathcal{B}, thus renders \mathcal{B} ' simulation for H_{2}, H_{3} and H_{4} are not coherent in the game. For example, if \mathcal{A} explicitly issues a query $e\left(P_{p u b}, Q_{\mathrm{ID}}\right)^{r^{*}}$ to H_{2}-oracle, $\left(\sigma^{*}, M_{\beta}\right)$ to H_{3}-oracle and σ^{*} to H_{4}-oracle (either in Phase 1 or Phase 2), then \mathcal{B} actually assigns two different value for the same input with overwhelming probability, which goes against the definition of random oracle model and makes simulation distinguishable from real attack.
- Issue 3. In the simulation of decryption oracle, \mathcal{B} answers the decryption queries by searching all H_{i}-lists. Let alone the low efficiency it causes, the authors think for every valid ciphertext C, there must have existed corresponding H_{i}-queries records in H_{i}-lists. In other words, they think it is impossible (with probability less than $1 / 2^{n}$) for an attacker to obtain a valid ciphertext without making corresponding queries. We have to argue that this hypothesis is too strong. In real attack, it is easy for an attacker to obtain some valid ciphertexts by eavesdropping.

These issues make their proof not infallible.
We summarise the guidelines that a valid IND-ID-CCA proof should follows.

- The construction of the simulator should be general. More exactly, the simulation algorithm should be independent of the adversary's particular behavior, such as the exact number random oracle queries, extraction/decryption queries an adversary makes in Phase 1 and Phase 2.
- The adversary must be handled strictly according to the definition of IND-ID-CCA game, no extra hypothesis should be imposed on it, such as how does the adver-
sary choose the target identity? From which set or the choices comply to what probabilistic distribution?
- The simulation algorithm must ensure the probability of perfect simulation to be computable, thereby the advantage of the simulator against the underlying problem is measurable. Otherwise the security reduction is meaningless.
- The simulation should be identical to real attack in the adversary view. In the random oracle model, the simulator should simulate all the random oracle models coherently.

6 IND-sID-CCA implies IND-ID-CCA

This section shows that if imposing a little constraint to Fulldent, then we can obtain its fully security based on its selective-ID security.

In [22] Boneh and Boyen proved the following theorem which quantifies the relationship between selective-ID IBE security and fully IBE security in the random oracle model.

Theorem 6.1 Let \mathcal{E} be a $\left(t, q_{E}, \epsilon\right)$ selective-ID secure IBE. Suppose identities in \mathcal{E} are n-bits long. Let H be a hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ modeled as a random oracle. H converts \mathcal{E} to \mathcal{E}_{H} by the process of hashing the identity ID with H before using ID. Then \mathcal{E}_{H} is a $\left(t, q_{E}, \epsilon^{\prime}\right)$ fully secure IBE (in the random oracle model) for $\epsilon^{\prime} \approx q_{H} \cdot \epsilon$, where q_{H} is the maximum number of oracle calls to H that the adversary can make.

This theorem inspires us to prove IND-ID-CCA security via IND-sID-CCA security. Next we first prove that BF-IBE in secure in selective-ID model, then achieve the security in the full model by applying Theorem 6.1

Theorem 6.2 Let H_{1} be a random oracle. Then Fullldent is IND-sID-CCA secure assuming the CBDH assumption is hard in groups generated by \mathcal{G}. Concretely, suppose there is an IND-sID-CCA adversary \mathcal{A} that has advantage $\epsilon(k)$ against the Fullldent. Then there is an IND-CCA adversary \mathcal{A}_{3} that has advantage $\epsilon(k)$ against BasicPub ${ }^{h y}$. Its running time is $O($ time $(\mathcal{A}))$.

Proof. We construct an IND-CCA adversary \mathcal{A}_{3} that uses \mathcal{A} to gain advantage against BasicPub ${ }^{h y}$. The game starts with the challenger first generates the public key $K_{\text {pub }}=$ $\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, n, P, P_{p u b}, Q_{\mathrm{ID}}, H_{2}, H_{3}, H_{4}\right\rangle$ and a private key $d_{\mathrm{ID}}=s Q_{\mathrm{ID}}$. The challenger gives $K_{p u b}$ to algorithm $\mathcal{A}_{3} . \mathcal{A}_{3}$ mounts an IND-CCA attack on the the key $K_{p u b}$ using the help of algorithm \mathcal{A}. \mathcal{A}_{3} interacts with \mathcal{A} as follows.
Init. \mathcal{A} outputs an identity $\mathrm{ID}_{c h}$ where it wishes to be challenged.
Setup. Same as BF-IBE's.
H_{1}-queries. To respond to H_{1} queries, \mathcal{A}_{3} maintains a list of tuples $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle$ which is referred as $H_{1}^{l i s t}$. The list is initially empty. When \mathcal{A} queries H_{1} at a point ID ${ }_{i}, \mathcal{A}_{3}$ responds as follows:

1. If the query ID_{i} already appears on the $H_{1}^{\text {list }}$ in a tuple $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle$ then \mathcal{A}_{3} responds with $H_{1}\left(\mathrm{ID}_{i}\right)=Q_{i}$.
2. Otherwise, if $\mathrm{ID}_{i}=\mathrm{ID}_{c h}, \mathcal{A}_{3}$ sets $b_{i}=*$ and $Q_{i}=Q_{\mathrm{ID}}$; else \mathcal{A}_{3} generates a random $b_{i} \in \mathbb{Z}_{q}^{*}$ and computes $Q_{i}=b_{i} P$.
3. \mathcal{A}_{3} adds the tuple $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle$ to $H_{1}^{\text {list }}$ and responds to \mathcal{A} with $H_{1}\left(\mathrm{ID}_{i}\right)=Q_{i}$.

Phase 1-Extraction queries. When \mathcal{A} asks for the private key associate to $\mathrm{ID}_{i}, \mathcal{A}_{3}$ runs the above algorithm and gets $H_{1}\left(\mathrm{ID}_{i}\right)=Q_{i}$, where $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle$ is the corresponding entry in $H_{1}^{\text {list }}$. Observing that $Q_{i}=b_{i} P$, therefore the corresponding private key is $d_{i}=b_{i} P_{\text {pub }}$. Finally, \mathcal{A}_{3} gives d_{i} to \mathcal{A}. The request $\left\langle\mathrm{ID}_{c h}\right\rangle$ will be denied.
Phase 1 - Decryption queries. Let $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle$ be a decryption query issued by algorithm \mathcal{A}. Let $C_{i}=\left\langle U_{i}, V_{i}, W_{i}\right\rangle$. When $\mathrm{ID}_{i} \neq \mathrm{ID}_{c h}, \mathcal{A}_{3}$ runs H_{1}-queries algorithm and let $\left\langle\mathrm{ID}_{i}, Q_{i}, b_{i}\right\rangle \in H_{1}^{l i s t}$, then retrieves the private key d_{i} and decrypts C_{i} using the decryption algorithm. If $\mathrm{ID}_{i}=\mathrm{ID}_{c h}, \mathcal{A}_{3}$ relays the decryption query with the ciphertext $\left\langle U_{i}, V_{i}, W_{i}\right\rangle$ to the challenger and relays the challenger's response back to \mathcal{A}.
Challenge. Once \mathcal{A} decides that Phase 1 is over and outputs two messages M_{0}, M_{1} which it wishes to be challenged on. \mathcal{A}_{3} responds as follows: first \mathcal{A}_{3} gives its challenger the message M_{0}, M_{1}. The challenger responds with a BasicPub ${ }^{h y}$ ciphertext $C=\langle U, V, W\rangle$ such that C is the encryption of M_{β} for a random $\beta \in\{0,1\}$. Next, \mathcal{A}_{3} responds to \mathcal{A} with the challenge C.
Phase 2-Private key queries. \mathcal{A}_{3} responds to the extraction queries in the same way as it did in Phase 1.

Phase 2 - Decryption queries. \mathcal{A}_{3} responds to the decryption queries in the same way as it did in Phase 1 except that $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle=\left\langle\mathrm{ID}_{c h}, C\right\rangle$ is denied.
Guess. Eventually, adversary \mathcal{A} outputs a guess β^{\prime} for β. Algorithm \mathcal{A}_{3} outputs β^{\prime} as its guess for β.

All the responses to H_{1}-queries are as in real attack since each response is uniformly and independently distributed in \mathbb{G}_{1}^{*}. All the responses to private key extraction queries and decryption queries are valid. So algorithm \mathcal{A}_{3} would not abort during the simulation. By definition of algorithm \mathcal{A}, we have that $\left|\operatorname{Pr}\left[c=c^{\prime}\right]-\frac{1}{2}\right| \geq \epsilon(k)$. Note that $\operatorname{Pr}\left[\mathcal{A}_{3}\right.$ does not abort $]=1$, this shows that \mathcal{A}_{3} 's advantage against BasicPub ${ }^{h y}$ is at least $\epsilon(k)$ as required.

As to BF-IBE's Fullldent scheme, if we first hash arbitrary identities in $\{0,1\}^{*}$ to binary strings of length n using a collision resistant function with n-bits output (such as SHA-1 whose output is 160 bits). Taking $n=160$ as the length of identities in IBE system is a natural choice. We denote the resulting scheme as Fullident ${ }_{H}$. We note that the selective-ID security of an IBE system is not weakened if additional restrictions on the identities are imposed (indeed, this only tightens the constraints on the adversary and relaxes those on the simulator). Thus Fullident ${ }_{H}$ is also selective-ID secure according to Theorem 6.2 Finally, as a straightforward result of Theorem 6.1, we conclude Fullldent ${ }_{H}$ is fully secure in the random oracle model.
Remark 2. This proof works but is not a satisfying one, because we prove it by imposing a constraint to the original scheme.

7 The New proof of BF-IBE

The IND-ID-CCA security of BF-IBE was proven via Reduction 4, Reduction 3 and Reduction1 in the original paper [8] [1] [2]. However, this happens to be the reason why their proofs failed: the IND-ID-CCA security of Fullldent and the IND-CCA security of BasicPub ${ }^{h y}$ are not meaningfully linked. Zhang and Imai [3] realized this and tried to reduce the security directly to the underlying hard problem. Unfortunately, they failed because they cannot answer all the queries coherently. Inspired by the proof technique used in [15], we can use decisional oracle $\mathcal{O}_{D B D H}(\cdot)$ to ensure all the responses to queries coherent.

In this section, we give a new proof of BF-IBE based on the GBDH assumption in the random oracle model. We directly reduce the security of BF-IBE to the intractability of GBDH problem and only require H_{1}, H_{2}, H_{3} to be random oracles.

Theorem 7.1 Let the hash functions H_{1}, H_{2} and H_{3} be random oracles. Then Fulldent is chosen ciphertext secure assuming $G B D H$ is hard in groups generated by \mathcal{G}. Concretely, suppose there is an IND-ID-CCA adversary \mathcal{A} that has advantage $\epsilon(k)$ and \mathcal{A} makes at most q_{E} extraction queries, at most q_{D} decryption queires, and at most $q_{H_{i}}$ queries to H_{i} oracles, respectively. Then there is a GBDH algorithm \mathcal{B} has advantage

$$
A d v_{\mathcal{B}}(k) \geq \frac{\epsilon(k)}{e\left(1+q_{E}\right)}\left(1-\frac{q_{H_{3}}}{2^{n}}\right)
$$

in running time $O($ time $(\mathcal{A}))$.
Here e is the base of natural logarithm, n is the message size. Our aim is construct a GBDH adversary \mathcal{B} with the help of an IND-ID-CCA adversary \mathcal{A}.

Proof. Suppose \mathcal{B} is given a instance $\left(P, a P, b P, c P, \mathcal{O}_{D B D H}\right)$ of the GBDH problem where $\mathcal{O}_{D B D H}(\cdot)$ is a decisional oracle to judge whether $(P, a P, b P, c P, Z)$ is a valid BDH tuple. \mathcal{B} is expected to output $T \in \mathbb{G}_{2}$ satisfying $T=e(P, P)^{a b c}$.
Setup. \mathcal{B} gives \mathcal{A} params $=\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, n, P, P_{p u b}, H_{1}, H_{2}, H_{3}, H_{4}\right\rangle$ as the system parameters, where n is the length of plaintext, and H_{1}, H_{2} and H_{3} are random oracles controlled by \mathcal{B}. \mathcal{B} sets $P_{\text {pub }}$ as $a P$.
Phase 1- H_{1} queries. \mathcal{B} maintains a list L_{1} which contains tuples $\left(\mathrm{ID}_{j}, Q_{j}, s_{j}, \operatorname{coin}_{j}\right)$. When a query $\left\langle\mathrm{ID}_{i}\right\rangle$ comes, if there is already an entry $\left(\mathrm{ID}_{i}, Q_{i}, s_{i}, \operatorname{coin}_{i}\right)$ in L_{1}, \mathcal{B} replies it with Q_{i}. Otherwise, \mathcal{B} flips a biased coin with $\operatorname{Pr}[\operatorname{coin}=0]=\delta(\delta$ will be decided later), picks a random $s \in \mathbb{Z}_{q}^{*}$; if coin $=0$ computes $Q_{i}=s P$, else computes $Q=s b P . \mathcal{B}$ adds the tuple $\left(\mathrm{ID}_{i}, Q_{i}, s\right.$, coin $)$ to the L_{1} and responds to \mathcal{A} with $H_{1}\left(\mathrm{ID}_{i}\right)=Q_{i}$.
Phase 1- H_{2} queries. H_{2} hashes an element $\omega \in \mathbb{G}_{2}$ to a value $h \in\{0,1\}^{n}$. According to the proof technique already used in [14] [15], these queries are processed using two lists L_{2} and L_{2}^{\prime} which are initially empty:

- L_{2} contains tuples $\left(\omega, h_{2}\right)$ which indicates a hash value $h_{2} \in\{0,1\}^{n}$ was previously assigned to ω.
- L_{2}^{\prime} contains tuples $\left(Q, U, \omega^{*}, h_{2}^{\prime}\right)$ which means \mathcal{B} has implicitly assigned a hash value $h_{2}^{\prime} \in\{0,1\}^{n}$ to some ω^{*} satisfying $\mathcal{O}_{D B D H}\left(P, P_{p u b}, Q, U, \omega^{*}\right)=1$, although ω^{*} is unknown yet.
More precisely, when \mathcal{A} submits a query ω to $H_{2}(\cdot)$,
- \mathcal{B} first checks if there is an entry $\left(\omega, h_{2}\right)$ in L_{2} list. If it does, h_{2} is returned to \mathcal{A}.
- Else, for every tuple (Q, U) in $L_{2}^{\prime}, \mathcal{B}$ submits $\left(P, P_{p u b}, Q, U, \omega\right)$ to the $\mathcal{O}_{D B D H}(\cdot)$ oracle to decide whether it is a valid BDH tuple. If it is for some existing entry $\left(Q, U, \omega^{*}, h_{2}\right), \mathcal{B}$ adds $\left(\omega, h_{2}\right)$ to L_{2} and deletes the entry from L_{2}^{\prime}. (\mathcal{B} processes in this way in order to behave coherently. Otherwise \mathcal{B} will run a risk of explicitly assigning two different h_{2} for the same ω.) If there is no such entry in L_{2}^{\prime} satisfying $\left(P, P_{\text {pub }}, Q, U, \omega\right)$ is a valid BDH tuple, \mathcal{B} assigns a random $h_{2} \in\{0,1\}^{n}$ to ω, adds $\left(\omega, h_{2}\right)$ into L_{2}. At last, \mathcal{B} returns h_{2} to \mathcal{A}.
Phase 1- H_{3} queries. \mathcal{B} maintains a list contains tuples (σ, M, h_{3}). We refer to the list as L_{3}, which is initially empty. When a query (σ, M) comes, if there is an entry $\left(\sigma, M, h_{3}\right)$ on H_{3} list, \mathcal{B} returns h_{3} to \mathcal{A}; otherwise, \mathcal{B} choose $h_{3} \in \mathbb{Z}_{q}^{*}$, returns h_{3} to \mathcal{A} and adds $\left(\sigma, M, h_{3}\right)$ to L_{3}.
Phase 1- Private key queries. When a private key query $\left\langle I D_{i}\right\rangle$ comes (we can assume ID has already in L_{1} list), B find the corresponding tuple ($\left.\mathrm{ID}_{i}, Q_{i}, s_{i}, \operatorname{coin}_{i}\right)$ in L_{1}. If $\operatorname{coin}_{i}=1, \mathcal{B}$ reports "abort" and quits the simulation. If $\operatorname{coin}_{i}=0, \mathcal{B}$ sets $d_{i}=a Q_{i}=$ $s_{i} P_{p u b}=s_{i} a P$ which is a valid private key for ID_{i}, and then returns d_{i} to \mathcal{A}.
Phase 1- Decryption queries. When a query (ID, C) comes. \mathcal{B} searches in L_{1} for $Q=H_{1}$ (ID).
- If the associated coin $=0, \mathcal{B}$ obtains the private key for ID. Then use the private key to respond to the decryption query.
- If coin $=1, \mathcal{B}$ searches ω in L_{2} which satisfying $\mathcal{O}\left(P, P_{\text {pub }}, Q, U, \omega\right)=1$. If ω_{j} is such an entry, computes $\sigma=V \oplus h_{2, j}\left(h_{2, j}=H_{2}\left(\omega_{j}\right)\right)$ and responds the query according to the decryption algorithm. If there isn't, for every entry $\left(Q_{i}, U_{i}\right)$ in $L_{2}^{\prime}, \mathcal{B}$ checks whether $e(Q, U)=e\left(Q_{i}, U_{i}\right)$. If $\left(Q_{j}, U_{j}\right)$ is such an entry, computes $\sigma=V \oplus h_{2, j}^{\prime}$ and responds the query according to the decryption algorithm. $\left(e(Q, U)=e\left(Q_{i}, U_{i}\right)\right.$ indicates that the underlying ω is same, for $e^{3}\left(P_{p u b}, Q, U\right)=e^{3}\left(P_{p u b}, Q_{i}, U_{i}\right)$. The notation e^{3} is defined as $e^{3}(a P, b P, c P)=$ $e(P, P)^{a b c}$.)
- Otherwise, \mathcal{B} randomly chooses a $h_{2}^{\prime} \in\{0,1\}^{n}$ and adds $\left(Q, U, \omega^{*}, h_{2}^{\prime}\right)$ in $L_{2}^{\prime} \cdot \omega^{*}$ is an unknown value which satisfies $\mathcal{O}_{D B D H}\left(P, P_{\text {pub }}, Q, U, \omega^{*}\right)=1$. \mathcal{B} computes $\sigma=V \oplus h_{2}^{\prime}$ and carries on the decryption algorithm to respond the query. (In this way, \mathcal{B} can always answers the decryption queries coherently.)
Challenge. Once \mathcal{A} decides that Phase 1 is over it outputs two messages M_{0}, M_{1} and an target identity $\mathrm{ID}_{c h}$ on which it wishes to be challenged. Let (ID, Q, s, coin) be the corresponding entry in L_{1}. If coin $=0, \mathcal{B}$ aborts and reports "failure", because \mathcal{A} is of no help in \mathcal{B} 's endeavor in such a situation. Otherwise, let $\beta \in\{0,1\}$ be a random bit, \mathcal{B} sets $U=c P$, picks a random $\sigma^{*} \in\{0,1\}^{n}$ which is not in the current L_{3} list, thus implicitly implies $H_{3}\left(\sigma^{*}, M_{\beta}\right)=c$, although c is unknown. In order to simulate perfectly, \mathcal{B} obtains the hash value of $H_{2}\left(e\left(P_{p u b}, Q\right)^{c}\right)$ in the following steps.
- Check whether L_{2} contains an entry which satisfies $\mathcal{O}_{O B D H}\left(P, P_{p u b}, Q, U, \omega_{j}\right)=$ 1. If it does, set the hash value of $H_{2}\left(e\left(P_{p u b}, Q\right)^{c}\right)$ as $h_{2, j}=H_{2}\left(\omega_{j}\right)$.
- Else check whether L_{2}^{\prime} contains an entry satisfying $e\left(Q_{j}, U_{j}\right)=e(Q, U)$. If it does, set the hash value of $H_{2}\left(e\left(P_{p u b}, Q\right)^{c}\right)$ as $h_{2, j}^{\prime}=H_{2}\left(\omega_{j}^{*}\right)$.
- Otherwise, \mathcal{B} chooses a random $h_{2}^{\prime} \in\{0,1\}^{n}$ and adds $\left(Q, U, \omega^{*}, h_{2}^{\prime}\right)$ into L_{2}^{\prime}. Set the hash value of $H_{2}\left(e\left(P_{p u b}, Q\right)^{c}\right)$ as h_{2}^{\prime}.
\mathcal{B} computes $V=M_{\beta} \oplus H_{2}\left(e\left(P_{\text {pub }}, Q\right)^{c}\right)$ and $W=M \oplus H_{4}\left(\sigma^{*}\right)$. Finally, \mathcal{B} responds \mathcal{A} with ciphertext $C=\langle U, V, W\rangle$.
Phase 2- Private key queries. \mathcal{B} responds to private key queries in the same way as it did in Phase 1 except disallowing the query $\left\langle\mathrm{ID}_{c h}\right\rangle$.
Phase 2-Decryption queries. \mathcal{B} responds to decryption queries in the same way as it did in Phase 1 except disallowing the query $\left\langle\mathrm{ID}_{c h}, C\right\rangle$.
Phase 2- H_{i} queries. \mathcal{B} responds to H_{1} and H_{2} queries identically as it did in Phase 1. For H_{3}-oracle, when \mathcal{B} comes with a query $(\sigma, M)=\left(\sigma^{*}, M_{\beta}\right)$, it reports "failure" and terminates. (The reason of \mathcal{B} has to abort in this case is it does not know the value $\left.r=H_{3}\left(\sigma^{*}, M_{\beta}\right)\right)$. Else \mathcal{B} responds to H_{3} queries the same way as it did in Phase 1.
We denotes the event that \mathcal{A} issues $\left(\sigma^{*}, M_{\beta}\right)$ query to H_{3} oracle as $\mathrm{AskH} H_{3}$.
Guess. Eventually \mathcal{A} outputs a guess β^{\prime} for β, then \mathcal{B} terminates the IND-ID-CCA game.
When the game between \mathcal{A} and \mathcal{B} terminates, no matter what the reason is, \mathcal{B} searches the entry $\left(\omega, h_{2}\right)$ in L_{2} which satisfying $\mathcal{O}_{D B D H}\left(P, P_{p u b}, Q, U, \omega\right)=1$ and computes $(\omega)^{s^{-1}}$ as its answer to the GBDH problem. It is easy to verify the correctness observing that $\omega=e\left(d_{\mathrm{ID}}, U\right)=e(s a b P, c P)=e(P, P)^{a b c s}$.
Claim. We denotes the event that \mathcal{A} issues $e\left(d_{\mathrm{ID}}, U\right)$ query to H_{2}-oracle as AskH_{2}. From the above analysis we know that as soon as AskH ${ }_{2}$ occurs, the attack to GBDH problem succeeds. If algorithm \mathcal{B} does not abort during the simulation before $A s k H_{2}$ occurs then \mathcal{A} 's view is identical to its view in the real attack, because \mathcal{B} simulates H_{i} oracles coherently and all the responses to extraction queries and decryption queries are valid. On the other hand, \mathcal{A} guesses the right $\beta^{\prime}=\beta$ means AskH_{2} must have occured. Therefore, according to the definition of \mathcal{A}, the probability of \mathcal{B} finding the wanted tuple $\left(\omega, h_{2}\right)$ in L_{2} is at least ϵ.

Note that different from other similar proofs, \mathcal{B} can gain the advantage against the underlying GBDH problem even before \mathcal{A} outputs its final guess. It suffices to compute the probability of \mathcal{B} does not abort before AskH $_{2}$ occurs. We denote such probability as $\operatorname{Pr}[$ Success].
\mathcal{B} may terminates before AskH_{2} occurs for the following three events.

1. \mathcal{E}_{1} is the event that \mathcal{A} issues private key queries while the corresponding coin $=1$ during Phase 1 and Phase 2.
2. \mathcal{E}_{2} is the event that \mathcal{A} chooses the target $I \mathrm{D}_{\text {ch }}$ while the corresponding $\operatorname{coin}=0$ in the Challenge phase.
3. \mathcal{E}_{3} is the event that AskH H_{3} occurs before AskH ${ }_{2}$ occurs. (\mathcal{B} is unable to extract the underlying hash value $r=c$).

According to the decryption algorithm, if AskH_{2} happens, the corresponding AskH ${ }_{3}$ follows with high probability. On the contrary, the probability of that AskH_{3} happens before the AskH ${ }_{2}$ is less than $q_{H_{3}} / 2^{n}$, where 2^{n} is the cardinal of σ space. Because the chance that a random string σ equals to σ^{*} is at most $1 / 2^{n}$ and this happens at most $q_{H_{3}}$ times. Note that AskH ${ }_{3}$ will lead to the termination of the game, but AskH 2 has occurred before it with overwhelmingly probability.

Combines all above, the probability of perfect simulation before AskH ${ }_{2}$ occurs is

$$
\operatorname{Pr}[\text { Success }]=\operatorname{Pr}\left[\neg \mathcal{E}_{1} \wedge \neg \mathcal{E}_{2} \wedge \neg \mathcal{E}_{3}\right]=\delta^{q_{E}}(1-\delta)\left(1-\frac{q_{H_{3}}}{2^{n}}\right)
$$

Using the same mathematical technique in [8], the lower bound is maximized at $\delta_{o p t}=$ $1-1 /\left(q_{E}+1\right)$, thus

$$
\operatorname{Pr}[\text { Success }] \geq \frac{1}{e\left(1+q_{E}\right)}\left(1-\frac{q_{H_{3}}}{2^{n}}\right)
$$

The bound on time complexity can be verified easily. This proves the result as required.

In order to answer decryption queries coherently, \mathcal{B} has to call the $\mathcal{O}_{D B D H}(\cdot)$ oracle at most $q_{D} q_{H_{2}}$ times. In order to return a proper and valid ciphertext, \mathcal{B} has to call the $\mathcal{O}_{D B D H}(\cdot)$-oracle at most $q_{H_{2}}$ times. If we add (Q, U) as two extra inputs to H_{2} function, i.e. replace $H_{2}\left(e\left(P_{\text {pub }}, Q_{\mathrm{ID}}\right)^{r}\right)$ with $\left.H_{2}\left(Q, U, e\left(P_{p u b}, Q_{\mathrm{ID}}\right)^{r}\right)\right)$ in the encryption algorithm and replace $H_{2}\left(e\left(d_{\mathrm{ID}}, U\right)\right)$ as $H_{2}\left(Q, U, e\left(d_{\mathrm{ID}}, U\right)\right)$ in the decryption algorithm, we can save $\left(q_{H_{2}}+q_{D} q_{H_{2}}\right)$ times call to $\mathcal{O}_{D B D H}(\cdot)$-oracle. A similar observation was made by Cramer and Shoup [14] in their security proof of the Hashed ElGamal KEM.

8 Conclusion

In this paper, we point out the flaws in some previous proofs of BF-IBE. We notice that by restricting all the identities of BF-IBE are n-bits long, we can prove its full security based on its selective-ID security. Besides, we give a new proof for BF-IBE based on the GBDH problem in the random oracle model. However, we think how to provide an elegant proof of BF-IBE relying on the original CBDH assumption is still a interesting problem.

References

1. David Galindo: Boneh-franklin identity based encryption revisited. Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005 Proceedings 3580 (2005) 791-802
2. Nishioka, M.: Reconsideration on the security of the boneh-franklin identity-based encryption scheme. Progress in Cryptology - INDOCRYPT 2005, 6th International Conference on Cryptology in India 3797 (2005) 270-282
3. Rui, Z., Imai, H.: Improvements on security proofs of some identity based encryption schemes. Information Security and Cryptology, First SKLOIS Conference 3822 (2005) 2841
4. Shamir, A.: Identity-based cryptosystems and signatures schemes. Advances in Cryptology - Crypto 1984196 (1984) 47-53
5. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. Advances in Cryptology - CRYPTO 20012139 (2001) 213-229
6. Clifford Cocks: An Indentity Based Encryption Scheme Based on Quadratic Residues. Institute of Mathematics and Its Applications International Conference on Cryptigraphy and Coding - Proceedinds of IMA 20012260 (2001) 360-363
7. Ryuichi Sakai, Kiyoshi Ohgishi, M.K.: Cryptosystems based on pairing. The 2001 Symposium on Cryptography and Information Security, Japan 45 (2001) 26-28
8. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. of Computing 32 (2003) 586-615
9. Alriyami, S.S., Paterson, K.G., Holloway, R.: Certificateless public key cryptography. Advances in Cryptology - Asiacrypt 20032894 (2003) 452-473
10. Boyen, X.: Multipurpose identity-based signcryption - a swiss army knife for identity-based cryptography. Advances in Cryptology - CRYPTO 20032729 (2003) 383-399
11. Gentry, C.: Certificate-based encryption and the certificate revocation problem. 2656 (2003) 272-293
12. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. Advances in Cryptology ASIACRYPT 20022501 (2002) 548-566
13. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. Advances in Cryptology - Eurocrypt 20022322 (2002)
14. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33 (2001) 167-226
15. Libert, B., Quisquater, J.J.: Identity based encryption without redundancy. Proceedings of ACNS 20053531 285-300
16. Joux, A.: A one round protocol for triparitite diffie-hellman. Algorithmic Number Theory, 4th International Symposium 1838 (2000) 385-394
17. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. Advances in Cryptology - Eurocrypt 20032656 (2003) 255-271
18. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identitybased encryption. Advances in Cryptology - Eurocrypt 20043027 (2004) 207-222
19. Eiichiro Fujisaki and Tatsuaki Okamoto: Secure integration of asymmetric and symmetric encryption schemes. (1999) 537-554
20. Coron, J.S.: On the exact security of full domain hash. CRYPTO 20001880 (2000) 229-235
21. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. CRYPTO '09: Proceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology (2009) 619-636
22. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without random oracles. Proceedings of Eurocrypt 20043027 (2004) 223-238
