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Abstract

Protocols for password-based authenticated key exchange (PAKE) allow two users who share
only a short, low-entropy password to agree on a cryptographically strong session key. The
challenge in designing such protocols is that they must be immune to off-line dictionary attacks
in which an eavesdropping adversary exhaustively enumerates the dictionary of likely passwords
in an attempt to match a password to the set of observed transcripts.

To date, few general frameworks for constructing PAKE protocols in the standard model
are known. Here, we abstract and generalize a protocol proposed by Jiang and Gong to give a
new methodology for realizing PAKE without random oracles, in the common reference string
model. In addition to giving a new approach to the problem, the resulting framework offers
several advantages over prior work.

1 Introduction

Protocols for password-based authenticated key exchange (PAKE) enable two parties who share
a short, low-entropy password to agree on a cryptographically strong session key. The difficulty
in this setting is to design protocols preventing off-line dictionary attacks whereby an eavesdrop-
ping adversary exhaustively enumerates passwords, attempting to match the correct password to
observed protocol executions. Roughly, a PAKE protocol is “secure” if off-line attacks are of no
use and the best attack is an on-line dictionary attack whereby the adversary tries to imperson-
ate the honest user with each possible password. This is the best that can be hoped for in the
password-only setting; more importantly, on-line attacks can be detected and defended against.

PAKE protocols are fascinating from a theoretical perspective, as they can be viewed as a means
of “bootstrapping” a common cryptographic key from the (essentially) minimal setup assumption of
a short, shared secret. PAKE protocols are also important in practice, since passwords are perhaps
the most common and widely-used means of authentication.

There is, by now, a substantial body of research focused on the design of PAKE protocols. Early
work [14] (see also [15]) considered a “hybrid” model where users share public keys in addition to
a password; we are concerned in this paper with the more challenging “password-only” setting.
Bellovin and Merritt [6] initiated research in this direction, and presented a PAKE protocol with
heuristic arguments for its security. It was not until several years later that formal models for
PAKE were developed [3, 7, 13], and provably secure PAKE protocols were shown in the random
oracle/ideal cipher models [3, 7, 21].
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To date, there are only a few general approaches for constructing PAKE protocols in the standard
model (i.e., without random oracles). Goldreich and Lindell [13] constructed the first such PAKE
protocol in the so-called “plain model” where there is no additional setup. Unfortunately, their
protocol is inefficient in terms of communication, computation, and round complexity; furthermore,
it does not tolerate concurrent executions by the same party. Nguyen and Vadhan [22] show some
simplifications and efficiency improvements to the Goldreich-Lindell protocol, but at the expense
of achieving a qualitatively weaker notion of security. The results of Barak et al. [2] also imply a
protocol for password-based key exchange, albeit in the common reference string model. None of
the above approaches appear to yield anything close to a practical instantiation.

Katz, Ostrovsky, and Yung (KOY) [18] demonstrated the first efficient PAKE protocol with
a proof of security in the standard model. Their protocol was later abstracted by Gennaro and
Lindell (GL) [12], who gave a general framework that encompasses the original KOY protocol as a
special case. These protocols are secure even under concurrent executions by the same party, but
they require a common reference string (CRS). While this may be less appealing than the “plain
model,” reliance on a CRS does not appear to be a serious drawback in practice for the deployment
of PAKE, where common parameters can be hard-coded into an implementation of the protocol.

Surprisingly, the KOY/GL framework remains the only general framework for constructing
efficient PAKE protocols in the standard model, and it is fair to say that almost subsequent work
on efficient PAKE in the standard model [12, 8, 17, 11, 1, 19] can be viewed as extending and
building on the KOY/GL framework. The one exception is a paper by Jiang and Gong [16] that
shows an efficient PAKE protocol in the standard model (assuming a common reference string)
based on the decisional Diffie-Hellman assumption. Our work is to theirs as the work of Gennaro-
Lindell [12] is to that of Katz-Ostrovsky-Yung [18]; namely, we present a (new) framework for
PAKE that is obtained by suitably abstracting and generalizing the Jiang-Gong protocol. In so
doing, we gain the same benefits as in the previous case: i.e., we get a simple-to-describe, generic
protocol with a clean and intuitive proof of security, and derive (as corollaries to our work) new
variants of the Jiang-Gong protocol based on different cryptographic assumptions.

More compellingly, as compared to PAKE protocols built using the KOY/GL framework we
obtain several advantages, described now:

Weaker assumptions. From a foundational point of view, the new framework relies on poten-
tially weaker assumptions than the KOY/GL framework. Specifically, we require (1) a CCA-secure
encryption scheme as well as (2) a CPA-secure encryption scheme with an associated smooth pro-
jective hash function [10]. In contrast, the framework from [12] requires1 a CCA-secure encryption
scheme with an associated smooth projective hash function, something not known to follow from
the previous assumptions.2

In particular, our results imply a more efficient — not to mention simpler — construction of
PAKE from lattice-based assumptions as compared to the recent work of [19]. (This is because most
of the complexity in [19] arises from the need to construct a lattice-based CCA-secure encryption
scheme with an associated smooth projective hash function.)

Better efficiency. The above directly translates into better efficiency for protocols constructed
using the new framework: first, because CCA-secure encryption is used in only one round (as

1Technically speaking, they require non-malleable, non-interactive commitment with an associated smooth pro-
jective hash function. However, all known constructions of this primitive are in fact CCA-secure encryption schemes.

2Cramer and Shoup [10] show that a CPA-secure encryption scheme Π with a smooth projective hash function
implies a CCA-secure scheme Π′, but there is no guarantee that Π′ will itself admit a smooth projective hash function.
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compared to the protocols of [18, 12] which use CCA-secure encryption in two rounds); second,
since the CCA-secure encryption scheme used need not admit a smooth projective hash function.
(E.g., restricting our attention to the decisional Diffie-Hellman assumption, our framework can use
the Kurosawa-Desmedt [20] scheme instead of Cramer-Shoup encryption [10].) The new framework
also avoids using digital signatures (though the recent work of Gennaro [11] shows how this can be
avoided when using the KOY/GL framework as well).

Mutual authentication. The framework yields PAKE protocols achieving mutual authentication
in only three rounds. In contrast, the KOY protocol and its extensions require four rounds in order
to achieve mutual authentication. (This advantage was already noted in [16].)

1.1 Outline of the Paper

We review definitions for PAKE and smooth projective hashing in Sections 2.1 and 2.2, respectively;
these are fairly standard and can be skipped by readers already familiar with these notions. In
Section 3 we describe the new framework for PAKE; we prove security of this framework in Section 4.

2 Definitions

2.1 Password-Based Authenticated Key Exchange

We present the definition of Bellare, Pointcheval, and Rogaway [3], based on prior work of [4, 5].
The treatment here is lifted almost verbatim from [18], except that here we also define mutual
authentication. We denote the security parameter by n.

Participants, passwords, and initialization. Prior to any execution of the protocol there is an
initialization phase during which public parameters are established. We assume a fixed set User of
protocol participants (also called principals or users). For every distinct U,U ′ ∈ User, we assume
U and U ′ share a password πU,U ′ . We make the simplifying assumption that each πU,U ′ is chosen
independently and uniformly at random from the set {1, . . . , Dn} for some integer Dn that may
depend on n. (Our proof of security extends to more general cases.)

Execution of the protocol. In the real world, a protocol determines how principals behave in
response to input from their environment. In the formal model, these inputs are provided by the
adversary. Each principal can execute the protocol multiple times (possibly concurrently) with dif-
ferent partners; this is modeled by allowing each principal to have an unlimited number of instances
with which to execute the protocol. We denote instance i of user U as Πi

U . Each instance may
be used only once. The adversary is given oracle access to these different instances; furthermore,
each instance maintains (local) state which is updated during the course of the experiment. In
particular, each instance Πi

U has associated with it the following variables:

• sidi
U , pidi

U , and ski
U denote the session id, partner id, and session key for an instance, respec-

tively. The session id is simply a way to keep track of different executions; we let sidi
U be the

(ordered) concatenation of all messages sent and received by Πi
U . The partner id denotes the

user with whom Πi
U believes it is interacting. (Note that pidi

U can never equal U .)

• acci
U and termi

U are boolean variables denoting whether a given instance has accepted or
terminated, respectively.
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The adversary’s interaction with the principals (more specifically, with the various instances)
is modeled via access to oracles that we describe now:

• Send(U, i, M) — This sends message M to instance Πi
U . This instance runs according to the

protocol specification, updating state as appropriate. The output of Πi
U (i.e., the message

sent by the instance) is given to the adversary.

• Execute(U, i, U ′, j) — If Πi
U and Πj

U ′ have not yet been used, this oracle executes the protocol
between these instances and gives the transcript of this execution to the adversary. This
oracle call represents passive eavesdropping of a protocol execution.

• Reveal(U, i) — This outputs the session key ski
U , modeling leakage of session keys due to, e.g.,

improper erasure of session keys after use, compromise of a host computer, or cryptanalysis.

• Test(U, i) — This oracle does not model any real-world capability of the adversary, but is
instead used to define security. A random bit b is chosen; if b = 1 the adversary is given ski

U ,
and if b = 0 the adversary is given a session key chosen uniformly from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances Πi
U and Πj

U ′ are partnered if: (1) sidi
U = sidj

U ′ 6= null;
and (2) pidi

U = U ′ and pidj
U ′ = U .

Correctness. To be viable, a key-exchange protocol must satisfy the following notion of correct-
ness: if Πi

U and Πj
U ′ are partnered then acci

U = accj
U ′ = true and ski

U = skj
U ′ , i.e., they both accept

and conclude with the same session key.

Advantage of the adversary. Informally, the adversary can succeed in two ways: (1) if it guesses
the bit b used by the Test oracle, or (2) if it causes an instance to accept without there being a
corresponding partner. Defining this formally requires dealing with several technicalities.

We first define a notion of freshness. An instance Πi
U is fresh unless one of the following is true

at the conclusion of the experiment: (1) at some point, the adversary queried Reveal(U, i); or (2) at
some point the adversary queried Reveal(U ′, j), where Πj

U ′ and Πi
U are partnered.

We also define a notion of semi-partnering. Instances Πi
U and Πj

U ′ are semi-partners if they
are partners, or if the following holds: (1) the (non-null) session ids sidi

U and sidj
U ′ agree except

possibly for the final message, and pidi
U = U ′ and pidj

U ′ = U . This relaxed definition is needed to
rule out the trivial attack where an adversary forwards all protocol messages except the final one.

An adversary A succeeds if either:

1. A makes a single query Test(U, i) to a fresh instance Πi
U , and outputs a bit b′ with b′ = b

(recall that b is the bit chosen by the Test oracle).

2. At the end of the experiment, there is an instance Πi
U that accepts but is not semi-partnered

with any other instance.

We denote this event by Succ. The advantage of adversary A in attacking protocol Π is given by
AdvA,Π(k) def= 2 · Pr[Succ] − 1, where the probability is taken over the random coins used by the
adversary and during the course of the experiment (including the initialization phase).

It remains to define a secure protocol. A probabilistic polynomial-time (ppt) adversary can
always succeed with probability 1 by trying all passwords one-by-one; this is possible since the
size of the password dictionary is small. Informally, a protocol is secure if this is the best an
adversary can do. Formally, an instance Πi

U represents an on-line attack if, at some point, the
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adversary queried Send(U, i, ∗). The number of on-line attacks represents a bound on the number
of passwords the adversary could have tested in an on-line fashion.

Definition 1 Protocol Π is a secure protocol for password-based authenticated key exchange if, for
all dictionary sizes {Dn} and for all ppt adversaries A making at most Q(n) on-line attacks, there
exists a negligible function negl(·) such that AdvA,Π(n) ≤ Q(n)/Dn + negl(n). ♦

2.2 Smooth Projective Hashing

Smooth projective hash functions were introduced by Cramer and Shoup [9]; we follow (and adapt)
the treatment of Gennaro and Lindell [12], who extend the original definition. Rather than aiming
for utmost generality, we tailor the definitions to our eventual application.

Fix a CPA-secure public-key encryption scheme (Gen,Enc, Dec) and an efficiently recognizable
message space D (that will correspond to the dictionary of possible passwords in our application
to PAKE). We assume the encryption scheme defines a notion of ciphertext validity such that
(1) validity of a ciphertext (with respect to pk) can be determined efficiently using pk alone, and
(2) all honestly generated ciphertexts are valid.

For the rest of the discussion, fix a key pair (pk, sk) as output by Gen(1n) and let C denote the
set of valid ciphertexts with respect to pk. Define sets X, {Lm}m∈D, and L as follows. First, set

X = {(C,m) | C ∈ C; m ∈ D} .

For m ∈ D let Lm = {(C,m) | Decsk(C) = m} ⊂ X; i.e., Lm is the set of ciphertext/message pairs.
Define L =

⋃
m∈D Lm. Note that for any C there is at most one m ∈ D for which (C,m) ∈ L.

Smooth projective hash functions. A smooth projective hash function is a collection of keyed
functions {Hk : X → {0, 1}n}k∈K , along with a projection function α : K × C → S, satisfying
notions of correctness and smoothness:

Correctness: If x = (C, m) ∈ L then the value of Hk(x) is determined by α(k, C) and x (in a
sense we will make precise below).

Smoothness: If x ∈ X \ L then the value of Hk(x) is statistically close to uniform given α(k,C)
and x (assuming k is chosen uniformly in K).

Formally, a smooth projective hash function is defined by a sampling algorithm that, given pk,
outputs (K,H = {Hk : X → {0, 1}n}k∈K , S, α : K × C → S) such that:

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) computing Hk(x) for
all k ∈ K and x ∈ X, and (3) computing α(k,C) for all k ∈ K and C ∈ C.

2. For x = (C,m) ∈ L, the value of Hk(x) is determined by α(k, C). Specifically, there is an
efficient algorithm H ′ that takes as input s = α(k,C) and x̄ = (C,m, r) (where r is such that
C = Encpk(m; r)) and satisfies H ′(s, x̄) = Hk(x).

3. For any x = (C,m) ∈ X \ L, the distributions
{
k ← K; s = α(k, C) :

(
s,Hk(x)

)}
and {k ← K; s = α(k, C); v ← {0, 1}n : (s, v)}

have statistical difference negligible in n.
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3 A New Framework for PAKE

We now describe the new framework for PAKE, obtained as a generalization and abstraction of the
specific protocol by Jiang and Gong [16]. In our construction, we use the following primitives:

• A CPA-secure public-key encryption scheme Σ′ = (Gen′, Enc′, Dec′) that has an associated
smooth projective hash function as defined in Section 2.2.

• A labeled [23] CCA-secure public-key encryption scheme Σ = (Gen, Enc, Dec).

We now describe the protocol.

Initialization. Our protocol relies on a common reference string (CRS) consisting of public keys
pk, pk′ for Σ and Σ′, respectively, along with parameters (K, H = {Hk : X → {0, 1}n}k∈K , S,
α : K × C → S) for a smooth projective hash function associated with pk′. We stress that, as in
all other work in the CRS model, no participants need to know the secret keys associated with the
public keys in the CRS. Furthermore, depending on the exact public-key encryption schemes used
it is possible that the necessary public keys could be generated via a common random string.

CRS: pk, pk′

Πi
U Πj

U ′

r ← {0, 1}∗

C ′ := Enc′pk′(π; r) U ‖C ′
-

k ← K
s := α(k, C ′)
rj‖τj‖skj := Hk(C ′, π)
label := U‖C ′‖U ′‖s

ri‖τi‖ski := H ′(s, C ′, π, r) ¾
U ′ ‖s ‖C

C := Enclabel
pk (π; rj)

label := U‖C ′‖U ′‖s
Ĉ := Enclabel

pk (π; ri)
if C 6= Ĉ, abort

τi - if τi 6= τj , abort
output ski output skj

Figure 1: An honest execution of the protocol. π denotes the shared password πU,U ′ .

Protocol execution. A high-level depiction of the protocol is given in Figure 1. When a client
instance Πi

U wants to authenticate to the server instance Πj
U ′ , the client first chooses a random

tape r and then computes an encryption C ′ := Enc′pk′(π; r) of the shared password π. The client
then sends U‖C ′ to the server.

Upon receiving the message U‖C ′, the server proceeds as follows. It chooses a random hash
key k ← K and computes the projection key s := α(k,C ′). It then computes the hash Hk(C ′, π)
using the ciphertext C ′ it received in the first message and the password π that it shares with U .
The result is parsed as a sequence of three bit-strings rj , τj , skj , where τj and skj have length at
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least n, and rj is sufficiently long to be used as the random tape for an encryption using Enc. The
server then sets label := U‖C ′‖U ′‖s and generates an encryption C := Enclabel

pk (π; rj) of the shared
password π, using the label label and the randomness rj that it previously computed. Finally, Pj

sends the message U ′‖s‖C back to the client.
Upon receiving the message U ′‖s‖C, the client computes the hash using the projected key s

and the randomness it used to generate the ciphertext C ′ in the first round; that is, Pi com-
putes ri‖τi‖ski := H ′(s, C ′, π, r). It sets label := U‖C ′‖U ′‖s and computes the ciphertext Ĉ :=
Enclabel

pk (π; ri). If C = Ĉ the server has successfully authenticated to the client, and the client then
accepts, sends τi to the server, and outputs the session key ski. If C 6= Ĉ then the client aborts.

When the server receives the client’s final message τi, it checks that τi = τj and aborts if that
is not the case. Otherwise the client has successfully authenticated to the server, and the server
accepts and outputs the session key skj .

Correctness is easily verified. If both parties are honest and there is no adversarial interference,
then H ′(s, C ′, π, r) = Hk(C ′, π) and so it holds that ri = rj , τi = τj , and ski = skj . It follows that
both parties will accept and output the same session key.

A concrete instantiation. By letting Σ′ be the El Gamal encryption scheme (which is well-
known to have a smooth projective hash function), and Σ be the Cramer-Shoup encryption scheme
(though more efficient alternatives are possible), we recover the Jiang-Gong protocol. Without any
optimization, this is about 25% faster than the KOY protocol (besides fewer exponentiations, a
signature computation is avoided), and roughly 33% more communication efficient.

4 Proof of Security

This section is devoted to a proof of the following theorem:

Theorem 1 If Σ′ is a CPA-secure public-key encryption scheme with associated smooth projective
hash function, and Σ is a CCA-secure public-key encryption scheme, then the protocol in Figure 1
is a secure password-based authenticated key-exchange protocol.

Proof Fix a ppt adversary A attacking the protocol. We use a hybrid argument to bound the
advantage of A. Let Γ0 represent the initial experiment, in which A interacts with the real protocol
as defined in the previous section. In the rest of the proof, we will define a sequence of experiments
Γ1, . . ., and denote the advantage of adversary A in experiment Γi as:

Advi(n) def= 2 · Pr[A succeeds in Γi]− 1. (1)

Our proof will bound the difference between the adversary’s advantage in successive experiments,
and then bound the adversary’s advantage in the final experiment; this will give the desired bound
on Adv0(n), the adversary’s advantage when attacking the real protocol.

Experiment Γ1. In Γ1 we modify the way Execute queries are handled. Namely, in response to a
query Execute(U, i, U ′, j) we now compute C ′ ← Enc′pk′(π0), where π0 represents some password not
in the dictionary. The remainder of the transcript is computed the same way, and the (common)
session key for instances Πi

U and Πj
U ′ is set to be equal to the session key skj computed by the

server (cf. Figure 1).
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Lemma 1 |Adv0(n)− Adv1(n)| ≤ negl(n).

Proof This follows in a straightforward way from the CPA-security of encryption scheme Σ′.
Construct a ppt adversary B attacking Σ′ as follows: given public key pk′, the adversary B simulates
the entire experiment for A including choosing random passwords for each pair of parties. In
response to Execute(U, i, U ′, j) queries, B queries its own “challenge” oracle using as its pair of
messages the real password πU,U ′ and the fake password π0; when it receives in return a ciphertext
C ′ it includes this in the transcript that it returns to A. Note that B can compute correct sessions
keys ski

U = skj
U ′ since the actions of instance Πj

U ′ are simulated exactly as in the real protocol (and
so, in particular, B can compute skj

U ′ exactly as an honest player in the real protocol would). At
the end of the experiment, B determines whether A succeeded or not.

The distinguishing advantage of B is exactly |Adv0(n)−Adv1(n)|. CPA-security of Σ′ yields the
lemma.

Experiment Γ2. Here we modify the response to a query Execute(U, i, U ′, j) as follows. The first
message of the transcript is U‖C ′, where C ′ is an encryption of π0 as in Γ1. Then k ← K and
s := α(k, C ′) are generated as before. Now, however, we simply choose rj‖τj‖skj as a random string
of the appropriate length. The ciphertext C is computed as in the real protocol, and the message
U ′‖s‖C is added to the transcript. The final message of the protocol is τi = τj , and the session
keys ski

U , skj
U ′ are set equal to skj (which, recall, was chosen at random).

Lemma 2 |Adv2(n)− Adv1(n)| ≤ negl(n).

Proof This follows from the properties of the smooth projective hash function for Σ′. To see
this note that when answering Execute queries in Γ1 the hash function Hk(·) is always applied to
a pair (C ′, π) 6∈ L, and therefore the output is statistically close to uniform conditioned on the
projection key s. Furthermore, in both Γ1 and Γ2 the values ri, τi, ski used by the client are equal
to the values rj , τj , skj computed by the server.

Experiment Γ3. In experiment Γ3 we again change how Execute queries are handled. Namely,
we compute the ciphertext C sent in the second round as C ← Enclabel

pk (π0). (We also remove the
check performed by the client, and always have the client accept and output the same session key
as the server.)

Lemma 3 |Adv3(n)− Adv2(n)| ≤ negl(n).

Proof The lemma holds based on the CCA-security of Σ. (In fact, all we rely on here is security
of Σ against chosen-plaintext attacks.) The key observation is that in experiment Γ2, the ciphertext
C is encrypted using truly random coins rj . Thus, we can construct a ppt adversary B attacking
Σ as follows: given public key pk, adversary B simulates the entire experiment for A. In response
to Execute(U, i, U ′, j) queries, B queries its own “challenge” oracle using as its pair of messages the
real password πU,U ′ and the fake password π0; when it receives in return a ciphertext C it includes
this in the second message of the transcript that it returns to A. Session keys are chosen at random.

It is immediate that the distinguishing advantage of B is exactly |Adv3(n) − Adv2(n)|. CPA-
security of Σ′ yields the lemma.

Note that in experiment Γ3, the actions taken in response to an Execute query are independent
of the actual passwords of any of the parties, and all session keys generated are random.
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Experiment Γ4. In this experiment we will begin to modify the Send oracle. For notational
convenience, we let Send0(U, i, U ′) denote a “prompt” message that causes the client instance Πi

U

to initiate the protocol with server U ′; let Send1(U ′, j, U‖C ′) denote sending the first message of
the protocol to server instance Πj

U ′ ; let Send2(U, i, U ′‖s‖C) denote sending the second message of
the protocol to client instance Πi

U ; and let Send3(U ′, j, τ) denote sending the final message of the
protocol to server instance Πj

U ′ .
In Γ4 we now record the secret keys sk, sk′ when the public keys in the CRS are generated.

Furthermore, in response to the query Send2(U, i, U ′‖s‖C) we proceed as follows:

• If pidi
U 6= U ′ then Πi

U aborts as it would in Γ3. From here on, we assume this is not the case.

• Let U‖C ′ denote the initial message sent by Πi
U (i.e., U‖C ′ is the message that was output

in response to the query Send0(U, i, U ′)). Then:

– If U ′‖s‖C was output by a previous query Send1(U ′, ?, U‖C ′) then we say that the
message U ′‖s‖C is previously-used and the experiment continues as in Γ3.

– If U ′‖s‖C is not previously-used, then we set label := U‖C ′‖U ′‖s and compute π :=
Declabel

sk (C). If π is equal to the password πU,U ′ shared by U and U ′ then the adversary
is immediately declared successful and the experiment ends. Otherwise, Πi

U rejects (and
outputs no session key, nor sends the final message of the protocol).

Lemma 4 Adv3(n) ≤ Adv4(n).

Proof The only situation in which Γ4 proceeds differently from Γ3 occurs when U ′‖s‖C is not
previously-used but decrypts to the correct password; in this case the adversary is immediately
declared successful, so its advantage can only increase.

Experiment Γ5. In experiment Γ5 we modify the way Send0 and Send2 queries are handled. In
response to a query Send0(U, i, U ′) we now compute C ′ ← Enc′pk′(π0), where (as before) π0 denotes
a dummy password that is not in the dictionary. When responding to a query Send2(U, i, U ′‖s‖C),
we proceed as follows:

• If pidi
U 6= U ′ we reject as always. From here on, we simply assume this does not occur.

• If U ′‖s‖C is previously-used (as defined in experiment Γ4), then it was output in response
to some previous query Send1(U ′, j, U‖C ′); let rj , τj , skj be the internal variables used by the
server instance Πj

U ′ . Then to respond to the current Send2 query we set τi := τj (and send τi

as the final message of the protocol), and set the session key for instance Πi
U to ski

U := skj .

• If U ′‖s‖C is not previously-used, then we respond as in Γ4: namely, we set label := U‖C ′‖U ′‖s
and compute π := Declabel

sk (C). If π is equal to the password πU,U ′ shared by U and U ′, the
adversary is declared successful and the experiment ends. Otherwise, Πi

U rejects (and outputs
no session key, nor sends the final message of the protocol).

Lemma 5 |Adv5(n)− Adv4(n)| ≤ negl(n).
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Proof First consider an intermediate experiment Γ′4, where the Send2 oracle is modified as
described above, but Send0 still computes C ′ exactly as in Γ4. It is not hard to see that Γ′4 is
simply a syntactic rewriting of Γ4, and so the adversary’s advantage remains unchanged.

We next show that the adversary’s advantage can change by only a negligible amount in moving
from Γ′4 to Γ5. This follows from the CPA-security of Σ′. Namely, we construct an adversary B
who, given public key pk, simulates the entire experiment for A. This includes generation of the
CRS, which B does by generating (pk, sk) ← Gen(1n) on its own and letting the CRS be (pk, pk′).
In response to Send0 queries, B queries its own “challenge” oracle using as its pair of messages
the real password πU,U ′ and the dummy password π0; when it receives in return a ciphertext C ′ it
outputs the message U‖C ′ to A. Note that B can still respond to Send2 queries since knowledge
of the randomness used to generate C ′ is no longer used (in either Γ′4 or Γ5). At the end of the
experiment, B determines whether A succeeded or not.

The distinguishing advantage of B is exactly |Adv5(n)−Adv′4(n)|. CPA-security of Σ′ yields the
lemma.

Experiment Γ6. In experiment Γ6 we introduce a simple modification to the way Send1 oracle
calls are handled. When the adversary queries Send1(U ′, j, U‖C ′), we now compute π := Dec′sk′(C

′)
(using the secret key sk′ that was stored at the time the CRS was generated) and check if π is
equal to the password πU,U ′ shared by U and U ′. If so, we immediately declare the adversary
successful and end the experiment. Otherwise, the experiment continues as previously. All this
does is introduce a new way for the adversary to succeed, and so Adv5(n) ≤ Adv6(n).

It may at first appear odd that we allow the adversary to succeed in this way, since Σ′ may
be completely malleable. Recall, however, that in Γ5/Γ6 all ciphertexts C ′ output in response to
Send0 queries are in fact encryptions of dummy passwords; thus, the condition introduced here will
not occur “trivially”.

Experiment Γ7. In experiment Γ7 we again modify the behavior of the Send1 oracle. In response
to a query Send1(U ′, j, U‖C ′) we check whether Dec′sk′(C

′) is equal to πU,U ′ as in experiment Γ6.
If so, the adversary is declared to succeed as before. If not, however, we now choose rj , τj , and skj

uniformly at random (rather than computing these values as the output of Hk(C ′, π)), and then
continue as before. In particular, if there is a subsequent Send3 query using the correct value of τj

then the server instance Πj
U ′ accepts and outputs the session key skj

U ′ := skj .

Lemma 6 |Adv7(n)− Adv6(n)| ≤ negl(n).

Proof This follows from the properties of the smooth projective hash function for Σ′. Consider a
query Send1(U ′, j, U‖C ′) where Dec′sk′(C

′) 6= πU,U ′ . In Γ6, we compute rj‖τj‖skj := Hk(C ′, πU,U ′),
whereas in Γ7 we choose rj , τj , and skj uniformly at random. Since (C ′, πU,U ′) 6∈ L, however, these
are statistically close given the fact that the adversary only ever sees the projected key s := α(k, C ′).

The key point to observe about experiment Γ7 is that every oracle-generated second-round
message contains a ciphertext C that is an encryption of the correct password using truly random
coins.

Experiment Γ8. For the final experiment, we again modify the response to Send1 queries; specif-
ically, the ciphertext C is now computed as C ← Enclabel

pk (π0), where π0 (as always) denotes a
dummy password not in the dictionary.
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Lemma 7 |Adv8(n)− Adv7(n)| ≤ negl(n).

Proof The proof relies on the CCA-security of Σ. Construct a ppt adversary B attacking Σ as
follows: given public key pk, the adversary B simulates the entire experiment for A. In response to
Send1 queries, B queries its own “challenge” oracle using as its pair of messages the real password
πU,U ′ and the fake password π0; when it receives in return a ciphertext C, it includes this ciphertext
in the message that it outputs to A. To fully simulate the experiment, B also has to check whether
A succeeds in the course of making a Send1 or Send2 query. The former case is easy to handle, since
B itself knows the secret key sk′ corresponding to the public key pk′ in the CRS; B can therefore
decrypt the necessary ciphertexts on its own. The latter case is more subtle, as here B will have
to use its decryption oracle in order to determine whether A succeeds or not. It can be verified,
however, that B never has to request decryption of a label/ciphertext pair that it received from its
own challenge oracle (this follows from the way we defined “previously-used”).

The distinguishing advantage of B is exactly |Adv8(n)−Adv7(n)|. CCA-security of Σ yields the
lemma.

Bounding the advantage in Γ8. Consider the different ways for the adversary to succeed in Γ8:

1. Send1(U ′, j, U |C ′) is queried, where Decsk′(C ′) = πU,U ′ .

2. Send2(U, i, U ′‖s‖C) is queried, where U ′‖s‖C is not previously-used and Declabel
sk (C) = πU,U ′

for label computed as discussed in experiment Γ4.

3. The adversary successfully guesses the bit used by the Test oracle.

4. Send3(U ′, j, τ) is queried, where τ = τj but the value τ was not output by any instance
partnered with Πj

U ′ .

Case 4 occurs with only negligible probability, since τj is a uniform n-bit string that is independent
of the adversary’s view if it was not output by any instance partnered with Πj

U ′ .
Let PwdGuess be the event that case 1 or 2 occurs. Since the adversary’s view is independent of

all passwords until one of these cases occurs, we have Pr[PwdGuess] ≤ Q(n)/Dn. Conditioned on
PwdGuess not occurring, the adversary can succeed only in case 3. But then all session keys defined
throughout the experiment are chosen uniformly and independently at random (except for the fact
that partnered instances are given identical session keys), and so the probability of success in this
case is exactly 1/2. Ignoring case 4 (which we have already argued occurs with only negligible
probability), then, we have

Pr[Success] = Pr[Success ∧ PwdGuess] + Pr[Success ∧ PwdGuess]
≤ Pr[PwdGuess] + Pr[Success | PwdGuess] · (1− Pr[PwdGuess])

=
1
2

+
1
2
· Pr[PwdGuess]

≤ 1
2

+
Q(n)
2 ·Dn

,

and so Adv8(n) ≤ Q(n)/Dn. Lemmas 1–7 imply that Adv0(n) ≤ Q(n)/Dn + negl(n) as desired.
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