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Abstract

Homomorphic encryption (HE) schemes enable computing functions on encrypted data, by
means of a public Eval procedure that can be applied to ciphertexts. But the evaluated ci-
phertexts so generated may differ from freshly encrypted ones. This brings up the question of
whether one can keep computing on evaluated ciphertexts. An i-hop homomorphic encryption
scheme is one where Eval can be called on its own output up to i times, while still being able
to decrypt the result. A multi-hop homomorphic encryption is a scheme which is i-hop for
all i. In this work we study i-hop and multi-hop schemes in conjunction with the properties
of function-privacy (i.e., Eval’s output hides the function) and compactness (i.e., the output of
Eval is short). We provide formal definitions and describe several constructions.

First, we observe that “bootstrapping” techniques can be used to convert any (1-hop) homo-
morphic encryption scheme into an i-hop scheme for any i, and the result inherits the function-
privacy and/or compactness of the underlying scheme. However, if the underlying scheme is not
compact (such as schemes derived from Yao circuits) then the complexity of the resulting i-hop
scheme can be as high as kO(i).

We then describe a specific DDH-based multi-hop homomorphic encryption scheme that does
not suffer from this exponential blowup. Although not compact, this scheme has complexity
linear in the size of the composed function, independently of the number of hops. The main
technical ingredient in this solution is a re-randomizable variant of the Yao circuits. Namely,
given a garbled circuit, anyone can re-garble it in such a way that even the party that gener-
ated the original garbled circuit cannot recognize it. This construction may be of independent
interest.

Keywords. BHHO encryption, Compactness, Function Privacy, Homomorphic Encryption, Se-
cure Two-party Computation, Oblivious Transfer, Yao’s Garbled Circuits.

1 Introduction

Computing on encrypted data epitomizes the conflict between privacy and functionality, and has
been receiving a great deal of attention lately. In the canonical setting of this problem there are
two parties – a client that holds an input x, and a server that holds a function f . The client wishes
to learn f(x) using minimal interaction with the server and without giving away information about
its input. Similarly, the server may want to hide information about the function f from the client
(except, of course, the value f(x)). This problem arises in a wide variety of practical applications
such as secure cloud computing, searching encrypted e-mail and so on.
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One way to achieve this goal is via the paradigm of “computing with encrypted data” [15]:
namely, the client encrypts its input x and sends the ciphertext to the server, and the server
“evaluates the function f on the encrypted input”. The server returns the evaluated ciphertext to
the client, who decrypts it and recovers the result. An encryption scheme that supports computation
on encrypted data is called a homomorphic encryption (HE) scheme. Namely, in addition to the
usual encryption and decryption procedure, it has an evaluation procedure, that takes a ciphertext
and a function and returns an “evaluated ciphertext”, which can then be decrypted to obtain
the value f(x). Over the years there were many proposals for encryption schemes that support
computations of some functions on encrypted data. In this work, however, we are only interested
in schemes that allow computation of any function on encrypted data.

A trivial implementation of the evaluation procedure is for the evaluated ciphertext to include
both the original ciphertext and the function f , and for the client to decrypt the original ciphertext
and then evaluate f on the result. The problem with this trivial solution is that it does not hide
the server’s function from the client, and that it does not offload any of the client’s work to the
server. We are therefore interested also in the properties of function privacy (meaning that the
evaluated ciphertext hides the function) and compactness (meaning roughly that the work involved
in decrypting the evaluated ciphertext is less than in computing the function “from scratch”).

1.1 Homomorphic encryption vs. secure function evaluation

Cachin, Camenisch, Kilian, and Müller [5] observed that the paradigm of “computing with en-
crypted data” with function privacy can be instantiated using any two-message protocol for two-
party secure function evaluation (SFE). Indeed, the specifications of these two primitives are very
similar: we can think of the first message in a 2-message SFE protocol as “encrypting” the first
party’s input, and the second message is the evaluation of a function held by the second party on
that encryption.

Following the observation of Cachin et al., there is a simple folklore construction of public-key
homomorphic encryption scheme from any two-message SFE protocol and an auxiliary CPA-secure
public key encryption (e.g., [10, 3], see also Section 1.3 below). In particular, this construction can
be used to convert a protocol based on Yao’s garbled circuits [19] into a public-key homomorphic
encryption scheme. The resulting scheme is function private but not compact: the client complexity
is linear in the circuit size of the evaluated function f .

Many other schemes for “computing with encrypted data” can be found in the literature, with
client complexity that depends in various forms on the complexity of the evaluated function f (e.g.,
its truth-table size [11], circuit depth [16], branching-program length [10], polynomial degree [1],
etc.) The new scheme of Gentry [7] and its variants [18, 17] are the first schemes where the client
complexity is independent of the complexity of f .

A remark about “fully homomorphic” encryption. We note that the schemes in [7, 18, 17]
are unique in that evaluated ciphertexts can be made statistically close to freshly encrypted ones.
We refer to schemes with this property as “fully homomorphic” (as opposed to just “homomorphic”
for schemes without this property). It is easy to see that fully homomorphic schemes are both
compact and function private. Also, all the issues with multi-hop evaluation that we consider in
this work are trivialized for such schemes. For that reason, fully homomorphic schemes are not the
focus of the current work.
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1.2 Multi-Hop Homomorphic Encryption

Beyond the simple client-server setting from above, computing with encrypted data is useful also in
settings where several functions are computed on the same encrypted data. For example, consider
an email message encrypted under the public-key of Alice, which is sent to alice@yahoo.com and
promptly forwarded to alice@gmail.com. Both Yahoo and Google have their own spam-tagging
algorithms that they want to apply to incoming emails, hence we may want to use a homomorphic
encryption scheme so that they can apply these algorithms to the encrypted email. In this example,
Yahoo can apply its spam-tagging algorithm to the encrypted email and produce an (encrypted
and) tagged email, and then Google needs to apply its own spam-tagging algorithm to the result.

Another application with similar requirements is the setting of “autonomous mobile agents”
that was considered by Cachin et al. [5]. In this application, a software agent is originated in some
node in the network, and includes within it an encryption of data from that node. The agent then
roams the network, visiting one node after another, and at each visited node it computes a function
that depends on its current state and on the data from the visited node. Finally, the agent returns
to its originator, and the originator learns the result of the composed function from all the visited
nodes, as applied to the original data.

What we need in these applications is a multi-hop homomorphic encryption scheme, where
the homomorphic function evaluation can be applied not only to a fresh ciphertext, but also a
ciphertext that was already subjected to another homomorphic evaluation. We stress that evaluated
ciphertexts may be very different from fresh ciphertexts, and it is not clear that the evaluation
procedure of the scheme can process this modified form. (Indeed, homomorphic encryption schemes
that are derived from generic secure computation protocols tend to have this problem; see below.)
Cachin et al. [5] described a solution to the multi-hop setting based on Yao circuits, and our second
construction in this work is an extension of that solution.

The multi-hop setting implies a new function-privacy requirement, namely multi-hop function
privacy. For example, in the mail-forwarding example above, Google may worry that Yahoo! will
try to collude with the sender and receiver of the email, in order to learn something about Google’s
spam-tagging techniques. Indeed, the solution of Cachin et al., which is described in Section 1.3
below, suffers from exactly this problem. Ensuring multi-hop function privacy is the main focus of
our work.

1.3 Homomorphic encryption from Yao circuits

For the sake of concreteness, we now describe the folklore construction of (1-hop) homomorphic
encryption from any two-message SFE protocol, and the extension of Cachin et al. to the multi-hop
setting based on Yao circuits. Consider the structure of a two-message SFE protocol where a client
holds an input x, a server holds a function f , and the client wishes to receive f(x).

• The client sends to the server a message that “encodes” its input x, and yet does not reveal x to
a computationally bounded server. In other words, the client’s message acts as an encryption
of x.

• The server’s response encodes the result of the computation (namely f(x)), and yet, reveals
no more information to the client about the function f . In other words, the server essentially
performs a function-private evaluation of the function f on an encrypted input.

3



• The client recovers the result f(x) from the server’s message, using her secret randomness.
This is the decryption procedure.

The above is still not quite a public-key encryption scheme: in particular, there is no public
key involved, and the same party (the client) is doing both the encryption and the decryption. In
contrast, a public key homomorphic encryption should be thought of as a three-player game: first
a recipient publishes a public key, then a sender (client) encrypts the data x under that public key,
next an evaluator (server) computes a function f on the encrypted data, and finally the recipient
decrypts the result and recovers f(x).

Fortunately, we can get a public key HE scheme from a two-message SFE protocol by using an
auxiliary standard public-key encryption scheme: The recipient chooses a public/secret key pair
for some semantically secure encryption scheme, the sender sends the first-message SFE message
and in addition also the encryption of the SFE randomness under the public key, and the evaluator
forwards the encrypted randomness to the recipient together with the second-message SFE message.
The recipient uses its secret key to decrypt and recover the SFE randomness, and then uses the
SFE procedure with this randomness to recover f(x).

Extending to more than one hop. Consider next the setting where there is a sender who holds
an input x, two evaluators E1 and E2 who hold functions f1 and f2 respectively, and the recipient
wishes to receive f2(f1(x)). To achieve this, the client would like to compute an encryption of x
and send it to the first evaluator, who computes an encryption of f1(x) and passes it to the second
evaluator. The question we ask is: Can E2 now compute on the output of E1? For generic 1-hop
homomorphic encryption (such as the construction above from a generic 2-message SFE protocol),
we only offer a partial answer to this question: In Theorem 1 we show that “bootstrapping”
techniques [7] can be used to transform a 1-hop HE scheme into an i-Hop scheme for any i, but
the size of the ciphertext could grow by a polynomial factor for every hop (and hence we can only
carry out this procedure for a constant number of hops).

On the other hand, a scheme based on Yao’s garbled circuits [19] is easy to extend to many hops
without the exponential blowup in complexity. Recall that in Yao’s garbled circuit construction, the
server (who has a function) chooses two random labels for every wire in the circuit that computes
that function, and for every gate it computes a “gate gadget” that allows the client to learn one of
the output labels if it knows one label on each input wire. The collection of all these gate gadgets
is called the “garbled circuit.” The server sends the garbled circuit to the client, and engages in
an oblivious transfer protocol where it reveals to the client exactly one of the two labels on every
input wire (without learning which was revealed). The client uses the gadgets to learn one label on
each wire, all the way to the output wires of the circuit. The server also provides the client with a
mapping between the output labels and zero/one, hence allowing the client to learn the output.

Cachin et al. [5] noted that this construction is extendable to more than one hop: the second
evaluator E2 receives the garbled circuit from the first evaluator E1, and it can now just use E1’s
output labels for its own input labels, thus “connecting” these two circuits and proceeding with
the protocol. Moreover this extension offers a weak form of function privacy: if only the client is
corrupted, then the composed garbled circuit looks as if it was generated “from scratch” on the
compositions of the two circuits, and thus it hides them from the recipient.

However, privacy breaks down completely when E1 colludes with the recipient. Now, E1 knows
both the labels for each input wire of the garbled circuit that E2 prepares. Thus, from the point
of view of E1, the output of E2 is not garbled at all, in fact E1 can completely recover f2.
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Our main technical contribution is a re-randomizable variant of Yao circuits, allowing E2 to
re-randomize the labels of E1’s garbled circuit, thus obtaining privacy even against a collusion of
E1 and the recipient.

1.4 Summary of our results

Definition of multi-hop homomorphic encryption. Informally, in an i-hop HE scheme, a
sequence of i functions f1, . . . , fi can be homomorphically evaluated one by one on a ciphertext
c produced by encrypting a message x. This is pictorially depicted as follows. (Here E1, . . . , Ei

denote the i players – evaluators – that hold the functions f1, . . . , fi).

Encryptor(x)
c0=Enc(x)→ E1(f1, c0)

c1→ . . . Ej−1(fj−1, cj−2) cj−1 → Ej(fj , cj−1)
cj→ . . .

ci→ Decryptor

A multi-hop HE scheme is simply an i-hop scheme that works for any (polynomial) i.
The definition of multi-hop function privacy requires that for every j ∈ [d], even if all the

evaluators except Ej combine their information, they still learn no information about fj (other than
its input and output). The formal definition is simulation-based, extending the (1-hop) definition
of Ishai and Paskin [10]. In this work we only deal with the honest-but-curious setting, and only
consider the case where all but one of the evaluators are corrupted (as opposed to an arbitrary
subset of them). Treatment of the more general cases is left for future work.

Construction I: 1-hop → i-hop. In Section 3, we show how to convert a 1-hop HE scheme into
an i-hop HE scheme for any i. This construction uses a bootstrapping technique, similar to [7]:
given a function f and an evaluated ciphertext c that decrypts to some value x, we can express the
value f(x) as a function of the secret key, Ff,c(sk) def= f(Dec(sk, c)) = f(x). If we add to the public
key a fresh encryption of the secret key, we can then use the evaluation procedure of the scheme
to evaluate Ff,c on this fresh encryption, thus obtaining a ciphertext that decrypts to f(x). As
described, this construction relies on circular security of the underlying scheme (since we publish
an encryption of the secret key). Just as in [7], we can avoid relying on circular security and still
support up to i hops, by having i public/secret key pairs and encrypting the j’th secret key under
the j + 1’st public key.

We note, however, that for non-compact HE schemes, the size of the evaluated ciphertext
can be polynomially larger than the size of the evaluated function. Hence the ciphertext in the
resulting i-hop scheme could grow by a factor of up to kO(i) after i hops, where k is the security
parameter. Thus, this construction is viable only for a constant number of hops. Since by the
folklore construction (described in section 1.3), the existence of 1-hop HE schemes is equivalent to
the existence of two-message SFE protocols, we get:

Theorem 1 (Informal) If two-message secure function evaluation protocols exist, then for any
constant i there is a public key encryption scheme H(i) which is i-hop homomorphic and i-hop
function-private. There is a fixed polynomial q(k) in the security parameter k such that on evalu-
ating functions f1, . . . , fi on a fresh ciphertext of H(i), the resulting evaluated ciphertext has size at
most

(∑i
j=1 |fj |

) · q(k)i.

We also note that if the underlying 1-hop HE scheme is compact, then the construction above
can be carried out without the exponential blowup, hence we can extend it to an i-hop scheme for

5



any polynomial i. Moreover, similar bootstrapping techniques can be used to combine two 1-hop
HE schemes – one compact but not private and the other private but not compact – into a single
1-hop scheme which is both private and compact. Using the construction above we can then extend
it to a compact and private i-hop scheme for any polynomial i.

Theorem 2 (Informal) Assume that there exist a 1-hop compact HE scheme, and a (possibly
different) 1-hop function-private HE scheme. Then, for every polynomial p(k) there is an encryption
scheme H(p), which is p(k)-hop homomorphic and p(k)-hop private. There is a fixed polynomial q(k)
such that on evaluating functions f1, . . . , fp(k) on a fresh ciphertext of H(p), the resulting ciphertext
has size q(k) (independent of the size of the functions fj).

Construction II: Re-randomizable Yao → multi-hop. In Section 5, we describe a scheme
that can handle any polynomial number of hops, and is semantically secure and function private
under the decisional Diffie Hellman assumption. The size of the ciphertext in this scheme grows
linearly with the size of the functions that are evaluated on the ciphertext, but independently of
the number of hops.

This encryption scheme essentially amends the Yao-garbled-circuit construction from the pre-
vious section, which only offered a weak form of function privacy. The problem there was that
the garbled circuit produced by the second evaluator E2 contains (as a sub-circuit) the garbled
circuit produced by E1; this reveals non-trivial information about the function f2 to the first eval-
uator. The solution to this problem is to come up with a way to re-randomize Yao garbled circuits.
Roughly speaking, this is a procedure that takes a garbled circuit and constructs a random garbled
circuit for the same function.

We describe a variant of the garbled circuit construction that allows such re-randomization. For
the construction, we rely on the encryption scheme of Boneh-Halevi-Hamburg-Ostrovsky [4], and
on the oblivious-transfer protocol of Naor-Pinkas and Aiello-Ishai-Reingold [13, 2] (both of which
are based on the decisional Diffie-Hellman assumption, and have “nice” additive homomorphic
properties).

Theorem 3 (Informal) Under the decisional Diffie-Hellman assumption, there is a public-key
multi-hop homomorphic encryption scheme H∗ which is function-private for any number of hops.
Moreover, there is a fixed polynomial q(k) in the security parameter such that on evaluating func-
tions f1, . . . , fd on a fresh ciphertext, the resulting ciphertext has size

( ∑d
i=1 |fi|

) · q(k).

2 Definitions of Homomorphic Encryption

Nearly all our definitions rely on a security parameter, which is usually implicit. By x ← X
and x ∈R S we denote drawing from a distribution and choosing uniformly from a set. We call
a procedure efficient if it runs in time polynomial in the length of its input. We say that two
distributions are computationally indistinguishable if any efficient distinguisher has only a negligible
advantage in distinguishing them. Throughout the writeup, adversarial algorithms are always
nonuniform.

A homomorphic encryption scheme consists of four procedures, E = (KeyGen, Enc,Dec, Eval).
KeyGen takes as input the security parameter and outputs a public/secret key-pair, Enc takes the
public key and a plaintext and outputs a ciphertext, and Dec takes the secret key and a ciphertext
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and outputs a plaintext. The Eval procedure takes a description of a function, the public key, and
a ciphertext, and outputs another ciphertext.

We sometimes use the convention that these procedures output the randomness that they used,
for example writing (c′, r′) ← Eval(pk, f, c) rather than just c′ ← Eval(pk, f, c).

Multi-hop evaluation. We extend the Eval procedure from a single function to a sequence of
functions in the natural way. Below we say that an ordered sequence of functions ~f = 〈f1, . . . , ft〉
is compatible if the output length of fj is the same as the input length of fj+1 for all j. If ~f is
a compatible sequence of t functions, we denote its jth prefix by ~fj = 〈f1, . . . , fj〉. The composed
function ft(· · · f2(f1(·)) · · · ) is denoted (ft ◦ · · · ◦ f1).

We define an extended procedure Eval∗ that takes as input the public key, a compatible se-
quence ~f = 〈f1, . . . , ft〉, and a ciphertext c0. For i = 1, 2, . . . , t it sets ci ← Eval(pk, fi, ci−1),
outputting the last ciphertext ct.

Definition 1 (i-Hop Homomorphic Encryption) Let i = i(k) be a function of the security
parameter. A scheme E = (KeyGen, Enc, Dec, Eval) is an i-hop homomorphic encryption scheme
if for every compatible sequence ~f = 〈f1, . . . , ft〉 with t ≤ i functions, every input x to f1, every
(pk, sk) in the support of KeyGen, and every c in the support of Enc(pk; x),

Dec
(
sk, Eval∗(pk, ~f, c)

)
= (ft ◦ · · · ◦ f1)(x)

We say that E is a multi-hop homomorphic encryption scheme if it is i-hop for any polynomial i.

We note that 1-hop homomorphic encryption is just the usual notion of homomorphic encryption,
as formalized, e.g., in [10, Def 5].

2.0.1 Semantic security, function privacy, and compactness

Semantic security (aka CPA security) [9] is defined exactly as in regular public-key encryption
schemes (without regard to Eval). We provide the definition here for self containment.

Definition 2 (Semantic security) A scheme E = (KeyGen, Enc, Dec, Eval) is semantically se-
cure, is any efficient adversary A has at most a negligible advantage in the following game: First
KeyGen is run to produce (pk, sk) and A is given pk. Then A produces two target messages M0,M1

of the same length. Then a bit σ is chosen at random σ ∈R {0, 1}, and the adversary gets back the
challenge ciphertext, which is computed as c ← Enc(pk; Mσ). Finally A outputs a guess σ′ for σ.
The advantage of A is defined as Pr [A outputs σ′ = 1 | σ = 1]− Pr [A outputs σ′ = 1 | σ = 0] .

We sometimes refer to the same above as the CPA game.
To define function privacy, we view the operation of Eval∗ as a multi-party protocol with one

party per function, and formalize function-privacy as the usual input-privacy property for these
parties: roughly speaking, we require that even if the recipient who holds the secret key colludes
with all the parties but one, the function of that one party still remains hidden, except perhaps
(its size and) the value that this function assumes on a single input.

Definition 3 (function privacy - honest-but-curious) An i-hop homomorphic encryption scheme
E = (KeyGen, Enc, Dec, Eval) is function-private if there exists an efficient simulator Sim such that
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for every compatible sequence of functions ~f = 〈f1, . . . , ft〉 with t ≤ i, every j ≤ t, every input
x for f1, every (pk, sk) in the support of KeyGen, and every ciphertext cj−1 in the support of
Eval∗

(
pk; ~fj−1, Enc(pk;x)

)
, the following two distributions are indistinguishable (even given x, ~fj

and sk):
Eval(pk; fj , cj−1) and Sim

(
pk, cj−1, 1|fj |, (f1 ◦ · · · ◦ fj)(x)

)

We remark that Definition 3 can be extended in several different ways. An obvious extension
would be to consider the malicious case (with or without assuming that the public key and the
initial ciphertext were created honestly). A second possible extension is to consider a more general
adversarial structure, where the attacker can corrupt an arbitrary subset of the players (the encryp-
tor, the evaluators, and the decryptor), and we still want to ensure the privacy of the non-corrupted
ones. Yet another extension to Definitions 1 and 3 is to consider an arbitrary network of functions
(and not just a single chain). Finally, one could strengthen the privacy guarantee, requiring that
Eval∗ hides not only the functions that the nodes compute but also the structure of the network
itself (e.g., the number of functions in the chain). We leave all of these extensions to future work.

Definition 4 (Compactness) A scheme E = (KeyGen,Enc, Dec,Eval) is i-hop compact homo-
morphic if there exists a polynomial p(·) in (only) the security parameter k, such that decryption
of any ciphertext (even one that is the output of Eval∗) w.r.t. the security parameter k can be
implemented by a circuit of size at most p(k).

Namely, for every value of k, there exists a circuit Dec(k) of size at most p(k), such that the
i-Hop property from Definition 1 holds for that decryption circuit.

The name “compactness” is justified by the fact that the length of the evaluated ciphertexts
cannot grow beyond p(k) (regardless of f), if they are to be decrypted by a p(k)-size circuit.
We comment that compactness and function privacy together are still formally weaker than the
Ishai-Paskin notion of “privacy with size hiding” [10, Def 8].

3 From 1-Hop to i-Hop Homomorphic Encryption

Below we show how to transform a 1-hop HE scheme to an i-hop scheme for any constant i > 0.
The price that we pay, however, is that the complexity of the i-hop scheme (and in particular, the
length of the evaluated ciphertexts) may grow as large as kO(i) (for security parameter k).

The idea is that each evaluator (with function f) in the chain, upon receiving the “evaluated
ciphertext” c from its predecessor, applies again the evaluation procedure, but not to its original
function f . Rather, it applies the evaluation procedure to the concatenation of f with the decryption
function, namely to the function Ff,c(sk) def= f

(
Dec(sk; c)

)
. This technique, which is reminiscent of

Gentry’s “bootstrapping” technique [7], works because (by induction) applying Dec(sk, c) on the
previous evaluated ciphertext outputs the value (fj−1 ◦ · · · ◦ f1)(x).

The Construction. Let H = (KeyGen,Enc, Eval,Dec) be a function-private homomorphic 1-hop
encryption scheme (that need not be compact). Let i be a constant parameter of the system (that
represents the number of hops that we are shooting for). We construct a function-private i-hop
homomorphic encryption scheme H(i) = (KeyGen(i), Enc(i),Eval(i),Dec(i)) as follows.
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KeyGen(i): Run KeyGen for i + 1 times, to get for j = 0, 1, . . . , i:

(pkj , skj) ← KeyGen, and for j < i also: αj ← Enc
(
pkj+1︸ ︷︷ ︸

key

; skj︸︷︷︸
ptxt

)

Defining αi =⊥, the public key is the set pk(i) = {(pkj , αj) : j = 0, 1, . . . , i}, and the secret
key is sk(i) = (sk0, sk1, . . . , ski).

Enc(i)(pk(i); x): Set c0 ← Enc(pk0; x) and output
[
level-0, c0

]
.

Eval(i)(pk(i), c̃, fj+1): Parse the ciphertext as c̃ =
[
level-j, cj

]
(with j < i and cj an H-ciphertext) .

Compute the description of the function Ffj+1,cj
(s) def= fj+1(Dec(s; cj)), and set ,

cj+1 ← Eval(pkj+1; Ffj+1,cj , αj).

Output
[
level-(j + 1), cj+1

]
.

Dec(i)(sk(i); c̃): Parse the ciphertext as c̃ =
[
level-j, cj

]
(with j ≤ i and cj an H-ciphertext) .

Compute and output y ← Dec(skj ; cj).

Theorem 4 The scheme H(i) above is an i-hop function private homomorphic encryption scheme.

Proof (sketch) Correctness is easy to establish by induction. The correctness of the underlying
1-hop homomorphic encryption scheme H implies that for all j ≤ i we have

Dec(skj , cj) = Dec(skj , Eval(pkj ; Ffj ,cj−1
, αj−1))

(a)
= Ffj ,cj−1(skj−1)

(b)
= fj(Dec(skj−1, cj−1))

(c)
= (fj ◦ . . . ◦ f1)(x),

where fj is the function that was used in the j’th hop, Equality (a) holds by correctness of the
underlying 1-hop scheme, Equality (b) holds by definition of Ffj ,cj−1 , and Equality (c) holds by the
induction hypothesis.

Semantic security ofH(i) follows trivially from that of the underlying (1-hop) encryption scheme.
Similarly, i-hop function privacy follows easily from the 1-hop privacy of the underlying scheme
(and the fact that the size of Ffj ,cj−1 that the H simulator needs can be computed easily from the
size of fj and the size of cj−1 both of which the simulator for H(i) knows).

Complexity. For “generic” 1-hop encryption schemes (such as the one that we can obtain from
two-message SFE using the folklore construction described in Section 1.3), the size of the ciphertext
resulting from Eval(f, c) is larger than the input length |c|+|f | by some factor K which is polynomial
in the security parameter k. Hence the size of the circuit for Ffj ,cj−1

in our construction is at least

K(· · ·K(K(|c0|+ |f1|) + |f2|) · · · ) + |fj | = |c0|Kj−1 +
j∑

t=1

|ft|Kj−t =
( j∑

t=1

|fj |
) · kO(j)

which means that after i hops the ciphertext grows as kO(i). We comment also that the original en-
cryptor can put non-constant many pairs (pkj , αj) in the public key, thus permitting the evaluation
of any constant number of hops (as opposed to having a particular constant parameter i).
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3.1 Compact and Function-Private Homomorphic Encryption

Recall that the exponential blowup in the construction above is due to the fact that the ciphertext
that results from Eval is larger than the function size (by a multiplicative factor). On the other
hand, if the underlying 1-hop scheme is compact (and function-private), then the construction
above would yield a compact (and function-private) i-hop scheme.

Below we show that given a 1-hop scheme which is compact but not private, and another 1-hop
scheme which is private but not compact, we can combine them to get a 1-hop scheme which is both
compact and private (and thus also i-hop compact and private scheme for all i, by the observation
above).

The idea is to iterate the two schemes at every hop. First we apply the private scheme to the
function f that we want to evaluate, thus getting a “private ciphertext” which is large but does
not reveal information about f . Then we apply the compact scheme to the decryption function
of the private scheme, in essence “compressing” the large ciphertext into a compact one which is
still decrypted to the same value. The result is clearly compact (since it outputs the “compact
ciphertext”). It is also function-private since the only dependence of the compact ciphertext on the
function f is via the value of the intermediate “private ciphertext”, and even if we were to give the
adversary the “private ciphertext” itself, it would still not violate the function-privacy of f .1

We note that when using this technique, we again get a “hard-wired” parameter i that limits
the number of hops that we can handle: to get an i-hop scheme, the public key must have size
linear in i. Thus, the resulting scheme is not multi-hop, according to Definition 1. This limitation
can be circumvented by relying on the circular security of the resulting 1-hop schemes; the details
are deferred to the full version. This limitation can be circumvented by relying on circular security
of the resulting 1-hop scheme, see Remark 1.

Combining privacy and compactness. Let pH = (pKeyGen, pEnc, pEval, pDec) be a function-
private homomorphic 1-hop encryption scheme (that need not be compact), and let cH = (cKeyGen,
cEnc, cEval, cDec) be a compact homomorphic 1-hop encryption scheme (that need not be private).

Let i (=poly(n)) be a parameter of the system (that represents the number of hops that we are
shooting for). We construct a compact and function-private i-hop homomorphic encryption scheme
H(i) = (KeyGen(i), Enc(i), Eval(i), Dec(i)) as follows.

KeyGen(i): Run each of pKeyGen, cKeyGen for i + 1 times, to get for j = 0, 1, . . . , i:

(ppkj , pskj) ← pKeyGen, (cpkj , cskj) ← cKeyGen,

and for j < i also: αj ← pEnc
(
ppkj︸ ︷︷ ︸
key

; cskj︸︷︷︸
ptxt

)
, βj ← cEnc

(
cpkj+1︸ ︷︷ ︸

key

; pskj︸︷︷︸
ptxt

)

Defining αi = βi =⊥, the public key is the set pk(i) = {(ppkjcpkj , αj , βj) : j = 0, 1, . . . , i},
and the secret key is sk(i) = (csk0, csk1, . . . , cski).

Enc(i)(pk(i); x): Set c0 ← cEnc(cpk0; x) and output
[
level-0, c0

]
.

Eval(i)(pk(i); c̃, fj+1): Parse the ciphertext as c̃ =
[
level-j, cj

]
(with j < i and cj a compact cipher-

text).
1We comment that iterating the two systems in the opposite order also works: we can apply the compact scheme

to the function f and the private scheme to the decryption of the compact one.

10



Compute the description of the function Ffj+1,cj
(s) def= f(cDec(s; cj)), and set

c′j ← pEval(ppkj ; Ffj+1,cj
, αj).

Then compute the description of the function Gc′j (s)
def= pDec(s; c′j)), and set

cj+1 ← cEval(cpkj+1; Gc′j , βj).

Output
[
level-(j + 1), cj+1

]
.

Dec(i)(sk(i); c̃): Parse the ciphertext as c̃ =
[
level-j, cj

]
(with j ≤ i and cj a compact ciphertext).

Compute and output y ← cDec(cskj ; cj).

Theorem 5 For any i = poly(n), the scheme H(i) above is a compact function private d-hop
homomorphic encryption scheme.

Proof (sketch) Correctness is again proved by easy induction. Fix some compatible sequence of
functions ~f = 〈f1, . . . , ft〉 with t ≤ i and some input x to f1. Clearly correctness holds for the fresh
ciphertext [level-0, c0], this is decrypted to x just by correctness of the underlying compact scheme.
Assuming now that correctness holds for j and we prove for j + 1. By 1-hop correctness of the
underlying private scheme we have

pDec(pskj ; c′j) = pDec(pskj ; pEval(ppkj ; Ffj+1,cj , αj))
= pDec(pskj ; pEval(ppkj ; Ffj+1,cj

, pEnc(ppkj ; cskj)))

= Ffj+1,cj (cskj)
(a)
= fj+1(cDec(cskj ; cj))

(b)
= fj+1(~fj(x)) = ~fj+1(x)

where equality (a) follows by definition of Ffj+1,cj and equality (b) follows from the induction
hypothesis. Now, by 1-hop correctness of the underlying compact scheme we have

cDec(cskj+1; cj+1) = cDec(cskj+1; cEval(cpkj+1; Gc′j , βj))

= cDec(cskj+1; cEval(cpkj+1; Gc′j , cEnc(cpkj+1; pskj)))

= Gc′j (pskj) = pDec(pskj ; c′j) = ~fj+1(x)

Hence [level-(j + 1), cj+1] will indeed be decrypted to ~fj+1(x), as needed.
Semantic security of H(i) follows trivially from that of the two underlying schemes (where we

only need the semantic security of the private scheme due to the chain of key-encryptions in the
public key of H(i)). Also, compactness follows trivially since the decryption algorithm is the same
as that of the underlying compact scheme.

Similarly, i-hop function privacy follows easily from the 1-hop privacy of the underlying private
scheme. The simulator for node j uses the underlying 1-hop simulator to generate the intermediate
ciphertext c′j−1, and then proceeds just as in the scheme to compute the description of Gc′j−1

(·) and
compute cj .

Remark 1 To get a multi-hop scheme (without the parameter i), we can replace the chain of
αj’s and βj’s by a two-circle α ← pEnc(ppk; csk), and β ← cEnc(cpk; psk). If the result is
still semantically secure and 1-hop function private, then we get a multi-hop compact and private
scheme.
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4 Extendable and Re-randomizable Secure Computation

Below we define the tool of “extendable and re-randomizable SFE”, and show how it is used for
multi-hop homomorphic encryption. In the next section we show that this tool can be implemented
under the decisional Diffie-Hellman assumption. We begin with definitions (which are similar to
Ishai et al. [10]).

We fix a particular “universal circuit evaluator” U(·, ·), taking as input a description of a
function f and an argument x, and returning f(x). Using U we can view every bit-string f as
describing a function (where f(x) is just a shorthand for U(f, x)).

A two-message protocol for secure two-party computation to be run by Alice (the client) and
Bob (the server), is implemented by three polynomial-time procedures Π = (SFE1, SFE2, SFE-Out),
where:

• SFE1(x) is a randomized procedure that Alice runs, taking as input the security parameter
and a string x. It outputs m1, which is the first-message message of the SFE protocol, as well
as some state to be used later, (m1, r1) ← SFE(x). We assume that r1 includes in particular
all the randomness that was used in the computation.

• SFE2(f,m1) is a randomized procedure that Bob runs, taking as input the security parameter,
the first-message message m1, and a circuit f . The output is m2, the second-message message
of the SFE protocol, m2 ← SFE2(f, m1).

• SFE-Out(r1,m2) is a procedure that takes Alice’s state r1 and Bob’s second-message mes-
sage m2, and outputs some y.

Correctness of the SFE protocol demands that the value y thus computed is equal to f(x), except
with negligible probability over the randomness of Alice and Bob. The input-privacy requirements
for Alice and Bob are defined next.

By SFE1(x) (resp. SFE2(m1, f)), we mean the distribution generated by the respective algorithms
(over the choice of their randomness). We also say that (m1, r1) ∈ SFE1(x) (resp. (m2, r2) ∈
SFE2(m1, f)) to denote a particular element in the support of the distribution (together with the
randomness involved).

Definition 5 (Client and (honest-but-curious) Server privacy) A protocol Π = (SFE1, SFE2,
SFE-Out) is said to be:

• Client-private, if for any two inputs x, x′ of the same length, the distributions SFE1(x) and
SFE1(x′) are indistinguishable (even given x, x′).

• Server-private in the honest-but-curious model, if there exists a polynomial time simulator Sim
such that for every input x and function f , and every (m1, r1) ∈ SFE1(x), the distributions
SFE2(f,m1) and Sim(m1, 1|f |, f(x)) are indistinguishable (even given f, x,m1 and r1).

We now define the notion of an extendable SFE protocol.

Definition 6 (Extendable SFE, honest-but-curious) A two-message SFE protocol Π = (SFE1,
SFE2,SFE-Out) is extendable, if there exists an efficient procedure Extend such that for any two com-
patible functions f and f ′, any input x to f , and for every (m1, r1) ∈ SFE1(x), the distributions
Extend(SFE2(m1, f), f ′) and SFE2(m1, f

′ ◦ f) are indistinguishable (even given x, f, f ′,m1 and r1).
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Extendable SFE from Yao Circuits. The construction of Cachin et al. [5, Sec. 5] can be
cast in our language as describing an extendable SFE protocol based on Yao’s garbled circuit
construction [19]. As described in the introduction, the idea is that since the garbled circuit for f
includes both the 0-label and the 1-label on any output wire, it can be extended by treating these
labels as the input labels for f ′.

We comment that garbling the gates hides only the type of these gates and not the topology
of a circuit. To hide the function we must also use some form of canonicalization of circuits, so
that all circuits of a given size will have the same topology. Moreover, to meet our definition of
extendibility, it must be the case that canonicalizing f , then extending it with f ′ and canonicalizing
the whole thing yields the same topology as canonicalizing the composed function f ′ ◦ f .

We note that such canonicalization is possible, and the size of the canonicalized circuits does
not grow much. For example, a circuit of maximum width w can be canonicalized to a leveled
circuit with width w at every level, and a big “multiplexer gate” between every two successive
levels that determines what output from the lower level goes to what input in the upper one. To
get the additional property that we need (where the order of canonicalization does not matter) we
would also have w output wires in the circuit, where the redundant output wires have both labels
set to 0. (We may also need to supply some dummy gates that take as input the input wires and
have both output labels set to 0, to be able to pad the circuit if the maximum width of f ′ is larger
than that of f .)

From Extendable to Re-randomizable. Note that extendable SFE by itself already yields
multi-hop homomorphic encryption with a weak form of function-privacy: to a recipient that does
not know the intermediate values (namely, the output of SFE2(m1, f)), the output of Extend looks
just as if it was generated “from scratch” by running SFE2 with input f ′ ◦ f , so Extend hides the
function if SFE2 does. This means that when the protocol Π is used for many hops, then as long as
all the intermediate hops are “trusted” not to reveal their intermediate results (and only the sender
and the recipient are honest-but-curious), using Extend would maintain the privacy of everyone’s
functions.

However, this solution still falls short of our function-privacy goal, since a collusion between the
recipient and the node that computed SFE2(m1, f) can reveal the function f ′. In other words, the
output of Extend may not be distributed like SFE2(m1, f

′ ◦ f) given also the intermediate results
from SFE2(m1, f). To overcome this problem, we introduce the notion of a re-randomizable SFE:
In a nutshell, we want to transform the second message m2 ← SFE2(m1, f) into m′

2 such that even
if the recipient and the party that computed m2, they cannot distinguish m′

2 from random. Then,
a node can re-randomize the message from its predecessor, thus rendering the intermediate results
held by the predecessor irrelevant.

Definition 7 (Re-randomizable SFE, honest-but-curious) A two-message SFE protocol Π
is re-randomizable if there exists an efficient procedure reRand such that for every input x and func-
tion f and every (m1, r1) ∈ SFE1(x) and (m2, r2) ∈ SFE2(m1, f), the distributions reRand(m1,m2)
and SFE2(m1, f) are indistinguishable, even given x, f, m1, r1,m2, r2.

From Extendable and Re-randomizable SFE to Multi-hop HE. Let Π = (SFE1,SFE2, SFE-Out)
be an extendable and re-randomizable two message SFE protocol with client and server privacy,
and let E = (KeyGen, Enc, Dec) be a semantically secure public-key encryption scheme. We now
describe the construction of the multi-hop homomorphic scheme H∗ = (KeyGen∗, Enc∗, Dec∗, Eval∗).
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The key generation KeyGen∗ is the same as KeyGen for the underlying encryption. The en-
cryption procedure Enc∗(pk; x) first runs (m1, r1) ← SFE1(x), then encrypts r1 using E to get
c ← Enc(pk; r1), and finally, computes m2 ← SFE2(m1, fID) (where fID is the identity function).
The ciphertext is (c,m1, m2).

To evaluate a function fj on an H∗-ciphertext cj−1, first parse cj−1 as a tuple (c,m1, m
(j−1)
2 ),

then set m′
2 ← Extend(m(j−1)

2 , fj) and m
(j)
2 ← reRand(m1, m

′
2). The evaluated ciphertext is

(c,m1, m
(j)
2 ). Decrypting cj = (c,m1, m

(j)
2 ) consists of using the decryption of E to get r1 ←

Dec(sk, c), then outputting y ← SFE-Out(r1,m
(j)
2 ).

Theorem 6 (Extendable+Re-randomizable ⇒ Multi-hop) Assume that the encryption scheme
E is semantically secure, the SFE protocol Π is extendable and re-randomizable with client and
server privacy, and in addition that the size of any function f can be efficiently determined from
the output of SFE2(m1, f).

Then the scheme H∗ above is a multi-hop function-private homomorphic encryption scheme.
Moreover, the size of an evaluated ciphertext in H∗ does not depend on the number of hops, but
only on the size of the composed function.

Proof (sketch) Correctness of H∗ follows from the the correctness of Π, and its extendability and
re-randomizability: we know that SFE-Out would recover the right y when given the second message
from SFE2, and by extendability the output of Extend is the same as that of SFE2, no matter how
many hops were used. Semantic security follows from semantic security of the underlying encryption
and from the client-privacy of Π.

To show function privacy, we need to describe a simulator SimH∗ that on input cj−1 = (c,m1, m
(j−1)
2 ),

|fj |, and yj = (f1 ◦ · · · ◦ fj)(x), generates a distribution indistinguishable from cj = (c,m1,m
(j)
2 ).

The simulator recovers from m
(j−1)
2 the size |f1◦· · ·◦fj−1| and adds it to |fj | to get γ = |f1◦· · ·◦fj |.

Then SimH∗ uses the simulator for Π to get m
(j)
2 ← SimΠ(m1, γ, yj) and outputs cj = (c,m1,m

(j)
2 ).

By the server-privacy of Π, the distribution of m
(j)
2 so generated is indistinguishable from

SFE2(m1, f1 ◦ · · · ◦ fj). On the other hand, by the extendability and re-randomizability properties
of Π, the distribution of m

(j)
2 in H∗ is also indistinguishable from the same SFE2(m1, f1 ◦ · · · ◦ fj).

Hence these two distributions are indistinguishable from each other.

5 Extendable and Re-randomizable SFE from DDH

Given Theorem 6, we now focus on building an extendable and re-randomizable SFE protocol.
Our starting point is Yao’s garbled circuit construction [19], which is extendable, but not re-
randomizable. We seek a re-randomizable implementation of this scheme by using building blocks
that are “sufficiently homomorphic” to support the randomization that we need. Specifically,
we rely on the oblivious-transfer protocol of Naor-Pinkas/Aiello-Ishai-Reingold [13, 2], and on
the encryption scheme of Boneh-Halevi-Hamburg-Ostrovsky [4], the security of both of which is
equivalent to the decisional Diffie-Hellman assumption. Below we briefly summarize some properties
of these building blocks; a slightly longer description (and the definitions of OT) can be found in
the appendix.
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Re-randomizable oblivious transfer. The protocol in [13, 2] is a two-message protocol. The
receiver that has a choice bit σ ∈ {0, 1} sends the first message m1 ← OT1(σ), the sender that
has two bits γ0, γ1 ∈ {0, 1} replies with m2 ← OT2(m1, γ0, γ1), and the receiver can recover
the bit γσ from m2 and the state that it keeps. Receiver security means that OT1(0), OT1(1)
are indistinguishable, and sender security means that OT2(m1, γ0, γ1) can be simulated knowing
only m1 and γσ. We note that if the sender has two strings ~γ0, ~γ1, (rather than just two bits) then
it can use the same m1 from the receiver and send many m2’s in reply, one for every bit position
in the input vectors.

Another property we use is that the protocol from [13, 2] is re-randomizable: given m1,m2, any-
one can re-randomize the reply, computing another random m′

2 from the distribution OT2(m1, γ0, γ1)
(even without knowing γ0, γ1).

Key and plaintext additively homomorphic encryption. The BHHO scheme [4] is a se-
mantically secure public key encryption scheme where the secret key is a string ~s ∈ {0, 1}` and
the plaintext is also a string ~x ∈ {0, 1}n. (In our application we use n = 2`.) The public key and
ciphertexts are vectors of elements over a group of some prime order q.

The BHHO scheme has the following “additively homomorphic” property: Let T, T ′ be two
known affine transformations on vectors over Zq that map 0-1 vectors to 0-1 vectors of the same
length. Then, given a public key pk corresponding to some secret key ~s and a ciphertext c ∈
Enc(pk; ~x), anyone can generate a random public key pk′ corresponding to T (~s) and a random
ciphertext c′ ∈ Enc(pk′; T ′(~x)). In particular, this means that anyone can XOR known strings
∆, ∆′ into ~s and ~x, and also anyone can permute the bits in either ~s or ~x (or both) according to
known permutations.

5.1 Our Construction

Our construction closely follows Yao’s original garbled circuit construction [19]. The client (Alice)
on input ~x = 〈x1, . . . , xn〉, sends n first messages of the OT protocol from above, using her input
bit xi as the choice bit for the i’th message, m1[i] ← OT1(xi).

The server (Bob) has a boolean circuit with fan-in-2 gates. Bob’s circuit has n input ports, some
number of output ports, and some number of internal gates. Each wire in the circuit is therefore
either an input wire (connecting an input port to some internal gates and/or output ports), or a
gate-output wire (connecting the output of one internal gate to some other internal gates and/or
output ports). We stress that we allow the same wire to be used as input to several internal gates
or output ports.2

Bob receives from Alice the n OT first messages, m1[1], . . . ,m1[n]. He begins by choosing at
random two `-bit labels Lw,0, Lw,1 for every wire w, each having exactly d`/2e 1’s. (Here ` is the
length of the BHHO secret key.) For each input wire wi, corresponding to Alice’s first message
m1[i], Bob computes the OT second message for the two labels on the corresponding input wire,
m2[i] ← OT2(m1[i];Lwi,0, Lwi,1).

Then, for an internal fan-in-2 gate (computing the binary operation ?), Bob computes four pairs
of ciphertexts as follows: Let w1, w2 be the two input wires for this gate and w3 be the output wire.

2We assume that the two input wires at each gate are always distinct. This can be enforced, e.g., by implementing
a fan-in-1 gate (i.e., NOT) via a fan-in-2 XOR-with-one gate.
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Bob chooses four fresh random 2`-bit masks δi,j for i, j ∈ {0, 1} and computes the four pairs:
{(

EncLw1,i(δi,j), EncLw2,j ((Lw3,k|0`)⊕ δi,j)
)

: i, j ∈ {0, 1}, k = i ? j
}

(1)

Namely, Bob uses the secret key Lw1,i to encrypt the mask δi,j itself, and the other secret key Lw2,j

to encrypt the masked label (concatenated with ` zeros). The “gadget” for this gate consists of
the four pairs of ciphertexts from Eq. (1) in random order. The garbled circuit that Bob sends
back to Alice consists of the n OT second messages m2[1], . . . , m2[n], and the gadgets for all the
gates in the circuit (which we assume include an indication of which wire connects what gates). In
addition, for each output wire w with labels Lw,0 and Lw,1, Bob sends an ordered pair of public
keys, the first corresponding to Lw,0 and the second to Lw,1. (We chose this particular mapping to
enable re-randomization.)

Upon receiving this garbled circuit, Alice first uses the recovery procedure of the OT protocol
to recover one of the labels for each input wire. Then she goes over the garbled circuit gate by gate
as follows: For a fan-in-2 gate where she knows the labels L1, L2 for the two inputs, she uses the
key L1 to decrypt the first component in each of the four pairs and uses the key L2 to decrypt the
second component of the four pairs. Then she XORs the two decrypted strings from each pair, and
if any of the resulting strings is of the form L∗|0` then she takes L∗ to be the label of the output
wire. (If more than one string has the form L∗|0 then Alice takes the first one, and if none has this
form then she sets L∗ = 0`.) Upon recovering a label on an output port, she checks if this label
corresponds to the first or the second public keys that were provided for this port, outputting zero
or one accordingly. (Or ⊥ if it does not correspond to any of them.)

Theorem 7 The protocol from above, using the BHHO encryption scheme, enjoys both client and
server privacy, under the DDH assumption.

Proof (sketch) The proof is essentially the same as the Lindell-Pinkas proof of the Yao protocol
[12, Thm 5]. The client-privacy part is completely identical to [12], and is omitted here. The high-
level structure of the server-privacy proof is also similar to [12], in that we use roughly the same
simulator, and a similar high-level argument about why the simulator’s output is indistinguishable
from the real scheme. Given Alice’s first-message message (m1[1], . . . ,m1[n]) and the value f(x) (for
Bob’s function f and Alice’s effective input x), the simulator proceeds as follows: First it chooses
two random labels, each with `/2 1’s, for each wire in the circuit. Then it chooses at random one
of these two labels, and designates it as the “active label” for that wire. Throughout this proof we
always denote the active label on wire w by Lw, and the other label by L′w.

Next, the simulator uses the OT simulator to generate second-message OT messages that would
yield the active value for each input wire, setting m2[i] ← OT-Sim(xi,m1[i], Lwi).

Next, for each internal fan-in-2 gate in the circuit with input wires w1, w2 and output wire w3,
the simulator generates four ciphertext-pairs under the same keys as Bob would have done, but it
encrypts only the active label for the output wire in these four pairs. Namely, denote the active
labels on these wires by Lw1 , Lw2 , Lw3 , and the inactive labels by L′w1

, L′w2
, L′w3

, respectively. Bob
chooses four fresh random masks δ1, δ2, δ3, δ4 for this gate, and computes the four ciphertext pairs:

(
EncLw1

(δ1), EncLw2
((Lw3 |0`)⊕ δ1)

)
,

(
EncLw1

(δ2), EncL′w2
((Lw3 |0`)⊕ δ2)

)

(
EncL′w1

(δ3), EncLw2
((Lw3 |0`)⊕ δ3)

)
,

(
EncL′w1

(δ4), EncL′w2
((Lw3 |0`)⊕ δ4)

)
(2)

16



The simulated gadget for this circuit consists of the four pairs in random order. Finally, for each
output port the simulator provide an ordered pair of the public keys for both labels, where the
public key of the active label is either the first or the second in the pair, depending on whether the
output bit for that port is zero or one.

Proving that the view generated by this simulator is indistinguishable from the real execution
follows an approach similar to Lindell-Pinkas. We consider a sequence of games, with the first game
producing a distribution identical to Bob’s message and the last game producing a distribution
identical to simulator’s output, and prove that any two successive games have indistinguishable
output. These games are all played by a “challenger” that knows Bob’s function f and Alice’s
effective input x.

The first game just follows Bob’s procedure for generating his reply, without any changes. In
addition, for every wire w in the circuit, the challenger designates the label that the honest Alice
(with input x) would learn during evaluation as the “active” label, and the other label is the
“inactive” one.

The second game proceeds just as in the first game, except that the OT second-message messages
are generated by the OT simulator instead of the OT protocol. This game is indistinguishable from
the first game by the sender-security of the OT protocol.

Next come a sequence of games, one for each wire in the circuit. In each game, some ciphertexts
are modified from encrypting the “correct label” for a gate-output wire (as Bob does) to encrypting
just the active label for the same wire (as the simulator does). Specifically, the wires are ordered
in the order that Alice learns their labels during evaluation. Then, in the i’th game we change all
the encryptions under the inactive label of the i’th wire. That is, for every gate that use wire wi

for input, two of the four ciphertext-pairs include a ciphertext that is encrypted under the inactive
label L′wi

. In the i’th game, we change the value that is encrypted in these ciphertexts, so that
when XORed with the value in the other ciphertext in the pair, they result in the active label of
the corresponding gate-output wire (with ` trailing 0’s).3

We note that the only ciphertext-pairs that are not modified in this sequence of games are those
where both encryptions are under the active labels of the input wires. By definition, this means
that the label encrypted by this pair must also be active: If Alice knows both labels Lwi and Lwj

then she learns also the label that is encrypted by the pair (EncLwi
(·),EncLwj

(·)), hence that label
is active. It follows that at the last game in the sequence, only the active labels are encrypted
everywhere. Hence that last game produces a distribution identical to simulator’s output.

Proving that each game is indistinguishable from the next is done by reduction to the semantic
security of the BHHO scheme. Assume that (for particular x, f) we have a distinguisher D with
advantage ε between games i−1 and i, and we show a (nonuniform) CPA attacker A against BHHO
with the same advantage.

The attacker A gets x, f and i as its nonuniform advice. Then it gets a BHHO public key,
corresponding to some unknown secret key that we denote by ~s ∈ {0, 1}`. The attacker A now
needs to produce the two target messages of the CPA game. A runs the challenger, producing all
the values as in the game i− 1. Then it replaces the the ciphertexts that were encrypted under the
inactive label of the i’th wire wi, as described next.

Intuitively, the attacker re-generates these ciphertexts by implicitly setting the inactive label of
the i’th wire to be ~s, the unknown key corresponding to its input public key. The attacker uses its
CPA target ciphertext to get ciphertexts under this unknown key, hence getting either encryptions

3This may or may not be the same value that was encrypted in these ciphertexts in game i− 1.
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as in game i− 1 or encryptions of the active labels, depending on which of the two target messages
was encrypted in the challenge ciphertext.

In more details, denote by Lwi , L
′
wi

the active and inactive labels on the i’th wire wi, respectively.
Also consider all the gates that uses wire wi for input (say that there are m of them), denote the
other input wires for these gates by v1, . . . , vm (these need not be distinct, but they are different
than wi) and the output wires of these gates by u1, . . . , um (these are distinct). For a gate-input
wire vj , denote the active and inactive label on that wire by Lvj , L

′
vj

, respectively, and similarly
Luj , L

′
uj

are the active and inactive labels for the gate-output wire uj . We assume for concreteness
that wi is the second input wire for this gate (the case where it is the first input wire is symmetric).
The four ciphertext pairs for this gate in game i− 1 were computed as

(
EncLvj

(δj,1), EncLwi
((Luj |0`)⊕ δj,1)

)
,

(
EncLvj

(δj,2), EncL′wi
((Xj |0`)⊕ δj,2)

)

(
EncL′vj

(δj,3), EncLwi
((Yj |0`)⊕ δj,3)

)
,

(
EncL′vj

(δj4), EncL′wi
((Zj |0`)⊕ δj,4)

)
(3)

In Eq. (3), the δj,∗’s are the fresh masks that were chosen for the j’th gate, and each of Xj , Yj , Zj

is either Luj or L′uj
.

We denote δ′j,2
def= δj,2 ⊕ ((Luj ⊕Xj)|0`) and δ′j,4

def= δj,4 ⊕ ((Luj ⊕ Zj)|0`) (i.e., the string that
should be encrypted under L′wi

to get the 2’nd and 4’th pairs to be decrypted as Luj |0`). The
attacker A sets the target messages for the CPA game as:

M0 = (δ1,2|δ1,4 | · · · | δm,2|δm,4) and M1 = (δ′1,2|δ′1,4 | · · · | δ′m,2|δ′m,4)

(If wi is the first input wire to the j’th gate then we use δj,3, δ′j,3 instead of δj,2, δ′j,2 above.) By
construction, M0 includes all the strings that were encrypted under L′wi

in game i − 1, while M1

contains all the strings that were encrypted under the same key in game i.
Upon receipt of the CPA challenge ciphertext c∗ (which was computed with respect to the

unknown secret key ~s), A extracts for each wire uj the portion of c∗ corresponding to the δj ’s
(or δ′j ’s), and use them in the gadget for j’th gate. Finally A sends the garbled circuit to the
distinguisher D and outputs whatever D does.

By construction, the output of A is consistent with a run of the challenger in which the inactive
label on the wire wi is chosen as the random unknown secret key ~s. Depending on what’s encrypted
in the challenge ciphertext, the values encrypted under this key are either the values that were
encrypted in game i− 1, or these from game i. Hence the advantage of A in the CPA game equals
the advantage of D in distinguishing game i from game i− 1.

Remark: balanced secret keys. We note that the BHHO scheme is used here with secret keys
that have exactly `/2 1’s in them, rather than with completely uniform secret keys. This is used for
the purpose of re-randomization, as described in Section 5.2. We note that this variant of BHHO
is also semantically secure: In fact, Naor and Segev proved that under DDH, the BHHO scheme is
semantically-secure for every secret-key distribution with sufficient min-entropy (cf. [14, Sec 5.2]).
We use this stronger result in our proof of the re-randomization property in Section 5.2.

5.2 Re-randomizing garbled circuits

We proceed to show how garbled circuits from above can be re-randomized. We begin by observing
that a simple re-randomization method that only XORs random masks into the labels does not
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work: Observe that the re-randomizer does not know which of the two labels on a wire was used
as key (or input) in what ciphertext, so it cannot use two different masks to randomize the two
different labels on a wire. Rather, it can only apply the same mask ∆w to both labels on a wire.
But this is clearly not sufficient for randomization, since it leaves the XOR of the two labels on
each wire as it was before.

Moreover, such “partial randomization” is clearly insecure in our application: Note that the
predecessor of a node knows the two “old labels” for every wire in its circuit, including the labels
for the output wires (which are the current node’s input wires). Also, the receiver (Alice) would
learn one of the “new labels” on these wire upon evaluation. Hence between the predecessor and
Alice, they will be able to reconstruct both new labels for every input, thus un-garbling the circuit
of the current node.

To overcome this problem, we rely on stronger homomorphic properties of BHHO: Namely,
viewing keys and plaintexts as vectors, it is homomorphic with respect to any affine function
over Zq. This means, in particular, that it is homomorphic with respect to permutations (i.e.,
multiplications by permutation matrices). Namely, we can transform a ciphertext EncL(L′) into
Encπ(L)(π′(L′)) for any two permutations π, π′ of the bits. We therefore work with balanced secret
keys that have exactly `/2 1’s, and use permutations to randomize them.

Note that in the attack scenario from above, where a predecessor colludes with the recipient,
they will now know the old labels L, L′, and also one new label, computed as π(L). In Lemma 9 we
show that given these three values, the other new label π(L′) still has a lot of min-entropy, provided
that the Hamming distance between L,L′ is not too small. In the honest-but-curious model, L and
L′ will be about `/2 apart, hence π(L′) will have min-entropy close to ` (see Lemma 9 below). 4

The Naor-Segev result [14] then implies that it is safe to use π(L′) as a secret key, which is indeed
the way that it is used in the re-garbled circuit. Putting all these arguments together, we have the
following theorem:

Theorem 8 Under the DDH assumption, the BHHO-based protocol from above is computationally
re-randomizable.

Proof (sketch) We describe the re-randomization algorithm. Given a garbled circuit, the re-
randomizer chooses a permutation πw (over [1, `]) for every wire w in the circuit, and applies that
permutation to both labels on this wire. For the OT portion, since we are using a bit-by-bit OT
protocol then the re-randomizer just permutes the OT responses and then re-randomizes them to
hide the permutation. Namely, the second-message OT message for each of Alice’s input bits is a
vector of ` OT responses (one for each bit in the labels of the wire wi). The re-randomizer permutes
these ` OT responses according to πwi and then re-randomizes them all.

For the garbled circuit portion, consider one particular gate in the circuit, which is represented
by four ciphertexts as in Eq. (1)

{(
EncLw1,i(δi,j), EncLw2,j ((Lw3,k|0`)⊕ δi,j)

)
: i, j ∈ {0, 1}, k = i ? j

}

Of course, the re-randomizer only sees the ciphertexts, not the labels that were used to generate
them. Still, using the BHHO homomorphic properties and the permutations πw1 , πw2 , πw3 that is

4One can view Lemma 9 as saying that a random bit permutation gives a weak notion of universal hashing:
although it is not true that π(L′) has high entropy given π(L) for every L 6= L′, it does hold when the Hamming
distance between L, L′ is large enough.
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chose, it can transform these ciphertexts first into
{(

Encπw1(Lw1,i)(π̃w3(δi,j)), Encπw2(Lw2,j)(π̃w3((Lw3,k|0`)⊕ δi,j)
)

: i, j ∈ {0, 1}, k = i ? j
}

where by π̃w3(·) above we mean applying πw3 to the first ` bits of the 2`-bit argument, leaving the
last bits unchanged. Then the re-randomizer chooses one more random mask for every pair and
XORs it into the values encrypted in both ciphertexts. The result is four pairs of ciphertexts, each of
them a random encryption under the permuted key, such that each pair encrypts the corresponding
permuted output label.

Similarly for an output wire w, the re-randomizer uses the homomorphism of BHHO to trans-
form the pair of public keys for Lw,0, Lw,1 into a pair of public-keys with respect to πw(Lw,0), πw(Lw,1).

The proof that this procedure achieves computational re-randomization is nearly identical to
the proof that it achieves server privacy. Namely, we show that even given the original garbled
circuit and all the randomness that was used to generate it, the re-randomized circuit is still indis-
tinguishable from the output of the simulator from Theorem 7. Computational re-randomization
follows since we already proved that the simulator’s output is indistinguishable from a fresh random
garbled circuit.

The only difference between this proof and the one from Theorem 7 is in the reduction to
semantic-security of BHHO, when moving from game i−1 to game i. In the case of re-randomization,
the distinguisher D also knows for each wire w the two “old labels” that were used previously on
this wire. That is, if the current labels on this wire are Lw and L′w, then the distinguisher knows
also π−1

w (Lw) and π−1
w (L′w). In the reduction, therefore, the attacker A (who wants to implic-

itly define L′w = ~s for the unknown secret key ~s) must be able to supply these quantities to the
distinguisher D.

Here we appeal to the Naor-Segev result about the leakage resilience of BHHO [14]. We define
a randomized leakage function that given a secret key ~s (with `/2 1’s), chooses at random another
balanced string Lw and a bit permutation π, and returns to the adversary π−1(Lw), π−1(~s), and Lw.
Lemma 9 says that this leakage function leaks only O(log `) bits of entropy about ~s, and the result
of Naor-Segev says that BHHO is still semantically-secure with respect to such leakage functions.

The permutations lemma. Let HW`,k ⊆ {0, 1}` denote the set of all `-bit strings with Ham-
ming weight exactly k, and also let S` denote the set of all permutations over ` elements. Assume
that ` is even from now on. The lemma below shows that for two strings L1 and L2, chosen uni-
formly at random from HW`,`/2, and a random permutation π : [`] → [`], the string π(L2) has
large residual min-entropy even given L1, L2 and π(L1). For the lemma below, let H̃∞(X|Y ) be
the average min-entropy of X given Y (cf. [6]), that is

H̃∞(X|Y ) def= − log E
y←Y

(
max

x
Pr[X = x|Y = y]

)
= − log E

y←Y

(
2−H∞(X|Y =y)

)

Lemma 9 Let L1, L2 ∈R HW`,`/2, and π ∈R S` be uniformly random. Then:

H̃∞
(
π(L2) | L1, L2, π(L1)

) ≥ `− 3
2

log `
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The proof is in Appendix B. It follows easily from the observation that given L1, L2 and π(L1), the
string π(L2) is distributed uniformly from among all strings in HW`,`/2 whose Hamming distance
from π(L1) equals the Hamming distance between L1 and L2.

Acknowledgments. We thank Yuval Ishai for several inspiring discussions.
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A Building Blocks for the Construction from Section 5

A.1 Re-randomizable oblivious transfer

Definition 8 (Oblivious Transfer – honest but curious) A two-message oblivious transfer pro-
tocol is a two party protocol between a sender and a receiver, where the sender gets as input two
bits γ0, γ1 ∈ {0, 1}, the receiver gets as input a choice bit σ ∈ {0, 1}, and the following conditions
are satisfied:

• Functionality: For any sender input bits γ0, γ1 and choice bit σ, the receiver outputs γσ at
the end of the protocol.

• Receiver’s security: Denote by OT1(1k, σ) the message sent by the honest receiver with choice
bit input σ (and security parameter k). Then the distribution OT1(1k, 0) and OT1(1k, 1) are
indistinguishable.

• Sender’s security: Denote by OT2(1k, γ0, γ1,m1) the response of the honest sender with in-
put (γ0, γ1) and security parameter k when the receiver’s first message is m1. Then there
exists an efficient simulator Sim such that for any three bits σ, γ0, γ1 ∈ {0, 1}, and any first-
message message m1 in the support of OT1(1k, σ), the distributions OT2(1k, γ0, γ1,m1) and
Sim(1k, b, m1, γσ) are statistically close.

Definition 9 (Re-randomizable OT) A two-message oblivious transfer protocol is re-randomizable
if there exists an efficient algorithm reRand such that for every three bits σ, γ0, γ1, every (m1, r1) ∈
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OT1(σ) and every second-message message (m2, r2) ∈ OT2(1k, γ0, γ1, m1), the distributions reRand(m1, m2)
and OT2(γ0, γ1,m1) are indistinguishable, even given σ, γ0, γ1,m1, r1,m2, r2.

Naor-Pinkas and Aiello et al. [13, 2] proved that the following protocol meets Definition 8.5

The protocol operates in a prime-order group where the decision Diffie-Hellman problem is believed
hard. Denote the group order by q. On input a choice-bit σ, the receiver chooses two arbitrary
distinct order-q elements g, h ∈ G and two random distinct exponents r, r′ ∈R Z∗q . The receiver
computes x := gr, yσ := hr, and yσ̄ := hr′ , and sends to the sender the elements (g, h, x, y0, y1).
Note that (g, h, x, yσ) is a Diffie-Hellman tuple, while (g, h, x, yσ̄) is a non-Diffie-Hellman tuple.

The sender, given two input bits γ0, γ1 and the receiver’s message (g, h, x, y0, y1), chooses four
random exponents s0, t0, s1, t1 ∈R Zq, and for i ∈ {0, 1} it sets ai := gsihti and bi := xsiyti

i · gγi .
The sender sends (a0, b0, a1, b1) back to the receiver. When the sender inputs are longer than one
bit, the same construction can be repeated for every bit (but they all can share the same elements
g, h, x, y0, y1).

The receiver can recover the bit γb by outputting zero when bσ = ar
σ and outputting one

otherwise. At the same time, the bit γσ̄ is statistically hidden from the receiver, since (g, h, x, yσ̄)
is a non-Diffie-Hellman tuple.

This scheme is also re-randomizable: On input m1 = (g, h, x, y0, y1) and m2 = (a0, b0, a1, b1),
the reRand algorithm chooses four random exponents s′0, t

′
0, s

′
1, t

′
1 ∈R Zq, and for i ∈ {0, 1} it sets:

a′i := gs′iht′i · ai (= gs′i+siht′i+ti), and b′i := xs′iy
t′i
i · bi (= xs′i+siy

t′i+ti
i · gγi).

A.2 The BHHO encryption scheme

Boneh et al. described in [4] a “circular secure” encryption scheme, with security based on the
hardness of DDH. Below we refer to this scheme as the BHHO scheme. The BHHO scheme is a
public-key encryption scheme, but here we describe it as a secret-key scheme (since we only use the
public key for re-randomization, not for encryption). The scheme works in a prime-order group G
where the Decision Diffie-Hellman problem is believed hard. Denote the order of G by q, let g be
some “canonical” generator of G, and denote `

def= d3 log qe.
The secret key is a random vector ~s ∈ {0, 1}`. An encryption of a bit b ∈ {0, 1} is an (` + 1)-

vector of elements ~u ∈ G`+1, with the first ` elements chosen at random in G and the last one
computed as u`+1 := gb/

∏`
i=1 usi

i . Decryption works by outputting zero if u`+1 ·
∏`

i=1 usi
i = 1, one

if u`+1 ·
∏`

i=1 usi
i = g, and ⊥ otherwise. The public key for this scheme is a random encryptions of

zero, and here we consider the public key to be a part of every ciphertext. Encrypting a vector of
bits is done bit-by-bit.

It was shown in [4] that this scheme is semantically secure, and it also enjoys strong homomor-
phic properties for both plaintext and secret-key. In particular, given a BHHO public key pk for
some secret key ~s ∈ {0, 1}` and a ciphertext ~u ∈ G`+1 that encrypts a bit b w.r.t. ~s, and given any
affine transformation from Z`

q to itself, T (~x) = A~x+~b, one can transform pk, ~u into pk′, ~u′ such that
IF ~s′ = T (~s) is a 0-1 vector, THEN pk′ is a random public key for ~s′ and ~u′ is a random encryption
of the same bit b under ~s′. This means in particular that we can implement a bitwise XOR of a
known mask with ~s, and a permutation of the bits of ~s, since both are affine functions that map
0-1 vectors to 0-1 vectors. Also, BHHO has the same homomorphic properties with respect to the
plaintext.

5In fact, they proved that this protocol is even secure in the malicious model.

23



(Strictly speaking, to get new public key and ciphertext that are random and independent of
the original pk and ~u, one needs to use the “extended public key” for the scheme E1 from [4]. It is
easy to see, however, that using the non-extended public key we get a new public key and ciphertext
that are pseudorandom under DDH. We ignore this fine point in the rest of this writeup.)

B Proof of Lemma 9

We show that for any two fixed strings x, y ∈ HW`,`/2 whose Hamming distance is d (d must be
even), the residual min-entropy

H̃∞(π(y) | x, y, π(x)) = 2 log
(

n/2
d/2

)
(4)

where π ← S` is uniformly random. This immediately implies Lemma 9, since

H̃∞(π(L2) | L1, L2, π(L1)) = − log E
x,y←HWn,n/2

(
2−H̃∞(π(y)|x,y,π(x))

)
(by definition of H̃∞)

= − log
( ∑

even d

Pr[HD(`1, `2) = d] · 1
(`/2
d/2

)2

)
(by Equation 4)

= − log
(

1(
`

`/2

) ·
∑

even d

(
`/2
d/2

)2

· 1
(`/2
d/2

)2

)
(by prob. calculation)

= log
((

`
`/2

)
/( `

2 + 1)
)
≥ log

(
2`−1/( `

2)3/2
) ≥ `− 3

2 log `

It remains to prove Equation 4. Fix x, x′ ∈ HW`,`/2, and define Sx,x′
def=

{
π : π(x) = x′

}
. It

is not hard to see that |Sx,x′ | = ((`/2)!)2 for every x, x′ ∈ HW`,`/2: Let I0, I1 a partition of the
bit positions [`] according to whether xi = 0 or xi = 1, and similarly let I ′0, I

′
1 be such a partition

for x′. (Note that |I0| = |I1| = |I ′0| = |I ′1| = `/2.)

I0 = {i ∈ [`] : xi = 0} , I ′0 = {i ∈ [`] : x′i = 0}
I1 = {i ∈ [`] : xi = 1} , I ′1 = {i ∈ [`] : x′i = 1}

Also let δ be a fixed “canonical” permutation mapping I0 to I ′0 and I1 to I ′1. Then every permutation
mapping x to x′ is a product π = ρI0 ◦ ρI1 ◦ δ, with ρI0 a permutation only on the indexes in I0 and
ρI1 a permutation only on the indexes in I1. Moreover the mapping (ρI0 , ρI1) ⇔ π is a bijection
between Sx,x′ and S`/2 × S`/2.

Similarly, fix four strings x, y, x′y′ ∈ HW`,`/2, and define Tx,y,x′,y′
def=

{
π : π(x) = x′, π(y) = y′

}
.

Let us also denote by d the Hamming distance between x, y. A similar argument to above shows
that the size of Tx,y,x′,y′ is either zero (if the Hamming distance between x′, y′ is anything other
than d), or else it is exactly ((d/2)!(`/2−d/2)!)2. (In this case we partition [`] to four sets, depending
on the values of both xi and yi, and any π ∈ Tx,y,x′,y′ corresponds to individually permuting each
of these four sets.)

It follows that for every x, y ∈ HW`,`/2 that are d apart and any x′, y′ ∈ HW`,`/2, if x′, y′ are
also d apart then

Pr
π

[
π(y) = y′ | π(x) = x′

]
=

((d/2)!(`/2− d/2)!)2

((`/2)!)2
=

1
(`/2
d/2

)2 ,
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and otherwise Prπ [π(y) = y′ | π(x) = x′] = 0. Hence given any x, y that are d apart and x′ = π(x),

the string y′ = π(y) is uniformly distributed over a set of size
(`/2
d/2

)2
.
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