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Abstract

A homomorphic encryption scheme enables computing on encrypted data by means of a pub-
lic evaluation procedure on ciphertexts, making it possible for anyone to transform an encryption
of x into an encryption of f(x) (for any function f). But evaluated ciphertexts may differ from
freshly encrypted ones, which brings up the question of whether one can keep computing on
evaluated ciphertexts. Namely, is it still possible for anyone to transform the encryption of f(x)
into an encryption of g(f(x))?

An i-hop homomorphic encryption is a scheme where the evaluation procedure can be called
on its own output upto i times (while still being able to decrypt the result). A multi-hop
homomorphic encryption is a scheme that is i-hop for all i. In this work we study i-hop and
multi-hop schemes, in conjunction with the properties of circuit-privacy (i.e., the evaluation
procedure hides the function) and compactness (i.e., the output of evaluation is short). We
provide appropriate formal definitions for all these properties and show three constructions:

• We show a DDH-based construction, which is multi-hop and circuit private (but not com-
pact), and where the size of the ciphertext is linear in the size of the composed circuit,
but independent of the number of hops.

• More generically, for any constant i, an i-hop circuit-private homomorphic encryption
can be constructed from any two-flow protocol for two-party SFE. (Conversely, a two-flow
protocol for two-party SFE can be constructed from any 1-hop circuit-private homomorphic
encryption.)

• For any polynomial i, an i-hop compact and circuit-private homomorphic encryption can
be constructed from a 1-hop compact homomorphic encryption and a 1-hop circuit-private
homomorphic encryption, where the size of the public key grows linearly with i. More-
over, a multi-hop scheme can be constructed by making an additional circular-security
assumption.

For the first construction, we describe a re-randomizable variant of the Yao garbled-circuits.
Namely, given a garbled circuit, anyone can re-garble it in such a way that even the party that
generated that circuit (in collusion with the intended recipient) will not be able to recognize it.
This construction may be of independent interest.

Keywords. BHHO encryption, Homomorphic Encryption, Circuit Privacy, Secure Two-party
Computation, Oblivious Transfer, Yao’s garbled circuits.

1 Introduction

Computing on encrypted data epitomizes the conflict between privacy and functionality, and re-
ceived a great deal of attention lately. In the canonical setting of this problem there are two parties
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– a client that holds an input x, and a server that holds a function f . The client wishes to learn f(x)
using minimal interaction with the server and without giving away information about its input.
Similarly, the server may want to hide information about the function f from the client (except,
of course, the value f(x)). This problem arises in a wide variety of practical applications such as
secure cloud computing, searching encrypted e-mail and so on and so forth.

One way to achieve this goal is to have the client encrypt its input x and send the ciphertext to
the server, and have the server “evaluate the function f on the encrypted input”. The server returns
the evaluated ciphertext to the client, who decrypts it and recover the result. An encryption scheme
that supports computation on encrypted data is called a homomorphic encryption scheme. Namely,
in addition to the usual encryption and decryption procedure, it has an evaluation procedure,
that takes a ciphertext and a function and returns an “evaluated ciphertext”, which can then be
decrypted to obtain the value f(x).

A trivial implementation of this procedure is for the evaluated ciphertext to include both the
original ciphertext and the function f , and for the client to decrypt the original ciphertext and
then evaluate f on the result. The problem with this trivial solution is that it does not hide the
server’s function from the client, and that it does not offload any of the work to the server. We are
therefore interested also in the properties of circuit privacy (meaning that the evaluated ciphertext
hides the function) and compactness (meaning roughly that the work involved with decrypting the
evaluated ciphertext is less than in computing the function “from scratch”). We note that the first
concern can be handled using “generic tools” (such as Yao’s garbled circuits [32]), while the latter
concern seem to require “special-purpose schemes” (such as the recent scheme of Gentry [12] and
its variants [30, 29]).

1.1 Multi-Hop Fully Homomorphic Encryption

Now that we know what homomorphic encryption is, we ask whether it can be used also outside the
two-party setting for which it was designed. For example, consider the problem of encrypted e-mail
forwarding, where an e-mail encrypted under the public-key of Alice is sent to “alice@yahoo.com”,
and is promptly forwarded to “alice@gmail.com”. Both Yahoo and Google have their own spam-
tagging algorithms that they want to apply to incoming e-mails, hence we may want to use a
homomorphic encryption scheme so that they can apply these algorithms to the encrypted email.
In this example, Yahoo can clearly apply its spam-tagging algorithm to the encrypted incoming
e-mails and produce an (encrypted and) tagged set of e-mails. The question is: can Google apply
its own spam-tagging algorithm to this ciphertext? The problem is that the ciphertext received
by Google is not “fresh”, but is the result of a homomorphic evaluation procedure performed by
Yahoo!

What we need in this application is a multi-hop fully homomorphic encryption scheme, where
the homomorphic function evaluation can be applied not only to a fresh ciphertext, but also a
ciphertext that was already subjected to another homomorphic evaluation. This multi-hop setting
introduces two additional concerns, which are the focus of this work:
Extendability. The first concern is mostly syntactic: the evaluated ciphertexts may be in a
different form than fresh ciphertexts, and it is not clear that the evaluation procedure can process
this modified form. (Indeed, homomorphic encryption schemes that are derived from generic secure
computation protocols tend to have this problem, see below.) Hence the first challenge that we
face is Extendability: Can we transform one-hop schemes into multi-hop schemes?
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Multi-hop Circuit Privacy. The second concern is security. Multi-hop homomorphic encryption
brings up the concern of multi-hop circuit privacy. For example, in the mail-forwarding example
above, Google may worry that Yahoo! will collude with the sender and receiver of the email, in
order to learn something about Google’s spam-tagging techniques. For example, in Section 1.2 we
show a that although it is easy to modify Yao-based schemes to make them extendable, the result
does not provide full circuit privacy.

1.2 A Folklore Construction of Single-Hop FHE

The starting point of our work is the “folklore theorem” which asserts that any two-message pro-
tocol for secure two-party computation can be used to construct a single-hop fully homomorphic
encryption scheme (see, e.g., [16, 4]). The analogy between secure two-party computation and fully
homomorphic encryption is best seen by examining the structure of a two-message protocol for
secure computation of a function f . Consider the setting where a server holds a function f and a
client holds an input x, and the client wishes to receive f(x).

• The client sends to the server a first message that “encodes” its input x, and yet reveals
no information about x to a computationally bounded server. In other words, the client’s
message acts as a semantically secure encryption of x.

• The server’s response encodes the result of the computation (namely f(x)), and yet, reveals
no more information to the client about the function f . In other words, the server essentially
performs a circuit-private evaluation of the function f on an encrypted input.

• The client recovers the result f(x) from the server’s message, using her secret randomness.
This is the decryption procedure.

There is a slight mismatch, however, between the settings of secure function evaluation and public-
key encryption. In the setting above we have the client performing both encryption and decryption,
whereas in public-key encryption these two operations can be performed by two separate entities.
Fortunately, this mismatch is easily fixed: The solution is to have the client choose a public and
private key for some semantically secure encryption scheme, and ask the encryptor to publish
an encryption of its randomness (for the SFE protocol) under the client’s public key. Now, the
client (who knows the secret key) can recover the randomness used by the encryptor in the SFE
protocol, and use it to recover the result f(x) from the server’s message. This construction therefore
achieves a circuit-private, single-hop fully homomorphic encryption scheme from any two-message
secure two-party computation protocol (and an auxiliary semantically-secure encryption scheme).

Is the folklore scheme extendable? Consider the setting where there is a client who holds an
input x, two evaluators (servers) E1 and E2 who hold functions f1 and f2 respectively, and the
client wishes to receive f2(f1(x)). To achieve this, the client would like to compute an encryption
of x and send it to the first evaluator, who computes an encryption of f1(x) and passes it to the
second evaluator. The question we ask is: Can E2 now compute on the output of E1? For generic
two-party computation protocols, we only have a partial answer to this question: In Theorem 2 we
show how to extend the scheme from above to more than one hop, but the size of the ciphertext
grows by a polynomial factor for every hop (and hence we can only do so for constant many hops).

It is easy to see, however, that a protocol based on Yao’s garbled circuits [31, 19] is syntactically
extendable. Recall that in Yao’s garbled circuit construction, the server (who has a circuit) chooses
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Number of Hops d
Size of the Ciphertext

Assumption(in terms of d and
the functions f1, . . . , fd)

Construction 1 any polynomial in n poly(n) ·
(∑d

i=1 |fi|
)

decisional Diffie-Hellman
(see Theorem 1)
Construction 2 any constant O(nd) ·

(∑d
i=1 |fi|

)
any PKC

(see Theorem 2) + OT
Construction 3 any polynomial in n poly(n) any compact FHE
(see Theorem 3) + OT

Figure 1: Our Results. PKC=Public-key Encryption, FHE=Fully Homomorphic Encryption,
OT=Oblivious Transfer.

two random labels for every wire in the circuit, and for every gate it computes a “gate gadget” that
allows the client to learn one of the output labels if it knows one label on each input wire. The
collection of all these gadgets is called the “garbled circuit.” The server sends the garbled circuit
to the client, and engages in an oblivious transfer protocol where it reveals to the client exactly one
of the two labels on every input wire (without learning which was revealed). The client uses the
gadgets to learn one label on each wire, all the way to the output wires of the circuit. The server
also provides the client with a mapping between the output labels and zero/one, hence allowing
the client to learn the output.

Clearly, this construction is extendable: the second sever E2 receives the garbled circuit from the
first server E1, and it can now just use E1’s output labels for its own input labels, thus connecting
these two circuits and proceeding with the protocol.

Is the Yao-based scheme multi-hop circuit-private? We note that this extendable scheme
does offer a weak form of circuit-privacy: if only the client is corrupted, then the composed garbled
circuit looks as if it was generated “from scratch” on the compositions of the two circuits, and thus
it hides them from the client.

However, this argument breaks down completely when E1 colludes with the client. Now, E1

knows both the labels for each input wire of the garbled circuit that E2 prepares. Thus, from the
point of view of E1, the output of E2 is not garbled at all, in fact E1 can completely recover f2.
Our work shows various ways to remedy this problem, and construct multi-hop circuit-private fully
homomorphic encryption schemes.

1.3 Our Results

We formally define the notion of multi-hop circuit-privacy, and show three constructions of i-hop
fully homomorphic encryption schemes, for different values of i, and under different assumptions.
Definition of Multi-Hop Fully Homomorphic Encryption. Informally, in an i-hop FHE
scheme, a sequence of i functions f1, . . . , fi can be homomorphically evaluated one by one, on a
ciphertext c produced by encrypting a message x. This is pictorially depicted as follows. (Here
E1, . . . , Ed denote the d players – evaluators – that hold the functions f1, . . . , fd).

Encryptor(x)
c0=Enc(x)→ E1(f1, c0) c1→ . . . Ej−1(fj−1, cj−2)

cj−1→ Ej(fj , cj−1)
cj→ . . .

cd→ Decryptor

A multi-hop FHE scheme is simply an i-hop scheme that works for any (polynomial) i.
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The definition of multi-hop circuit privacy requires that for every j ∈ [d], even if all the eval-
uators except Ej combine their information, they still learn no information about fj (other than
its input and output). The formal definition is simulation-based, extending the (1-hop) definition
of Ishai and Paskin [16]. In this work we only deal with the honest-but-curious setting, and only
consider the case where all but one of the evaluators are corrupted (as opposed to an arbitrary
subset of them). Treatment of the more general cases is left for future work.
Construction 1. In Section 4 we describe a multi-hop FHE scheme that can handle any polynomial
number of hops, and is semantically secure under the decisional Diffie Hellman assumption. The
size of the ciphertext in this scheme grows linearly with the size of the functions that are evaluated
on the ciphertext, but independently of the number of hops.

Theorem 1 (Informal). Under the decisional Diffie-Hellman assumption, there is a public-key fully
homomorphic encryption scheme Π1 such that for any polynomial p(n), Π1 is circuit private for
p(n) hops. There is a fixed polynomial q(n) such that on evaluating functions f1, . . . , fd on a fresh
ciphertext, the resulting ciphertext has size q(n)×

(∑d
i=1 |fi|

)
.

This encryption scheme essentially amends the Yao-garbled-circuit construction from previous
section (which was extendable but not multi-hop circuit-private). The problem there was that the
garbled circuit produced by the second evaluator E2 contains (as a sub-circuit) the garbled circuit
produced by E1; this reveals non-trivial information about the function f2 to the first evaluator.
The solution to this problem is to come up with a way to re-randomize Yao garbled circuits. Roughly
speaking, this is a procedure that takes a garbled circuit and constructs a random garbled circuit
for the same function.

We show a new variant of the garbled circuit construction for which such a re-randomization
can be done. For the construction, we rely on the oblivious-transfer protocol of Naor-Pinkas and
Aiello-Ishai-Reingold [22, 2], and on the encryption scheme of Boneh-Halevi-Hamburg-Ostrovsky
[7] (both of which are based on the decisional Diffie-Hellman assumption, and have nice additive
homomorphic properties).

Construction 2. In Section 3 we show how to convert any one-hop circuit-private homomorphic
encryption scheme into a scheme that handles i hops for any constant i. The ciphertext in this
scheme grows by a factor of nO(i) after i hops, where n is the security parameter. Thus, the scheme
is viable only for a constant number of hops. Since one-hop circuit-private homomorphic encryption
can be constructed from semantically secure encryption and two-message SFE, we get the following:

Theorem 2 (Informal). Under the assumption that semantically secure public-key encryption
schemes and two-message secure function evaluation protocols exist, there is a public-key fully
homomorphic encryption scheme Π2 such that for any constant d, Π2 is circuit private for d hops.
There is a fixed polynomial q(n) such that on evaluating functions f1, . . . , fd on a fresh ciphertext,
the resulting ciphertext has size at most q(n)d ×

(∑d
i=1 |fi|

)
.

Construction 3. A problem with both the schemes above is that the size of the ciphertext grows
with the functions that are evaluated on the ciphertext. On the other hand, the recently proposed
fully homomorphic encryption scheme of Gentry [12] (as well as the subsequent constructions [30,
29]) achieve compact ciphertexts. Namely, the size of the ciphertext after evaluating a function is
independent of the circuit-size of the function.

In Section 3.1 we show how to combine two single-hop FHE schemes – a compact (and not circuit-
private) homomorphic encryption scheme, and a circuit-private (but not compact) homomorphic
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encryption scheme – to construct a multi-hop FHE scheme that is both compact as well as circuit-
private for any polynomial number of hops.

Theorem 3 (Informal). Assume that there exist a single-hop compact (but not circuit-private)
FHE scheme, and a single-hop circuit-private (but not compact) FHE scheme. Then, for every
polynomial p(n), there is an encryption scheme Π3 such that Π3 is circuit private for p(n) hops.
There is a fixed polynomial q(n) such that on evaluating functions f1, . . . , fd on a fresh ciphertext,
the resulting ciphertext has size q(n) (independent of the size of the functions fj).

Since a single-hop circuit private (but not compact) FHE scheme can be constructed from any
two-message protocol for secure function evaluation, the result above holds under the assumption
that there exists a single-hop compact (but not necessarily circuit-private) encryption scheme, and
a two-message SFE protocol.

Finally, the scheme Π3 can handle only a fixed polynomial number of hops. If we assume some
circular-security assumption, then the scheme can be modified to another scheme Π′3 that handles
any polynomial number of hops.

1.4 Related Work

Rivest et al. [27] proposed the notion of homomorphic encryption shortly after the invention
of RSA. The first homomorphic encryption with a proof of semantic security based on a well-
defined assumption was proposed by Goldwasser-Micali [13]. Some other additively homomorphic
encryption schemes include Benaloh [5], Naccache-Stern [21], Okamoto-Uchiyama [24], Paillier [25],
and Damgard-Jurik [8]. ElGamal [10] is multiplicatively homomorphic. Boneh-Goh-Nissim [6]
permits computation of quadratic formulas (e.g., 2-DNFs) over ciphertexts. One can construct
additively homomorphic encryption schemes from lattices or linear codes [26, 18, 1, 20, 3]. These
schemes are extendable and re-randomizable. However, they cannot handle arbitrary functions f .

Sanders, Young and Yung [28] show that one can use a statistically circuit-private additively
homomorphic encryption scheme to construct a statistically circuit-private scheme that can handle
arbitrary fan-in-two boolean circuits, where the ciphertext size increases exponentially with the
depth of the circuit. Their scheme can therefore feasibly evaluate circuits in NC1. Ishai and Paskin
[16] show how to evaluate branching programs. In their scheme Eval outputs a ciphertext whose
length is proportional to the length of the branching program, but independent of its size. (Of
course, the complexity of evaluation is still proportional to the size of the branching program.)

The “Polly Cracker” scheme [11], and schemes by Aguilar Melchor et al. [20] and Armknecht and
Sadeghi [3] also handle arbitrary functions, but with rapidly expanding ciphertext size, especially
for multiplication gates. The extent to which these schemes can be made circuit-private is unclear.

Recently, several compact fully homomorphic encryption (FHE) schemes have been proposed
[12, 30, 29]. These are compact and extendable, and they provide non-generic re-randomization
techniques to get multi-hop circuit privacy. Also, while technically compact – i.e., the ciphertext
size does not depend on the function being evaluated – ciphertexts are larger than plaintexts by
a factor that is a large polynomials in the security parameter. For circuits that are not too large,
our multi-hop scheme may have more compact ciphertexts under reasonable security settings.

1.5 Organization

For didactic reasons, it is easier to present the “generic” Constructions 2 and 3 before we present the
DDH-based Construction 1. We begin in Section 2 with definitions, then present Constructions 2
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and 3 in Section 3, and Construction 1 is presented in Section 4.

2 Definitions

Nearly all our definitions rely on a security parameter, which is usually implicit. Adversarial
algorithms are always nonuniform. We use x ← X and x ∈R S for drawing from a distribution
and choosing uniformly from a set. We call a procedure efficient if it runs in polynomial time in
its input. We say that distributions are statistically close if the statistical distance between them
is negligible in the security parameter. We say that two distributions are indistinguishable if any
efficient distinguisher has only negligible advantage in distinguishing them.

2.1 Two-party Secure Function Evaluation

We fix a particular “universal circuit evaluator” U(·, ·), taking as input a description of a function f
and an argument x, and returning f(x). Using U we can view every bit-string f as describing a
function (where f(x) is just a shorthand for U(f, x)). Below we sometimes assume that U itself is
implemented as a boolean circuit.

A two-flow protocol for secure two-party computation (to be run by Alice the client and Bob the
server), is implemented by three polynomial-time procedures Π = (SFE1, SFE2, SFE-Out), where:

• SFE1(x) is a randomized procedure that Alice runs, taking as input the security parameter
and a string x. It outputs m1, which is the first-flow message of the SFE protocol, as well as
some state to be used later, (m1, r1)← SFE(x). We assume that r1 includes in particular all
the randomness that was used in the computation.

• SFE2(f,m1) is a randomized procedure that Bob runs, taking as input the security parameter,
the first-flow message m1, and a circuit f . The output is m2, the second-flow message of the
SFE protocol, and the randomness that was used in the computation, (m2, r2)← SFE2(f,m1).

• SFE-Out(r1,m2) is a procedure that takes Alice’s state r1 and Bob’s second-flow message m2,
and outputs some y.

We often neglect to mention some of the outputs of these procedures, writing, e.g., m2 ← SFE2(· · · ).
Correctness of the SFE protocol demands that the value y thus computed is equal to f(x), except
with negligible probability over the randomness of Alice and Bob. The input-privacy requirements
for Alice and Bob are defined next.

Definition 1 (Client privacy). A protocol Π = (SFE1,SFE2,SFE-Out) enjoys client privacy if for
any two inputs x, x′ of the same length, the distributions SFE1(x) and SFE1(x′) are indistinguishable
(even given x, x′).

Definition 2 (Server privacy - honest-but-curious). A protocol Π = (SFE1,SFE2,SFE-Out) enjoys
server privacy in the honest-but-curious model if there exists a polynomial-time simulator Sim such
that for every input x and function f , the two distributions DR(f, x),DS(f, x) below are indistin-
guishable:

DR(f, x) def= {(m1, r1)← SFE1(x), m2 ← SFE2(f,m1), output (f, x, r1,m1,m2)}

DS(f, x) def= {(m1, r1)← SFE1(x), m2 ← Sim(x, f(x),m1), output (f, x, r1,m1,m2)}
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2.2 Homomorphic Encryption

A homomorphic encryption scheme consists of four efficient procedures, E = (KeyGen,Enc,Dec,Eval).
KeyGen takes the security parameter and outputs a secret/public key-pair, Enc takes the public key
and plaintext and outputs a ciphertext, and Dec takes the secret key and a ciphertext and outputs
a plaintext. The Eval procedure takes a description of a function, the public key, and a ciphertext,
and outputs another ciphertext.

Also here to we sometimes use the convention that these procedures output the randomness
that they used, for example writing (c′, r′)← Eval(pk, f, c) rather than just c′ ← Eval(pk, f, c).

Multi-hop evaluation. We extend the Eval procedure from single functions to a sequence of
functions in the natural way. Below we say that an ordered sequence of functions ~f = 〈f1, . . . , ft〉
is compatible if the output length of fj is the same as the input length of fj+1 for all j. For ~f

a compatible sequence of t functions as above, we denote its j prefix by ~fj = 〈f1, . . . , fj〉. The
composed function ft(· · · f2(f1(·)) · · · ) is denoted (ft ◦ · · · ◦ f1).

We define an extended procedure Eval∗ that takes as input the public key, a compatible se-
quence ~f = 〈f1, . . . , ft〉, and a ciphertext c0. For i = 1, 2, . . . , t it sets ci ← Eval(pk, fi, ci−1),
outputting the last ciphertext ct.

Definition 3 (i-Hop Homomorphic Encryption). Let i = i(k) be a function of the security param-
eter. A scheme E = (KeyGen,Enc,Dec,Eval) is an i-hop homomorphic encryption scheme if for
every compatible sequence ~f = 〈f1, . . . , ft〉 with t ≤ i functions, every input x to f1, every (pk, sk)
in the support of KeyGen, and every c in the support of Encpk(x),

Decsk
(
Eval∗(pk, ~f , c)

)
= (ft ◦ · · · ◦ f1)(x)

We say that E is multi-hop homomorphic encryption if it is i-hop for any polynomial i.

We note that a 1-hop homomorphic encryption is just the usual notion of homomorphic encryp-
tion, as formalized, e.g., in [16, Def 5].

2.2.1 Semantic security, circuit privacy, and compactness

Semantic security (aka CPA security) [14] is defined as usual, regardless of Eval. We provide the
definition here for self containment.

Definition 4 (Semantic security). A scheme E = (KeyGen,Enc,Dec,Eval) is semantically secure,
is any efficient adversary A has at most a negligible advantage in the following game: First KeyGen
is run to produce (pk, sk) and A is given pk. Then A produces two target messages M0,M1 of
the same length. Then a bit σ is chosen at random σ ∈R {0, 1}, and the adversary gets back the
challenge ciphertext, which is computed as c ← Encpk(Mσ). Finally A outputs a guess σ′ for σ.
The advantage of A is defined as Pr [A outputs σ′ = 1 | σ = 1]− Pr [A outputs σ′ = 1 | σ = 0] .

We sometimes refer to the game above as the CPA game.
Next we define circuit privacy. Here we view the operation of Eval∗ as a multi-party protocol

with one party per evaluated function, and formalizes circuit-privacy as the usual input-privacy
property for these parties: Roughly, even if the recipient who holds the secret key colludes with all
the parties but one, the circuit of that one party still remains hidden, except perhaps (its size and)
the value that this circuit outputs on a single input.
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Definition 5 (Circuit privacy - honest-but-curious). An i-hop homomorphic scheme E = (KeyGen,
Enc,Dec,Eval) is circuit-private if there exists an efficient simulator Sim such that for every compati-
ble sequence of functions ~f = 〈f1, . . . , ft〉 with t ≤ i, every j ≤ t, every input x for f1, every (pk, sk)
in the support of KeyGen, and every ciphertext cj−1 in the support of Eval∗

(
pk, ~fj−1,Encpk(x)

)
,

the following two distributions are indistinguishable (even given x, ~fj and sk):

Eval(pk, fj , cj−1) and Sim
(
pk, (f1 ◦ · · · ◦ fj−1)(x), (f1 ◦ · · · ◦ fj)(x), cj−1

)
We remark that Definition 5 can be extended in several different ways. One obvious extension

would consider the malicious case (with or without assuming that the public key was created
honestly). Another extension is to consider a more general adversarial structure, where the attacker
can corrupt an arbitrary subset of the players (encryptor, evaluators, and recipient), and we still
want to ensure the privacy of the non-corrupted ones. Another extension to Definitions 5 and 3 is
to consider an arbitrary networks of functions (not just a single chain). Yet another extension is to
strengthen the privacy guarantee, requiring that Eval∗ hides not only the functions that the nodes
compute but also the structure of the network itself (e.g., the number of functions in the chain).
We leave all of these extensions to future work.

Definition 6 (Compactness). A scheme E = (KeyGen,Enc,Dec,Eval) is i-hop compact homomor-
phic if there exists a polynomial p(·) in (only) the security parameter, such that decryption of any
ciphertext w.r.t., security parameter k can be implemented by a circuit of size at most p(k) (even
for evaluated ciphertext).

Namely, for every value of k there exists a circuit Dec(k) of size size at most p(k), such that the
i-Hop property from Definition 3 holds for that decryption circuit.

The name “compactness” is justified by the fact that the evaluated ciphertexts cannot grow
beyond p(k) (regardless of f), if they are to be decrypted by a p(k)-size circuit. We comment that
compactness and circuit privacy together are still formally weaker then the Ishai-Paskin notion of
“privacy with size hiding” [16, Def 8].

3 From One-hop to i-hop Homomorphic Encryption

Below we show how to extend “generically” any 1-hop circuit-private homomorphic encryption
schemes into an i-hop scheme for any constant i > 0. The price that we pay for our transformation
is that the complexity of the i-hop scheme grows as kO(i) (for security parameter k).

The idea is that each evaluator (with function fj) in the chain, upon receiving the “evaluated
ciphertext” cj−1 from its predecessor, applies again the evaluation procedure but not to its original
function fj . Rather it applies it to the concatenation of fj with the decryption function of the un-

derlying scheme, namely to Ffj ,cj−1
(·) def= f

(
Dec(· ; cj)

)
. Correctness follows because (by induction)

Dec(s; cj) = (fj−1 ◦ · · · f1)(x).

Construction 2: from 1-hop to constant-hops. LetH = (KeyGen,Enc,Eval,Dec) be a circuit-
private one-hop homomorphic encryption scheme, and let d be a parameter, and we show how to
construct a circuit-private d-Hop homomorphic encryption H∗d = (KeyGen∗,Enc∗,Eval∗,Dec∗).

KeyGen∗: For j = 0, 1, . . . , d, run the key generation of H to get (pkj , skj) ← KeyGen(). Then,
for j = 0, 1, . . . , d − 1 sets αj ← Enc(pkj+1; skj) (and set αd =⊥). The public key is
pk∗ = {(pkj , αj) : j = 0, 1, . . . , d}, and the secret key is sk∗ = (sk0, . . . , skd).
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Enc(pk∗; x): Set c0 ← Enc(pk0;x0) and output [level-0, c0].

Eval∗(pk∗, [level-j, cj ], fj+1): Check that j < d, then compute the description of the function:

Ffj+1,cj (s) def= fj+1

(
Dec(s; cj)

)
.

(Note that fj+1, cj are “hard wired” inside Ffj+1,cj .) Set cj+1 ← Eval(pkj+1; Ffj+1,cj , αj)
and output [level-(j + 1), cj+1].

Dec∗(sk∗; [level-j, cj ]): Check that j ≤ d, then compute and output y ← Dec(skj , cj) .

Theorem 4. The scheme H∗ above is d-hop circuit private.

Proof (sketch) Correctness is easy to establish by induction. Fix some compatible sequence of
functions ~f = 〈f1, . . . , ft〉 with t ≤ d and some input x to f1. Clearly correctness holds for the
fresh ciphertext [level-0, c0], this is decrypted to x just by correctness of the underlying scheme.
Assuming now that correctness holds for j and we prove for j + 1. By 1-hop correctness of the
underlying private scheme we have

Dec(skj+1; cj+1) = Dec(skj+1; Eval(pkj+1;Ffj+1,cj , αj))

= Dec(skj+1; Eval(pkj+1;Ffj+1,cj ,Enc(pkj+1; skj)))
(a)
= Ffj+1,cj (skj)

(b)
= fj+1(Dec(skj ; cj))

(c)
= fj+1((fj ◦ · · · f1)(x)) = (fj+1 ◦ · · · f1)(x)

where equality (a) follows since H is one-hop homomorphic, equality (b) follows by definition of
Ffj+1,cj , and equality (c) follows from the induction hypothesis.

Semantic security of H∗ follows trivially from that of H (used for both the encryption of x
and the encryptions of each secret-key skj under the next public key pkj+1). Similarly, d-hop
circuit privacy follows trivially from the 1-hop privacy of H: The simulator for node j just uses the
underlying 1-hop simulator to directly generate the ciphertext cj .

Complexity. For a generic (non-compact) homomorphic encryption, the size of the circuit for
Dec(· · ·Eval(f, c)) could be larger than the size of the circuit for f by a poly(k) factor (with k
the security parameter). Indeed, this is the case for schemes that are derived from generic SFE
protocols. Hence the size of the circuit for Ffd,cd−1

(·) in our construction is

kO(1)(· · · kO(1) · (kO(1) · |f1|+ |f2|)) · · · ) + |ft| =
t∑

j=1

|fj | · kO(t−j) ≈
( t∑
j=1

|fj |
)
· kO(t)

which means that the ciphertext cj has size kO(t) times the size of the fj ’s.

Remark 1. We note that the parameter d can be larger than a constant, thus permitting the
evaluation of any constant number of hops (as opposed to having a particular constant parameter d).

We also note that we can shorten the public key by essentially putting it in the ciphertext.
Specifically, we add to the construction an auxiliary semantically secure encryption scheme E, and
the key generation is just the key-generation of E. Then the encryption routine runs first the
KeyGen∗ routine from above and then the Enc∗ routine, adding to the ciphertext the entire public
key pk∗, as well as an encryption of sk∗ under the public key of the auxiliary scheme E. On
decryption, the receiver first recovers sk∗ (using the auxiliary secret key that it knows), and then
runs the decryption Dec∗ from above.
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3.1 Compact and Circuit-Private Homomorphic Encryption

From the construction above we know that it is possible to construct an i-hop circuit-private
scheme from a 1-hop circuit-private scheme (which implies a two-flow private SFE protocol). The
complexity of the result grows with ni, where n is the blowup factor of the one-hop scheme (i.e.,
the amount by which Dec(· · ·Eval(f, · · · )) is larger than f). We note that this means in particular
that if we have a compact 1-hop circuit-private scheme, then we could use it to get a compact i-hop
circuit-private scheme, for any polynomial i (since the circuits that are involved do not grow).

Below we show that given a 1-hop scheme which is compact but not private, and another 1-hop
scheme which is private but not compact, we can combine them to get a 1-hop scheme which is both
compact and private (and thus also i-hop compact and private schemes for all i). The idea is simply
to iterate the two schemes at every hop. First we apply the private scheme to the function f that we
want to evaluate, thus getting a “private ciphertext” which is large but does not reveal information
about f . Then we apply the compact scheme to the decryption function of the private scheme, in
essence “compressing” the large ciphertext into a compact one which is still decrypted to the same
value. The result is clearly compact (since it outputs the “compact ciphertext”). It is also private
since the compact ciphertext only depends on the function f is via the value of the intermediate
“private ciphertext”, and even if we were to give the adversary the “private ciphertext” itself, it
would still not violate the privacy of f .1

We note that when using this technique, we again get a “hard-wired” parameter d that limits
the number of hops that we can handle: to get a d-hop scheme, the public key (or ciphertext) must
have size linear in d. (Differently from Construction 2, however, now d can be any polynomial.)
This limitation can be circumvented by relying on circular security of the resulting 1-hop scheme,
see Remark 2.

Construction 3: from compact 1-hop to multi-hop. Let pH = (pKeyGen, pEnc, pEval, pDec)
be a circuit-private homomorphic 1-hop encryption scheme (that need not be compact), and let
cH = (cKeyGen, cEnc, cEval, cDec) be a compact homomorphic 1-hop encryption scheme (that need
not be private).

Let d (=poly(n)) be a parameter of the system (that represents the number of hops that we are
shooting for). We construct a compact and circuit-private d-hop homomorphic encryption scheme
H∗d = (KeyGen∗,Enc∗,Eval∗,Dec∗) as follows.

KeyGen∗: Run each of pKeyGen, cKeyGen for d+ 1 times, to get for j = 0, 1, . . . , d:

(ppkj , pskj)← pKeyGen, (cpkj , cskj)← cKeyGen,

and for j < d also: αj ← pEnc
(
ppkj︸ ︷︷ ︸

key

; cskj︸︷︷︸
ptxt

)
, βj ← cEnc

(
cpkj+1︸ ︷︷ ︸

key

; pskj︸︷︷︸
ptxt

)
Defining αd = βd =⊥, the public key is the set pk∗ = {(ppkjcpkj , αj , βj) : j = 0, 1, . . . , d},
and the secret key is sk∗ = (csk0, csk1, . . . , cskd).

Enc∗(pk∗; x): Set c0 ← cEnc(cpk0; x) and output
[
level-0, c0

]
.

1We comment that iterating the two systems in the opposite order also works: we can apply the compact scheme
to the function f and the private scheme to the decryption of the compact one.
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Eval∗(pk∗, [level-j, cj ], fj+1): Check that j < d, then compute the description of the function

Ffj+1,cj (s) def= f(cDec(s; cj)), and set

c′j ← pEval(ppkj ; Ffj+1,cj , αj).

Then compute the description of the function Gc′j (s) def= pDec(s; c′j)), and set

cj+1 ← cEval(cpkj+1; Gc′j , βj).

Output
[
level-(j + 1), cj+1

]
.

Dec∗(sk∗; [level-j, cj ]): Check that j ≤ d, then compute and output y ← cDec(cskj ; cj).

Theorem 5. For any d = poly(n), the scheme H∗d above is a compact circuit private d-hop homo-
morphic encryption scheme.

Proof (sketch) Correctness is again proved by easy induction. Fix some compatible sequence of
functions ~f = 〈f1, . . . , ft〉 with t ≤ d and some input x to f1. Clearly correctness holds for the
fresh ciphertext [level-0, c0], this is decrypted to x just by correctness of the underlying compact
scheme. Assuming now that correctness holds for j and we prove for j + 1. By 1-hop correctness
of the underlying private scheme we have

pDec(pskj ; c′j) = pDec(pskj ; pEval(ppkj ;Ffj+1,cj , αj))
= pDec(pskj ; pEval(ppkj ;Ffj+1,cj , pEnc(ppkj ; cskj)))

= Ffj+1,cj (cskj)
(a)
= fj+1(cDec(cskj ; cj))

(b)
= fj+1(~fj(x)) = ~fj+1(x)

where equality (a) follows by definition of Ffj+1,cj and equality (b) follows from the induction
hypothesis. Now, by 1-hop correctness of the underlying compact scheme we have

cDec(cskj+1; cj+1) = cDec(cskj+1; cEval(cpkj+1;Gc′j , βj))

= cDec(cskj+1; cEval(cpkj+1;Gc′j , cEnc(cpkj+1; pskj)))

= Gc′j (pskj) = pDec(pskj ; c′j) = ~fj+1(x)

Hence [level-(j + 1), cj+1] will indeed be decrypted to ~fj+1(x), as needed.
Semantic security of H∗ follows trivially from that of the two underlying schemes (where we

only need the semantic security of the private scheme due to the chain of key-encryptions in the
public key of H∗). Also, compactness follows trivially since the decryption algorithm is the same
as that of the underlying compact scheme.

Similarly, d-hop circuit privacy follows easily from the 1-hop privacy of the underlying private
scheme. The simulator for node j uses the underlying 1-hop simulator to generate the intermediate
ciphertext c′j−1, and then proceeds just as in the scheme to compute the description of Gc′j−1

(·) and
compute cj .

Remark 2. To get a multi-hop scheme (without the parameter d), we can replace the chain of
αj’s and βj’s by a two-circle α ← pEnc(ppk; csk), and β ← cEnc(cpk; psk). If the result is still
semantically secure and 1-hop circuit private, then we get a multi-hop compact and private scheme.
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4 Multi-hop homomorphic encryption from DDH

In this section, we devise a new tool for achieving multi-hop homomorphic encryption, namely
“extendable and re-randomizable SFE”, and show that this tool can be implemented under the
decision Diffie-Hellman assumption. We begin with definitions.

Definition 7 (Extendable SFE – honest but curious). A two-flow SFE protocol Π = (SFE1,
SFE2, SFE-Out) is (statistically) extendable, if there exists an efficient procedure Extend such that
for every two circuits f, f ′ with the input length of f ′ equal the output length of f , every input x for f ,
and every first-flow message m1 in the support of SFE1(x), the distributions Extend(SFE2(m1, f), f ′)
and SFE2(m1, f

′ ◦ f) are statistically close. Π is computationally extendable if these two distribu-
tions are computationally indistinguishable (even given m1, f and f ′).

Note that extendable SFE by itself already yields multi-hop homomorphic encryption with
a weak form of circuit-privacy: to a recipient that does not know the intermediate values from
SFE2(m1, f), the output of Extend looks just as if it was generated “from scratch” by SFE2, so
Extend hides the circuit if SFE2 does. This means that when Π is used for multi-hops, then as long
as all the intermediate hops are “trusted” not to reveal their intermediate results, using Extend
would maintain the privacy of everyone’s circuits.

However, this solution still falls short of our circuit-privacy goal, since a collusion between the
recipient and the node that computed SFE2(m1, f) can reveal the circuit f ′. In other words, the
output of Extend may not be (pseudo)random given the intermediate results from SFE2(m1, f). To
overcome this problem, we introduce the notion of re-randomizable SFE: In a nutshell, we want to
transform the second flow message m2 into m′2 such that even a collusion of the party that computed
m2 with the recipient cannot distinguishm′2 from random. Then a node can re-randomize the circuit
of its predecessor, thus rendering the intermediate results held by the predecessor irrelevant. This
is formalized as follows:

Definition 8 (Re-randomizable SFE – honest but curious). A two-flow SFE protocol Π is (statis-
tically) re-randomizable if there exists an efficient procedure reRand such that for every circuit f
and input x and every two messages m1,m2 in the support of SFE1(x), SFE2(m1, f), respectively,
the distributions reRand(m1,m2) and SFE2(m1, f) are statistically close. Π is computationally ex-
tendable if these two distributions are indistinguishable, even given m1,m2 (and the randomness
that was used to generate them).

Theorem 6 (Extendable+Re-randomizable ⇒ Multi-hop). An extendable and re-randomizable
two-flow SFE protocol with client and server privacy, in conjunction with a semantically secure
public-key encryption scheme, implies a multi-hop homomorphic encryption scheme. Moreover, the
size of an evaluated ciphertext in this scheme does not depend on the number of hops, but only on
the composed circuit.

Proof (sketch) Let (SFE1,SFE2,SFE-Out) be an extendable and re-randomizable two flow SFE
protocol with client and server privacy, and let (KeyGen,Enc,Dec) be a semantically secure public
key encryption scheme. We now describe the construction of the homomorphic encryption scheme.

The key generation of the homomorphic scheme is the same as KeyGen for the underlying
encryption. To encrypt a plaintext x under pk, first generate (m1, r)← SFE1(x), encrypt r under
the public key pk to get c ← Encpk(r), and finally, compute m2 ← SFE2(m1, fID) (where fID is
the identity function). The ciphertext is (c,m1,m2).
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To evaluating a function f on a ciphertext (c,m1,m2), first set m′2 ← reRand(m1,m2), and then
set m∗2 ← Extend(m′2, f). The evaluated ciphertext is (c,m1,m

∗
2).

Decrypting a ciphertext (c,m1,m2) consists of using the decryption of the underlying encryption
scheme to recover the randomness r from c, then outputting y ← SFE-Out(r,m2).

Correctness of the scheme follows from the the correctness of Π, and its extendability and
re-randomizability: we know that SFE-Out would recover the right y when given the second-flow
message from SFE2, and by extendability the output of Extend is the same as that of SFE2, no matter
how many hops were used.2 Semantic security follows from semantic security of the underlying
encryption and from the client-privacy of Π.

Circuit privacy follows from the re-randomizability and extendability of the SFE protocol.
Consider a player that gets the ciphertext (c,m1,m

(j−1)
2 ), obtained after evaluating f1, . . . , fj−1

on an encryption of x. This player begins by re-randomizing m
(j−1)
2 , such that the distribution

of the resulting ciphertext can be simulated using only the knowledge of the input fj−1(. . . f1(x)).
(This follows from the re-randomizability as well as the server privacy of the SFE). Finally, from the
extendability of the SFE protocol, the final garbled circuit that player-j outputs is indistinguishable
from a fresh garbled circuit for the combined function fj(. . . f1(·)) which, by the server privacy of the
SFE protocol, can be simulated using only the knowledge of the output fj(. . . f1(x)). In summary,
the view of the honest-but-curious adversary can be sampled using the knowledge of only the input
and the output of the jth player (in the clear), which shows circuit privacy.

Given Theorem 6, we now focus on constructing an extendable and re-randomizable SFE pro-
tocol. Our starting point is Yao’s garbled circuit construction [31, 19], which is extendable but
not re-randomizable. We seek a re-randomizable implementation of this scheme by using building
blocks that are “sufficiently homomorphic” to support the randomization that we need. Specifi-
cally, we rely on the oblivious-transfer protocol of Naor-Pinkas and Aiello-Ishai-Reingold [22, 2],
and on the encryption scheme of Boneh-Halevi-Hamburg-Ostrovsky [7]. We recall our tools in
Sections 4.1-4.3, and then present our construction in Sections 4.4-4.5.

4.1 Additively-homomorphic oblivious transfer

Definition 9 (Oblivious Transfer – honest but curious). A two-flow oblivious transfer protocol
is a two party protocol between a sender and a receiver, where the sender gets as input two bits
γ0, γ1 ∈ {0, 1}, the receiver gets as input a choice bit σ ∈ {0, 1}, and the following conditions are
satisfied:

• Functionality: For any sender input bits γ0, γ1 and choice bit σ, the receiver outputs γσ at
the end of the protocol.

• Receiver’s security: Denote by OT1(1k, σ) the message sent by the honest receiver with choice
bit input σ (and security parameter k). Then the distribution OT1(1k, 0) and OT1(1k, 1) are
indistinguishable.

• Sender’s security: Denote by OT2(1k, γ0, γ1,m1) the response of the honest sender with in-
put (γ0, γ1) and security parameter k when the receiver’s first message is m1. Then there
exists an efficient simulator Sim such that for any three bits σ, γ0, γ1 ∈ {0, 1}, and any

2For computationally extendable Π, we use the fact that outputting the wrong y would be a distinguishing test.
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first-flow message m1 in the support of OT1(1k, σ), the distributions OT2(1k, γ0, γ1,m1) and
Sim(1k, b,m1, γσ) are statistically close.

Definition 10 (Blindable OT). A two-flow oblivious transfer protocol is blindable if there exists
an efficient algorithm Blind such that for every three bits σ, γ0, γ1, every first-flow message m1 in
the support of OT1(1k, σ) and every second-flow message m2 in the support of OT2(1k, γ0, γ1,m1),
the distributions Blind(m1,m2) and OT2(1k, γ0, γ1,m1) are statistically close.

Naor-Pinkas and Aiello et al. [22, 2] proved that the following protocol meets Definition 9.3

The protocol operates in a prime-order group where the decision Diffie-Hellman problem is believed
hard. Denote the group order by q. On input a choice-bit σ, the receiver chooses two arbitrary
distinct order-q elements g, h ∈ G and two random distinct exponents r, r′ ∈R Z∗q . The receiver
computes x := gr, yσ := hr, and yσ̄ := hr

′
, and sends to the sender the elements (g, h, x, y0, y1).

Note that (g, h, x, yσ) is a Diffie-Hellman tuple, while (g, h, x, yσ̄) is a non-Diffie-Hellman tuple.
The sender, given two input bits γ0, γ1 and the receiver’s message (g, h, x, y0, y1), chooses four

random exponents s0, t0, s1, t1 ∈R Zq, and for i ∈ {0, 1} it sets ai := gsihti and bi := xsiytii · gγi .
The sender sends (a0, b0, a1, b1) back to the receiver. When the sender inputs are longer than one
bit, the same construction can be repeated for every bit (but they all can share the same elements
g, h, x, y0, y1).

The receiver can recover the bit γb by outputting zero when bσ = arσ and outputting one
otherwise. At the same time, the bit γσ̄ is statistically hidden from the receiver, since (g, h, x, yσ̄) is
a non-Diffie-Hellman tuple. (This scheme was later extended to work with other smooth projective
hashing schemes, cf. [17, 15].)

This scheme is also blindable: On input m1 = (g, h, x, y0, y1) and m2 = (a0, b0, a1, b1), the
Blind algorithm chooses four random exponents s′0, t

′
0, s
′
1, t
′
1 ∈R Zq, and for i ∈ {0, 1} it sets:

a′i := gs
′
iht
′
i · ai (= gs

′
i+siht

′
i+ti), and b′i := xs

′
iy
t′i
i · bi (= xs

′
i+siy

t′i+ti
i · gγi).

4.2 The BHHO encryption scheme

Boneh et al. described in [7] a “circular secure” encryption scheme, with security based on the
hardness of DDH. Below we refer to this scheme as the BHHO scheme. The BHHO scheme is a
public-key encryption scheme, but here we describe it as a secret-key scheme (since we only use the
public key for re-randomization, not for encryption). The scheme works in a prime-order group G
where the Decision Diffie-Hellman problem is believed hard. Denote the order of G by q, let g be
some “canonical” generator of G, and denote ` def= d3 log qe.

The secret key is a random vector ~s ∈ {0, 1}`. An encryption of a bit b ∈ {0, 1} is an (`+1)-vector
of elements ~u ∈ G`+1, with the first ` elements chosen at random in G and the last one computed
as u`+1 := gb/

∏`
i=1 u

si
i . Decryption works by computing y := u`+1 ·

∏`
i=1 u

si
i = 1, outputting zero

if y = 1, one if y = g, and ⊥ otherwise. The public key for this scheme is a random encryptions of
zero, and here we consider the public key to be a part of every ciphertext. Encrypting a vector of
bits is done bit-by-bit.

It was shown in [7] that this scheme is semantically secure, and it also enjoys strong homomor-
phic properties for both plaintext and secret-key. In particular, given a BHHO public key pk for
some secret key ~s ∈ {0, 1}` and a ciphertext ~u ∈ G`+1 that encrypts a bit b w.r.t. ~s, and given any
affine transformation from Z`q to itself, T (~x) = A~x+~b, one can transform pk, ~u into pk′, ~u′ such that

3In fact, they proved that this protocol is even secure in the malicious model.
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IF ~s′ = T (~s) is a 0-1 vector, THEN pk′ is a random public key for ~s′ and ~u′ is a random encryption
of the same bit b under ~s′. 4 This means in particular that we can implement a bitwise XOR of a
known mask with ~s, and a permutation of the bits of ~s, since both are affine functions that map
0-1 vectors to 0-1 vectors. Also, BHHO has the same homomorphic properties with respect to the
plaintext.

4.3 Yao’s garbled circuit construction

Recall that in Yao’s garbled circuit construction, the server (who has a circuit of fan-in-2 gates)
chooses two random `-bit labels for every wire w in the circuit: label Lw,0 representing the value
zero and label Lw,1 representing the value one. For every gate in the circuit, the server prepares
a small gadget as follows: Denote the gate operation by ? and let the labels on the input wires
be Lw1,0, Lw1,1, Lw2,0, Lw2,1, and the labels on the output wires be Lw3,0, Lw3,1. The gate gadget
consists of the four ciphertexts

{EncLw1,i(EncLw2,j (Lw3,k)) : i, j ∈ {0, 1}, k = i ? j} (1)

The server sends all these gadgets to the client, and also uses an oblivious transfer protocol to reveal
exactly one of the two labels on every input wire to the client, depending on the clients input. The
server also provides the mapping of the two labels on every output wire to zero and one. The client
can then decrypt its way through the circuit, arriving at the output labels and learning the output
bits.

We comment that this construction does not hide the structure of the circuit (i.e., what gate
output is used in what other gate input), but this is easily dealt with by canonicalizing the circuit.
Recall that we consider a “universal circuit evaluator” U(·, ·) with f(x) being a shorthand for
U(f, x). The server can therefore always prepare a garbled version of U itself, and for the bits of f
it just sends the corresponding label to the client in the clear.

Clearly, this construction is extendable: an intermediate node can take the output labels from
its predecessor and just use them as input labels for its own garbled circuit.5 As we mentioned
above, this means that it offers a weak form of circuit-privacy. However, it is not quite circuit
private, since the predecessor of a node knows both input labels to the circuit of this node, so from
the predecessor’s perspective the circuit of this node is not garbled at all.

To allow re-randomization, we rely on the homomorphic properties of our building blocks. In a
nutshell, we implement the double-encryption from Eq. (1) by choosing a random mask δ and then
encrypting δ under Lw1,i and encrypting (Lw3,k ⊕ δ) under Lw2,j , using the BHHO scheme. We
note that re-randomization turns out to be nontrivial. In particular XOR-homomorphism seems
insufficient, and we need to use the full power of the “affine function homomorphism” of BHHO.
See Section 4.5.

4Strictly speaking, to get new public key and ciphertext that are random and independent of the original pk and
~u, one needs to use the “extended public key” for the scheme E1 from [7]. It is easy to see, however, that using the
non-extended public key we get a new public key and ciphertext that are pseudorandom under DDH. We ignore this
fine point in the rest of this writeup.

5This description assumes that the “circuit canonicalization” still works, i.e., that canonicalizing first f and then
f ′ gives the same circuit as canonicalizing f ′ ◦ f .
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4.4 Our Construction

The construction closely follows Yao’s original garbled circuit construction. The client (Alice) on
input x1, . . . , xn, sends n first-flow messages of the OT protocol from above, using her input bit xi
as the choice bit for the i’th message, m1[i]← OT1(xi).

The server (Bob) has a boolean circuit with fan-in-2 gates. Bob’s circuit has n input ports, some
number of output ports, and some number of internal gates. Each wire in the circuit is therefore
either an input wire (connecting an input port to some internal gates and/or output ports), or a
gate-output wire (connecting the output of one internal gate to some other internal gates and/or
output ports). We stress that we allow the same wire to be used as input to several internal gates
or output ports.6

Bob receives from Alice the n OT first-flow messages, m1[1], . . . ,m1[n]. He begins by choosing
at random two `-bit labels Lw,0, Lw,1 for every wire w, each having exactly d`/2e 1’s. (Here ` is
the length of the BHHO secret key.) For each input wire wi, corresponding to Alice’s first-flow
message m1[i], Bob computes the second-flow OT message for the two labels on the corresponding
input wire, m2[i]← OT2(m1[i];Lwi,0, Lwi,1).

Then, for an internal fan-in-2 gate (computing the binary operation ?), Bob computes four pairs
of ciphertexts as follows: Let w1, w2 be the two input wires for this gate and w3 be the output wire.
Bob chooses four fresh random 2`-bit masks δi,j for i, j ∈ {0, 1} and computes the four pairs:{(

EncLw1,i(δi,j), EncLw2,j ((Lw3,k|0`)⊕ δi,j)
)

: i, j ∈ {0, 1}, k = i ? j
}

(2)

Namely, Bob uses the secret key Lw1,i to encrypt the mask δi,j itself, and the other secret key Lw2,j

to encrypt the masked label, concatenated with ` zeros).7 The “gadget” for this gate consists of
the four pairs of ciphertexts from Eq. (2) in random order. The gabled circuit that Bob sends back
to Alice consists of the n second-flow OT messages m2[1], . . . ,m2[n], and the gadgets for all the
gates in the circuit (which we assume include an indication of which wire connects what gates). In
addition, for each output wire w with labels Lw,0 and Lw,1, Bob sends an ordered pair of public
keys, the first corresponding to Lw,0 and the second to Lw,1. (We chose this particular mapping to
enable re-randomization.)

Upon receiving this garbled circuit, Alice first uses the recovery procedure of the OT protocol
to recover one of the labels for each input wire. Then she goes over the garbled circuit gate by gate
as follows: For a fan-in-2 gate where she knows the labels L1, L2 for the two inputs, she uses the
key L1 to decrypt the first component in each of the four pairs and uses the key L2 to decrypt the
second component of the four pairs. Then she XORs the two decrypted strings from each pair, and
if any of the resulting strings is of the form L∗|0` then she takes L∗ to be the label of the output
wire. (If more than one string has the form L∗|0 then Alice takes the first one, and if none has this
form then she sets L∗ = 0`.) Upon recovering a label on an output port, she checks if this label
corresponds to the first or the second public keys that were provided for this port, outputting zero
or one accordingly. (Or ⊥ if it does not correspond to any of them.)

6We assume that the two input wires at each gate are always distinct. This can be enforced, e.g., by implementing
a fan-in-1 gate (i.e., NOT) via a fan-in-2 XOR-with-one gate.

7Recall that encryption under a secret key ~s includes also the BHHO-public-key for this secret key. In our case
we encrypt many bits under the same secret key, and we can use just one public key for all of these encryptions to
save on space. This does not really effect security, however.
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Remark: balanced secret keys. We note that the BHHO scheme is used here with secret keys
that have exactly `/2 1’s in them, rather than with completely uniform secret keys. This is used for
the purpose of re-randomization, as described in Section 4.5. We note that this variant of BHHO
is also semantically secure: In fact, Naor and Segev proved that under DDH, the BHHO scheme is
semantically-secure for every secret-key distribution with sufficient min-entropy (cf. [23, Sec 5.2]).
We will use this stronger result in our proof of the re-randomization property in Section 4.5.

Theorem 7. The protocol from above, using the BHHO encryption scheme, enjoys both client and
server privacy, under the DDH assumption.

Proof (sketch) The proof is essentially the same as the Lindell-Pinkas proof of the Yao protocol
[19, Thm 5]. We note that privacy holds in whatever model in which the underlying OT protocol
is secure. That is, if the OT protocol is only secure in the honest-but-curious model then the
above protocol will be private only in the honest-but-curious model, and if the OT is secure in the
malicious model then this protocol will also be private in the malicious model.

The client-privacy part is completely identical to [19], and is omitted here. The high-level
structure of the server-privacy proof is also similar to [19], in that we use roughly the same simulator,
and a similar high-level argument about why the simulator’s output is indistinguishable from the
real scheme. Given Alice’s first-flow message (m1[1], . . . ,m1[n]) and the value f(x) (for Bob’s
function f and Alice’s effective input x), the simulator proceeds as follows: First it chooses two
random labels, each with `/2 1’s, for each wire in the circuit. Then it chooses at random one of
these two labels, and designates it as the “active label” for that wire. Throughout this proof we
always denote the active label on wire w by Lw, and the other label by L′w.

Next, the simulator uses the OT simulator to generate second-flow OT messages that would
yield the active value for each input wire, setting m2[i]← OT-Sim(xi,m1[i], Lwi).

Next, for each internal fan-in-2 gate in the circuit with input wires w1, w2 and output wire w3,
the simulator generates four ciphertext-pairs under the same keys as Bob would have done, but it
encrypts only the active label for the output wire in these four pairs. Namely, denote the active
labels on these wires by Lw1 , Lw2 , Lw3 , and the inactive labels by L′w1

, L′w2
, L′w3

, respectively. Bob
chooses four fresh random masks δ1, δ2, δ3, δ4 for this gate, and computes the four ciphertext pairs:(

EncLw1
(δ1), EncLw2

((Lw3 |0`)⊕ δ1)
)

,
(
EncLw1

(δ2), EncL′w2
((Lw3 |0`)⊕ δ2)

)
(
EncL′w1

(δ3), EncLw2
((Lw3 |0`)⊕ δ3)

)
,
(
EncL′w1

(δ4), EncL′w2
((Lw3 |0`)⊕ δ4)

)
(3)

The simulated gadget for this circuit consists of the four pairs in random order. Finally, for each
output port the simulator provide an ordered pair of the public keys for both labels, where the
public key of the active label is either the first or the second in the pair, depending on whether the
output bit for that port is zero or one.

Proving that the view generated by this simulator is indistinguishable from the real execution
follows an approach similar to Lindell-Pinkas. We consider a sequence of games, with the first game
producing a distribution identical to Bob’s message and the last game producing a distribution
identical to simulator’s output, and prove that any two successive games have indistinguishable
output. These games are all played by a “challenger” that knows Bob’s function f and Alice’s
effective input x.

The first game just follows Bob’s procedure for generating his reply, without any changes. In
addition, for every wire w in the circuit, the challenger designates the label that the honest Alice
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(with input x) would learn during evaluation as the “active” label, and the other label is the
“inactive” one.

The second game proceeds just as in the first game, except that the OT second-flow messages
are generated by the OT simulator instead of the OT protocol. This game is indistinguishable from
the first game by the sender-security of the OT protocol.

Next come a sequence of games, one for each wire in the circuit. In each game, some ciphertexts
are modified from encrypting the “correct label” for a gate-output wire (as Bob does) to encrypting
just the active label for the same wire (as the simulator does). Specifically, the wires are ordered
in the order that Alice learns their labels during evaluation. Then, in the i’th game we change all
the encryptions under the inactive label of the i’th wire. That is, for every gate that use wire wi
for input, two of the four ciphertext-pairs include a ciphertext that is encrypted under the inactive
label L′wi

. In the i’th game, we change the value that is encrypted in these ciphertexts, so that
when XORed with the value in the other ciphertext in the pair, they result in the corresponding
gate-output wire (with ` trailing 0’s). (This may or may not be the same value that was encrypted
in these ciphertexts in game i− 1.)

We note that the only ciphertext-pairs that are not modified in this sequence of games are those
where both encryptions are under the active labels of the input wires. By definition, this means
that the label encrypted by this pair must also be active: If Alice knows both labels Lwi and Lwj

then she learns also the label that is encrypted by the pair (EncLwi
(·),EncLwj

(·)), hence that label
is active. It follows that at the last game in the sequence, only the active labels are encrypted
everywhere. Hence that last game produces a distribution identical to simulator’s output.

Proving that each game is indistinguishable from the next is done by reduction to the semantic
security of the BHHO scheme. Assume that (for particular x, f) we have a distinguisher D with
advantage ε between games i−1 and i, and we show a (nonuniform) CPA attacker A against BHHO
with the same advantage.

The attacker A gets x, f and i as its nonuniform advice. Then it gets a BHHO public key,
corresponding to some unknown secret key that we denote by ~s ∈ {0, 1}`. The attacker A now
needs to produce the two target messages of the CPA game. A runs the challenger, producing all
the values as in the game i− 1. Then it replaces the the ciphertexts that were encrypted under the
inactive label of the i’th wire wi, as described next.

Intuitively, the attacker re-generates these ciphertexts by implicitly setting the inactive label of
the i’th wire to be ~s, the unknown key corresponding to its input public key. The attacker uses its
CPA target ciphertext to get ciphertexts under this unknown key, hence getting either encryptions
as in game i− 1 or encryptions of the active labels, depending on which of the two target messages
was encrypted in the challenge ciphertext.

In more details, denote by Lwi , L
′
wi

the active and inactive labels on the i’th wire wi, respectively.
Also consider all the gates that uses wire wi for input (say that there are m of them), denote the
other input wires for these gates by v1, . . . , vm (these need not be distinct, but they are different
than wi) and the output wires of these gates by u1, . . . , um (these are distinct). For a gate-input
wire vj , denote the active and inactive label on that wire by Lvj , L

′
vj

, respectively, and similarly
Luj , L

′
uj

are the active and inactive labels for the gate-output wire uj . We assume for concreteness
that wi is the second input wire for this gate (the case where it is the first input wire is symmetric).
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The four ciphertext pairs for this gate in game i− 1 were computed as(
EncLvj

(δj,1), EncLwi
((Luj |0`)⊕ δj,1)

)
,
(
EncLvj

(δj,2), EncL′wi
((Xj |0`)⊕ δj,2)

)
(
EncL′vj

(δj,3), EncLwi
((Yj |0`)⊕ δj,3)

)
,
(
EncL′vj

(δj4), EncL′wi
((Zj |0`)⊕ δj,4)

)
(4)

In Eq. (4), the δj,∗’s are the fresh masks that were chosen for the j’th gate, and each of Xj , Yj , Zj
is either Luj or L′uj

.

We denote δ′j,2
def= δj,2 ⊕ ((Luj ⊕Xj)|0`) and δ′j,4

def= δj,4 ⊕ ((Luj ⊕ Zj)|0`) (i.e., the string that
should be encrypted under L′wi

to get the 2’nd and 4’th pairs to be decrypted as Luj |0`). The
attacker A sets the target messages for the CPA game as:

M0 = (δ1,2|δ1,4 | · · · | δm,2|δm,4) and M1 = (δ′1,2|δ′1,4 | · · · | δ′m,2|δ′m,4)

(If wi is the first input wire to the j’th gate then we use δj,3, δ′j,3 instead of δj,2, δ′j,2 above.) By
construction, M0 includes all the strings that were encrypted under L′wi

in game i − 1, while M1

contains all the strings that were encrypted under the same key in game i.
Upon receipt of the CPA challenge ciphertext c∗ (which was computed with respect to the

unknown secret key ~s), A extracts for each wire uj the portion of c∗ corresponding to the δj ’s
(or δ′j ’s), and use them in the gadget for j’th gate. Finally A sends the garbled circuit to the
distinguisher D and outputs whatever D does.

By construction, the output of A is consistent with a run of the challenger in which the inactive
label on the wire wi is chosen as the random unknown secret key ~s. Depending on what’s encrypted
in the challenge ciphertext, the values encrypted under this key are either the values that were
encrypted in game i− 1, or these from game i. Hence the advantage of A in the CPA game equals
the advantage of D in distinguishing game i from game i− 1.

Theorem 8. The BHHO-based protocol from above is extendable.

Proof (sketch) Recall that for each output wire, the garbled circuit includes an ordered pair of
the two public keys corresponding to the labels for this wire, with the zero-label public-key first
and the one-label public-key second. To extend this circuit, we need to use the output labels of
the given garbled circuit as input labels for the higher-level circuit. We note, however, that in
our construction we only use input labels as keys that encrypt some values. This use does not
require that we know the actual label, we can generate random ciphertexts under some label just
by knowing the corresponding public key.

4.5 Re-randomizing garbled circuits

We next proceed to show how garbled circuits from above can be re-randomized. We begin by
observing that a simple re-randomization method that only XORs random masks into the labels
does not work: Although one can transform a ciphertext EncL(L′) into EncL⊕∆(L′ ⊕ ∆′) for any
∆,∆′, the re-randomizer cannot choose enough random masks to effectively hide the circuit. To
see why, observe that the re-randomizer does not know which of the two labels on a wire was used
as key (or input) in what ciphertext, so it cannot use two different masks to randomize the two
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different labels on a wire. Rather, it can only apply the same mask ∆w to both labels on a wire.
But this is clearly not sufficient for randomization, since it leaves the XOR of the two labels on
each wire as it was before.

Moreover, such “partial randomization” is clearly insecure in our application: Note that the
predecessor of a node knows the two “old labels” for every wire in its circuit, including the labels
for the output wires (which are the current node’s input wires). Also, the receiver (Alice) would
learn one of the “new labels” on these wire upon evaluation. Hence between the predecessor and
Alice, they will be able to reconstruct both new labels for every input, thus un-garbling the circuit
of the current node.

To overcome this problem, we rely on stronger homomorphic properties of BHHO: Namely,
viewing keys and plaintexts as vectors, it is homomorphic with respect to any affine function
over Zq. This means, in particular, that it is homomorphic with respect to permutations (i.e.,
multiplications by permutation matrices). Namely, we can transform a ciphertext EncL(L′) into
Encπ(L)(π′(L′)) for any two permutations π, π′ of the bits. We therefore work with balanced secret
keys that have exactly `/2 1’s, and use permutations to randomize them.

Note that in the attack scenario from above, where a predecessor colludes with the recipient,
they will now know the old labels L,L′, and also one new label, computed as π(L). In Lemma 10 we
show that given these three values, the other new label π(L′) still has a lot of min-entropy, provided
that the Hamming distance between L,L′ is not too small. In the honest-but-curious model, L and
L′ will be about `/2 apart, hence π(L′) will have min-entropy close to `. 8 The Naor-Segev result
[23] then implies that it is safe to use π(L′) as a secret key, which is indeed the way that it is used
in the re-garbled circuit. Putting all these arguments together, we have the following theorem:

Theorem 9. The BHHO-based protocol from above is computationally re-randomizable, under
DDH.

Proof (sketch) We describe the re-randomization algorithm. Given a garbled circuit, the re-
randomizer chooses a permutation πw (over [1, `]) for every wire w in the circuit, and applies that
permutation to both labels on this wire. For the OT portion, since we are using a bit-by-bit OT
protocol then the re-randomizer just permutes the OT responses and then blinds them to hide the
permutation. Namely, the second-flow OT message for each of Alice’s input bits is a vector of `
OT responses (one for each bit in the labels of the wire wi). The re-randomizer permutes these `
OT responses according to πwi and then blinds them all.

For the garbled circuit portion, consider one particular gate in the circuit, which is represented
by four ciphertexts as in Eq. (2){(

EncLw1,i(δi,j), EncLw2,j ((Lw3,k|0`)⊕ δi,j)
)

: i, j ∈ {0, 1}, k = i ? j
}

Of course, the re-randomizer only sees the ciphertexts, not the labels that were used to generate
them. Still, using the BHHO homomorphic properties and the permutations πw1 , πw2 , πw3 that is
chose, it can transform these ciphertexts first into{(

Encπw1 (Lw1,i)(π̃w3(δi,j)), Encπw2 (Lw2,j)(π̃w3((Lw3,k|0`)⊕ δi,j)
)

: i, j ∈ {0, 1}, k = i ? j
}

8One can view Lemma 10 as saying that a random bit permutation gives a weak notion of universal hashing:
although it is not true that π(L′) has high entropy given π(L) for every L 6= L′, it does hold w.h.p. when x, x′ are
chosen at random.
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where by π̃w3(·) above we mean applying πw3 to the first ` bits of the 2`-bit argument, leaving the
last bits unchanged. Then the re-randomizer chooses one more random mask for every pair and
XORs it into the values encrypted in both ciphertexts. The result is four pairs of ciphertexts, each of
them a random encryption under the permuted key, such that each pair encrypts the corresponding
permuted output label.

Similarly for an output wire w, the re-randomizer uses the homomorphism of BHHO to trans-
form the pair of public keys for Lw,0, Lw,1 into a pair of public-keys with respect to πw(Lw,0), πw(Lw,1).

The proof that this procedure achieves computational re-randomization is nearly identical to
the proof that it achieves server privacy. Namely, we show that even given the original garbled
circuit and all the randomness that was used to generate it, the re-randomized circuit is still indis-
tinguishable from the output of the simulator from Theorem 7. Computational re-randomization
follows since we already proved that the simulator’s output is indistinguishable from a fresh random
garbled circuit (and the extra quantities that the distinguisher knows are no longer used anywhere,
so indistinguishability in not effected).

The only difference between this proof and the one from Theorem 7 is in the reduction to
semantic-security of BHHO, when moving from game i−1 to game i. In the case of re-randomization,
the distinguisher D also knows for each wire w the two “old labels” that were used previously on
this wire. That is, if the current labels on this wire are Lw and L′w, then the distinguisher knows
also π−1

w (Lw) and π−1
w (L′w). In the reduction, therefore, the attacker A (who wants to implic-

itly define L′w = ~s for the unknown secret key ~s) must be able to supply these quantities to the
distinguisher D.

Here we appeal to the Naor-Segev result about the leakage resilience of BHHO [23]. We define
a randomized leakage function that given a secret key ~s (with `/2 1’s), chooses at random another
balanced string Lw and a bit permutation π, and returns to the adversary π−1(Lw), π−1(~s), and
Lw. Lemma 10 says that this leakage function leaks only O(log `) bits of entropy about ~s, and
the result of Naor-Segev says that BHHO is still semantically-secure with respect to such leakage
functions.

The permutation lemma. Let HW`,k ⊆ {0, 1}` denote the set of all `-bit strings with Hamming
weight exactly k, and also let S` denote the set of all permutations over ` elements. Assume that `
is even from now on. The lemma below shows that for two strings L1 and L2, chosen uniformly at
random from HW`,`/2, and a random permutation π : [`]→ [`], the string π(L2) has large residual
min-entropy even given L1, L2 and π(L1). For the lemma below, let H̃∞(X|Y ) be the average
min-entropy of X given Y (cf. [9]), that is

H̃∞(X|Y ) def= − log E
y←Y

(
max
x

Pr[X = x|Y = y]
)

= − log E
y←Y

(
2−H∞(X|Y=y)

)
Lemma 10. Let L1, L2 ∈R HW`,`/2, and π ∈R S` be uniformly random. Then:

H̃∞
(
π(L2) | L1, L2, π(L1)

)
≥ `− 3

2
log `

The proof is in Appendix A. It follows easily from the observation that given L1, L2 and
π(L1), the string π(L2) is distributed uniformly from among all strings in HW`,`/2 whose Hamming
distance from π(L1) equals the Hamming distance between L1 and L2.
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A Proof of Lemma 10

We show that for any two fixed strings x, y ∈ HW`,`/2 whose Hamming distance is d (d must be
even), the residual min-entropy

H̃∞(π(y) | x, y, π(x)) = 2 log
(
n/2
d/2

)
(5)

where π ← S` is uniformly random. This immediately implies Lemma 10, since

H̃∞(π(L2) | L1, L2, π(L1)) = − log E
x,y←HWn,n/2

(
2−H̃∞(π(y)|x,y,π(x))

)
(by definition of H̃∞)

= − log
( ∑

even d

Pr[HD(`1, `2) = d] · 1(`/2
d/2

)2) (by Equation 5)

= − log
(

1(
`
`/2

) · ∑
even d

(
`/2
d/2

)2

· 1(`/2
d/2

)2) (by prob. calculation)

= log
((

`
`/2

)
/( `2 + 1)

)
≥ log

(
2`−1/( `2)3/2

)
≥ `− 3

2 log `

It remains to prove Equation 5. Fix x, x′ ∈ HW`,`/2, and define Sx,x′
def=
{
π : π(x) = x′

}
. It

is not hard to see that |Sx,x′ | = ((`/2)!)2 for every x, x′ ∈ HW`,`/2: Let I0, I1 a partition of the
bit positions [`] according to whether xi = 0 or xi = 1, and similarly let I ′0, I

′
1 be such a partition

for x′. (Note that |I0| = |I1| = |I ′0| = |I ′1| = `/2.)

I0 = {i ∈ [`] : xi = 0} , I ′0 = {i ∈ [`] : x′i = 0}
I1 = {i ∈ [`] : xi = 1} , I ′1 = {i ∈ [`] : x′i = 1}

Also let δ be a fixed “canonical” permutation mapping I0 to I ′0 and I1 to I ′1. Then every permutation
mapping x to x′ is a product π = ρI0 ◦ ρI1 ◦ δ, with ρI0 a permutation only on the indexes in I0 and
ρI1 a permutation only on the indexes in I1. Moreover the mapping (ρI0 , ρI1) ⇔ π is a bijection
between Sx,x′ and S`/2 × S`/2.

Similarly, fix four strings x, y, x′y′ ∈ HW`,`/2, and define Tx,y,x′,y′
def=
{
π : π(x) = x′, π(x) = y′

}
.

Let us also denote by d the Hamming distance between x, y. A similar argument to above shows
that the size of Tx,y,x′,y′ is either zero (if the Hamming distance between x′, y′ is anything other
than d), or else it is exactly ((d/2)!(`/2−d/2)!)2. (In this case we partition [`] to four sets, depending
on the values of both xi and yi, and any π ∈ Tx,y,x′,y′ corresponds to individually permuting each
of these four sets.)

It follows that for every x, y ∈ HW`,`/2 that are d apart and any x′, y′ ∈ HW`,`/2, if x′, y′ are
also d apart then

Pr
π

[
π(y) = y′ | π(x) = x′

]
=

((d/2)!(`/2− d/2)!)2

((`/2)!)2
=

1(`/2
d/2

)2 ,
and otherwise Prπ [π(y) = y′ | π(x) = x′] = 0. Hence given any x, y that are d apart and x′ = π(x),

the string y′ = π(y) is uniformly distributed over a set of size
(`/2
d/2

)2
.
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