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Abstract

Traditional definitions of encryption guarantee security for plaintexts which can be derived
by the adversary. In some settings, such as anonymous credential or disk encryption systems, one
may need to reason about the security of messages potentially unknown to the adversary, such as
secret keys encrypted in a self-loop or a cycle. A public-key cryptosystem is n-circular secure if
it remains secure when the ciphertexts E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1)
are revealed, for independent key pairs.

A natural question to ask is what does it take to realize circular security in the standard
model? Are all CPA-secure (or CCA-secure) cryptosystems also n-circular secure for n > 1? One
way to resolve this question is to produce a CPA-secure (or CCA-secure) cryptosystem which is
demonstrably insecure for key cycles larger than self-loops. Recently and independently, Acar,
Belenkiy, Bellare and Cash provided a CPA-secure cryptosystem, under the SXDH assumption,
that is not 2-circular secure.

In this paper, we present a different CPA-secure counterexample (under SXDH) as well as
the first CCA-secure counterexample (under SXDH and the existence of certain NIZK proof
systems) for n > 1. Moreover, our 2-circular attacks recover the secret keys of both parties and
thus exhibit a catastrophic failure of the system whereas the attack in Acar et al. provides a test
whereby the adversary can distinguish whether it is given a 2-cycle or two random ciphertexts.
These negative results are an important step in answering deep questions about which attacks
are prevented by commonly-used definitions and systems of encryption.

1 Introduction

Encryption is one of the most fundamental cryptographic primitives. Traditional definitions of
encryption [22, 17, 35] follow the seminal notion of Goldwasser and Micali which guarantees indis-
tinguishability of encryptions for messages chosen by the adversary [22]. However, Goldwasser and
Micali wisely warned to be careful when using a system proven secure within this framework on
messages that the adversary cannot derive himself.

Over the past several years, there has been significant interest in designing schemes secure
against key-dependent message attacks, e.g., [13, 9, 31, 3, 27, 29, 11, 12, 5, 2], where the system
must remain secure even when the adversary is allowed to obtain encryptions of messages that
depend on the secret keys themselves. In this work, we are particularly interested in circular secu-
rity [13]. A public-key cryptosystem is n-circular secure if it remains secure when the ciphertexts
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E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1) are revealed, for independent key pairs. Ei-
ther by design or accident, these key cycles naturally arise in many applications, including storage
systems such as BitLocker [11], anonymous credentials [13], the study of “axiomatic security” [31, 3]
and more. (See [11] for a fuller discussion of the applications.)

Until recently, few positive or negative results regarding circular security were known outside of
the random oracle model. On one hand, no n-circular secure cryptosystems were known for n > 1.
On the other hand, no counterexamples existed for n > 1 to separate the definitions of circular and
CPA security; that is, as far as anyone knew the CPA-security definition already captured circular
security for any cycle larger than a self-loop. While the recent work of Haitner and Holenstein
casts some doubt on our ability to prove this implication using standard black-box techniques [26],
it does not resolve the fundamental question of whether or not this implication is, in fact, true.

Recently, this gap has been closing in two ways. On the positive side, several circular-secure
encryption schemes have been proposed [11, 5, 12]. This work focuses on negative results – namely,
investigating whether standard notions of encryption are “safe” for circular applications.

In 2008, Boneh, Halevi, Hamburg and Ostrovsky [11] proved, by counterexample, that one-way
security does not imply circular security. They explicitly state that they would ideally like to have
a counterexample for CPA security, but were not able to find a candidate system. The CPA setting
is significantly more difficult than the one-way setting, because all parts of the message must be
“hidden” in the ciphertext, so there appears to be no natural extension of the above trick. One
must find a method for combining (truly secure) ciphertexts, generated independently with unique
randomness, to recover information about their underlying messages. At first glance, this seems
like it might be impossible.

Our Results. A fundamental question for encryption is: do today’s widely-used definitions imply
that it is safe for Alice and Bob to exchange the ciphertexts E(pkB, skA) and E(pkA, skB) over
an insecure channel? In this work, we answer no, for both the CPA and CCA-security notions, by
providing counterexamples relative to popular cryptographic assumptions. Specifically, we show
that:

• If there exists an algebraic setting where the Symmetric External Diffie-Hellman (SXDH)
assumption holds, then there exists a CPA-secure cryptosystem which is not 2-circular secure.
The proposed scheme is particular interesting in that it breaks catastrophically in the presence
of a 2-cycle — revealing the secret keys of both users. This is a significant counterexample
separating CPA and circular security for key cycles larger than self-loops (where such a
counterexample is trivial.)

In our El Gamal-inspired system, the adversary can distinguish encryptions of key cycles
from encryptions of zero with probability at least 5/8 minus a negligible amount and, if given
encryptions of key cycles, can recover both secret keys with probability 1/2. In Appendix A,
we show how to extend our system to improve both probabilities to almost 1.

• If simulation-sound non-interactive zero-knowledge (NIZK) proof systems exist for NP and
there exists an algebraic setting where the Symmetric External Diffie-Hellman (SXDH) as-
sumption holds, then there exists a CCA-secure cryptosystem which is not 2-circular secure.

These results deepen our understanding of how to define “secure” encryption. Relative to SXDH,
we rule out the possibility that CPA security inherently captures n-circular security for n = 2, and
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thus provide strong justification for the ongoing effort, e.g. [11, 12, 5], to develop cryptosystems
which are provably circular secure. Our results are presented in the public-key setting, but trivially
transfer to the symmetric setting by having both parties share a secret key.

The SXDH assumption states that there is a bilinear setting e : G1×G2 → GT where the DDH
assumption holds in both G1 and G2. It has been extensively studied and used e.g., [19, 37, 32, 10,
7, 6, 23, 8, 25], perhaps most notably as a setting of the Groth-Sahai NIZK proof system [25].

Thus, we are faced with at least one of two harsh realities. Either the SXDH assumption
is false (and many prior constructions may be broken) or our standard definition of encryption,
CPA-security, does not guarantee n-circular security for n = 2, with fresh doubt cast on all n > 2.

Moreover, our two counterexample constructions are simple and practical, i.e., similar to what
might conceivably be proposed in practice, which highlights the potential danger in using any of
today’s commonly-used cryptosystems in a circular setting without further analysis.

1.1 Related Work

In 2001, Camenisch and Lysyanskaya [13] introduced the notion of circular security and used it in
their anonymous credential system to discourage users from delegating their secret keys. They also
showed how to construct a circular-secure cryptosystem from any CPA-secure cryptosystem in the
random oracle model. Independently, Abadi and Rogaway [1] and Black, Rogaway, Shrimpton [9]
introduced the more general notion of key-dependent message (KDM) security, where the encrypted
messages might depend on an arbitrary function of the secret keys. Black et al. showed how to
realize this notion in the random oracle model.

Halevi and Krawczyk [27] extended the work of Black et al. to look at KDM security for
deterministic secret-key functions such as pseudorandom functions (PRFs), tweakable blockciphers,
and more. They give both positive and negative results, including some KDM-secure constructions
in the standard model for PRFs. In the symmetric setting, Hofheinz and Unruh [29] showed how
to construct circular-secure cryptosystems in the standard model under relaxed notions of security.

In the public-key setting, Boneh, Halevi, Hamburg and Ostrovsky [11] presented in the first
cryptosystem which is simultaneously CPA-secure and n-circular-secure (for any n) in the stan-
dard model, based on either the DDH or Decision Linear assumptions. As mentioned earlier,
Boneh et al. [11] also proved, by counterexample, that one-way security does not imply cir-
cular security. One-way encryption is a very weak notion, which informally states that given
(pk , E(pk ,m)), the adversary should not be able to recover m. Given any one-way encryption
system, they constructed a one-way encryption system that is not n-circular secure (for any n).
Their system generates two key pairs from the original and sets PK = pk1 and SK = (sk1, sk2).
A message (m1,m2) is encrypted as (m1, E(pk1,m2)). In the event of a 2-cycle, the values
Encrypt(pkA, skB) = (skB,1, E(pkA,1, skB,2)) and Encrypt(pkB, skA) = (skA,1, E(pkB,1, skA,2)) pro-
vide the critical secret key information (skB,1, skA,1) in the clear.

Subsequently, Applebaum, Cash, Peikert and Sahai [5] showed how to translate the circular-
secure construction of [11] into the lattice setting. In addition, Camenisch, Chandran and Shoup [12]
extended [11] to the first cryptosystem which is simultaneously CCA-secure and n-circular-secure
(for any n) in the standard model, by applying the “double encryption” paradigm of Naor and
Yung [34]. (Interestingly, we use this same approach in Section 4 to extend our counterexample
from CPA to CCA security.)

Haitner and Holenstein [26] recently provided strong impossibility results for KDM-security with
respect to 1-key cycles. They study the problem of building an encryption scheme where it is secure
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to release E(k, g(k)) for various functions g. First, they show that there exists no fully-black-box
reduction from a KDM-secure encryption scheme to one-way permutations (or even some families
of trapdoor permutations) if the adversary can obtain encryptions of g(k), where g is a poly(n)-wise
independent hash function. Second, there exists no reduction from an encryption scheme secure
against key-dependent messages to, essentially, any cryptographic assumption, if the adversary can
obtain an encryption of g(k) for an arbitrary g, as long as the reductions proof of security treats
both the adversary and the function g as black boxes. Another way to compare these results to
ours is to say that they provide negative results for “self-loop” KDM-security relative to the non-
existence of certain non-black-box reduction techniques, whereas we provide negative results for
“two-party” circular security relative to falsifiable number-theoretic assumptions.

There is also a relationship to recent work on leakage resilient and auxiliary input models of
encryption, which mostly falls into the “self-loop” category. In leakage resilient models, such as
those of Akavia, Goldwasser and Vaikuntanathan [4] and Naor and Segev [33], the adversary is
given some function h of the secret key, not necessarily an encryption, such that it is information
theoretically impossible to recover sk . The auxiliary input model, introduced by Dodis, Kalai and
Lovett [16], relaxes this requirement so that it only needs to be difficult to recover sk .

Self-Loops. In sharp contrast to all n ≥ 2, the case of 1-circular security is fairly well understood.
A folklore counterexample shows that CPA-security does not directly imply 1-circular security.
Given any encryption scheme (G,E,D), one can build a second scheme (G,E′, D′) as follows: (1)
E′(pk ,m) outputs E(pk ,m)||0 if m 6= sk and m||1 otherwise, (2) D′(sk , c||b) outputs D(sk ,m) if
b = 0 and sk otherwise. It is easy to show that if (G,E,D) is CPA-secure, then (G,E′, D′) is
CPA-secure. When E′(pk , sk) = sk ||1 is exposed, then there is a complete break. Conversely, given
any CPA-secure system, one can build a 1-circular secure scheme in the standard model [11].

CPA Counterexample of Acar, Belenkiy, Bellare and Cash. Recently and independently
of our work, Acar et al. [2] also demonstrated both public and private key encryption systems that
are provably CPA-secure and yet also demonstrably 2-circular insecure. Their constructions also
depend on the SXDH assumption. Our works differ in two primary ways. First, Acar et al. break
2-circular security by providing an elegant distinguishing test for the adversary to differentiate
the pair (Encrypt(pkA, skB),Encrypt(pkB, skA)) from the pair (Encrypt(pkA, r1),Encrypt(pkB, r2)),
where (r1, r2) are random values in the message space. In this work, we provide a stronger attack,
which not only allows the adversary to distinguish between these pairs, but also allows the adversary
to recover the secret keys (skA, skB) when given (Encrypt(pkA, skB),Encrypt(pkB, skA)). In other
words, Acar et al. show that CPA-security does not prevent an eavesdropper from detecting that
Alice and Bob have exchanged secret keys via circular encryptions, whereas we show that CPA-
security provides no security guarantee at all in the same setting. Second, we provide the first
counterexample that also extends to CCA-security.

2 Definitions of Security

A public-key encryption system Π is a tuple of algorithms (KeyGen,Encrypt,Decrypt), where KeyGen
is a key-generation algorithm that takes as input a security parameter λ and outputs a public/secret
key pair (pk , sk); Encrypt(pk ,m) encrypts a message m under public key pk ; and Decrypt(sk , c)
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decrypts ciphertext c with secret key sk . As in most other works, we assume that all algorithms
implicitly have access to shared public parameters establishing a common algebraic setting.

Throughout this paper, we assume that the space of secret keys output by KeyGen is a subset
of the message space and thus any secret key can be encrypted using any public key.

By ν(k) we denote some negligible function, i.e., one such that, for all c > 0 and all sufficiently
large k, ν(k) < 1/kc.

Definition 2.1 (Computational Indistinguishability) Two ensembles of probability distribu-
tions {Xk}k∈N and {Yk}k∈N with index set N are said to be computationally indistinguishable if
for every polynomial-size circuit family {Dk}k∈N, there exists a negligible function ν such that

|Pr [x← Xk : Dk(x) = 1]− Pr [y ← Yk : Dk(y) = 1]| < ν(k).

We denote such sets {Xk}k∈N
c
≈ {Yk}k∈N.

2.1 Standard Indistinguishability of Encryptions

We recall the standard notion of indistinguishability of encryptions under a chosen-plaintext attack
due to Goldwasser and Micali [22].

Definition 2.2 (IND-CPA) Let Π = (KeyGen,Encrypt,Decrypt) be an encryption scheme for the
message space M and let the random variable IND-CPAb(Π,A, λ) where b ∈ {0, 1}, A = (A1,A2)
and λ ∈ N denote the result of the following probabilistic experiment:

IND-CCAb(Π,A, λ)
(pk , sk)← KeyGen(1λ)
(m0,m1, z)← A1(pk) s.t. m0,m1 ∈M
y ← Encrypt(pk ,mb)
B ← A2(y, z)
Output B

Encryption scheme Π is IND-CPA-secure if ∀ p.p.t. algorithms A the following two ensembles are
computationally indistinguishable:{

IND-CPA0(Π,A, λ)
}
λ

c
≈
{

IND-CPA1(Π,A, λ)
}
λ

We also consider the indistinguishability of encryptions under chosen-ciphertext attacks [34, 35, 17].

Definition 2.3 (IND-CCA) Let Π = (KeyGen,Encrypt,Decrypt) be an encryption scheme for the
message space M and let the random variable IND-CCAb(Π,A, λ) be identical to IND-CPAb(Π,A, λ)
except that both A1 and A2 have access to an oracle Decrypt(sk , ·) that returns the output of the
decryption algorithm and A2 cannot query this oracle on input y.
Encryption scheme Π is IND-CCA-secure if ∀ p.p.t. algorithms A the following two ensembles are
computationally indistinguishable:{

IND-CCA0(Π,A, λ)
}
λ

c
≈
{

IND-CCA1(Π,A, λ)
}
λ
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2.2 Circular Security

We next recall the Key-Dependent Message (KDM) security notion of Black et al. [9]. We simplify
this definition to focus exclusively on key cycles, as opposed to any affine function of the secret keys
as in [27, 11]. In [11], Boneh et al. were proving a positive result and thus wanted to demonstrate the
robustness of their construction by giving the adversary as much power as possible. In this work,
we are proving a negative result. By restricting the adversary’s power, we make it significantly
harder for us to devise a counterexample and thus prove a much stronger result.1

Definition 2.4 (IND-CIRC-CPA) Let Π = (KeyGen,Encrypt,Decrypt) be an encryption scheme for
the message space M and let the random variable IND-CIRC-CPAnb (Π,A, λ) where b ∈ {0, 1}, integer
n > 0, A and λ ∈ N denote the result of the following probabilistic experiment:

IND-CIRC-CPAnb (Π,A, λ)
(pk1, sk1)← KeyGen(1λ), . . . , (pkn, skn)← KeyGen(1λ)
For i = 1 to n:

m1,i ← sk (i+1) mod n

m0,i ← 0|m1,i|

yi ← Encrypt(pk i,mb,i)
B ← A(pk1, . . . , pkn, y1, . . . , yn)
Output B

Encryption scheme Π is IND-CIRC-CPA-secure for cycles of length n if ∀ p.p.t. algorithms A the
following two ensembles are computationally indistinguishable:{

IND-CIRC-CPAn0 (Π,A, λ)
}
λ

c
≈
{

IND-CIRC-CPAn1 (Π,A, λ)
}
λ

Discussion. In both the IND-CPA and IND-CIRC-CPA notions, the adversary must distinguish
an encryption (or encryptions) of a special message from the encryption of zero. This choice of the
message zero is arbitrary. We keep it in the statement of our definition to be consistent with [11];
however, it is important to note, for systems such as ours where zero is not in the message space,
that zero can be replaced by any constant message for an equivalent definition. Acar et al. [2] use
an equivalent definition where the encryption of zero above is replaced by the encryption of a fresh
random message.

We will not need to define a notion of security to withstand circular and chosen-ciphertext
attacks, because we are able to show a stronger negative result. In Section 4, we provide an
IND-CCA-secure cryptosystem, which is provably not IND-CIRC-CPA-secure. In other words, we are
able to devise an peculiar cryptosystem: one that withstands all chosen-ciphertext attacks, and yet
breaks under a weak circular attack which does not require a decryption oracle.

2.3 Pseudorandom Generators

Our constructions of Section 3 make use of a pseudorandom generator (PRG), which can be con-
structed from any one-way function [28].

1If we allowed the adversary to obtain encryptions of any affine function of the secret keys, as is done in [27, 11],
then we could devise a trivial counterexample where the adversary uses 1-cycles to break the system.
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Definition 2.5 (Pseudorandom Generator [30]) Let Ux denote the uniform distribution over
{0, 1}x. Let `(·) be a polynomial and let G be a deterministic polynomial-time algorithm such
that for any input s ∈ {0, 1}n, algorithm G outputs a string of length `(n). We say that G is a
pseudorandom generator if the following two conditions hold:

• (Expansion:) For every n, it holds that `(n) > n.
• (Pseudorandomness:) For every n, {U`(n)}n

c
≈ {s← Un : G(s)}n.

Note that the constructions of Section 3 use a PRG that differs slightly from this definition, in
that the domain of the function is an exponentially-sized cyclic group.

3 Main Result: A Counterexample for CPA Security

3.1 Algebraic Setting

Bilinear Groups. We work in a bilinear setting where there exists an efficient mapping function
e : G1 ×G2 → GT involving groups of the same prime order p. Two algebraic properties required
are that: (1) if g generates G1 and h generates G2, then e(g, h) 6= 1 and (2) for all a, b ∈ Zp, it
holds that e(ga, hb) = e(g, h)ab.

Decisional Diffie-Hellman Assumption (DDH) Let G be a group of prime order p ∈ Θ(2λ).
For all p.p.t. adversaries A, the following probability is 1/2 plus an amount negligible in λ:

Pr[g, z0 ← G; a, b← Zp; z1 ← gab; d← {0, 1}; d′ ← A(g, ga, gb, zd) : d = d′].

Strong External Diffie-Hellman Assumption (SXDH): Let e : G1 × G2 → GT be bilinear
groups. The SXDH assumption states that the Decisional Diffie-Hellman (DDH) problem is hard
in both G1 and in G2. This implies that there does not exist an efficiently computable isomorphism
between these two groups.

The SXDH assumption has been studied and used in many prior works, e.g., [19, 37, 32, 10, 7,
6, 23, 8, 25]. It is one of the three settings of the Groth-Sahai NIZK proof system [25] and, as noted
by Ghadafi, Smart and Warinschi [20], SXDH is the only algebraic setting considered practical.

3.2 Encryption Scheme Πcpa

We now describe an encryption scheme Πcpa = (KeyGen,Encrypt,Decrypt). It is set in asymmetric
bilinear groups e : G1 × G2 → GT of prime order p where we assume that the groups G1 and G2

are distinct and that the DDH assumption holds in both. We assume that a single set of group
parameters (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) will be shared across all keys generated at a given
security level and are implicitly provided to all algorithms.

The message space is M = {0, 1} × Z∗p × Z∗p. Let encode : M → {0, 1}`(λ) and decode :
{0, 1}`(λ) → M denote an invertible encoding scheme where `(λ) is the polynomial length of the
encoded message. Let F : GT → {0, 1}`(λ) be a pseudorandom generator secure under the Decisional
Diffie Hellman assumption. (Recall that pseudorandom generators can be constructed from any
one-way function [28].)
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KeyGen(1λ). The key generation algorithm selects a random bit β ← {0, 1} and random values
a1, a2 ← Z∗p. The secret key is set as sk = (β, a1, a2). We note that sk ∈ M. The public key
is set as:

pk =

{
(0, e(g, h)a1 , ga2) ∈ {0, 1} ×GT ×G1 if β = 0;
(1, e(g, h)a1 , ha2) ∈ {0, 1} ×GT ×G2 if β = 1.

Encrypt(pk ,M). The encryption algorithm parses the public key pk = (β, Y1, Y2), where Y2 may be
in G1 or G2 depending on the structure of the public key, and message M = (α,m1,m2) ∈M.
Note that m1 and m2 cannot be zero, but these values can be easily included in the message
space by a proper encoding.

Select random r ← Zp and R← GT . Set I = F (R)⊕ encode(M).

Output the ciphertext C as:

C =

{
(gr, R · Y r

1 , Y
rm2
2 · gm1 , I) ∈ G1 ×GT ×G1 × {0, 1}`(λ) if β = 0;

(hr, R · Y r
1 , Y

rm2
2 , I) ∈ G2 ×GT ×G2 × {0, 1}`(λ) if β = 1.

Decrypt(sk , C). The decryption algorithm parses the secret key sk = (β, a1, a2) and the ciphertext
C = (C1, C2, C3, C4). Next, it computes:

R =

{
(C2/e(C1, h))a1 if β = 0;
(C2/e(g, C1))a1 if β = 1.

Then it computes M ′ = F (R)⊕ C4 ∈ {0, 1}`(λ) and outputs the message M = decode(M ′).

Discussion. Like the circular-secure scheme of Boneh et al. [11], the above cryptosystem is a
variation on El Gamal [18]. It is a practical system, which on first glance might be somewhat
reminiscent of schemes the readers are used to seeing in the literature. The scheme includes a
few “artificial” properties: (1) placing a public key in either G1 or G2 at random and (2) the fact
that the ciphertext value C3 is unused in the decryption algorithm. We will shortly see that these
features are “harmless” in a semantic-security sense, but very useful for recovering the secret keys
of the system in the presence of a two cycle. While it is not unusual for counterexamples to have
artificial properties (e.g., [14, 21]), we can address these points as well.2 In Appendix A, we show
that property (1) can be removed by doubling the length of the ciphertext. For property (2), we
observe that many complex protocols such as group signatures (e.g., [10]) combine ciphertexts with
other components that are unused in decryption but are quite important to the protocol as a whole.
Thus, we believe our counterexample is not that far fetched. It might also lead to a more natural
counterexample, perhaps involving one of today’s commonly-used encryption algorithms.

3.3 Security

Theorem 3.1 Encryption scheme Πcpa is IND-CPA secure under the Decisional Diffie-Hellman
Assumption in G1 and G2 (SXDH).

2As a side note, while our scheme is different from that of Acar et al. [2], that scheme also has similar artificial
properties such as the presence of values that are not used in decryption.

8



Proof. To show that scheme Πcpa meets security Definition 2.2, suppose p.p.t. adversary A =
(A1,A2) and distinguisher D have advantage ε in distinguishing IND-CPA0(Πcpa,A, λ) from
IND-CPA1(Πcpa,A, λ). Let ψ(·) be some polynomial function. Using a series of hybrid games we
show that if all p.p.t. adversaries have negligible advantage ε1 in solving the DDH problem in G1 or
G2 and advantage ψ(ε1) at distinguishing the PRG F (secure under DDH) from a random function,
then ε is bounded by the negligible value 4ε1 + 2ψ(ε1).

In all hybrids, the adversary plays the IND-CPA game with a challenger. The public key is dis-
tributed normally, but the structure of the challenge ciphertext differs between the hybrids. Let
CT = (C1, C2, C3, C4) denote the challenge ciphertext for IND-CPA0, let CT′ = (C ′1, C

′
2, C

′
3, C

′
4)

denote the challenge ciphertext for IND-CPA1, and let R2 ← GT , R3 ← G1 (if β = 0) or R3 ← G2

(if β = 1) and R4 ← {0, 1}|C4| be randomly chosen. The hybrids are as follows:

H0: The challenge ciphertext is CT = (C1, C2, C3, C4).
H1: The challenge ciphertext is CT1 = (C1, R2, C3, C4).
H2: The challenge ciphertext is CT2 = (C1, R2, R3, C4).
H3: The challenge ciphertext is CT3 = (C1, R2, R3, R4).
H4: The challenge ciphertext is CT4 = (C ′1, R2, R3, R4).
H5: The challenge ciphertext is CT5 = (C ′1, R2, R3, C

′
4).

H6: The challenge ciphertext is CT6 = (C ′1, R2, C
′
3, C

′
4).

H7: The challenge ciphertext is CT′ = (C ′1, C
′
2, C

′
3, C

′
4).

Note that the ciphertext in H0 is as in IND-CPA0(Πcpa,A, λ), while the challenge ciphertext in
hybrid H3 information-theoretically hides the plaintext. We argue that under the DDH assumption
in G1 and G2 all p.p.t. A, D distinguish hybrids H0 and H3 with advantage ≤ 2ε1 +ψ(ε1). Using a
symmetric argument we show the same holds for hybrids H4 and H7, the latter of which is identical to
IND-CPA1(Πcpa,A, λ). It remains only to observe that hybrids H3 and H4 are identically-distributed.
By summation we obtain ε ≤ 4ε1 + 2ψ(ε1).

Our proof proceeds via a series of lemmas. We define the notation AdvHi
(A, D) to be A’s and D’s

advantage in distinguishing hybrid Hi from IND-CPA0(Πcpa,A, λ). Clearly AdvH0(A, D) = 0.

Lemma 3.2 For all p.p.t. A = (A1,A2), D if the DDH assumption holds in G1 and G2 then
AdvH1(A, D)− AdvH0(A, D) ≤ ε1.

Proof. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be the common parameters. Suppose adversary
A and distinguisher D have advantage ε′ in distinguishing H0 from H1. Then, we construct an
adversary A′ that decides the DDH problem in G1 or G2 with advantage ε′ as follows.

1. Sample a bit β ← {0, 1}.
2. Obtain a DDH problem instance:

Γ =

{
(g, ga, gb, G) ∈ G4

1 if β = 0;
(h, ha, hb, H) ∈ G4

2 if β = 1.
3. Sample v ← Z∗p.
4. Set the public key as:

pk =

{
(0, e(ga, h), gv) ∈ {0, 1} ×GT ×G1 if β = 0;
(1, e(g, ha), hv) ∈ {0, 1} ×GT ×G2 if β = 1.
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5. Run A1(pk) to produce a tuple (M0,M1, z). Parse M0 as (α,m1,m2).
6. Sample R← GT and set I ← F (R)⊕ encode(M0).
7. Set the challenge ciphertext as:

C =

{
(gb, R · e(G, h), (gb)vm2 · gm1 , I) ∈ G1 ×GT ×G1 × {0, 1}`(λ) if β = 0;
(hb, R · e(g,H), (hb)vm2 , I) ∈ G2 ×GT ×G2 × {0, 1}`(λ) if β = 1.

8. Run A2(C, z) to obtain the output B.
9. Run t← D(B) and output t.

We argue that when Γ is a proper DDH instance, A′ perfectly simulates the experiment H0.
The distribution of keys and encryption values are exactly as they should be. When Γ is not a DDH
instance, A′ perfectly simulates the experiment H1. The only impacted ciphertext part is C2, where
the proper public key information has been replaced by a random value. Thus, A′’s advantage in
solving DDH in G1 or G2 will be ε′. Under the DDH assumption in G1,G2, ε′ ≤ ε1. 2

Lemma 3.3 For all p.p.t. A = (A1,A2), D if the DDH assumption holds in G1 and G2 then
AdvH2(A, D)− AdvH1(A, D) ≤ ε1.

Proof. Suppose adversary A = (A1,A2) and distinguisher D have advantage ε′ in distinguishing
H1 from H2. Then, we construct an adversary A′ that decides the DDH problem in G1 or G2 with
advantage ε′ as follows. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be the common parameters. A′
works as follows:

1. Sample a bit β ← {0, 1}.
2. Obtain a DDH problem instance:

Γ =

{
(g, ga, gb, G) ∈ G4

1 if β = 0;
(h, ha, hb, H) ∈ G4

2 if β = 1.

3. Sample v ← Z∗p.
4. Set the public key as:

pk =

{
(0, e(g, h)v, ga) ∈ {0, 1} ×GT ×G1 if β = 0;
(1, e(g, h)v, ha) ∈ {0, 1} ×GT ×G2 if β = 1.

5. Run A1(pk) to produce a tuple (M0,M1, z). Parse M0 as (α,m1,m2).
6. Sample R,R2 ← GT and set I ← F (R)⊕ encode(M0).
7. Set the challenge ciphertext as:

C =

{
(gb, R2, G

m2 · gm1 , I) ∈ G1 ×GT ×G1 × {0, 1}`(λ) if β = 0;
(hb, R2, H

m2 , I) ∈ G2 ×GT ×G2 × {0, 1}`(λ) if β = 1.

8. Run A2(C, z) to obtain the output B.
9. Run t← D(B) and output t.
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When Γ is a proper DDH instance, A′ perfectly simulates experiment H1. When Γ is not a DDH
instance, A′ perfectly simulates experiment H2. The only impacted ciphertext part is C3, where
the proper public key information has been replaced by a random value. Thus, A′’s advantage in
solving DDH in G1 or G2 will be ε′. Under the DDH assumption in G1,G2, ε′ ≤ ε1. 2

Lemma 3.4 For all p.p.t. A = (A1,A2), D if F is secure under the DDH assumption in G1,G2

then AdvH3(A, D)− AdvH2(A, D) ≤ ψ(ε1).

Proof. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be the common parameters. Note that in our
construction, F has domain GT and range {0, 1}`(λ).3 Let us suppose that adversary A = (A1,A2)
and distinguisher D have advantage ε′ in distinguishing H2 from H3. Then, we construct an ad-
versary A′ that breaks the security of the PRG F with advantage ε′. A′ accepts as input a value
I ′ sampled from ensemble Eb where E0 = {R ← GT : F (R)}λ, E1 = {U`(λ)}λ and b ∈ {0, 1} and
operates as follows:

1. Compute (pk , sk)← KeyGen(1k) and parse pk = (β, Y1, Y2).
2. Run A1(pk) to produce a tuple (M0,M1, z).
3. Sample r ← Zp, R2 ← GT and R3 ← G1 (if β = 0) or R3 ← G2 (if β = 1). Set I ←
I ′ ⊕ encode(M0). Compute the challenge ciphertext as follows:

C =

{
(gr, R2, R3, I) ∈ G1 ×GT ×G1 × {0, 1}`(λ) if β = 0;
(hr, R2, R3, I) ∈ G2 ×GT ×G2 × {0, 1}`(λ) if β = 1.

4. Run A2(C, z) to obtain the output B.
5. Run t← D(B) and output t.

If I ′ is sampled from distribution E0 then A′ perfectly simulates H2. If I ′ is sampled from the
uniform distribution E1, then I ′⊕encode(M0) is uniformly distributed in {0, 1}`(λ) and A′ perfectly
simulates H3. Additionally, R is independent of the adversary’s view. Thus A′’s advantage in
distinguishing the two distributions will be ε′. Under the DDH assumption, we have ε′ ≤ ψ(ε1). 2

Lemma 3.5 For all A = (A1,A2) and distinguishers D, AdvH4(A, D)− AdvH3(A, D) = 0.

Proof. Both C1 and C ′1 are distributed uniformly at random in G1 or G2, depending on β, and
independent from all other parts of the ciphertext in both hybrids. 2

Proofs of below lemmas are identical to those of Lemmas 3.4, 3.3 and 3.2 (respectively) with the
sole modification that message M1 is used to formulate the challenge ciphertext rather than M0.

Lemma 3.6 For all p.p.t. A = (A1,A2), D if F is secure under the DDH problem in G1,G2 then
AdvH5(A, D)− AdvH4(A, D) ≤ ψ(ε1).

Lemma 3.7 For all p.p.t. A = (A1,A2), D if the DDH assumption holds in G1 and G2 then
AdvH6(A, D)− AdvH5(A, D) ≤ ε1.

3Although this specification differs slightly from Definition 2.5, this specific construction can be constructed from
traditional PRGs using standard techniques.

11



Lemma 3.8 For all p.p.t. A = (A1,A2), D if the DDH assumption holds in G1 and G2 then
AdvH7(A, D)− AdvH6(A, D) ≤ ε1.

Thus, if p.p.t. adversary A = (A1,A2) and distinguisher D have advantage ε in distinguishing
IND-CPA0(Πcpa,A, λ) from IND-CPA1(Πcpa,A, λ) then by summing over the above hybrids, we
obtain that ε ≤ 4ε1 + 2ψ(ε1) for negligible ε1 and ψ(ε1). This concludes our proof. 2

3.4 The Attack

Despite being IND-CPA-secure, cryptosystem Πcpa breaks catastrophically under a 2-cycle. Specifi-
cally, Eve can distinguish the ciphertexts Encrypt(pkA, skB) and Encrypt(pkB, skA) from encryptions
of an arbitrary message with probability almost 5/8. Moreover, if the encryptions are of the se-
cret keys, then Eve can recover both skA and skB with probability 1/2. This is the first circular
attack that allows the adversary to recover the secret keys. (In Appendix A, we discuss how to
improve these probabilities to 1 minus a negligible amount.) Our attack combines elements of both
ciphertexts in an attempt to recover skA, which can then be used to decrypt the first ciphertext
and obtain skB. It is somewhat amazing that this is possible, given that it is easy to see that
IND-CPA-security guarantees that it is safe for one of them to send their message.

Theorem 3.9 Encryption scheme Πcpa is not IND-CIRC-CPA secure for cycles of length 2.

Proof. We demonstrate a simple attack that permits a p.p.t adversary A and a distinguisher
D to win the IND-CIRC-CPA game for cycles of length two with probability at least 5/8 minus
a negligible amount. Suppose a challenger honestly samples from {IND-CIRC-CPA2

b(Πcpa,A, λ)}λ
with b← {0, 1} chosen with probability exactly 1/2. Then the adversary and distinguisher proceed
as follows. The adversary A first obtains pkA and pkB. If both keys have β = 0 or β = 1 (event
E1), the adversary aborts and tells D to output a random bit. Since the two keys are honestly
and independently generated by the challenger, this event will occur with probability exactly 1/2.
Otherwise we will assume w.l.o.g. that pkA = (0, e(g, h)a1 , ga2) and pkB = (1, e(g, h)b1 , hb2). The
corresponding secret keys skA = (0, a1, a2), skB = (1, b1, b2) are not known to the adversary.

The adversary is also given ciphertexts CA = (cA,1, cA,2, cA,3, cA,4) and CB = (cB,1, cB,2, cB,3, cB,4).
The adversary now computes:

X := cB,2 ·
e(cA,1, cB,3)
e(cA,3, cB,1)

.

A computes M = decode(cB,4 ⊕ F (X)) and passes it to D. D verifies that M = skA by testing
that α = 0, e(g, h)a1 = e(g, h)m1 and ga2 = gm2 . If all tests pass, D outputs 1, else it outputs 0.

Let’s explore why this test works. First, suppose that CA = Encrypt(pkA, skB) and CB =
Encrypt(pkB, skA) (event E2). Then:

CA = (cA,1, cA,2, cA,3, cA,4) = (gr, R · e(g, h)ra1 , gra2b2+b1 , F (R)⊕ encode(skB))
CB = (cB,1, cB,2, cB,3, cB,4) = (hs, S · e(g, h)sb1 , hsa2b2 , F (S)⊕ encode(skA))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)
e(cA,3, cB,1)

= S · e(g, h)sb1 · e(gr, hsa2b2)
e(gra2b2+b1 , hs)

= S · e(g, h)sb1 · e(g, h)rsa2b2

e(g, h)rsa2b2 · e(g, h)sb1
= S
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Thus, A can recover skA as decode(cB,4⊕F (S)), and D will correctly answer 1 with probability 1.
Next, suppose that CA and CB encrypt an arbitrary constant J = (α,m1,m2) ∈M. (In [27, 11]

and Definitions 2.4, this constant is typically set to zero, but since zero is not in the message space
of our cryptosystem, any other constant, such as all ones, will be equivalent.) Then:

CA = (cA,1, cA,2, cA,3, cA,4) = (gr, R · e(g, h)ra1 , gra2m2+m1 , F (R)⊕ encode(J))
CB = (cB,1, cB,2, cB,3, cB,4) = (hs, S · e(g, h)sb1 , hsm2b2 , F (S)⊕ encode(J))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)
e(cA,3, cB,1)

= S · e(g, h)sb1 · e(gr, hsm2b2)
e(gra2m2+m1 , hs)

= S · e(g, h)s(b1−m1) · (e(g, h)sm2(b2−a2))r

Now, D will return 1 if and only if skA = decode((F (S) ⊕ encode(J)) ⊕ F (X)). What is the
probability that this event occurs? First, suppose that sm2(b2 − a2) mod p 6= 0 (event E3), which
happens with probability ≥ 1−3/(p−1) = (p−4)/(p−1) for honest executions. Next, consider the
values J, s, S as fixed and r is the only variable. What is the chance that the challenger’s random
choice of r will induce a value X such that F (X) = F (S) ⊕ encode(J) ⊕ encode(skA)? First, we
observe that since sm2(b2 − a2) 6= 0 and r is chosen uniformly at random in Zp, then X is also
distributed uniformly at random in GT . The question reduces to: for a fixed value K ∈ {0, 1}`(λ),
a pseudorandom generator F and a random seed X, what is the chance that K = F (X)? Since,
by assumption, F is computationally indistinguishable from a uniform, random function, then this
probability can be at most 2−`(λ) plus a negligible amount ν(λ), where λ is the security parameter.

Thus, D’s total probability of success, when it does not abort, is:

Pr[D wins] = Pr[E1] · Pr[D wins |E1] + Pr[Ē1] · Pr[D wins |Ē1]

=
1
2
· 1

2
+

1
2
·
(
Pr[E2] · Pr[D wins |E2] + Pr[Ē2] · Pr[D wins |Ē2]

)
≥ 1

4
+

1
2
·
(

1
2
· 1 +

1
2

(Pr[E3] · Pr[D wins |E3])
)

≥ 1
2

+
1
4
·
(
p− 4
p− 1

· (1− 2−`(λ) − ν(λ))
)

≥ 5
8
− (2−`(λ) + ν(λ))

4
for all p ≥ 7

Of course, for practical 80-bit or higher values of p, this probability is much closer to 3/4. 2

4 Extension: A Counterexample for CCA Security

We now show that there exists an IND-CCA-secure cryptosystem, which suffers a complete break
when Alice and Bob trade secret keys over an insecure channel; i.e., transmit the two-key cy-
cle E(pkA, skB) and E(pkB, skA). Our construction follows the “double-encryption” approach to
building IND-CCA systems from IND-CPA systems as pioneered by Naor and Yung [34] and refined
by Dolev, Dwork and Naor [17] and Sahai [36]. Specifically, our building blocks will be:

1. The IND-CPA-secure cryptosystem Πcpa = (G,E,D) from Section 3. Let E(pk ,m; r) denote
the encryption of message m under public key pk with randomness r.
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2. An adaptively non-malleable (or simulation-sound) non-interactive zero-knowledge (NIZK)
proof system Γ = (P, V, S = (S1, S2)) with unpredictable simulated proofs and uniquely
applicable proofs for the language L of consistent pairs of encryptions, defined as:

L = {(e0, e1, c0, c1) : ∃m, r0, r1 ∈ {0, 1}∗ s.t. c0 = E(e0,m; r0) and c1 = E(e1,m; r1)}.

See [15] and [36] to show that such a proof system for L can be realized under relatively mild assump-
tions, such as the difficulty of factoring Blum integers. Alternatively, Groth [24] and Camenisch et
al. [12] realize simulation-sound NIZK proof systems for certain bilinear group statements, which
might apply here, although the one non-triviality would be handling the PRG.

Construction Πcca. The construction Πcca = (KeyGen,Encrypt,Decrypt), following [36] directly,
is then defined as follows. Let t(λ) be the polynomial bound on the amount of randomness needed
by the encryption algorithm to encrypt a single message and let q(λ) be the polynomial length of
the reference string required by the proof system Γ.

KeyGen(1λ). Call G(1λ) twice to generate two key pairs (e0, d0) and (e1, d1). Select a random
reference string Σ ∈ {0, 1}q(λ) for Γ. Set pk = (e0, e1,Σ) and sk = (d0, d1).

Encrypt(pk ,M ∈ ({0, 1} × Z∗p × Z∗p)2). Choose random r0, r1 ← {0, 1}t(k). Let c0 = E(e0,m; r0)
and c1 = E(e1,m; r1). Use P to generate a proof π relative to Σ that (e0, e1, c0, c1) ∈ L using
(m, r0, r1) as the witness. Output the ciphertext (c0, c1, π).

Decrypt(sk , C). Use V to verify the correctness of π. If π is valid, output either of D(d0, c0) or
D(d1, c1), chosen arbitrarily.

Theorem 4.1 Encryption scheme Πcca is IND-CCA secure under the Decisional Diffie-Hellman
Assumption in G1 and G2 (SXDH) and the assumption that proof system Γ satisfies the above
constraints. (Follows directly from Theorem 3.1 and [36], Theorem 4.1.)

Next, we have a more surprising result. It is just as easy to break this CCA system as it was
to break the CPA system, under a circular attack.

Theorem 4.2 Encryption scheme Πcpa is not IND-CIRC-CPA secure for cycles of length 2.

Proof sketch. Given two public keys pkA = (eA,0, eA,1,ΣA) and pkB = (eB,0, eB,1,ΣB), and two
valid ciphertexts CA = (cA,0, cA,1, πA) and CB = (cB,0, cB,1, πB). The attack follows the same
outline as that in the proof of Theorem 3.9, using the values (eA,0, eB,0, cA,0, cB,0) and ignoring the
rest of the ciphertexts. If the encryption keys are of different types (not both type 0 or type 1),
then the distinguisher will succeed with probability almost 5/8 as before. 2

5 Conclusion and Open Problems

In this work, we presented new public-key encryption systems that are secure in the IND-CPA and
IND-CCA sense, but fail catastrophically in the presence of a 2-cycle. Together with the IND-CPA
result of Acar et al. [2], this answers a longstanding, foundational question on whether standard
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definitions of encryption capture circular security, for cycles larger than self-loops. Our construc-
tions are quite practical and not obviously flawed (in a circular sense); indeed, had they been
proposed in a different context we believe that their weakness might have been overlooked. Given
these cautionary, negative results, the search for new and practical circular-secure systems becomes
all the more interesting. It is also of increased importance that encryption systems employed in
scenarios where key cycles may intentionally or accidentally occur be replaced or further analyzed
for weaknesses. Our work leaves open the interesting problems of finding a counterexample for
cycles of arbitrary size, under different complexity assumptions or relative to only the assumption
that IND-CPA-secure systems exist.
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A An Alternative Counterexample for CPA Security

As mentioned in Section 3, one “artificial” feature of the cryptosystem Πcpa is that the KeyGen
algorithm randomly embeds the public key into either G1 or G2 with probability 1/2 and then the
group setting of the ciphertext also differs depending on the public key. We know of no deployed
cryptosystems that alternate the setting of keys in such a manner (though specific implementations
may always do so for unexpected reasons).

Some readers might hope that this property renders our result inapplicable to the domain
of “practical” cryptosystems, i.e., to assume that cryptosystems with a single, defined key and
ciphertext structure are immune to the concerns we note here. We must disappoint these readers.

Below we propose an alternative IND-CPA-secure scheme Π′cpa that does not exhibit this “group
switching” feature, and yet still breaks catastrophically in the face of a 2-cycle. Indeed, this result
is even stronger than that of Section 3 since it permits an adversary to win the IND-CIRC-CPA game
with a higher probability. Π′cpa has keys and ciphertexts that are twice the length of those in Πcpa.
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Construction Π′cpa. Cryptosystem Π′cpa = (KeyGen′,Encrypt′,Decrypt′) uses Πcpa = (KeyGen,
Encrypt,Decrypt) as a building block. As before we assume that a single set of bilinear group
parameters will be shared across all keys generated at a given security level and are implicitly
provided to all algorithms. Let M be the message space of Πcpa. Then the message space for Π′cpa

is M′ =M×M. We define the system as follows.

KeyGen′(1λ). The key generation algorithm runs KeyGen repeatedly to obtain pk1, sk1 and pk2, sk2

where pk1 = (0, ·, ·) and pk2 = (1, ·, ·).4 The public key is set as pk = (pk1, pk2), and the
secret key as sk = (sk1, sk2).

Encrypt′(pk ,M). The encryption algorithm parses the public key pk = (pk1, pk2), and message
M = (m1,m2) ∈M′. Output the ciphertext C as:

C = (Encrypt(pk1,m2),Encrypt(pk2,m1))

Decrypt′(sk , C). The decryption algorithm parses the secret key sk = (sk1, sk2) and the ciphertext
C = (C1, C2). Next, it computes:

M = (Decrypt(sk2, C2),Decrypt(sk1, C1))

Correctness and IND-CPA Security. Correctness follows trivially from the correctness of Πcpa.

Theorem A.1 Encryption scheme Π′cpa is IND-CPA secure under the Decisional Diffie-Hellman
Assumption in G1 and G2 (SXDH).

We omit a formal argument for CPA security, but observe that as the keypairs (pk1, sk1) and
(pk2, sk2) are independently generated then, under a standard hybrid argument, the encryption
C = (Encrypt(pk1,m2),Encrypt(pk2,m1)) is an IND-CPA-secure encryption of (m1,m2) given The-
orem 3.1.

Attack on IND-CIRC-CPA Security. The above scheme breaks completely for 2-key cycles.

Theorem A.2 Encryption scheme Π′cpa is not IND-CIRC-CPA secure for cycles of length 2.

Proof sketch. To show that scheme Π′cpa is not IND-CIRC-CPA-secure for key cycles of length two,
we recall the attack of Section 3.4. As in that attack, we assume that the adversary receives
CA = Encrypt(pkA, skB) and CB = Encrypt(pkB, skA) or two encryptions of a fixed message, and
must distinguish which. Unlike that attack, we do not abort based on the structure of the public
keys. Instead we receive pkA = (pkA,1, pkA,2), pkB = (pkB,1, pkB,2), CA = (CA,1, CA,2) and
CB = (CB,1, CB,2). Now, there are two options. Either:

1. CA,1 = Encrypt(pkA,1, skB,2) and CB,2 = Encrypt(pkB,2, skA,1) and
CA,2 = Encrypt(pkA,2, skB,1) and CB,1 = Encrypt(pkB,1, skA,2); or

2. CA,1 = Encrypt(pkA,1, α2) and CB,2 = Encrypt(pkB,2, α1) and
CA,2 = Encrypt(pkA,2, α1) and CB,1 = Encrypt(pkB,1, α2)
for any fixed (α1, α2) ∈M′ as defined by Definition 2.4.

4This can be accomplished probabilistically by repeatedly calling KeyGen and discarding redundant keypairs;
alternatively the KeyGen algorithm can be trivially modified to produce the needed keys in only two calls.
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If we are in case 1, then we simply apply the exact attack from Section 3.4 twice to the pairs
(CA,1, CB,2) and (CA,2, CB,1) to recover both secret keys in full (skA,1, skA,2) and (skB,1, skB,2) with
probability 1. Once this is done and detected, D outputs 1.

If we are in case 2, then let α1 = (·,m1,m2) and α2 = (·,m′1,m′2). Parse skA,1 = (0, a1, a2) and
skB,2 = (1, b1, b2) and we have:

CA,1 = (cA,1, cA,2, cA,3, cA,4) = (gr, R · e(g, h)ra1 , gra2m′2+m′1 , F (R)⊕ encode(α2))
CB,2 = (cB,1, cB,2, cB,3, cB,4) = (hs, S · e(g, h)sb1 , hsm2b2 , F (S)⊕ encode(α1))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)
e(cA,3, cB,1)

= S ·e(g, h)sb1 · e(gr, hsm2b2)
e(gra2m′2+m′1 , hs)

= S ·e(g, h)s(b1−m
′
1) · (e(g, h)s(m2b2−m′2a2))r

Now, D will return 1 if and only if skA = decode((F (S) ⊕ encode(α1)) ⊕ F (X)). What is the
probability that this event occurs? First, suppose that s(m2b2−m′2a2) mod p 6= 0 (event E1), which
happens with probability ≥ 1 − 3/(p − 1) = (p − 4)/(p − 1) for honest executions. Next, consider
the values α1, α2, s, S as fixed and r is the only variable. What is the chance that the challenger’s
random choice of r will induce a value X such that F (X) = F (S) ⊕ encode(α1) ⊕ encode(skA)?
First, we observe that since s(m2b2−m′2a2) 6= 0 and r is chosen uniformly at random in Zp, then X
is also distributed uniformly at random in GT . Thus, by the assumption that F is computationally
indistinguishable from a uniform, random function, D will incorrectly guess a key cycle in this case
with probability at most 2−`(λ) plus a negligible amount ν(λ), where λ is the security parameter.

Thus, D’s total probability of success in this attack is:

Pr[D wins] = Pr[Case 1] · Pr[D wins |Case 1] + Pr[Case 2] · Pr[D wins |Case 2]

≥ 1
2
· 1 +

1
2
· (Pr[E1] · Pr[D wins |E1])

≥ 1
2

+
1
2
·
(
p− 4
p− 1

· (1− 2−`(λ) − ν(λ))
)

≥ 3
4
− (2−`(λ) + ν(λ))

2
for all p ≥ 7

Of course, for practical 80-bit or higher values of p, this probability is much closer to 1. 2
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