
A Reflection on the Security Proofs of Boneh-Franklin Identity-Based
Encryption

Yu Chen

Institute of Software, School of Electronics Engineering and Computer Science
Peking University, Beijing, China

cycosmic@gmail.com

Abstract. Boneh and Franklin constructed the first practical Identity-Based Encryption scheme (BF-IBE) [1] and
proved its security based on the computational Bilinear Diffie-Hellman assumption (CBDH) in 2001. The correct-
ness of its security proof was long believed to be correct until in 2005, Galindo [2] noticed a flawed step in the
original proof. In the same paper, Galindo provided a new proof with a looser security reduction. Shortly after-
wards, Nishioka [3] improved Galindo’s proof to achieve a tighter security reduction. In the same year, Zhang and
Imai [4] gave another proof of BF-IBE. Unfortunately, we find that none of their proofs is flawless. In this paper,
besides identifying and fixing the lapses in previous proofs, we present two new proofs for the CCA security of
BF-IBE. The first proof is proved via selective-identity security with imposing a natural constraint to the original
scheme. The second proof is proved by directly reducing the security to a stronger assumption, namely the gap
Bilinear Diffie-Hellman (GBDH) assumption.

Key words: IBE, provable security, security reduction, BDH assumption

1 Introduction

Since Shamir proposed the concept of IBE in 1984 [5], various Identity-Based Signature (IBS) and Au-
thentication (IBA) schemes have been proposed, but secure and fully-functional IBE scheme was not found
until Boneh and Franklin [1], Cocks [6] and Sakai et al. [7] presented three IBE schemes in 2001, respec-
tively. Among those solutions, Boneh and Franklin’s one happens to be the most practical one. In order to
prove the security of BF-IBE, Boneh and Franklin [8] introduced new security definitions to fit the Identity-
Based setting, namely indistinguishable chosen ciphertext attack for ID-based encryption (IND-ID-CCA),
and proved its security in the random oracle model assuming the hardness of computational Bilinear Diffie-
Hellman problem [8]. For this reason, BF-IBE has received much attention and has had a great influence on
later designs and analysis of cryptographic settings. Numerous schemes [9] [10] [11] [12] [13] are based on
BF-IBE.

The original proof of BF-IBE was never challenged until Galindo [2] pointed out a flawed step in the
reduction for CCA security in 2005. Galindo claimed that the flawed step could be fixed by his new security
reduction without changing both the scheme and the underlying assumption if the efficiency of the security
reduction could be sacrificed. Subsequently, Nishioka [3] extended Galindo’s idea to provide another proof,
which can be viewed as a improved version of Galindo’s proof. In the same year, Zhang and Imai [4]
proposed a new proof of BF-IBE, which was claimed essentially improved previously known results. Up to
present, there is no doubt about the correctness of their fixed proofs.



1.1 Our contribution

Justify previous proofs of BF-IBE. We first re-examine the flawed steps in BF-IBE’s original CCA se-
curity proof exhibited in [8] and analyze why it failed, then point out the lapses in the subsequent revised
security proofs proposed by Galindo [2], Nishioka [3] and Zhang et.al [4], respectively. Galindo’s proof and
Nishioka’s proof are similar. Compared to the original proof in [1], their simulation algorithm are straight-
forward. However, the simulation algorithm in Galindo’s proof is not well defined itself. Nishioka improved
Galindo’s proof, but the probability of successful simulation is wrong. Zhang and Imai [4] reduced the se-
curity directly to the complexity assumption by making the simulator simulates itself all the oracles: the Hi

oracles, extraction oracle, encryption oracle and decryption oracle. The issue is that Lemma 2 and Lemma
3 [4] are not accurate. After identifying the lapses in these proofs, we also show how to fix them.

Present two new proofs of BF-IBE. Inspired by the theorem proved by Boneh and Boyen [14], we prove
the full security of BF-IBE via selective-ID security. The only issue is that we need to impose a constraint to
the original scheme, i.e. identities must be bitstrings of a fixed length, not of arbitrary length. However, it is
a natural requirement for practical use. On the other hand, we provide an elegant proof with tighter security
reduction of BF-IBE which employs the proof technique used in [15] [16]. This new proof reduces the CCA
security of BF-IBE directly to the underlying complex assumption without intermediate steps. We remark
that our second proof is based on the gap Bilinear Diffie-Hellman (GBDH) assumption, which is stronger
than the computational Bilinear Diffie-Hellman (CBDH) assumption used in the original proof.

Note. We remark that all the proofs in this paper are in the random oracle model [17]. In order to keep
the consistency of notation, we replace some symbols and variables when quoting the related references.
However, they can be easily known by comparing our description with the original papers [1] [2] [3] [4].

2 Complexity Assumptions

Given groups G1 and G2 of prime order q, a bilinear maps e : G1 ×G1 → G2 and a generator P of G1, we
introduce three complexity assumptions as follows.
Computational Bilinear Diffie-Hellman Problem (CBDH). The CBDH problem [18] [1] is given the tuple
(P, aP, bP, cP ) for some a, b, c ∈ Z∗q , compute the e(P, P )abc ∈ G2. An adversaryA is said to have at least
advantage ε in solving CBDH problem if Pr

[
A(P, aP, bP, cP ) = e(P, P )abc

]
≥ ε.

Decisional Bilinear Diffie-Hellman Problem (DBDH). For random a, b, c, z ∈ Z∗q and a fair coin β. If
β = 1 the challenger outputs a tuple (P, aP, bP, cP, Z = e(P, P )abc) ∈ D1. Else, it outputs a tuple
(P, aP, bP, cP, Z = e(P, P )z) ∈ D2. The adversary is expected to output a guess β′ of β. An adversary
A is said to have at least an ε advantage in solving the DBDH problem if

∣∣Pr[β = β′]− 1
2

∣∣ ≥ ε. Tuples
from D1 are denoted as “BDH” tuples in contrast to those from D2 which will be called “random tuples”.
A DBDH oracle can determine whether a tuple (P, aP, bP, cP, Z) is a real “BDH” tuple.

Gap Bilinear Diffie-Hellman Problem (GBDH). Given a CBDH challenge (P, aP, bP, cP ), to compute
e(P, P )abc with the help of a DBDH oracle.

2



3 Analysis of Reduction 4 in BF-IBE

We give some necessary knowledge of bilinear maps in Appendix A. The related security notion for IBE
can be found in Appendix B. A brief review of BF-IBE (the definitions of FullIdent, BasicIdent, BasicPub,
BasicPubhy) and the original proofs (Reduction i) can be found in Appendix C. In this section, we re-
examine the Reduction 4 for CCA security of FullIdent.

The aim of Reduction 4 is constructing an IND-CCA adversary B against BasicPubhy by interacting
with an IND-ID-CCA adversary A against FullIdent. Next, we list two lapses in Reduction 4 of BF-IBE,
which is Lemma 4.6 in [8].
Issue 1. In Phase 1, when A issues a decryption query 〈ID, C〉, where C = 〈U, V,W 〉 = 〈rP, σ ⊕
H2(e(Q,Ppub)r),M⊕H4(σ)〉. According to the simulation algorithm, if coin = 1 (Q = bQID), B modifies
C as C ′ = 〈U ′, V ′,W ′〉 = 〈bU, V,W 〉 and then relays C ′ to its challenger. When the challenger decrypts
C ′ using the private key dID, it does:
1. Compute V ′⊕H2(e(dID, U

′)) = V ⊕H2(e(dID, bU)) = σ⊕H2(e(Q,Ppub)r)⊕H2(e(sQID, brP )) = σ.
This step recovers the random chosen σ ∈ {0, 1}n exactly.

2. Compute W ′ ⊕H4(σ) = W ⊕H4(σ) = M ⊕H4(σ) ⊕H4(σ) = M . This step recovers the original
plaintext M exactly.

3. Set r = H3(σ,M) and test whether U ′ = rP . Note that b is randomly chosen from Z∗q which means the
probability of r = r′ (r′ = br) is 1/q. Thereby the challenger will reject the modified ciphertext with
overwhelming probability.

Therefore, B can not employ the decryption oracle of BasicPubhy to answer the decryption queries issued
by A if the corresponding coin = 1.

Issue 2. In the challenge phase,A outputs IDch and M0, M1 on which it wishes to be challenged. B gives its
challenger M0,M1 as the messages that it wishes to be challenged on. The challenger gives B the ciphertext
C = 〈U, V,W 〉 = 〈rP, σ⊕H2(e(QID, Ppub)r),Mβ⊕H4(σ)〉 such thatC is the ciphertext ofMβ for random
β ∈ {0, 1}. Let 〈IDch, Q, b, coin〉 be the corresponding tuple on theH list

1 . According to the above algorithm,
if coin = 0, B aborts the game and the attack fails. Otherwise, B will modify C to C ′ = 〈U ′, V ′,W ′〉 =
〈b−1U, V,W 〉 and relay C ′ to A as the challenge ciphertext. Boneh and Franklin claimed that C ′ is also
a proper FullIdent ciphertext of Mβ under the public key IDch = Q = bQID. However, if C ′ is a valid
ciphertext of Mβ , we have r′ = rb−1, H4(σ) = H4(σ′), H4(σ) = r, H4(σ′) = r′. These facts imply that
b = 1. Be aware of that b is randomly chosen from Z∗q , thereby the probability that C ′ is a valid FullIdent
ciphertext of Mβ is 1/q. A will reject the modified ciphertext with overwhelming probability.

These two issues render the Reduction 4 in the original proof invalid. By the way, Galindo only pointed out
Issue 1 in [2].

3.1 Flipping coin technique

Boneh and Franklin borrowed the technique from Coron’s analysis of the Full Domain Hash signature
scheme [19], which we refer to it as flipping coin technique. More precisely,B answersH1-queries according
to the result of flipping a coin ∈ {0, 1}. If coin = 0, returnQi = biP . If coin = 1, returnQi = biQID. Note

3



that only when coin = 0 could B answer the private key query 〈IDi〉 properly, because Qi = biP enables
B to extract the private key as di = biPpub. In the Challenge phase, only when coin = 1 allows B to utilize
A’s guess to win the game, because Qi = biQID enables B to make use of the homomorphic relationship.

“Flipping coin” can be viewed as a concrete technique of Partitioning Reduction methodology which
was generalized by Waters [20]. The idea of Partitioning Reduction is creating a reduction algorithm B that
partitions the identity space into two parts: 1) identities for which it can create private keys; 2) identities that
it can use in the challenge phase. Boneh and Franklin successfully use “flipping coin” technique to prove the
CPA security of BasicIdent (Reduction 2). But this technique can not be applied to Reduction 4. Because
in FullIdent, Fujisaki and Okamoto transformation [21] removes the homomorphic relationship between the
ciphertext and its corresponding key, malformed ciphertext (modified by simulator) will be rejected with
overwhelming probability. Thus “flipping coin” technique cannot partition the identity space favorably as it
does in proving Reduction 2.

4 Analysis of Galindo and Nishioka’s Proofs

In this section we investigate two subsequent revised proofs provided by Galindo and Nishioka, respectively.

4.1 Galindo’s proof

Galindo [2] tried to fix Reduction 4 by modifying the simulation algorithm of random oracle H1. We briefly
show his revised proof of Reduction 4 as follows.
Setup. Same as in BF-IBE.

H1-queries. Before initializing H list
1 , B selects a random j ← {1, . . . , qH1}. When A queries H1 at IDi, B

responds as follows: if i 6= j, it picks bi ← Z∗q and sets Qi = biP , adds 〈IDi, Qi, bi〉 to the list. If i = j, it
sets Qi = QID, adds 〈IDi, Qi, ∗〉 to the list. Finally, B sends Qi to A.

Phase 1 - Private key queries. WhenA asks for the private key of IDi, B runs the above algorithm and gets
H1(IDi) = Qi, where 〈IDi, Qi, bi〉 is the corresponding entry in H list

1 . If i = j, then B aborts the game.
Otherwise, it sets di = biPpub. Finally, B gives di to A.

Phase 1 - Decryption queries. B answers to the decryption query 〈IDi, Ci〉 as follows. It runs H1-queries
algorithm and let 〈IDi, Qi, bi〉 ∈ H list

1 . If i 6= j, then B retrieves the private key di and decrypts Ci using the
decryption algorithm. If i = j, then Qi = QID, and the decryption of 〈IDi, Ci〉 is the same as the decryption
of Ci under BasicPubhy. Then B asks its challenger to decrypt Cj and relays the answer to A.

Challenge.A outputs the target identity IDch and two messagesM0,M1 on which it wishes to be challenged.
B proceeds as follows. If IDch 6= IDj , it aborts the game and the attack against BasicPubhy failed. Otherwise,
it sends M0, M1 to its own challenger and gets back C, the ciphertext of Mβ for a random bit β ∈ {0, 1}
under BasicPubhy. Finally, B relays C to A, which is an also valid FullIdent ciphertext of Mβ under IDch.

The Phase 2 and Guess phase are same as in BF-IBE.
In the game B may aborts due to two reasons: (1) in Phase 1 A issues the private key query of IDj , or (2)
in Challenge stage, the challenge identity IDch 6= IDj . Note that B will not abort in Phase 2, since A is not
allowed to query the private key for IDch = IDj in Phase 2.

4



Let E1 be the event that B aborts due to (1), E2 be the event that B aborts due to (2). The probability that
B does not abort is Pr[¬E1 ∧ ¬E2] = Pr[¬E2|¬E1] Pr[¬E1].

Galindo deemed that the upper bound for Pr[E1] was qE/qH1 , where qE is the maximum number of
private extraction queries; the lower bound for Pr[¬E2|¬E1], that is the probability that A choose IDj as the
challenge identity, was 1/qH1 . He concluded that Pr[B does not abort] ≥ 1/qH1 · (1− qE/qH1).

Now we point out two issues which may be overlooked in Galindo’s proof.

Issue 1. In the challenge phase, whenA outputs the target identity IDch, the simulator need to judge if IDch =
IDj . In fact, the exact number of H1-queries that A issues in Phase 1 may differ in different simulations, so
whether “IDj” exists is unknown. Thus the probability of “B does not abort” is immeasurable. For example,
suppose B picks j = 10 in the beginning of the simulation while A only issues three H1 queries in Phase
1, then the so called IDj does not even exist. At least, it is fair to say the simulation algorithm is not well
defined.

Issue 2. Even Issue 1 could be ignored, here follows issue 2. The result of Pr[¬E2|¬E1] ≥ 1/qH1 is implied
from the hypothesis that in the challenge phase the adversary A randomly picks the target identity from
the current H list

1 . This goes against the definition of IND-ID-CCA game which states that the target identity
IDch can be chosen without any restriction, in particular outside the current H list

1 . Someone may argue
that if A does not choose IDch from the current H list

1 , its advantage against the IND-ID-CCA game will
be statistically closed to 0. Note that A could issue the H1-query for IDch in Phase 2. Besides, there is no
evidence guarantees that the adversary A will choose the target identity uniformly from either inside or
outside the current H list

1 . So Pr[¬E2|¬E1] is immeasurable.

From the above analyses, we think the proof proposed by Galindo is not valid.

4.2 Nishioka’s proof

Realizing that there are some problems in Galindo’s proof, Nishioka [3] gave an imporved proof of Reduc-
tion 4. Nishioka’s proof is similar to Galindo’s proof except three modifications. The first modification is
in the simulation of H1-oracle: in [2] B randomly selects j ∈ {1, . . . , 1 + qH1}, while in [3] B randomly
selects j ∈ {1, . . . , 1 + qH1 + qD}. The second modification is in [3] B maintains two lists named as H list1

1

and H list2
1 , where l1 = #H list1

1 and l2 = #H list2
1 . H list1

1 is used to record B’s responses to H1-queries and
decryption queries, while H list2

1 is used to record B’s responses to extraction queries. The third modifica-
tion is that Nishioka refine the simulation algorithm in the challenge phase. The details of Nishioka’s proof
are omitted here. We remark that the last modification make the simulation algorithm well defined and the
probability of successful computation computable.

In order to compute the probability that B does not abort during the simulation, Nishioka defines E1
as the event that B issues a private key query IDj which corresponds to the tuple 〈IDj , QID, ∗〉 on H list1

1

during Phase 1 or Phase 2, and defines E2 as the event that A sets the challenge identity IDch that does not
correspond to the tuple 〈j, IDj , Q, ∗〉 on the H list1

1 . Nishioka claimed that Pr[B does not abort] = Pr[¬E1 ∧
¬E2] = Pr[¬E2] ≥ 1/(1+qH1 +qD) (Equation (2) in Section 3.2 in [3]). At last, he concludes the advantage
against the CBDH problem is 2ε/qH2(1 + qH1 + qD) (Equation (6) in Section 3.2 in [3]).

5



Issue 1. The computation of Pr[B does not abort] = Pr[¬E1 ∧ ¬E2] = Pr[¬E2] ≥ 1/(1 + qH1 + qD) is not
correct. Nishioka negelected to count in E1. Actually,

Pr[B does not abort] = Pr[¬E1 ∧ ¬E2] = Pr[¬E1]Pr[¬E2|¬E1] ≥
(

1− qE
1 + qH1 + qD

)
· 1
1 + qH1 + qD

By the way, there is no proof for Pr[¬E2|¬E1] = 1/(1 + qH1 + qD) in the original paper [3]. Considering
this result is not as obvious as it looks like, we provide a strict proof for it in Appendix D.

Issue 2. For the reason of Issue 1, Equation (6) in [3] is also not accurate. Nishioka also described a tighter
Reduction 3 in [3], but there is also no proof available in his paper. Here we still use the results of Reduction
3 and Reduction 1 in the original paper [8], we fix Equation (6) as

AdvB =
ε

(1 + qH1 + qD)qH2(qH3 + qH4)

(
1− qE

1 + qH1 + qD

)
Apparently, this leads to a looser but not a tighter security reduction as the author claimed.
Remark 1. Galindo and Nishioka abandoned the “flipping coin” technique used in [8]. They used a straight-
forward simulation algorithm to partition the identity space. The efficiency of such partition is 1

qH1

(
1− qE

qH1

)
,

which also indicates the tightness of Reduction 4.

5 Zhang and Imai’s proof

Zhang and Imai gave a new proof of the BF-IBE in [4]. They reduced the CCA security of FullIdent directly
to the CBDH problem, not the IND-CCA security of BasicPubhy. We first have a glance at their proof.
B is given the a CDBH instance (P, aP, bP, cP ) ∈ (G1)4 and its goal is outputting e(P, P )abc. B simulates
all the Hi functions.

Setup. Same as in BF-IBE.

H1-queries. Same as in BF-IBE, except replacing QID with P2.

H2, H3, H4-queries. B proceeds H2, H3 and H4 queries using the same method: when a Hi-query comes,
if there is such an entry on Hi-list, B returns the corresponding result to A; otherwise, B chooses a random
value for the query and adds it into Hi-list.

Extraction queries. Same as in BF-IBE.

Decryption queries. When a query 〈ID, C〉 comes, where C = 〈U, V,W 〉, B searches H1-list for (ID),
H2-list for (t), H3-list for a tuple (σ,M) and H4-list for (σ) such that (ID,M, r, t, σ) satisfies the below
equations: 1) QID = H1(ID); 2) r = H3(σ,M) and c1 = rP ; 3) t = e(Ppub, QID)r and c2 = σ ⊕H2(t); 4)
c3 = M ⊕H4(σ). If there exists such an M and associated (ID, σ, r, t) in those lists, B returns M to A as
its answer. Otherwise, B returns “reject” to B.

Challenge. On A’s input ID and M0, M1, let the corresponding tuple in H list
1 be (ID, QID, s, coin). If

coin = 0, B aborts the simulation. Otherwise, B chooses random v∗ ∈ {0, 1}n, β ∈ {0, 1} and sets
U∗ = s−1P3, V ∗ = Mβ ⊕ v∗, W ∗ = {0, 1}n. B returns C = 〈U∗, V ∗,W ∗〉 to A as the challenge
ciphertext.

6



In Phase 2, B responds to private key extraction queries and decryption queries the same way as it did in
Phase 1. After A submits its answer, B chooses an arbitrary t from H2-list and computes ts

−1
as its answer

to the CDBH problem. This completes the decryption of algorithm B.

In Lemma 2 they claimed that the probability of perfect decryption oracle simulation is at least (1 −
2−n)qH3 (1− 2−n)qH4 (1− 1/q)qD .

Next, we point out the lapses in their proof.

Issue 1. First there are several typos and irregular notations in their poof. Here we just point out three
important bugs. 1) The multiplicative inverse of s should be denoted as s−1, not −s; 2) According to the
encryption algorithm, V ∗ = Mβ ⊕ v∗, W ∗ = {0, 1}n should be corrected as V ∗ = σ∗ ⊕ H2(gr

∗
ID) and

W ∗ = Mβ ⊕ ω∗; 3) Since the authors set U∗ = s−1P3, then B should answers t as its answer to the
CDBH problem but not ts

−1
. Because when QID = P2 = sbP , the associated dID = sabP . Therefore,

t = e(U∗, dID) = e(s−1cP, sabP ) = e(P, P )abc is exactly the answer we need.

Issue 2. In the challenge phase, Zhang and Imai generated the challenge ciphertext by implicitly assigning
H2(e(Ppub, QID)r

∗
) with a random v∗ ∈ {0, 1}∗ and assigning H4(σ∗) with random w∗ ∈ {0, 1}n, thus

implicitly means that the underlying σ∗ must satisfy H3(σ∗,Mβ) = r∗ and H4(σ∗) = w∗. Note that
e(Ppub, QID)r

∗
and σ∗ are unknown to B, thus B’ simulation for H2, H3 and H4 may be not coherent

through the game. If A explicitly issues query e(Ppub, QID)r
∗

to H2-oracle, (σ∗,Mβ) to H3-oracle and σ∗

to H4-oracle (either in Phase 1 or Phase 2), B run a risk of assigning two different values for the same
input forH2,H3 andH4 with overwhelming probability, which goes against the definition of random oracle
and makes the simulation distinguishable in A’s view from real attack. The result of Lemma 2 in [4] is not
accurate for they neglected to count in the event of querying e(Ppub, QID)r

∗
toH2-oracle and didn’t compute

the probability of querying (σ∗,Mβ) to H3-oracle precisely. It should be corrected as (1 − 1/q)qH2 (1 −
2−2n)qH3 (1− 2−n)qH4 (1− 1/q)qD .

Issue 3. If B does not aborts during the simulation, then the probability of B succeeds in solving CBDH
problem should be ε/qH2 but not 1/(qH2 + qH3 + qH4) in Lemma 3 [4].

Remark 2. The simulator algorithm cannot simulate coherently throughout the simulation (the answers to
decryption queries and Hi queries may contradict each other), which not only lower the probability of
successful simulation, but also raise the time complexity of simulation (in the simulation of decryption
oracle, B must to search all the tuples in Hi-lists to answer a decryption query).

6 IND-sID-CCA implies IND-ID-CCA

Boneh and Boyen [14] proved the following theorem which quantifies the relationship between selective-ID
IBE and fully IBE in the random oracle model.

Theorem 6.1 Let E be a (t, qE , ε) selective-ID secure IBE. Suppose identities in E are n-bits long. Let H
be a hash function H : {0, 1}∗ → {0, 1}n modeled as a random oracle. H converts E to EH by the process
of hashing the identity ID with H before using ID. Then EH is a (t, qE , ε′) fully secure IBE (in the random
oracle model) for ε′ ≈ qH · ε, where qH is the maximum number of H queries that the adversary can make.

7



This theorem hints us to prove IND-ID-CCA security via IND-sID-CCA security by imposing a minor con-
straint to FullIdent. Next we first prove that FullIdent is selective-ID secure, then prove it is also fully secure
by applying Theorem 6.1.

Theorem 6.2 Let H1 be a random oracle. Then FullIdent is IND-sID-CCA secure assuming the CBDH
assumption is hard in groups generated by G. Concretely, suppose there is an IND-sID-CCA adversary A
that has advantage ε against the FullIdent. Then there is an IND-CCA adversary B that has advantage ε
against BasicPubhy. Its running time is O(time(A)).

Proof. We construct an IND-CCA adversary B that usesA to gain advantage against BasicPubhy. The game
starts with the challenger first generates the public key Kpub = 〈q,G1,G2, e, n, P, Ppub, QID, H2, H3, H4〉
and a private key dID = sQID. The challenger gives Kpub to algorithm B. B mounts an IND-CCA attack on
the the key Kpub using the help of algorithm A. B interacts with A as follows.
Init. A outputs an identity IDch where it wishes to be challenged.

Setup. Same as in BF-IBE.

H1-queries. To respond toH1 queries, B maintains a list of tuples 〈IDi, Qi, bi〉 which is referred to asH list
1 .

The list is initially empty. When A queries H1 at point IDi, B responds as follows:
1. If the query IDi already appears on theH list

1 in a tuple 〈IDi, Qi, bi〉 then B responds withH1(IDi) = Qi.

2. Otherwise, if IDi = IDch, B sets bi = ∗ andQi = QID; else B generates a random bi ∈ Z∗q and computes
Qi = biP .

3. B adds the tuple 〈IDi, Qi, bi〉 to H list
1 and responds to A with H1(IDi) = Qi.

Phase 1 - Private key queries. WhenA asks for the private key associate to IDi, B runs the above algorithm
and obtainsH1(IDi) = Qi, where 〈IDi, Qi, bi〉 is the corresponding entry inH list

1 . Observing thatQi = biP ,
therefore di = biPpub. Finally, B gives di to A. The request 〈IDch〉 will be denied.

Phase 1 - Decryption queries. Let 〈IDi, Ci〉 be a decryption query issued by algorithm A. Let Ci =
〈Ui, Vi,Wi〉. When IDi 6= IDch, B runs H1-queries algorithm and let 〈IDi, Qi, bi〉 ∈ H list

1 , then retrieves the
private key di and decrypts Ci using the decryption algorithm. If IDi = IDch, B relays the decryption query
with the ciphertext 〈Ui, Vi,Wi〉 to the challenger and relays the challenger’s response back to A.

Challenge. Once A decides that Phase 1 is over and outputs two messages M0,M1 which it wishes to
be challenged on. B responds as follows: first B gives its challenger the message M0,M1. The challenger
responds with a BasicPubhy ciphertext C = 〈U, V,W 〉 which is also a valid FullIdent ciphertext of Mβ for
a random β ∈ {0, 1}. Next, B responds to A with the challenge C.

Phase 2 - Private key queries. B responds to the extraction queries the same way as it did in Phase 1.

Phase 2 - Decryption queries. B responds to the decryption queries the same way as it did in Phase 1 except
that 〈IDi, Ci〉 = 〈IDch, C〉 is denied.

Guess. Eventually, adversary A outputs a guess β′ for β. Algorithm B outputs β′ as its guess for β.
All the responses to H1-queries are as in real attack since each response is uniformly and indepen-

dently distributed in G1. All the responses to private key extraction queries and decryption queries are
valid. So algorithm B would not abort during the simulation. By the definition of algorithm A, we have that

8



∣∣Pr[β = β′]− 1
2

∣∣ ≥ ε. Note that Pr[B does not abort] = 1, this shows that B’s advantage against BasicPubhy

is at least ε as required. �

Remark 3. Interestingly, we noticed that the IND-sID-CCA in IBE setting is analogus notion to IND-CCA
notion. That’s why selective-ID security could be always tightly reduced to the security of the underlying
public key scheme.

We modify FullIdent by hashing arbitrary identities in {0, 1}∗ to binary strings of length n using a
collision resistant function with n-bits output (such as SHA-1 whose output is 160 bits, taking n = 160 as the
length of identities in IBE system is a natural choice). We denote the resulting scheme as FullIdentH . Note
that the selective-ID security is not weakened if additional restrictions on the identities are imposed (indeed,
this only tightens the constraints on the adversary and relaxes those on the simulator). Thus FullIdentH is
also selective-ID secure. Finally, as a straightforward result of Theorem 6.1, we conclude that FullIdentH is
fully secure in the random oracle model.

7 The New proof of BF-IBE

The security proofs proposed by Boneh and Franklin [1], Galindo [2] and Nishioka [3] are of the same class.
There are two issues about this kind of proof. First, the IND-ID-CCA security is achieved via a series security
reductions (see the diagram in Appendix C). These intermediate reductions may make the final security
reduction looser. Second, unlike IND-sID-CCA, IND-ID-CCA is stronger than IND-CCA. In IND-ID-CCA
game, the adversary can determine the identity it wishes to attack in the challenge phase, while in IND-CCA
game, the adversary must declare the public key it will attack in the beginning of the game. So IND-ID-CCA
security of FullIdent and the IND-CCA security of BasicPubhy are not meaningfully linked, which make it
is hard to provide a simple and elegant proof.

Zhang and Imai [4] realized this and reduced the security directly to the underlying complex assump-
tion. However, their proof is not perfect because the simulator algorithm cannot guarantee the simulation
is coherent throughout the game. The proof technique used in [16] shows that with the help of decisional
oracle ODBDH , the simulator can answer all the queries coherently throughout the simulation.

In this section, we give a new proof of BF-IBE based on the GBDH assumption in the random oracle
model. We directly reduce the security of BF-IBE to GBDH assumption and only require H1, H2, H3 to be
random oracles.

Theorem 7.1 Let the hash functionsH1,H2 andH3 be random oracles. Then FullIdent is chosen ciphertext
secure assuming GBDH is hard in groups generated by G. Concretely, suppose there is an IND-ID-CCA
adversaryA that has advantage ε andAmakes at most qE extraction queries, at most qD decryption queries,
and at most qHi queries to Hi oracles, respectively. Then there is a GBDH algorithm B has advantage

AdvB ≥
ε

e(1 + qE)

(
1− qH3

2n
)

in running time O(time(A)).

9



Here e is the base of natural logarithm, n is the message size. Our aim is construct a GBDH adversary B by
interacting with IND-ID-CCA adversary A.

Proof. Suppose B is given a instance (P, aP, bP, cP,ODBDH) of the GBDH where ODBDH(·) is a de-
cisional oracle to judge whether (P, aP, bP, cP, Z) is a valid BDH tuple. B is expected to output T =
e(P, P )abc ∈ G2.
Setup. B givesA 〈q,G1,G2, e, n, P, Ppub, H1, H2, H3, H4〉 as the system parameters, where n is the length
of plaintext, and H1, H2 and H3 are random oracles controlled by B. B sets Ppub as aP .

Phase 1- H1 queries. B maintains a list L1 which contains tuples (IDj , Qj , sj , coinj). When a query 〈IDi〉
comes, if there is already an entry (IDi, Qi, si, coini) in L1, B replies it with Qi. Otherwise, B flips a biased
coin with Pr[coin = 0] = δ (δ will be determined later), picks a random s ∈ Z∗q ; if coin = 0 computes
Qi = sP , else computes Q = sbP . B adds the tuple (IDi, Qi, s, coin) to the L1 and responds to A with
H1(IDi) = Qi.

Phase 1- H2 queries. H2 hashes an element ω ∈ G2 to a value h ∈ {0, 1}n. According to the proof
technique already used in [15] [16], these queries are processed using two lists L2 and L′2 which are initially
empty:
– L2 contains tuples (ω, h2) which indicates a hash value h2 ∈ {0, 1}n was previously assigned to ω.

– L′2 contains tuples (Q,U, ω∗, h′2) which means B has implicitly assigned a hash value h′2 ∈ {0, 1}n to
some ω∗ satisfying ODBDH(P, Ppub, Q, U, ω∗) = 1, although ω∗ is unknown yet.

More precisely, when A submits a query ω to H2(·),
– B first checks if there is an entry (ω, h2) in L2 list. If it does, h2 is returned to A.

– Else, for every tuple (Q,U) in L′2, B submits (P, Ppub, Q, U, ω) to the ODBDH(·) oracle to decide
whether it is a valid BDH tuple. If it is for some existing entry (Q,U, ω∗, h2), B adds (ω, h2) to L2 and
deletes the entry from L′2 (B proceeds in this way in order to behave coherently. Otherwise B will run a
risk of explicitly assigning two different h2 for the same ω). If there is no such an entry in L′2 satisfying
that (P, Ppub, Q, U, ω) is a valid BDH tuple, B assigns a random h2 ∈ {0, 1}n to ω, adds (ω, h2) into
L2. At last, B returns h2 to A.

Phase 1- H3 queries. B maintains a list contains tuples (σ,M, h3). We refer to this list as L3, which is
initially empty. When a query (σ,M) comes, if there is an entry (σ,M, h3) on H3-list, B returns h3 to A;
otherwise, B randomly picks h3 ∈ Z∗q , returns h3 to A and adds (σ,M, h3) to L3.

Phase 1- Private key queries. When a private key query 〈IDi〉 comes (we can always assume IDi has
already in L1 list, if not, we can generate the tuple according to H1 algorithm), B find out the corresponding
tuple (IDi, Qi, si, coini) in L1. If coini = 1, B reports “abort” and quits the simulation. If coini = 0, B sets
di = aQi = siPpub = siaP which is a valid private key for IDi, and then returns di to A.

Phase 1- Decryption queries. When a query (ID, C) comes. B searches in L1 for Q = H1(ID).
– If the associated coin = 0, B obtains the private key for ID. Then use the private key to respond to the

decryption query.

– If coin = 1, B searches ω in L2 which satisfying O(P, Ppub, Q, U, ω) = 1. If ωj is such an entry,
computes σ = V ⊕ h2,j (h2,j = H2(ωj)) and responds the query according to the decryption algo-

10



rithm. If there does not exist such an ωj , for every entry (Qi, Ui) in L′2, B checks whether e(Q,U) =
e(Qi, Ui). If (Qj , Uj) is such an entry, computes σ = V ⊕ h′2,j and responds the query accord-
ing to the decryption algorithm (e(Q,U) = e(Qi, Ui) indicates that the underlying ω is same, for
e3(Ppub, Q, U) = e3(Ppub, Qi, Ui). The notation e3 is defined as e3(aP, bP, cP ) = e(P, P )abc). Other-
wise, B randomly chooses a h′2 ∈ {0, 1}n and adds (Q,U, ω∗, h′2) in L′2. ω∗ is an unknown value which
satisfiesODBDH(P, Ppub, Q, U, ω∗) = 1. B computes σ = V ⊕h′2 and responds the query according to
the decryption algorithm.

In this way, B can always answers the decryption queries coherently.

Challenge. OnceA decides that Phase 1 is over it outputs two messages M0, M1 and an target identity IDch

on which it wishes to be challenged. Let (ID, Q, s, coin) be the corresponding entry in L1. If coin = 0,
B aborts and reports “failure”, because A is of no help in B’s endeavor in such a situation. Otherwise, let
β ∈ {0, 1} be a random bit, B sets U = cP , picks a random σ∗ ∈ {0, 1}n which is not in the current L3

list, thus implicitly implies H3(σ∗,Mβ) = c, although c is unknown. In order to simulate coherently, B
generates the hash value of H2(e(Ppub, Q)c) in the following steps.
1. Check whether L2 contains an entry that satisfies OOBDH(P, Ppub, Q, U, ωj) = 1. If it does, set the

hash value of H2(e(Ppub, Q)c) as h2,j = H2(ωj).

2. Else check whether L′2 contains an entry satisfying e(Qj , Uj) = e(Q,U). If it does, set the hash value
of H2(e(Ppub, Q)c) as h′2,j = H2(ω∗j ).

3. Otherwise, B randomly picks h′2 ∈ {0, 1}n and adds (Q,U, ω∗, h′2) into L′2. Set the hash value of
H2(e(Ppub, Q)c) as h′2.

B computes V = Mβ⊕H2(e(Ppub, Q)c) and W = M ⊕H4(σ∗). Finally, B respondsA with the ciphertext
C = 〈U, V,W 〉.
Phase 2- Private key queries. B responds to private key queries in the same way as it did in Phase 1 except
disallowing the query 〈IDch〉.
Phase 2- Decryption queries. B responds to decryption queries in the same way as it did in Phase 1 except
disallowing the query 〈IDch, C〉.
Phase 2- Hi queries. B responds to H1 and H2 queries identically as it did in Phase 1. For H3-oracle, when
B comes with a query (σ∗,Mβ), it reports “failure” and terminates (the reason of B has to abort in this case
is it does not know the right value for H3(σ∗,Mβ), because c is unknown to B). In other cases, B responds
to H3 queries the same way as it did in Phase 1.

We denotes the event that A issues (σ∗,Mβ) query to H3 oracle as AskH3.

Guess. Eventually A outputs a guess β′ for β, then B terminates the IND-ID-CCA game.

When the game between A and B terminates, no matter what the reason is, B searches the entry (ω, h2) in
L2 which satisfyingODBDH(P, Ppub, Q, U, ω) = 1 and computes ωs

−1
as its answer to the GBDH problem.

It is easy to verify the correctness observing that ω = e(dID, U) = e(sabP, cP ) = e(P, P )abcs.

Claim. We denote the event thatA issues query e(dID, U) toH2-oracle as AskH2. According to the definition
ofA, AskH2 must occur with a overwhelming probability. Otherwise,A’s guess β′ gives no information for
β, which contradicts that A has non-negligible advantage in guessing β. If algorithm B does not abort

11



during the simulation before AskH2 occurs, then A’s view is identical to its view in the real attack, because
B simulates Hi-oracles coherently and all the responses to extraction queries and decryption queries are
valid. From the above analysis we also know that if AskH2 occurs, the attack to GBDH problem succeeds.
Therefore, the probability of B finding the wanted tuple (ω, h2) in L2 is at least ε.

Note that different from other proofs, B can obtain the advantage against the underlying GBDH problem
beforeA outputs its final guess. As soon as AskH2 ouucrs, B succeeds. It suffices to compute the probability
of B does not abort before AskH2 occurs. We denote such probability as Pr[Success].
B may terminates before AskH2 occurs due to the following three events.

1. E1 is the event that A issues private key queries while the corresponding coin = 1 during Phase 1 and
Phase 2.

2. E2 is the event that A chooses the target IDch while the corresponding coin = 0 in the challenge phase.
3. E3 is the event that AskH3 occurs before AskH2 occurs. (B is unable to extract the underlying hash value
r = c).

According to the decryption algorithm, if AskH2 happens, the corresponding AskH3 follows with high
probability. On the contrary, the probability of that AskH3 happens before the AskH2 is less than qH3/2

n

(2n is the cardinality of σ space), because the chance that a random string σ equals to σ∗ is at most 1/2n

and this happens at most qH3 times. Thus we have Pr[¬E3] = 1 − qH3/2
n. Combine all above and notice

that E1, E2 and E3 are independent, we have the probability of perfect simulation before AskH2 occurs is

Pr[Success] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3] = δqE (1− δ)
(
1− qH3

2n
)

Using the same mathematical technique in [8], the lower bound is maximized at δopt = 1 − 1/(qE + 1),
thus Pr[Success] ≥ 1/e(1 + qE) · (1− qH3/2

n). The bound on time complexity can be verified easily. This
proves the result as required. �

Remark 4. In order to answer the decryption queries coherently, B has to call the ODBDH -oracle at most
qDqH2 times. In order to return a proper and valid ciphertext, B has to call the ODBDH -oracle at most
qH2 times. If we add (Q,U) as two extra inputs to H2 function, i.e. replace H2(e(Ppub, QID)r) with
H2(Q,U, e(Ppub, QID)r)) in the encryption algorithm and replace H2(e(dID, U)) as H2(Q,U, e(dID, U))
in the decryption algorithm, we can save (qH2 +qDqH2) times call toODBDH -oracle. A similar observation
was made by Cramer and Shoup [15] in their security proof of the Hashed ElGamal KEM.
At last, we provide a comparison with other proofs in Table 1.

8 Conclusion

In this paper, we point out and fix the lapses in previous proofs of BF-IBE. We show that if restricting all the
identities to be n-bits long, we can prove the full security of BF-IBE via its selective-ID security. Besides,
we give an elegant proof with tight security reduction of BF-IBE based on the GBDH assumption in the
random oracle model. We think how to provide a tighter proof of BF-IBE based on the original CBDH
assumption is still an interesting problem.

12



Proof Assumption Reduction factor

Nishioka’s proof (fixed) CBDH
1

(1 + qH1 + qD)qH2(qH3 + qH4)

„
1− qE

1 + qH1 + qD

«
Zhang and Imai’s proof (fixed) CBDH

1

e(1 + qE)qH2

Our first proof1 CBDH
1

qH2(qH3 + qH4)

Our second proof GBDH
1

e(1 + qE)
1 Our first proof is dedicated to FullIdentH , not the original FullIdent.

Table 1. Comparison of security proofs

References

1. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. Advances in Cryptology - CRYPTO 2001 2139
(2001) 213–229

2. David Galindo: Boneh-franklin identity based encryption revisited. Automata, Languages and Programming, 32nd Interna-
tional Colloquium, ICALP 2005 Proceedings 3580 (2005) 791–802

3. Nishioka, M.: Reconsideration on the security of the boneh-franklin identity-based encryption scheme. Progress in Cryptology
- INDOCRYPT 2005, 6th International Conference on Cryptology in India 3797 (2005) 270–282

4. Rui, Z., Imai, H.: Improvements on security proofs of some identity based encryption schemes. Information Security and
Cryptology, First SKLOIS Conference 3822 (2005) 28–41

5. Shamir, A.: Identity-based cryptosystems and signatures schemes. Advances in Cryptology - Crypto 1984 196 (1984) 47–53
6. Clifford Cocks: An Indentity Based Encryption Scheme Based on Quadratic Residues. Institute of Mathematics and Its

Applications International Conference on Cryptigraphy and Coding - Proceedinds of IMA 2001 2260 (2001) 360–363
7. Ryuichi Sakai, Kiyoshi Ohgishi, M.K.: Cryptosystems based on pairing. The 2001 Symposium on Cryptography and Infor-

mation Security, Japan 45 (2001) 26–28
8. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. of Computing 32 (2003) 586–615
9. Alriyami, S.S., Paterson, K.G., Holloway, R.: Certificateless public key cryptography. Advances in Cryptology - Asiacrypt

2003 2894 (2003) 452–473
10. Boyen, X.: Multipurpose identity-based signcryption - a swiss army knife for identity-based cryptography. Advances in

Cryptology - CRYPTO 2003 2729 (2003) 383–399
11. Gentry, C.: Certificate-based encryption and the certificate revocation problem. 2656 (2003) 272–293
12. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. Advances in Cryptology - ASIACRYPT 2002 2501 (2002)

548–566
13. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. Advances in Cryptology - Eurocrypt 2002 2322 (2002)
14. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption without random oracles. Proceedings of Eurocrypt

2004 3027 (2004) 223–238
15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen cipher-

text attack. SIAM Journal on Computing 33 (2001) 167–226
16. Libert, B., Quisquater, J.J.: Identity based encryption without redundancy. Proceedings of ACNS 2005 3531 285–300
17. Mihir Bellare and Phillip Rogaway: Random oracles are practical: A paradigm for designing efficient protocols. (1995) 62–73
18. Joux, A.: A one round protocol for triparitite diffie-hellman. Algorithmic Number Theory, 4th International Symposium 1838

(2000) 385–394
19. Coron, J.S.: On the exact security of full domain hash. CRYPTO 2000 1880 (2000) 229–235
20. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. CRYPTO ’09: Proceedings

of the 29th Annual International Cryptology Conference on Advances in Cryptology (2009) 619–636
21. Eiichiro Fujisaki and Tatsuaki Okamoto: Secure integration of asymmetric and symmetric encryption schemes. (1999) 537–

554

13



22. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. Advances in Cryptology - Eurocrypt 2003
2656 (2003) 255–271

23. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identitybased encryption. Advances in Cryptology - Eurocrypt
2004 3027 (2004) 207–222

A Preliminaries

We briefly review the groups equipped with efficiently computable bilinear maps. For more details, we
recommend the reader to previous literature [8].

Bilinear Map. Let G1 and G2 be two groups of prime order q. A map e : G1 × G1 → G2 is said as an
admissible bilinear map if the following three properties hold.

1. Bilinear. e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z∗q .
2. Non-degenerate. e(P, P ) 6= 1.

3. Computable. There is an efficient algorithm to compute e(P,Q) for any P,Q ∈ G1.

Bilinear Diffie-Hellman (BDH) Parameter Generator. A BDH parameter generator G is an algorithm
which takes a security parameter k ∈ Z+ as input and outputs two groups of prime order q and an admissible
bilinear map e : G1 ×G1 → G2. We describe it as G(1k)→ (q,G1,G2, e).

B Security Notions

Recall that an IBE scheme consists of four algorithms [5] [8]: Setup, Extract, Encrypt, and Decrypt. The
Setup algorithm generates system parameters params and a master secret master-key. The Extract algorithm
uses the master-key to generate the private key corresponding to a given identity. The Encrypt algorithm
encrypts messages for a given identity (using the system parameters) and the Decrypt algorithm decrypts
ciphertext using the private key. The message space isM. The ciphertext space is C.

Chosen Ciphertext Security for IBE. An IBE scheme E is said to be secure against adaptively chosen
ciphertext attack (IND-ID-CCA) if no probabilistic polynomial time (PPT) algorithmA has a non-negligible
advantage against the challenger in the following game:

Setup. The challenger takes the security parameter and runs the Setup algorithm. It gives the adversary the
resulting system parameters and keeps the master secret to itself.

Phase 1. The adversary issues queries q1, . . . , qm where query qi is one of:

– Extraction query 〈IDi〉. The challenger responds by running algorithm Extract to generate the private
key di corresponding to IDi. It sends di to the adversary A.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm Extract to generate the pri-
vate key di corresponding to IDi. It then runs algorithm Decrypt to decrypt the ciphertext Ci using the
private key di. It sends the resulting plaintext to the adversary A.

These queries may be asked adaptively, that is, each query qi may depend on the replies to q1, . . . , qi−1.

14



Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts M0,M1 ∈
M and an identity ID on which it wishes to be challenged. The only constraint is that ID did not appear
in any private key extraction query in Phase 1. The challenger picks a random bit β ∈ {0, 1} and sets
C = Encrypt(params, ID,Mβ). It sends C as the challenge to the adversary.

Phase 2. The adversary issues more queries qm+1, . . . , qr where qi is one of:
– Extraction query 〈IDi〉 6= ID. Challenger responds as in Phase 1.

– Decryption query 〈IDi, Ci〉 6= 〈ID, C〉. Challenger responds as in Phase 1.
These queries may be asked adaptively as in Phase 1.

Guess. Finally, the adversary outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.
We refer to such an adversary A as an IND-ID-CCA adversary. We define adversary A’s advantage over

the scheme E by AdvCCA
E,A (k) =

∣∣Pr[c = c′]− 1
2

∣∣ , where k is the security parameter. The probability is over
the random bits used by the challenger and the adversary. Similarly, the IND-ID-CPA security notion can be
defined by using a similar game as the one above but disallowing decryption queries. The advantage of an
adversary A is defined by AdvCPA

E,A (k) =
∣∣Pr[β = β′]− 1

2

∣∣.
Definition 2.1 We say that an IBE scheme E is IND-ID-CCA (IND-ID-CPA) secure if for any probabilis-
tic polynomial time IND-ID-CCA (IND-ID-CPA) adversary A the advantage AdvCCA

E,A (k)
(
AdvCPA

E,A (k)
)

is
negligible.

Selective-ID model. Boneh and Franklin [1] defined the adaptive chosen ciphertext security for IBE systems
by the above game. We refer to it as full IBE security model. In this model, the adversary can issue both
adaptive chosen private key queries and adaptive chosen ciphertext queries. Eventually, the adversary adap-
tively chooses the identity it wishes to attack and asks for a semantic security challenge for this identity.
Canetti, Halevi, and Katz [22] [23] defined a slightly weaker security model, called selective-ID security
model, in which the adversary must commit ahead of time (non-adaptively) to the identity it intends to
attack. More precisely, it is defined using the following game:
Init. The adversary outputs an identity IDch where it wishes to be challenged.

Setup and Phase 1 are same as in IND-ID-CCA game.

Phase 1. Same as in IND-ID-CCA game.

Challenge. Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts M0,M1

on which it wishes to be challenged. The challenger picks a random bit β ∈ {0, 1} and sets the challenge
ciphertext to C = Encrypt(params, IDch,Mβ). It sends C as the challenge to the adversary.

Phase 2 and Guess are same as in IND-ID-CCA game.
We refer to such an adversary A as an IND-sID-CCA adversary. The advantage of the adversary A

is defined by AdvE,A(k) =
∣∣Pr[β = β′]− 1

2

∣∣, where the probability is over the random bit used by the
challenger and the adversary.

Definition 2.2 An IBE system E is IND-sID-CCA secure if for any PPT IND-sID-CCA adversary A the
advantage AdvE,A(k) is negligible.

15



C Boneh-Franklin’s IBE Scheme

In this section, we briefly describe BF-IBE scheme [1] and examine the original proof. Boneh and Franklin
named their full scheme as FullIdent. In order to make the presentation easier, they also define the BasicIdent
and two public key encryption (PKE) scheme called BasicPub and BasicPubhy. BasicIdent which has only
CPA security, is a simplified version of FullIdent, BasicPub is a PKE scheme derived from BasicIdent, and
BasicPubhy is a PKE scheme obtained by applying the Fujisaki-Okamoto conversion [21] to BasicPub. We
first review the FullIdent in Figure 1.

BF-IBE(FullIdent)

Setup(1k): Extract(ID, params,master-key)
s← Z∗q ; Ppub = sP QID = H1(ID)
params = (q,G1,G2, e, n, P, Ppub, Hi) dID = sQID.
H1 : {0, 1}∗ → G1,
H2 : G2 → {0, 1}n,
H3 : {0, 1}n × {0, 1}n → Z∗q ,
H4 : {0, 1}n → {0, 1}n.

Encrypt(ID, params,M) Decrypt(C, params, dID)
QID = H1(ID); Parse C = 〈U, V,W 〉.
σ ← {0, 1}n, r = H3(σ,M); If U /∈ G1, return ⊥
U = rP ; Compute σ = V ⊕H2(e(dID, U)).
V = σ ⊕H2(e(Ppub, QID)r); Compute M = W ⊕H4(σ).
W = M ⊕H4(σ); Set r = H3(σ,M). If U 6= rP , return ⊥.
C = 〈U, V,W 〉. Output M as the decryption of C.

Fig. 1. The algorithms of FullIdent

A series of security reductions for FullIdent and BasicIdent follows the diagram below:

FullIdent BasicPubhy BasicPub CBDH

A(t, ε)

OO�
�
�

Reduce 4// A3(t3, ε3)

OO�
�
�

Reduce 3// A1(t1, ε1)

OO�
�
�

Reduce 1// B(t′, ε′)

OO�
�
�

BasicIdent oo ___ A2(t2, ε2)

Reduce 2

OO

The diagram of security reductions

The following results are presented in [8]. Hereafter, let qE , qD, and qHi denote the number of extraction,
decryption and Hi random oracle queries, respectively.

Reduction 1. Suppose there is an IND-CPA adversary A1 has the advantage ε(k) against BasicPub and A1

makes at most qH2 queries to the random oracle H2. Then there is an algorithm B that solves the CBDH
problem with advantage at least 2ε(k)/qH2 in running time O(time(A1)).

16



Reduction 2. Suppose there is an IND-ID-CPA adversary A2 that has advantage ε(k) against BasicIdent
and makes at most qE private key extraction queries, and at most qH2 queries to the random oracle H2. Then
there is an IND-CPA adversaryA1 against BasicPub with advantage at least ε(k)/e(1+ qE) in running time
O(time(A2)). Here e ≈ 2.71 is the base of the natural logarithm.

From Reduction 1 and Reduction 2, we get:

Result 1. BasicIdent is IND-ID-CPA secure assuming the CBDH is hard in groups generated by G. Con-
cretely, suppose there is an IND-ID-CPA adversary A2 that has advantage ε(k) against BasicIdent. If A2

makes at most qE > 0 private key extraction queries and qH2 hash queries to H2. Then there is an algorithm
B that solves CBDH with advantage at least 2ε(k)

e(1+qE)·qH2
.

Reduction 3. Using the Fujisaki-Okamoto transformation Boneh and Franklin introduce BasicPubhy which
is IND-CCA secure. Suppose there is an IND-CCA adversaryA3 that has advantage ε(k) against BasicPubhy

and makes at most qD decryption queries, and at most qH3 , qH4 queries to the random oracles H3, H4

respectively. Then there exists an IND-CPA adversaryA1 against BasicPub with advantage at least [(ε(k)+
1)(1− 2/q)qD − 1]/2(qH3 + qH4) in running time O(time(A3)).

Reduction 4. Suppose there is an IND-ID-CCA adversary A that has advantage ε(k) against FullIdent.
Suppose A makes at most qE private key extraction queries, at most qD decryption queries, and at most
qH1 queries to the random oracle H1. Then there exists an IND-CCA adversaryA3 against BasicPubhy with
advantage at least ε(k)/e(1 + qE + qD) in running time O(time(A)).

From Reduction 1, Reduction 3 and Reduction 4, we have:

Result 2. FullIdent is IND-ID-CCA secure assuming CBDH is hard in groups generated by G. Concretely,
suppose there is an IND-ID-CPA adversary A that has advantage ε(k) against BasicIdent. If A makes at
most qE > 0 private key extraction queries, at most qD decryption queries, and at most qH2 , qH3 , qH4 hash
queries to H2, H3, H4, respectively. Then there is an algorithm B that solves CBDH with advantage at least[

ε(k)
e(1+qE+qD)+1(1− 2/q)qD − 1

]
/qH2(qH3 + qH4).

D Analysis of Nishioka’s proof

In this section, we review simulation algorithm for challenge phase proposed by Nishioka [3].
Challenge. Once algorithm A decides that Phase 1 is over, it outputs a public key IDch and two messages
M0, M1 on which it wishes to be challenged. Algorithm B gives the challenger M0 and M1 as the messages
that it wishes to be challenged on. The challenger responds with a BasicPubhy ciphertext C = 〈U, V,W 〉
such that C is the encryption of Mβ for a random β ∈ {0, 1}.
– Suppose that there is a tuple 〈i, IDi, Qi, bi〉 on the H list1

1 such that IDch = IDi. Let the probability of
this case be ε.

1. If i = j then H1(IDch) = Q. Algorithm B responds to A with the challenge C. It is easy to see the
probability of this subcase is 1/(1 + qH1 + qD).

2. Otherwise, algorithm B picks a random β′ ∈ {0, 1} as its guess for β. Algorithm B then halts.

17



– Suppose that there is no tuple 〈i, IDi, Qi, bi〉 on the H list1
1 such that IDch = IDi. Accordingly, the

probability of this case is (1− ε).
1. If l1 6= j − 1, algorithm B picks a random β′ ∈ {0, 1} as its guess for β. Algorithm B then halts.
2. If l1 = j − 1, algorithm sets Q = QID, and adds 〈j, IDch, Q, ∗〉 to the H list1

1 , such that H1(IDch) =
Q. Algorithm B responds to A with the challenge C. It is easy to verify that the probability of this
subcase is also 1/(1 + qH1 + qD).

Combine the above analysis, we have

Pr[¬E2|¬E1] =
1

1 + qH1 + qD
ε+

1
1 + qH1 + qD

(1− ε) =
1

1 + qH1 + qD

18


	Lecture Notes in Computer Science
	Authors' Instructions
	Introduction
	Our contribution

	Complexity Assumptions
	Analysis of Reduction 4 in BF-IBE
	Flipping coin technique

	Analysis of Galindo and Nishioka's Proofs
	Galindo's proof
	Nishioka's proof

	Zhang and Imai's proof
	IND-sID-CCA implies IND-ID-CCA
	The New proof of BF-IBE
	Conclusion
	Preliminaries
	Security Notions
	Boneh-Franklin's IBE Scheme
	Analysis of Nishioka's proof



