
Two Applications of finding Approximate Common

Divisor

Santanu Sarkar and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India.
{santanu r, subho}@isical.ac.in

Abstract. In CaLC 2001, Howgrave-Graham proposed a method to find the Greatest Common Divisor
(GCD) of two large integers when one of the integers is exactly known and the other one is known
approximately. In this paper, we present two applications of the technique.
The first one is as follows. Consider N = pq, where p, q are large primes and p > q. The term q−1 mod p
is stored as a part of the secret key in PKCS #1 to expedite the decryption in CRT-RSA. Using lattice
based technique, we show that factoring N is deterministic polynomial time equivalent to finding
q−1 mod p. We are not aware of any earlier or trivial proof of this result.
Next, we consider the problem of finding smooth integers in a short interval as studied by Boneh in
STOC 2000. We find slightly improved result using the idea of Howgrave-Graham, and it is different
from the method proposed by Boneh.

Keywords: CRT-RSA, Greatest Common Divisor, Factorization, Integer Approximations,
Lattice, LLL, RSA, Smooth Integers.

1 Introduction

It is well known that given two large integers a, b (a > b), one can calculate the GCD
efficiently in O(log3 a) time. In [HOW01], Howgrave-Graham has shown that it is possible to
calculate the GCD efficiently when some approximations of a, b are available. This problem
was referred as “approximate common divisors”. Using the strategy of [HOW01], Coron and
May [COR07] proved the deterministic polynomial time equivalence of computing the RSA
secret key and factoring. In this paper we present two other interesting applications of the
technique presented in [HOW01].

First, we use the idea of [HOW01] to prove that factoring N is deterministic polyno-
mial time equivalent to finding q−1 mod p when p > q or p, q are of same bit size. In the
presentation of a recent paper [HEN09] at Crypto 2009, it has been asked how one can use
q−1 mod p towards factorization of N as q−1 mod p is stored as a part of the secret key in
PKCS #1 [PKCS].

In this direction, let us briefly explain RSA [RSA78] first. One needs to generate two large
primes p, q, with (in general) q < p < 2q. Then we have N = pq and φ(N) = (p− 1)(q − 1).
Further, e, d are identified such that ed = 1 + kφ(N), k ≥ 1. N, e are publicly available
and the plaintext M ∈ ZN is encrypted as C = M e mod N . The secret key d is required to
decrypt the ciphertext as M = Cd mod N .

To make the decryption process faster, the Chinese Remainder Theorem has been ex-
ploited and the model is well known as CRT-RSA [QUI82,WIE90]. The encryption technique

is same as RSA, but the decryption process is little different. Instead of one decryption expo-
nent as in standard RSA, two decryption exponents (dp, dq) are required in this case, where
dp ≡ d mod (p − 1) and dq ≡ d mod (q − 1). To decrypt the ciphertext C, one needs to
calculate both Cp ≡ Cdp mod p and Cq ≡ Cdq mod q. From Cp, Cq one can get the plaintext
M by the application of CRT using q−1 mod p. This is the reason, q−1 mod p is stored in the
secret key part of PKCS #1 [PKCS].

One may be tempted to consider the following method to factorize N from the knowledge
of q−1 mod p, which does not work. Consider q1 = q−1 mod p. Now one can easily calculate
q2 = q−1

1 mod N easily, as N is known. Now q2q1 − 1 is divisible by N and hence q2q1 − 1
is divisible by p. Thus, q2 ≡ q−1

1 mod p ≡ q mod p. If q2 would have been less than p, then
q2 = q and the factorization will be immediate. However, in general, q2 is of O(N) and not
less than p. Thus this method does not work and we need to look for a lattice based strategy
which we explain in Section 2.

Next we consider the problem of finding smooth integers in a small interval [BON00].
Following [BON00], let us define two notions of smoothness.

Definition 1.

– An integer N is called B smooth if N has no prime divisor greater than B.
– An integer N is called strongly B smooth if N is B smooth and pm can not divide N for

any m for which pm > B.

Finding smooth numbers is important for application in the well known factorization al-
gorithms such as quadratic sieve [POM84] and number field sieve [LEN93]. We study the
results of [BON00] and show that similar kinds of results could be achieved using a different
strategy following the idea of [HOW01]. This is presented in Section 3.

2 Equivalence of finding q−1 mod p and factorization

For our purpose we need the following two results. We first state the following one due to
Howgrave-Graham [HOW97].

Lemma 1. Let h(x) ∈ Z[x] be the sum of at most ω monomials. Suppose that h(x(0)) ≡
0 mod Nm where |x(0)| ≤ X and ||h(xX)|| < Nm

√
ω
. Then h(x(0)) = 0.

We also note that the basis vectors of an LLL-reduced basis fulfill the following prop-
erty [LLL82].

Lemma 2. Let L be an integer lattice of dimension ω. Given any basis of L, the LLL

algorithm outputs a reduced basis {v1, . . . , vω} with ||v1|| ≤ 2
(ω−1)

4 det(L)
1
ω in polynomial time

of dimension ω and the bit size of the entries in L.

Now we come to our main result.

Theorem 1. Assume N = pq, where p, q are primes and p ≈ Nγ. Suppose an approximation
p0 of p is known such that |p−p0| < Nβ. Given q−1 mod p, one can factor N deterministically
in poly(log N) time when β − 2γ2 < 0.

Proof. Let q1 = q−1 mod p. So we can write qq1 = 1 + k1p for some positive integer k1.
Multiplying both sides by p, we get q1N = p + k1p

2. That is, we have q1N − p = k1p
2. Let

x0 = p − p0. Thus, we have q1N − p0 − x0 = k1p
2. Also we have N2 = p2q2. Our goal is to

recover x0 from q1N − p0 and N2.
Note that p2 is the GCD of q1N−p0−x0 and N2. In this case q1N−p0 and N2 is known,

i.e., one term N2 is exactly known and the other term q1N−p0−x0 is approximately known.
This is exactly the Partially Approximate Common Divisor Problem (PACDP) [HOW01] and
we follow a similar technique to solve this as explained below. This will provide the error
term −x0, which added to the approximation q1N − p0, gives the exact term q1N − p0 − x0.

Take X = Nβ as an upper bound of x0. Then we consider the shift polynomials

gij(x) = xi(q1N − p0 + x)jN2(m−j) (1)

for i = 0, 0 ≤ j ≤ m and j = m, 1 ≤ i ≤ t,

where m, t are fixed non-negative integers. Clearly, gij(−x0) ≡ 0 mod (p2m).
We construct the lattice L spanned by the coefficient vectors of the polynomials gij(xX)

in (1). One can check that the dimension of the lattice L is ω = m+t+1 and the determinant
of L is

det(L) = X
(m+t)(m+t+1)

2 N2
m(m+1)

2 = X
(m+t)(m+t+1)

2 Nm(m+1). (2)

Using Lattice reduction on L by LLL algorithm [LLL82], one can find a non-zero vector b

whose norm ||b|| satisfies ||b|| ≤ 2
ω−1

4 (det(L))
1
ω . The vector b is the coefficient vector of the

polynomial h(xX) with ||h(xX)|| = ||b||, where h(x) is the integer linear combination of
the polynomials gij(x). Hence h(−x0) ≡ 0 mod (p2m). To apply Lemma 1 and Lemma 2 for
finding the integer root of h(x), we need

2
ω−1

4 (det(L))
1
ω <

p2m

√
ω

. (3)

Neglecting small constant terms, we can rewrite (3) as det(L) < p2mω. Substituting the
expression of det(L) from (2) and using X = Nβ, p ≈ Nγ we get

(m + t)(m + t + 1)

2
β + m(m + 1) < 2m(m + t + 1)γ. (4)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (4) as

τ 2β

2
+ (β − 2γ)τ +

β

2
− 2γ + 1 < 0. (5)

Now, the optimal value of τ to minimize the left hand side of (5) is 2γ−β
β

. Putting this optimal

value in (5), we get β − 2γ2 < 0.
Our strategy uses LLL [LLL82] algorithm to find h(x) and then calculates the integer root

of h(x). Both these steps are deterministic polynomial time in log N . Thus the result. ut

Corollary 1. Factoring N is deterministic polynomial time equivalent to finding q−1 mod p,
where N = pq and p > q.

Proof. When no approximation of p is given, then β in the Theorem 1 is equal to γ. Putting
β = γ in the condition β − 2γ2 < 0, we get γ > 1

2
. This requirement forces the condition

that p > q. Also, it is trivial to note that if the factorization of N is known then one can
efficiently compute q−1 mod p. Thus the proof. ut

Corollary 2. Factoring N is deterministic polynomial time equivalent to finding q−1 mod p,
where N = pq and p, q are of same bit size.

Proof. The proof of the case p > q is already taken care in Corollary 1. Now consider q > p.

When p, q are of same bit size and p < q, then p < q < 2p, i.e.,
√

N
2

< p <
√

N and
√

N < q <
√

2N .

Now if we take p0 =
√

N then |p − p0| < (1 − 1√
2
)
√

N < N
1
2

2
= N

1
2
− log 2

log N . Also p >

N
1
2
− log 2

2 log N . So in this case we can take β = 1
2
− log 2

log N
and γ > 1

2
− log 2

2 log N
. Thus, β − 2γ2 <

1
2
− log 2

log N
− 2(1

2
− log 2

2 log N
)2 = − log2 2

2 log2 N
< 0. Hence in this situation one can factor N following

Theorem 1. ut

It needs to be studied how the situation can be tackled when p is significantly smaller
than q.

Now let us describe the experimental result. We have implemented the program in SAGE
4.1 over Linux Ubuntu 8.10 on a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83
GHz, 2 GB RAM and 2 MB Cache. Note that our result in Theorem 1 holds when the
lattice dimension approaches to infinity. Since in practice we use finite lattice dimension, we
may not reach the bound presented in Theorem 1. For experiments, we consider that small
amount of Most Significant Bits (MSBs) of p is known. In Table 1, we provide some practical
results. In the first three experiments, we take N as 1000-bit integer with p, q of the same bit
size and p > q. Then in the next three experiments, we swapped p, q, i.e., q becomes larger
than p. Given q−1 mod p, we could successfully recover p in all the cases.

p ? q # MSBs of p known Lattice Parameters (m, t) Lattice Dimension Time (in sec.)

p > q 46 (5,5) 11 1.41

p > q 24 (10,10) 21 66.33

p > q 20 (11,11) 23 119.72

q > p 47 (5,5) 11 1.42

q > p 24 (10,10) 21 66.56

q > p 20 (11,11) 23 120.00

Table 1. Experimental results following Theorem 1.

3 Finding smooth integers in a short interval

Let us denote the n-th prime by pn, e.g., p1 = 2, p2 = 3 and so on. Suppose we want to find
a strongly B smooth integer (as written in Definition 1) N in the interval [U, V].

Now let us present our result.

Theorem 2. Let S =
∏n

i=1 pai
i where ai = b log B

log pi
c and p1, . . . , pn are all distinct primes not

exceeding B. Let I = [U, V]. One can find all strongly B smooth integers N ∈ I for which

gcd(N, S) > d in poly(log S) time when |I| < 2d
log d
log S and d < 2V .

Proof. We will try to find N such that gcd(N, S) > d. Let us take take a0 = bU+V
2
c. We

consider a0 as an approximation of N . Thus we will try to find the GCD of S, N , by knowing
exactly S and some approximation of N , which is a0 (but N is not known). Here we follow the
idea of solving the Partially Approximate Common Divisor Problem (PACDP) as explained
in [HOW01].

Let x0 = N − a0. We want to calculate x0 from a0, S. Assume X = dβ is an upper
bound of x0. Let S = dδ. Using the same approach as in the proof of Theorem 1, we get the
condition as

(m + t)(m + t + 1)

2
β +

m(m + 1)

2
δ < m(m + t + 1). (6)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (6) as

β

2
τ 2 + (β − 1)τ +

β

2
+

δ

2
− 1 < 0. (7)

Now, the optimal value of τ to minimize the left hand side of (7) is 1−β
β

. Putting this optimal

value in (7), we get β < 1
δ
. Now δ = log S

log d
. So x0 should be less than d

log d
log S .

Thus, we get x0 and hence N in poly(log S) time. As, V < 2d, we have N < 2d (since
U ≤ N ≤ V). When gcd(N, S) > d, then gcd(N, S) = N as N < 2d. Hence N divides S,
i.e., N is strongly B smooth. ut

B log2 d log2(V − U) LD (Our), Time (sec.) LD ([BON00]), Time (sec.)

1000 450 130 36, 15.51 32, 21.33

1000 496 156 29, 3.77 26, 8.06

1000 496 161 45, 36.88 41, 64.71

Table 2. Comparison of our experimental results with that of [BON00]. We have implemented the ideas of [BON00]
for experimental comparison. LD denotes Lattice Dimension.

Asymptotically, our result is 8 times better than that of [BON00, Theorem 3.1], as that

bound was |I| < 1
4
d

log d
log S . Below we present a few experimental results, where we find improved

outcomes (in terms of execution time) using our strategy than that of [BON00]. One should
also note, that the method of [BON00] requires the implementation of CRT on several
primes, which is not included in the time mentioned in Table 2. Our strategy using the idea
of [HOW01] does not require such computation.

4 Conclusion

In this paper we use the method of finding approximate common divisor, as proposed
in [HOW01], for approaching two problems. The first one is to show the deterministic poly-
nomial time equivalence between factorization of the RSA moduli and finding q−1 mod p. To
the best of our knowledge, this equivalence has not been studied earlier. We also do not find
any trivial method to prove it. Next, we revisit the problem of finding smooth integers in
an interval as explained in [BON00]. We find slightly improved results than that of [BON00]
using the technique presented by [HOW01]. The work of [HOW01] has earlier been exploited
in [COR07] to prove the deterministic polynomial time equivalence of computing the RSA se-
cret key and factoring. We present two more important applications of the work of [HOW01]
here. Finding more applications of this work [HOW01] could be an interesting area to study
in lattice based approaches for number theoretic problems.

References

[BON00] D. Boneh. Finding smooth integers in short intervals using CRT decoding. Proceedings of STOC 2000,
pages 265–272, 2000.

[COP97] D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of
Cryptology, 10(4):223–260, 1997.

[COR07] J. -S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA secret key and
factoring. Journal of Cryptology, 20(1):39–50, 2007.

[HEN09] N. Heninger and H. Shacham. Reconstructing RSA Private Keys from Random Key Bits. Proceedings of
Crypto 2009, Lecture Notes in Computer Science, Volume 5677, pages 1–17, Springer, 2009. The presen-
tation is available at http://www.iacr.org/conferences/crypto2009/slides/p001-rsa-keys.pdf

[HOW97] N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revisited. Proceedings of
Cryptography and Coding, Lecture Notes in Computer Science, Volume 1355, pages 131–142, Springer,
1997.

[HOW01] N. Howgrave-Graham. Approximate integer common divisors. Proceedings of CALC 2001, Lecture Notes
in Computer Science, Volume 2146, pages 51–66, Springer, 2001.

[LLL82] A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathe-
matische Annalen, 261:513–534, 1982.

[LEN93] A. K. Lenstra and H. W. Jr. Lenstra. The Development of the Number Field Sieve. Springer-Verlag, 1993.
[PKCS] http://www.rsa.com/rsalabs/node.asp?id=2125
[POM84] C. Pomerance. The Quadratic Sieve Factoring Algorithm. Proceedings of Eurocrypt 1984, Lecture Notes

in Computer Science, Volume 209, pages 169–182, 1985.
[QUI82] J. -J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key cryptosystem. Elec-

tronic Letters, volume 18, pages 905–907, 1982.
[RSA78] R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key

Cryptosystems. Communications of ACM, 21(2):158–164, February 1978.
[WIE90] M. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory,

36(3):553–558, 1990.

