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Abstract. The concept of zero-knowledge proofs has been around for about 25 years. It has been redefined over
and over to suit the special security requirements of protocols and systems. Common among all definitions is the
requirement of the existence of some efficient machine simulating the view of the verifier (or the transcript of
the protocol), such that the simulation is indistinguishable from the reality. In this paper, we will scrutinize the
philosophy behind such definition, and show that the indistinguishability requirement is stated in a conceptually
wrong way: Present definitions allow the knowledge of the verifier and distinguisher to be independent; while, the
two entities are essentially coupled. Therefore, our main take on the problem will be conceptual and semantic,
rather than literal. We formalize the concept by introducing a “knowledge extractor” into the definition, which tries
to extract the extra knowledge hard-coded into the distinguisher (if any), and then helps the simulator to construct
the view of the verifier. The new paradigm is termed Simulation-Extraction Paradigm. We also provide an important
application of the new formalization: Using the simulation-extraction paradigm, we construct one-round (i.e. two-
move) zero-knowledge protocols of proving “the computational ability to invert some trapdoor permutation” in the
Random-Oracle Model. It is shown that the protocol cannot be proven zero-knowledge in the classical simulation
paradigm. The proof of the zero-knowledge property in the new paradigm is interesting in that it does not require
knowing the internal structure of the trapdoor permutation, or a polynomial-time reduction from it to another (e.g.
an NP-complete) problem.
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1 Introduction

The notion of zero-knowledge proofs was put forward by Goldwasser, Micali, and Rackoff [GMR85]. In
their seminal paper, they defined knowledge as the computational power of a party. Such definition dif-
ferentiates “knowledge” from “information.” As an example (adopted from [GMR85]), assume that party
A sends party B a random string r. This protocol carries information (with high entropy), yet it does not
carry any knowledge (since party B could itself generate a random string). On the other hand, assume that
party A sends party B the factorization of some number n. This protocol carries no information (as factoring
a number is a deterministic process, the entropy of such message is zero), but it might carry knowledge
(since B might not be able to compute the factorization by itself). This example conceptualizes the way that
knowledge is coupled with computational power.

Zero-knowledge protocols are valuable “spin-offs” of conceptualizing knowledge in the above sense.
Such protocols are usually stated in a two-party setting: Assume we have a two-party protocol 〈V ↔ P〉. The
protocol is said to be zero-knowledge for P on inputs restricted to some set (language) L, if every V ∗ (having
some pre-specified computational power, such as being a probabilistic polynomial-time Turing machine),
after interacting with P on any input x ∈ L, gains no knowledge. In other words, after finishing the protocol,
no such V ∗ should be able to compute things that it could not compute before the protocol.
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In order to use the above concepts in theory and practice, we need a formal definition. As we see below,
many papers tried to formalize the concepts of knowledge and zero-knowledge. While definitions for knowl-
edge were usually incomparable, definitions for zero-knowledge often fitted in hierarchical structures. That
is, some definitions were more general, while the others were stricter. A rough sketch of several definitions
of zero-knowledge is illustrated in Fig. 1. We will review some of these definitions in Section 2, but the
important point is that all definitions share one thing in common: They all require the existence of some
probabilistic polynomial-time Turing machine, called the simulator, which must satisfy some condition.
The condition differs in various definitions, but the spirit is always the same: The simulator M must simulate
the protocol such that V ∗ cannot tell whether it is interacting with P or with M. This way, it is guaranteed
that V ∗’s “knowledge” does not increase after the protocol terminates: Since V ∗ cannot “distinguish” the
interaction with P and M, it gains computationally nothing more than what M can compute; and since M
and V ∗ belong to the same complexity class, V ∗ could compute the interaction with M all by itself.

The preceding discussion makes reference to two important concepts:

– V∗’s Knowledge: As said, in a zero-knowledge protocol, V ∗’s knowledge must not increase after the
protocol terminates. Several researchers proposed formal definitions for measuring the knowledge of
a machine. Specifically, [TW87, FFS87, FFS88, FS90] tried to accomplish this task, but none of them
suggested a satisfactory formalism. This was until the work of Bellare and Goldreich [BG93], which put
forward a formalized definition of knowledge.3 Unfortunately, all these works focused on formalizing
the knowledge of a prover (P), not the verifier (V ∗), since, it was believed that the prover is in possession
of knowledge, not the verifier. As we will see, this belief is not true for some protocols. Consequently,
there should be a formalization for the knowledge of the verifier. For this, we use techniques similar to
those of [BG93].

– Distinguishing4: For a protocol to be zero-knowledge, it is required that V ∗ cannot distinguish the in-
teraction with M from the interaction with P. But V ∗ has a prescribed program (i.e. verification), which
does not necessarily involve a distinguishing procedure. In order to overcome this problem, all defini-
tions of zero-knowledge allow V ∗ to use another machine A to satisfy its distinguishing requirement.
A is assumed to be as computationally powerful as V ∗. Therefore, if A can distinguish two distribution
ensembles, so can V ∗.
The problem with the above approach is that, by definition, A and V ∗ can be two separate, independent,
and completely unrelated entities. Thus, while V ∗ may not be in possession of some knowledge (see
the above discussion about V ∗’s knowledge), one can assume that A possesses that knowledge (e.g. the
knowledge might be hard-coded into A’s program). As we will see, separating A and V ∗ can lead to
counterintuitive results. That is, it is possible that no simulator satisfies the zero-knowledge requirement
for protocols which are conceptually zero-knowledge. The main result of this paper is to propose a
definition of zero-knowledge which reunites A and V ∗, so as to get rid of such conceptual problems.

In the next two subsections, we will overview a problematic case, and the solution we suggest to overcome
the problem. The case is problematic since it shows conceptual problems in the formalization of zero-
knowledge.

1.1 Overview of the Problem

While the problem is formally stated in the body of the paper, it is instrumental to informally express the
problem as well. The reader is urged not go deeply into the details, since the exposition is intrinsically in-
formal. For example, while “proofs of knowledge” are defined over relations, the informal protocol defines

3 Yet their definitions were refined/specialized by other papers, as in [HM98, BGGL01].
4 In this paper, we only stress computational indistinguishability: two distribution ensembles are said to be computationally indis-

tinguishable if no probabilistic polynomial-time Turing machine can tell them apart. Other types of indistinguishability (perfect
and statistical) are illustrated in Fig. 1.
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it over a single string. Similarly, while “computational indistinguishability” is defined over infinite distri-
bution ensembles, the given protocol gives rise to a single probability distribution. That said, the informal
exposition should be enough to familiarize the reader with the nature of the problem.

Let us begin with several informal definitions:

View of a Machine View is defined as everything a machine sees on its tapes, including the main input, the
auxiliary input, the randomness, and every message sent or received by that machine.

Zero-Knowledge Protocol Consider a two-party protocol 〈V ↔ P〉, where V is probabilistic polynomial-
time. The protocol is zero-knowledge5 for P if there exists a probabilistic polynomial-time machine M, such
that for every probabilistic polynomial-time machine V ∗, M can construct the view of V ∗ such that the view
is indistinguishable from the case where V ∗ is interacting with P. That is, for all probabilistic polynomial-
time machine A, the probability that A outputs 1 given the real view is almost equal to the probability that
it outputs 1 given the simulated view. We assume that M has black-box access to V ∗.

Random-Oracle Model In this model, every party participating in the protocol (including the adversary) has
access to some randomly chosen function O. For all string x, every party querying O at x will get the same
response, regardless of the identity of that party. For instance, machines P, V ∗, M, and A of the preceding
definition have access to O.

Now consider the following identification protocol: P and V have a priori shared an n-bit secret w (the
security parameter is 1n). We assume that w is on the auxiliary-input tape of P, but it is hard-coded into
V ’s program. In addition, we assume that P has the same computational power as V (i.e. P is probabilistic
polynomial-time).

P identifies itself by proving knowledge of w to V . To accomplish this, V chooses an n-bit random value
r and sends it to P. P responses by sending O(w⊕ r) to V . Next, V verifies P’s answer by querying O at
w⊕ r. Finally, V informs P whether it accepted or rejected.

We first informally argue that the simulation paradigm does not allow the above protocol to be zero-
knowledge. Next, we argue why the above protocol must be considered zero-knowledge.

To show that the above protocol is not zero-knowledge in the simulation paradigm, consider a (dishonest)
verifier V ∗ which does not “know” w. Similar to V , V ∗ sends a random r, and receives O(w⊕ r). At this
point, V ∗ aborts the protocol, and investigates the received message to gain more “knowledge.”

No simulator M is able to create the view of such V ∗, since M does not “know” w.6 The old tricks, such
as rewinding V ∗ or monitoring its queries to O are useless. Therefore, M’s best bet is to send a random
message instead of O(w⊕ r). However, a distinguisher A which “knows” w (hard-coded into its program7)
can distinguish the two views. �

Next, we argue that no V ∗ can gain knowledge in the above protocol. Let us consider two cases:

1. V ∗ does not know w prior to running the protocol.
2. V ∗ knows w prior to running the protocol.

5 Note that this informal definition does not reference any language L.
6 We may not assume an M into which w is hard-coded; otherwise, it will be meaningless to speak of zero-knowledge protocols.

This fact cannot be justified in the informal discussion. In the formal definition (stated later), we see that the simulator is chosen
universally, i.e. the order of quantifiers is such that M is determined before V ∗ and the inputs to 〈V ↔ P〉 are fixed, and thus M
cannot depend on w.

7 Hard-coding w into A’s program is meaningful, since the honest verifier has this knowledge hard-coded. Therefore, A can be a
modified version of V , suited for distinguishing tasks.
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In the former case, we assume that, even if V ∗ is provided with a black-box (such as V ) which only tells it
whether some chosen w′ equals w, V ∗ is still unable to recover w in polynomial time. Otherwise, we assume
that V ∗ effectively knows w.

If the latter case holds, the protocol is trivially zero-knowledge; whether the simulator exists or not.
After all, if we are assured that both P and V ∗ know w, then we can claim that no knowledge will leak from
P to V ∗; since P’s knowledge and computational power are no more than V ∗’s.

So, let us consider the former case; i.e. V ∗ does not know w prior to running the protocol. We claim that,
knowing w is essential to distinguishing O(w⊕ r) from some random value. (A similar claim is formally
proved in the body of the paper.) Therefore, if V ∗ does not know w, it cannot distinguish the real and
simulated views.

However, what about a distinguisher A that knows w? As pointed out earlier, A should conceptually
be regarded as the same entity as V ∗. Therefore, if A knows something, so must do V ∗. It is a problematic
part of the definition of zero-knowledge which decouples A and V ∗. We will sketch a solution in the next
subsection.

1.2 Overview of the Solution

In this subsection, we informally state how the verifier V ∗ and the distinguisher A must be reunited. As
pointed out in the previous subsection, A can only distinguish the real and simulated views of the given
protocol if it “knows” w. To prove this, we use a knowledge extractor to extract this knowledge, as stated in
the Informal Theorem 1 (a formal version of which is proven in the body of the paper):

Informal Theorem 1. For every A, if A distinguishes the simulated and real views of the above protocol
with advantage8 q, there exists a probabilistic knowledge extractor K which, having black-box access to
A, extracts w. In other words, by definition of knowledge extraction [BG93], KA runs in expected time
upper-bounded by some value proportional to 1/q, and outputs w.

Utilizing Informal Theorem 1, we can take one further step by demanding that K simulate the real view.
After all, if K succeeds in extraction of w from A, it can easily output a view which A cannot distinguish
from the real view. The new definition is advantageous in that it does not take into account what knowledge
must be extracted from A. In contrast, it requires K to simulate the view appropriately, regardless of the
specific knowledge it extracts from A.

Informal Definition 1. A protocol is zero-knowledge for P if there exists an efficient machine M and a
probabilistic knowledge extractor K, such that for every efficient machine V ∗, M can construct the view of
V ∗, so that for every efficient distinguisherA, ifA distinguishes the real and simulated views with advantage
q, K runs in expected time (at most) proportional to 1/q, such that KV ∗,A outputs a view which A cannot
distinguish from the real view.

As mentioned in the previous section, A can only distinguish O(w⊕ r) from some random value if it
knows w. In that case, A distinguishes the two views with probability almost 1, by querying O at w⊕ r.9

Machine K can monitor A’s queries, and learn w if A knows this value. Knowing w, K can easily output a
view which is indistinguishable from the real view.

1.3 Road Map

In this paper, we show that the “classical” formalization of zero-knowledge—based on decoupled verifiers
and distinguishers—is too strict. We revisit the definition of zero-knowledge conceptually, and put forward

8 The absolute of advantage equals the absolute difference of two probabilities: The probability that A outputs 1 given the real
view, and the probability that A outputs 1 given the simulated view.

9 The word almost is used since it is possible (though with negligible probability) that the random value equals O(w⊕ r).
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a less strict definition, replacing the simulation paradigm with a new paradigm termed simulation-extraction
paradigm. The new paradigm enables us to construct interesting protocols. As an example, we construct a
1-round (i.e. 2-move) zero-knowledge proof of the computational ability to invert a trapdoor one-way per-
mutation in the Random-Oracle Model. It is shown that the protocol is not zero-knowledge in the simulation
paradigm. The elegance of the protocol is that it does work via reducing the trapdoor one-way permutation
to another (e.g. anNP-complete) problem. Therefore, any trapdoor one-way permutation will fit in the pro-
tocol. Put differently, it is not required to redesign the protocol for specific instances of trapdoor one-way
permutation (e.g. RSA), or know the internal mechanisms or assumptions made by such constructs. This
is in sharp contrast to previous works, such as [CEv87, CM99], where the protocols heavily depend on the
nature of the construct being studied.

The rest of this paper is organized as follows: Section 2 reviews the basic notations and definitions. In
Section 3, we provide a protocol and prove that it is a “proof of computational ability.” This protocol is
modified in Section 4 so as the resulting protocol becomes conceptually zero-knowledge. Section 5 con-
tains the main results of this paper: It suggests a new formalization of the concept of zero-knowledge (the
simulation-extraction paradigm), and proves that the protocol presented in Section 4 is zero-knowledge in
this paradigm. Finally, Section 6 summarizes the paper, and suggests several open problems for further
research.

2 Notations and Definitions

In this section, we briefly review some definitions. For a more thorough description of most of these con-
cepts, please refer to [Gol01].

For all n ∈ N, and all x ∈ {0,1}n, define |x| def
= n. That is, |x| denotes the length of x.

The assignment operator “←” has several interpretations as follows. The specific interpretation should be
clear from the context:

– Let x and y be variables. Then x← y means assigning the value of y to x.
– Let P be a (possibly random) process.10 Then x←P means running P on its inputs (if any), and assigning

the output to x.
– Let D be a probability distribution, and let supp(D) denote its support.11 Then x← D means drawing x

from supp(D) according to distribution D.

The assignment operator may be subscripted by an “R”, which gives it a special meaning:

– Let S be a set. Then x←R S means drawing an element from S uniformly and independently, and assign-
ing it to x.

Pr [P1,P2, . . . ,Pn : E] denotes the probability of event E after ordered execution of (possibly random) pro-
cesses P1, . . . ,Pn. The same is true for the mathematical expectation E [P1,P2, . . . ,Pn : E].

Whenever we speak of the running time of a machine, we imply its running time in the length of the security
parameter (or the common input to all parties). If no security parameter is available, the running time is
measured in the length of the first input to the machine.

10 In this paper, the terms “process” and “function” are used interchangeably. A process (function) might be either Turing-
computable or Turing-uncomputable. In the former case, we may speak of algorithms or (Turing) machines instead of processes
(functions).

11 The support of a function f is the closure of (i.e. the smallest closed set containing) the set of arguments for which f is nonzero.
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The term “efficient” is used identical to “probabilistic polynomial-time,” which may be abbreviated as PPT.
In addition, we denote by ITM and OTM an “interactive Turing machine” and an “oracle Turing machine,”
respectively. These terms can join together; thus PPT-ITM-OTM means a “probabilistic polynomial-time
interactive oracle Turing machine.”

For any probabilistic algorithm A, let Ar denote the algorithm A, when its random input is r. (Thus, Ar is
deterministic on its input.)

A function ε : N→ R is called negligible in n if for every positive polynomial p(n):

∃n0 ∈ N s.t. ∀n≥ n0 ε(n)<
1

p(n)
. (1)

Let negl(n) denote the set of all functions negligible in n. Sometimes, we may abuse the notation and write
ε(n) = negl(n) instead of ε(n) ∈ negl(n), as is the case with the Big-O notation.

Let P and V be two interactive functions [BG93], which participate in an interactive proof.12 Define:

– state〈V,P〉(x): The state of V after interacting with P on common input x. The state is either ACC (for
accept) or REJ (for reject).

– tran〈V,P〉(x): The transcript of the interaction of V and P on common input x. The transcript contains
x, the interleaved sequence of messages sent by both parties during the interaction, and state〈V,P〉(x).
Including the state enables us to speak of accepting and rejecting transcripts. Denote by ACCV (x) the set
of transcripts of V ’s interaction with all possible interactive functions P, on which state〈V,P〉(x) = ACC.
Define REJV (x) similarly.

– view〈V,P〉(x): The view of V after interacting with P on common input x. The view contains everything
V sees on its (read-only) tapes (x, the random tape, any auxiliary input, and the messages it receives
from P).

2.1 Trapdoor Permutations

Since our protocol is based on the concept of “collections of trapdoor one-way permutations,” we devote a
subsection to it. One-way functions and trapdoor one-way permutations were first discussed by Diffie and
Hellman [DH76]. (See also [Yao82], [GM84], and [BHSV98].)

Definition 1. (Collection of Trapdoor One-Way Permutations). Let X ⊆ {0,1}∗ be an (efficiently sam-
plable) infinite set, and consider a family of functions F = { fx}x∈X . Assume that for all x ∈ X, fx is a per-
mutation over some (efficiently samplable) set Dx ⊆ {0,1}|x|. The function family F is called a collection of
trapdoor one-way permutations13 if the following two conditions hold:

1. Easy to sample, compute, and invert using the trapdoor: There exist 4 efficient algorithms G, D, F
and I, such that for all n ∈ N:

Pr
[
〈x, tx〉 ← G(1n) , z← D(x) : x ∈ X ∩{0,1}n

∧ z ∈ Dx

∧ F(x,z) = fx(z)

∧ I ( fx(z), tx) = z
]
= 1 . (2)

12 The proof can be a proof of language membership [GMR85, GMR89], a proof of knowledge [BG93], a proof of computational
ability [BG92], and so on.

13 For brevity, we may use the term “trapdoor permutation” to indicate a “collection of trapdoor one-way permutations.”
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The probability is taken over the internal coin tosses of algorithms G, D, F, and I.
2. Hard to invert without the trapdoor: For any PPT adversary A, the following condition should hold:

∀c ∈ N, ∃n0 ∈ N s.t. ∀n≥ n0

Pr
[
〈x, tx〉 ← G(1n) , z← D(x) : A( fx(z)) = z

]
< n−c . (3)

The probability is taken over the internal coin tosses of algorithms G and D, as well those of the adver-
sary A. ut

Remark 1. Algorithms G, D, F , and I are called “Generator,” “Domain Sampler,” “Function Evaluator,” and
“Inverter,” respectively.

Remark 2. If (2) holds, we can change the definition so as to allow algorithms F and I to be deterministic.

Remark 3. Definition 1 can be relaxed by allowing algorithms G, D, F , and I to fail with probability negl(n).

2.2 Proof of Knowledge and Proof of Computational Ability

Proofs of knowledge and proofs of computational ability were fully formalized by Bellare and Goldreich
[BG93, BG92]. The proofs are stated in terms of binary relations.

Let R ⊆ {0,1}∗ × {0,1}∗ be a binary relation. Define R(x) def
= {y|〈x,y〉 ∈ R}, and LR ≡ dom(R) def

=
{x|R(x) 6=∅}. Definition 2 formalizes “proofs of knowledge.”

Definition 2. (Proof of Knowledge [BG93]). Let R be a binary relation, and let κ : {0,1}∗→ [0,1]. Let V
be an efficiently computable interactive function. We call V a knowledge verifier for R with error κ if the
following conditions hold:

1. Non-triviality: There exists an interactive function P∗ such that V always accepts after interacting with
P∗ on all x ∈ LR. In other words,

Pr [state〈V,P∗〉(x) = ACC] = 1 . (4)

2. Validity: For some constant c> 0, there exists a probabilistic oracle machine K, so that for all interactive
function P and every x ∈ LR:

If p(x) def
= Pr [state〈V,P〉(x) = ACC] > κ(x), then KP(x) outputs an element of R(x) in ex-

pected number of steps bounded by |x|c
p(x)−κ(x) .

We call K a universal knowledge extractor for R. ut

A similar notion is the concept of “proofs of computational ability.” Definitions 3 and 4 are devoted to this
concept.

Definition 3. (Solving a Relation [BG92]). Let R be a binary relation, and D be a distribution on dom(R).
Assume that t ∈ N and suppose that M(·) is a machine.

– We say that machine M(·) solves R under D in expected t steps if:

∃i,1≤ i≤ t s.t. (xi,y)←M(〈x1, . . . ,xt〉 ← Dt) and y ∈ R(xi) . (5)

and M halts in expected t steps.
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– We say that machine M(·) strongly solves R under D in expected t steps if M(x← D) ∈ R(x), and M
halts in expected t steps.

In both cases, the expectation is taken over the random selection of the input, as well as the coin tosses of
M. ut

Let R= {Rx}x∈{0,1}∗ be a family of binary relations, where Rx ⊆ {0,1}|x|×{0,1}∗. D = {Dx}x∈{0,1}∗ is an
input distribution forR if Dx is a distribution on dom(Rx) for all x.

Definition 4. (Proof of Computational Ability [BG92]). LetR andD be as defined above, and let κ : {0,1}∗→
[0,1]. Let V be an efficiently computable interactive function. We call V a verifier of the ability to (strongly)
solveR under D with error κ if the following conditions hold:

1. Non-triviality: There exists an interactive function P∗ such that V always accepts after interacting with
P∗ on all x ∈ LR. In other words,

Pr
[
state〈V Dx ,P∗〉(x) = ACC

]
= 1 . (6)

2. Validity: For some constant c > 0, there exists a probabilistic oracle machine K(·, ·, ·), so that for all
interactive function P, every x ∈ LR, and all γ ∈ ACCV (x), machine KP(x,γ, ·) satisfies:

If px
def
= Pr

[
state〈V Dx ,P〉(x) = ACC

]
> κ(x), then KP(x,γ, ·) (strongly) solves Rx under Dx

in expected number of steps bounded by |x|c
px−κ(x) .

We call K a (strongly) ability extractor forR under D. ut

The verifier might be able to draw elements from D independently. In such cases, one can omit D from
Definition 4, and speak of distribution-free verifiers of ability.

2.3 Definitions of Zero Knowledge

It is a desired property for security protocols to be zero knowledge (ZK, for short). Informally, a (two-party)
protocol 〈V ↔ P〉 is considered ZK for party P if by the end of protocol, V cannot compute something that
it could not compute before the protocol began.

A more practical definition requires the existence of an efficient program, called the simulator, which
approximates the execution of protocol. Based on the “accuracy” of the approximation, we have Perfect ZK
(PZK), Statistical ZK (SZK), and Computational ZK (CZK). In this paper, we only deal with CZK. As such,
other concepts are not defined here.

Zero-knowledge is a term applied normally to interactive proofs, although it can be used independently. To emphasize the
distinction, we use the term “interactive protocols” instead of “interactive proofs.” A ZK interactive proof is an interactive
protocol which is also ZK.

Definition 5 (CZK [GMR85]). Let 〈V ↔ P〉 be interactive protocol. We say that this protocol is CZK for
P on L = LR, if for every PPT-ITM V ∗, there exists a PPT machine MV ∗ such that for every PPT algorithm
A (the distinguisher):

∀c > 0, ∃n0 ∈ N s.t. ∀n≥ n0, ∀x ∈ L∩{0,1}n

|Pr [A(MV ∗(x)) = 1]−Pr [A(view〈V ∗,P〉(x)) = 1]|< n−c . (7)

where the first probability is taken over the internal coin tosses of MV ∗ and A, and the second probability is
taken over the internal coin tosses of V ∗, P, and A. ut

9



Definition 5 has a major drawback: It does not consider any possible auxiliary input in possession of dis-
honest verifiers. Several works (e.g. [Ore87, TW87, GMR89, GO94]) tried to overcome this drawback, re-
sulting in the definition of auxiliary-input ZK. Another definition, called universal-simulation ZK, results
from swapping the “universal quantifier over V ∗” and the “existential quantifier over MV ∗” in Definition 5.
Such definition guarantees a universal simulator for every verifier. Oren [Ore87] claimed that the class of lan-
guages possessing auxiliary-input ZK is equivalent to the class of languages possessing universal-simulation
ZK.14 We do not formalize these concepts here, since we make use of an even more strict definition of ZK:
Black-box ZK.

Definition 6 (Black-Box CZK15). Let Vx,r,ξ (m) be a function that on input m, a sequence of messages sent
by P, returns the next-message of V on common input x, auxiliary input ξ , and random input r. In
addition, let Vr(ξ ) denote machine V with auxiliary input ξ and random input r.

We call an interactive protocol 〈V ↔ P〉 black-box CZK for P on L = LR, if there exists a PPT-OTM M
such that for every PPT-ITM V ∗, and all PPT-OTM A (the distinguisher):

∀c > 0, ∃n0 ∈ N s.t. ∀n≥ n0, ∀x ∈ L∩{0,1}n, ∀r,ξ ∈ {0,1}∗∣∣∣Pr
[
AV∗(x,r,ξ )

(
MV∗(x,r,ξ )(x,r,ξ )

)
= 1
]
− Pr

[
AV∗(x,r,ξ )

(
view〈V ∗r (ξ ),P〉(x)

)
= 1
]∣∣∣< n−c . (8)

The first probability is taken over the internal coin tosses of M and A, and the second probability is taken
over the internal coin tosses of P and A. (Note that V ∗ is a deterministic machine with hard-coded random-
ness r.) ut

It is obvious from the definition that, black-box CZK is both auxiliary-input CZK and universal-simulation
CZK.

We will use another variant of CZK, which we prefer to call “passive-observer CZK.” In this variant,
the simulator should approximate the transcript of the protocol, rather than the view of (possibly dishonest)
verifier. In this case, the protocol is CZK for any passive observer eavesdropping the protocol messages.
Definition 7 provides a somehow weaker form of CZK than Definition 5. We will exploit this weaker form
when trying to formulate a revised definition of ZK.

Definition 7 (Passive-Observer CZK [GMR85]). We call an interactive protocol 〈V↔P〉 passive-observer
CZK for P on L = LR, if for every PPT-ITM V ∗, there exists a PPT machine MV ∗ such that for every PPT
algorithm A (the distinguisher):

∀c > 0, ∃n0 ∈ N s.t. ∀n≥ n0, ∀x ∈ L∩{0,1}n

|Pr [A(MV ∗(x)) = 1]−Pr [A(tran〈V ∗,P〉(x)) = 1]|< n−c . (9)

where the first probability is taken over the internal coin tosses of MV ∗ and A, and the second probability is
taken over the internal coin tosses of V ∗, P and A. ut

Another definition considers the ZK property only with respect to the honest verifier; i.e. the verifier which
sends messages according to the prescribed program (but may store the received messages for further inves-
tigations). Definition 8 formalizes this concept.

14 The claim is with respect to non-uniform adversaries. It is conjectured that, with respect to uniform adversaries, the class of
languages possessing universal simulation ZK is a proper subclass of the class of languages possessing auxiliary-input ZK. (See
for example [Bar03].)

15 The definition first appeared in [Ore87, GO94], but we adopted it from [Gol01].
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Common Input (Security Parameter): 1n.

Verifier (V ) Prover (P)

Let 〈x, tx〉 ← G(1n),
z← D(x),
y← F(x,z).

〈x,y〉
−−−−−−−−−−−→

Compute w← f−1
x (y).

w←−−−−−−−−−−−
IF w = z THEN

Set state to ACC.
ELSE

Set state to REJ.

Protocol 1. Base Protocol (Variant 1).

Definition 8 (Honest-Verifier CZK (HVCZK)). We call an interactive protocol 〈V ↔ P〉 HVCZK for P
on L = LR, if for the honest verifier V , there exists a PPT machine M such that for every PPT algorithm A
(the distinguisher):

∀c > 0, ∃n0 ∈ N s.t. ∀n≥ n0, ∀x ∈ L∩{0,1}n

|Pr [A(M(x)) = 1]−Pr [A(view〈V,P〉(x)) = 1]|< n−c . (10)

where the first probability is taken over the internal coin tosses of M and A, and the second probability is
taken over the internal coin tosses of V , P and A. ut

3 The Base Protocol

Let F def
= { fx}x∈X be a collection of trapdoor one-way permutations, and let X and Dx be its index set and

domain set, and G, D, F and I be the corresponding efficient algorithms, as per Definition 1.
Define the binary relation Rx

def
= {〈 fx(z),z〉}z∈Dx

for all x ∈ X , and let R denote a family of binary

relations:R def
= {Rx}x∈X . Note that D def

= {F(x,D(x))}x∈X is an input distribution forR.
Proving membership inR is easy (given x and a pair 〈y,z〉) due to the “easy-to-compute” property of F .

In contrast, solvingR underD (see Definition 3) is hard, sinceF is “hard to invert.” Therefore, we intuitively
believe that, if a prover can solveR under D, it has some computational advantage over an efficient verifier,
and such interaction constitutes a “proof of computational ability” (see Definition 4).

Protocol 1 is a formal presentation of the interaction described above. It is called the “Base Protocol”
since it forms the basis for proofs and protocols presented in this paper. To simplify the exposition, we as-
sume that algorithms G, D, F and I are incorporated into the code of the honest prover and the honest verifier.
In the latter case, this assumption is justified by the fact that these algorithms are efficiently computable.

Another variant16 of Protocol 1, presented in [BG92], assumes that x ∈ X is chosen a priori to the start
of the protocol, and given to both parties as the common input. In this variant, P has to show the ability to
invert fx for some fixed x. While the two variants are quite different, the choice of which is immaterial to
the objective of this paper. Theorem 1 formalizes what we expect from the Base Protocol.
16 Hereafter referred to as Variant 2.
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1: ESTIMATE px.
2: FOR i← 1 TO n/px DO
3: LET y← V(x).
4: LET w← P(x,y).
5: IF y = F(x,w) THEN
6: OUTPUT 〈w,y〉.
7: HALT.
8: PERFORM “Exhaustive Search” on y.

Program 1. The Ability Extractor

Theorem 1. Both variants of Protocol 1 constitute proofs of computational ability. In particular:

Claim 1.1 In Variant 1 of the Base Protocol, V is an ability verifier for solving Rx under F(x,D(x)) (with
zero error), where x is chosen according to the distribution induced by the (first component of ) G(1n)
output over X ∩{0,1}n.

Claim 1.2 In Variant 2 of the Base Protocol, V is an ability verifier for solving Rx under F(x,D(x)) (with
zero error), where x ∈ X is chosen a priori.

A proof for Claim 1.2 is given in [BG92]. However, their proof suffers from four drawbacks:

1. It is very complicated;
2. The proof is only sketched, and is not thoroughly discussed;
3. The proof is for the special case where D(x) is uniform over {0,1}|x|;
4. There is a minor error in the proof.17

The following proof overcomes these shortcomings. In addition, it is general enough to cover both Claims
1.1 and 1.2 (but we only present it for Claim 1.2, since it is simpler). Moreover, the proof ideas are used to
prove the main result of this paper (Theorem 8).

Proof. The “non-triviality” property of Definition 4 follows directly from the existence of the “Function
Evaluator” F for the family F . We therefore focus on the validity property.

Let px
def
= Pr [state〈V,P〉(x) = ACC], where the probability is taken over the random coin tosses of both P

and V . The ability extractor can accurately estimate px in time poly(n)/px. A good survey of estimating the
average of some function g : {0,1}n→ [0,1] is presented in [Gol97].

Let V(·) and P(·, ·) denote the next-message function of V and P, respectively. Note that to evaluate
the next-message function, having oracle access to the corresponding party suffices. We know that
V(x) = F(x,D(x)) for all input x’s (assuming x ∈ dom(R)), since V is supposed to be honest.

We are now ready to provide the ability extractor K. The program of K is given in Program 1. We
assume that V uses fresh randomness every time execution reaches Step 3. Therefore, a new challenge—
drawn according to F(x,D(x))—is applied to each round. In addition, we assume that the extractor resets P
in Step 4, and provides it with fresh randomness. This way, P cannot keep a history of previous challenges,
and thus it returns an independent response.
We now prove that Program 1 satisfies the validity property. Since the probability that P can invert y chosen
according to V(x) is px, each iteration halts with expected probability px. Therefore, the probability that Step

17 Specifically, inequality (1) on page 6 of [BG92] states that |Yx(i)|
2|x| > px·2i

n . We confirmed that this is wrong, and found several

counterexamples to it. The correct version is: |Yx(i)|
2|x| ≥

px·2i−1

n .
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8 runs (i.e. the extractor is unsuccessful in all n/px iterations) is (1− px)
(n/px) < e−n, which is negligible in

n.18

Thus, the ability extractor is able to invert at least one of y’s provided to it by the verifier with over-
whelmingly high probability. The negligible probability can be eliminated by running an exhaustive search
in Step 8.

The expected running time of Program 1 can be decomposed into the following:

– Step 1: Runs in time poly(n)/px;
– Steps 2–7: Runs in time (n/px)poly(n);
– Step 8: Runs in time O(2n)poly(n) with expected probability at most e−n.

Consequently, the expected running time of Program 1 is poly(n)/px, as required by Definition 4. �

It is intuitively obvious that the Base Protocol is a “knowledge carrying” proof. In particular, the prover can
be used as an “inversion oracle”—That is, a dishonest verifier can exploit the prover to invert any string y
under fx(·), whose inverse is not “known” to it.

Before trying to give a ZK variant of the Base Protocol, we take note of the following negative result:

Theorem 2 (Goldreich and Oren [Ore87, GO94]). Let L be a language for which there exists a two-step
auxiliary-input ZK proof of membership with negligible error. Then L ∈ BPP .19

Note that Theorem 2 holds for proofs of language membership, while the Base Protocol is a proof of com-
putational ability. We do not know whether it holds for such proofs. Thus, we state the modified version as
a conjecture.

Conjecture 1. Theorem 2 holds for proofs of knowledge (respectively proofs of computational ability) as
well. That is, Let 〈V ↔ P〉 be a two-step auxiliary-input ZK proof of knowledge (respectively proof of
computational ability) with negligible error on some language L = LR. Then, R is trivial, i.e. it can be
(strongly) solved by a BPP algorithm.

Proving or refuting Conjecture 1 is of independent interest. If it is proven, a two-step ZK version of the Base
Protocol is out of question (in the auxiliary-input sense). However, even if Conjecture 1 is refuted, it may be
impossible to give a two-step ZK version of the Base Protocol.

Anyway, we could not conceive of the ZK version of our two-step protocol in the Standard Model. Thus,
we resorted to a more powerful model of computation, discussed in the next section.

4 Exploiting the Random Oracle Model

Despite what Conjecture 1 states, it might be possible to give a two-step ZK version of the Base Protocol in
a different computational model than the Standard Model. A similar approach has been adopted by Aiello
and Håstad [AH91]. In particular, they proved that relative to some oracle A, there exists a two-step passive-
observer (Definition 7) PZK proof for some language L 6∈ BPPA.

While at first it may seem that we are proving a similar proposition, our approach is unique in that
we perform relativization with respect to a “random oracle” [BR93].20 In addition, [AH91] assumes a very
loose definition of ZK (in which the adversary is merely a passive observer, and may not interfere with
the execution of the protocol). Thus, our proposition is stronger in that the adversary (which tries to gain
knowledge) is the malicious verifier itself, and can send messages, in addition to observing them.

18 The inequality is due to the fact that g(α)
def
= (1−α)

1
α is a decreasing function of α . Hence g(α) < limt→0 g(t) = e−1 for all

α ∈ (0,1].
19 Goldreich and Krawczyk [GK90, GK96] proved a similar result for three-step black-box ZK proofs of membership.
20 It might be helpful to draw an analogy: Our work is to [AH91], as [BG81] is to [BGS75]. However, this analogy is too informal

to be taken serious. It is solely given to provide the reader with some intuition. In addition, note that the main objective of this
paper is to revise the concept of ZK, not to provide some specific protocol.
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4.1 The Random Oracle Model

Intuitively, the Random Oracle Model (RO Model, for short) is the Standard Model augmented with a “ran-
dom function” O. Every party (including the adversary) can query O at the point of its choice, and receive
the answer regardless of its identity.

There are several definitions of the random oracle, based on its length of the input or output. We adopted
a definition in which the length of input is arbitrary, while the length of output is bounded by some prede-
termined function:

Definition 9. A random oracle is a function O, chosen uniformly from the collection of all functions whose
length of output is `(n), where ` : N→ N is a function, and n is the length of the security parameter of
the system (e.g. the length of the common input). Symbolically, let F` be the collection mentioned above:
F`

def
=
{

f : {0,1}∗→{0,1}`(n)
}

. Then O←R F`.
We assume that `(·) is a polynomial. ut

There are at least three variants of ZK in the RO Model. The definitions differ in what the simulator can
perform in order to simulate the view (resp. transcript) of the verifier (resp. the protocol), and whether the
distinguisher can access O. We describe the three variants briefly, and justify the variant we adopt for the
rest of this paper.

In the original definition of ZK in the RO Model (due to Bellare and Rogaway [BR93]), the “RO-Model
Simulator” has two advantages over a “Standard-Model Simulator”:

1. It can see the queries made by parties to O, and
2. It can choose the answer to every query.

Nielsen [Nie02] coined the term “programmability” for the second property, and introduced a new model
in which the RO-Model Simulator was not able to program the random oracle. Such model was called the
Non-Programmable Random Oracle (NPRO) model. One year later, Pass [Pas03] showed that a remarkable
feature of the ZK in the Standard Model, namely deniability, will be lost if we allow the simulator to program
the random oracle. Deniability is informally defined as the ability of the prover to deny its interaction with
the verifier.

Later, in 2009, Wee [Wee09] coined the term Explicitly Programmable Random Oracle (EPRO) model
for the original definition of Bellare and Rogaway [BR93], and defined another model he termed the Fully
Programmable Random Oracle (FPRO) model. In FPRO model, the distinguisher may not query O at all.

Note that the NPRO model is more restrictive than the EPRO model, which in turn is more restrictive
than the FPRO model. That is, if a protocol is ZK in the NPRO model, it is ZK in both the EPRO and
FPRO models. For this reason, and because we believe that deniability is a natural expectation from any
ZK protocol, we adopted the NPRO model for the rest of this paper. The interested reader may consult
[BR93, Nie02, Pas03, Wee09] for a more thorough review of other models.

We now define what it means for a protocol to be auxiliary-input ZK in the NPRO Model.21

Definition 10 (Auxiliary-Input CZK in the NPRO Model). Let 〈V ↔ P〉 be an interactive protocol. We
say that this protocol is auxiliary-input CZK in the NPRO Model for P on L= LR, if for all PPT-ITM-OTM

21 Unruh [Unr07] put forward a new definition for auxiliary-input in the RO model, in which the auxiliary-input is dependent on
the choice of O. Later, Wee [Wee09] proved that the ZK property is not closed under sequential composition, unless the protocol
at hand is RO-dependent auxiliary-input ZK. However, as we will point out at the end of Section 5, Wee’s proof invalidates under
our revised definition of ZK. Thus, the validity of his negative result remains open (under the new definition of ZK).
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V ∗, there exists a PPT-OTM MV ∗ , such that for every PPT-OTM A (the distinguisher):

∀c > 0, ∃n0 ∈ N s.t. ∀n≥ n0, ∀x ∈ L∩{0,1}n, ∀r,ξ ∈ {0,1}∗∣∣∣E[O←R F` : Pr
[
AO

(
view〈V ∗r

O(ξ ),PO〉(x)
)
= 1
]
−

Pr
[
AO (MO

V ∗(x,r,ξ
)
= 1
]]∣∣∣< n−c .

(11)

The expectation is taken over the random selection of O, the first probability is taken over the internal coin
tosses of P and A (note that V ∗ is a deterministic machine with hard-coded randomness r), and the second
probability is taken over the internal coin tosses of MV ∗ and A. ut

4.2 A ZK Implementation of the Base Protocol

We are now prepared to give a ZK implementation of the Base Protocol. We adopted Variant 1 for some
technical reasons.

Let F = { fx}x∈X be a collection of trapdoor one-way permutations, and O be a random oracle. Define

the binary relation R̂x
def
= {〈 fx(z),O(z)〉}z∈Dx

for all x ∈ X , and let R̂ denote a family of binary relations:

R̂ def
= {R̂x}x∈X . Note that D def

= {F(x,D(x))}x∈X is an input distribution for R̂.

Protocol 2 is an interactive proof of computational ability—That is, one can prove that V is an ability
verifier for solving R̂x under F(x,D(x)) (with zero error). The proof is similar to that of Theorem 1.

Remark 4. In fact, there is one clever difference: While membership in relation Rx (defined in Section 3)
can be decided efficiently, this is not the case with relation R̂x (see Theorem 3, Part (ii)). Hence, if we try
to give an ability extractor similar to Program 1, the extractor will probably get stuck at Step 5. A simple
workaround is to change Definition 4, so as to let the ability extractor have oracle access to the final state of
V .

Definition 11. Let χR denote the characteristic function of the k-ary relation R. That is, for every 〈a1, . . . ,ak〉 ∈
({0,1}∗)k :

χR (〈a1, . . . ,ak〉) =

{
1 if 〈a1, . . . ,ak〉 ∈ R,
0 otherwise.

(12)

Relation R is hard to decide if for every efficient algorithm A, there exists an infinite sequence {si}i∈N,
where for all i ∈N, we have si ∈ ({0,1}∗)k and Pr [A(si) = χR(si)]<

1
2 +negl(|si|). The probability is taken

over the internal coin tosses of A.
Relation R is hard to approximate if there exists an efficient algorithm S, such that for every efficient

algorithm A:

∀c > 0, ∃n0 ∈ N s.t. ∀n≥ n0

Pr [〈a1, . . . ,ak〉 ← S(1n) : A(〈a1, . . . ,ak〉) = χR (〈a1, . . . ,ak〉)]<
1
2
+n−c . (13)

where the probability is taken over the internal coin tosses of S and A.

In the RO Model, algorithms S and A have oracle access to O. In addition, the corresponding probabilities
are taken over the random selection of O as well. ut
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Common Input (Security Parameter): 1n.

Verifier (V ) Prover (P)

Let 〈x, tx〉 ← G(1n),
z← D(x),
y← F(x,z).

〈x,y〉
−−−−−−−−−−−→

Compute w←O
(

f−1
x (y)

)
.

w←−−−−−−−−−−−
IF w =O(z) THEN

Set state to ACC.
ELSE

Set state to REJ.

Protocol 2. Alleged ZK Implementation of the Base Protocol.

1: LET 〈x, tx〉 ← G(1n).
2: LET O←R F`.
3: LET z← D(x).
4: LET y← F(x,z).
5: LET ρ ←R {0,1}.
6: IF ρ = 0 THEN
7: LET r←O(z).
8: ELSE
9: LET r←R {0,1}`(|x|).
10: OUTPUT (x,〈y,r〉).

Program 2. The algorithm used to prove that R̂ is hard to approximate.

We are now ready to state and prove Theorem 3.

Theorem 3. Relation R̂ (defined at the beginning of this section) is:

(i) hard to approximate; and
(ii) hard to decide.

Proof. Part (i)— Let S be the efficient algorithm whose code is described in Program 2. Note that on input
1n, S outputs a pair 〈y,r〉, as well as a string x. The latter provides extra information about the former. Out-
putting such extra information strengthens Theorem 3, since we will indeed prove that no efficient adversary
can approximate or decide R̂, even if it is provided with such extra information.

Let A be any efficient program, and define d←A(S (1n)) =A(x,〈y,r〉), characterizing A’s verdict as
to whether or not the output of S belongs to R̂. Let E1 denote the event thatO is queried at point z = f−1

x (y),
and E2 denote the event that d = ρ . The proof is based on lemmas 1 and 2.22

22 The idea is based on the work of Bellare et al. [BHSV98].
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1: LET Ψ ←∅.
2: FOR i← 1 TO tA(|x|) DO
3: SINGLE-STEP A(x,〈y,r〉).
4: IF A halts THEN
5: HALT.
6: ELSE IF A queries O THEN
7: LET q be the query.
8: IF y = F(x,q) THEN
9: OUTPUT q.
10: HALT.
11: ELSE IF q ∈ dom(Ψ) THEN
12: ANSWER query with Ψ(q).
13: ELSE
14: LET ψ ←R {0,1}`(|x|).
15: LET Ψ ←Ψ ∪{(q,ψ)}.
16: ANSWER query with ψ .

Program 3. Algorithm of A′.

Lemma 1. For large enough x’s, Pr[E1] = negl(|x|).

Proof. Assume to the contrary that, there exists some c ∈ N, such that the probability that O is queried at
point z is greater than |x|−c for infinitely many x’s. We show that, there exists an efficient algorithm A′,
which uses A as a subroutine, and inverts infinitely many y’s with non-negligible probability.

Let tA(·) be a polynomial upper-bounding the running time of A. Program 3 describes the algorithm of
A′ on input (x,〈y,r〉) generated by Program 2.

Let us describe Program 3. Function Ψ , defined in Step 1, is to simulate the random oracle O. Queries
made by A should be answered consistently; that is, if A has asked them before, it should get the same
answer. This consistency measure is enforced in Steps 11–16.

Remark 5. Instead of function Ψ , we could have used pseudorandom function generators [GGM86] for
more efficiency (in terms of storage). However, that would make the analysis more complex, which is
undesirable.

In Step 3, SINGLE-STEPA means “to proceed one step in the computation ofA.” If the next computation
step of A is HALT, algorithm A′ halts as well (Steps 4–5), while if it is a query to O, algorithm A′ first
checks whether it is f−1

x (y) (Step 8), and if so, outputs it and halts. Otherwise, A′ tries to simulate the
behavior of a random oracle as described above.

Obviously, algorithm A′ outputs f−1
x (y) with the same probability that A queries O at point f−1

x (y) (on
average). Since we assumed that the latter probability was non-negligible for infinitely many x’s, so would
be the former probability. But this contradicts the non-invertibility of F by efficient machines. �

Lemma 2. Pr[E2 | E1
′] = 1

2 .

Proof. Assuming E1
′ (that is, O is not queried at point z = f−1

x (y)), from the viewpoint of A, the output
of Program 2 is indistinguishable from that of Program 4, where U` and U ′` are two independent uniform
distributions over {0,1}`(|x|). In Program 4, conditioned on E1

′, A cannot distinguish the case where ρ = 0
from the case that ρ = 1, even in the information-theoretic sense. Therefore, Pr[E2 | E1

′] = 1
2 . �
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1: LET 〈x, tx〉 ← G(1n).
2: LET O←R F`.
3: LET z← D(x).
4: LET y← F(x,z).
5: LET ρ ←R {0,1}.
6: IF ρ = 0 THEN
7: LET r←U`.
8: ELSE
9: LET r←U ′`.
10: OUTPUT (x,〈y,r〉).

Program 4. A modified version of Program 2.

Given lemmas 1 and 2, inequality (14) holds.

1
2
= Pr[E2 | E1

′] =
Pr[E2∩E1

′]

Pr[E1
′]

=
Pr[E2−E1]

Pr[E1
′]

=
Pr[E2]−Pr[E1∩E2]

Pr[E1
′]

≥ Pr[E2]−Pr[E1]

Pr[E1
′]

=
Pr[E2]−negl(|x|)

1−negl(|x|)
. (14)

Thus Pr[E2]≤ 1
2 +

1
2 negl(|x|), and Part (i) follows. �

Part (ii)— Any hard-to-approximate relation is trivially hard to decide, since for infinitely many n, S(1n)
produces tuples which no efficient algorithm A can decide their membership with probability better than
1
2 +negl(n). �

Part (i) of Theorem 3 provides us with an invaluable tool to prove the main results of this paper: That is,
Protocol 2 is a ZK proof. This proposition is studied in the next section.

5 Main Results

In the previous section, we proved that Protocol 2 is a proof of computational ability. In this section, we will
concentrate on the ZK property of this protocol. We start by proving that Protocol 2 is ZK in the sense of
Definition 7.

Theorem 4. Protocol 2 is passive-observer CZK.

Proof. Consider the simulator described by Program 5. The simulator simply lets V ∗ send its challenge, and
then answers the challenge with a random string. A more detailed description follows.

Since the algorithm of the simulator is efficient, algorithm A of Definition 7 can easily run it over
and over, and the simulator should always give the same answer to the same challenge. This is because
A can easily force V ∗ to ask the same challenge y, since due to the universal quantifier over V ∗ and A in
Definition 7, A might ask for a deterministic V ∗. The simulator uses function Ψ(·) to “memorize” queries
already asked (Steps 0 and 2–4), similar to Program 3. Note that Step 0 of MV ∗ runs only once, during the
initialization phase.
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0: LET Ψ ←∅.
(This step is taken only while initializing).

1: LET 〈x,y〉 ← V∗(1n).
2: IF y 6∈ dom(Ψ) THEN
3: LET ψ ←R {0,1}`(|x|).
4: LET Ψ ←Ψ ∪{(y,ψ)}.
5: OUTPUT 〈1n,x,y,Ψ(y)〉.

Program 5. The Simulator MV ∗ of Theorem 4.

Step 1 uses V ∗’s next-message function V∗(·) to get the query. Here, we assume that V∗(·) uses the
internal coin tosses of V ∗, and didn’t mention the randomness explicitly.

Finally, Step 5 outputs the proof transcript. According to Part (i) of Theorem 3, no efficient algorithm
can distinguish such “simulated” output from the real output with probability better than 1

2 +negl(|x|), when
x is large enough. This completes the proof. �

Corollary 1 (cf. [AH87, AH91]). Relative to a random oracle O, there exists a two-step passive-observer
CZK proof for some relation23 R̂ 6∈ BPPO.

Proof. Corollary 1 follows from Theorem 4, and Part (i) of Theorem 3. (The latter is used to show that
R̂ 6∈ BPPO.) �

Theorem 4 shows that no passive observer can gain knowledge by eavesdropping on the transcript of Pro-
tocol 2. Can we extend this result from passive observers to dishonest verifiers? That is, can we migrate
from the above simulator—which constructed the transcript of the protocol—towards some simulator that
constructs the view of any verifier?

To answer the above question, we first note that Protocol 2 is HVCZK: On input 1n, and for every
r ∈ {0,1}∗, the simulator M first runs Vr(1n) to get the challenge (i.e. y = F(x,z)). It then replies with some
random value, and monitors the query V makes toO. Due to the honesty of V , it will queryO at z. Having z
at hand, M will output 〈1n,r,⊥,x,y,O(z)〉. The symbol⊥ denotes that the auxiliary input is empty, since the
honest verifier does not use such input. Note that the simulated view is identical to the real view. Therefore,
not only Protocol 2 is HVCZK, but it is honest-verifier PZK (HVPZK).

Another possible way of outputting a view identical to the real view is as follow: On input 〈1n,r,⊥〉, M
runs algorithms G, D, and F to get x, y, and z, and outputs 〈1n,r,⊥,x,y,O(z)〉.

In contrast to the passive-observer and honest-verifier cases, it is impossible to prove the ZK property for
general verifiers using “classical” ZK definitions. In particular, old techniques such as rewinding the verifier
or monitoring the verifier’s queries to the random oracle will not help the simulator. Theorem 5 states this
formally.

Theorem 5. Protocol 2 is not ZK in the classical black-box CZK sense.

Proof (Sketch). Consider the family V∗ of dishonest verifiers, each of which has a polynomial-time com-
putable permutation, hard-coded into its program. That is, to every verifier V ∗ ∈ V∗, a polynomial-time
computable permutation πV ∗ : 1∗×{0,1}∗→{0,1}∗ is associated, where the first input determines the run-
ning time, while the second input specifies the domain over which the permutation is applied. (Note that

23 We implicitly generalized BPP to cover relations, in addition to languages.
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1: LET r′← πV ∗(1n,r), 〈x, tx〉 ← Gr′(1n), z← Dr′(x), y← Fr′(x,z).
2: SEND 〈x,y〉 TO P.
3: RECEIVE w FROM P.
4: ABORT interaction.
5: INVESTIGATE w to gain knowledge.

Program 6. The Program of V ∗ ∈ V∗.

only a polynomial prefix of the second input is used.) Since there are infinitely many such permutations,
V∗ will be an infinite family. The verifiers in V∗ are dishonest since they do not use their random input r
directly; instead, they first compute r′ = πV ∗(1n,r), and then use r′ instead of r. Since πV ∗ is a permutation
and r is a uniformly random string, r′ will be a uniformly random string as well.

The program of V ∗ ∈ V∗ is described in Program 6. M cannot acquire z by monitoring V ∗’s queries to
O, since it does not make any queries at all. Therefore, it should try another trick.

The black-box CZK requires the existence a universal simulator M for all verifiers. Since there are
infinitely many permutations πV ∗ , M cannot incorporate the description of all such permutations into its
program. In contrast, since the distinguisher A is chosen after V ∗, we can assume that πV ∗ is hard-coded
into A’s program. Fixing r, A can deterministically verify whether the output of the simulator is identically
distributed to the real view: Assume that, on input 〈1n,r,ξ 〉, M outputs 〈1n,r,ξ ,x′,y′,w〉. Then, A computes
r′ = πV ∗(1n,r), and outputs 1 if and only if:

– x′ equals the first component of Gr′(1n); AND
– y′ equals Fr′(x′,Dr′(x′)); AND
– w equals O(Dr′(x′)).

Therefore, given the input 〈1n,r,ξ 〉, the values of x′, y′, and w are uniquely determined. This implies that M
has one of the following two approaches to satisfy A:

1. Find πV ∗ so that it can compute r′, and therefore the second component of Gr′(1n) (that is, the trapdoor).
2. Get 〈x,y〉 using the next-message function of V ∗, and try to find z′ such that O(z′) =O( f−1

x (y)).

The first approach is infeasible due to the universality of the simulator (described earlier). The second
approach is infeasible since it involves inverting the one-way permutation fx.

We conclude that a black-box simulator for Protocol 2 does not exist. �

As a side note, if we assume that Protocol 2 is ZK in the classical auxiliary-input sense (which is less strict
than the black-box sense), then Theorem 6 holds.

Theorem 6. If Conjecture 1 holds, and Protocol 2 is ZK in the classical auxiliary-input sense, it will be a
non-contrived24 example of a protocol secure (≡ZK) in the RO Model which, for no implementation of the
random oracle in the Standard Model will remain secure (≡ZK).

Proof. Conjecture 1 states that nontrivial two-step auxiliary input ZK proofs of computational ability do
not exist in the Standard Model. if Protocol 2 is ZK in the classical auxiliary-input sense, and because it is
two-step, any implementation of the random oracle (using a single function or a function ensemble) will not
preserve the ZK property in the Standard Model. �

24 Canetti, Goldreich, and Halevi [CGH98, CGH04, CGH08] proved this theorem for contrived encryption and signature schemes.
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1: LET ρ ←R {0,1}.
2: LET 〈x,y〉 ← Vr,ξ (1

n).
3: LET O← F`.
4: IF ρ = 1 THEN
5: LET w← P(1n,x,y).
6: ELSE
7: LET w←M(1n,r,ξ ,x,y).
8: LET d←AO (1n,r,ξ ,x,y,w).

Program 7. An experiment used to prove Theorem 8.

Now that we proved that Protocol 2 does not possess a black-box simulator, let us intuitively justify why
failure to show the existence of such simulator does not rule out the ZK property for this protocol. Consider
a spectrum of verifiers, from the honest one (which exactly follows the prescribed rules of protocol), to the
most adversarial ones (which deviate from the rules of protocol as much as they can). We proved earlier that
the protocol is HVPZK. Consequently, the protocol is ZK at one extreme of the spectrum.

In the middle of the spectrum, we have verifiers with “some knowledge” about z. As an example, con-
sider verifiers with “full knowledge” about z, such as those of Theorem 5. Such verifiers “know” z, but do not
let the simulator learn it too. However, the protocol is conceptually ZK for such verifiers, since the message
sent by P (i.e. O(z)) will not carry more knowledge than z.

We now look at the other extreme of the spectrum, where the (dishonest) verifier V ∗ “knows” nothing
about z (beyond what can be efficiently computed from y). For instance, consider a verifier with empty
auxiliary input, which sets y←R {0,1}|x| and sends it to P. The protocol is ZK for such V ∗ as well, since it
has no advantage over a passive observer; and by Theorem 4, we know that the protocol is CZK for passive
observers.

We intuitively and conceptually argued that Protocol 2 is ZK for special classes of verifiers in different
parts of the spectrum. However, is it true for other types of verifiers? (That is, those dishonest verifiers
possessing some partial knowledge about z.)

To answer the above question, let us present several notations. For all n∈N, and every efficient (possibly
dishonest) verifier V (of Protocol 2), and for every r,ξ ∈ {0,1}∗, let Vr,ξ (1n) denote the next-message
function of V on common input 1n, random input r, and auxiliary input ξ . Similarly, let P(1n,x,y) be the
next-message function of the (honest) prover P on common input 1n and on 〈x,y〉 ← Vr,ξ (1n). (The
random input, if any, is implicit in this function.) Let M be the simulator in Program 5, with the difference
that Step 1 is no longer needed.

Now consider the experiment in Program 7, which is similar to Program 2. Define ∆A
def
= ∆A(x;r,ξ ) def

=
Pr[d = ρ], where the probability is taken over the random selection of O and the internal coin tosses of A
and M. We did not mentioned the internal coin tosses of P since there exists a deterministic algorithm, which
can mimic the behavior of P on y. That is, f−1

x (y) can be computed deterministically.
As stated in the informal analysis above, if V is honest, there exists an efficient machine A which can

easily distinguish the real proof from the simulated proof. This is due to the fact that since the honest
V “knows” z, there exists some efficient machine A which, given the same common and random inputs
as V , can regenerate z. Then, A queries O at z, and outputs 1 if its sixth input (i.e. w) is O(z), and 0
otherwise. Thus, for the honest verifier and such A, ∆A ≥ 1−negl(n). (There’s a negligible probability that
the simulator outputs the correct response.) On the other hand, if V is the dishonest verifier described in the
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1: ESTIMATE δA.

2: FOR i← 1 TO |x|
δA

DO

3: LET ρ1←R {0,1}∗.
4: LET ρ2←R {0,1}∗.
5: PROCEED Aρ1

(
Mρ2(1

n,r,ξ ,x,y)
)
.

6: IF Aρ1 queries O THEN
7: OUTPUT the query.
8: HALT.
9: PERFORM “Exhaustive Search” on y.

Program 8. The Universal Knowledge Extractor K of Theorem 8.

informal analysis above (where V ∗ knew nothing about z), we have ∆A ≤ 1
2 + negl(n) for every efficient

algorithm A and large enough n’s. (The proof is similar to that of Theorem 4.)
Define the advantage of A in guessing ρ (and therefore distinguishing real and simulated views) as

δA
def
= 2∆A− 1. By definition, the |δA| equals the absolute difference of two probabilities: The probability

that A outputs 1 given the real view, and the probability that A outputs 1 given the simulated view.

Theorem 7. For every efficient A, the probability that A queries O at z is at least δA.

Proof. Let events E1 and E2 be defined as in the proof of Theorem 3. That is, let E1 denote the event that O
is queried at point z, and E2 denote the event that d = ρ . Note that Pr[E2] = ∆A, and Pr[E2|E1

′] = 1
2 . (The

latter can be proven using Lemma 2.) By inequality (14): Pr[E1]≥ 2∆A−1 = δA. �

Let A be an efficient machine which queries O at z with advantage δA. Then, there exists an efficient
machine A′ which queries O at z with the same advantage δA, while A′ makes at most 1 query to O. This
is because A′ can use the A as a subroutine, which, on an oracle query by A:

1. returns O(z) if the query is at point z;
2. returns a random but consistent answer otherwise.

We call A′ a single-query machine. Intuitively, the knowledge of A′ is no more than that of A. Thus,
statements about the knowledge of A can be “lower-bounded” by the knowledge of A′, and in the rest, we
only give propositions about single-query machines.

We now deal with verifiers with partial knowledge about z: Informally, For every (single-query) efficient
algorithm A, if A has advantage δA, then A “knows” z with probability max{0,δA}. Using the formalized
concept of “a machine knowing something” in Definition 2, we state the main result of this paper: Theorem 8.

Theorem 8 (Main Theorem). There exists a constant c > 0 and a probabilistic oracle machine K (the
Universal Knowledge Extractor) such that for every efficient single-query algorithm A, and for all strings
1n, r, ξ , x, and y as described above, if δA > 0, then KA(1n,r,ξ ,x,y) outputs z = f−1

x (y) in expected time
upper-bounded by nc

δA
.

Proof. Note that since M is an efficient algorithm, K can incorporate its code within itself. Now, consider
the algorithm of the universal knowledge extractor K, described by Program 8.

Program 8 resembles Program 1. One difference is the command PROCEED in Step 5. This command
allowsA to run, until it “pauses.” The pause is due toA entering either the halt state (in which its execution
terminates), or the query state (in which A writes some query on its query tape and waits for response from
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the random oracle). Since we assumed thatA is a single-query machine, if the latter case happens, the query
is indeed the string z, and we output it at Step 7, and finish the search at Step 8. Otherwise, a new round of
search begins.

At each iteration of the loop,A either makes the required query or halts. Since, according to Theorem 7,
A queriesO at point z with probability at least δA (assuming δA > 0), we expect that, at each iteration, Step
7 gets to run with probability at least δA. An analysis similar to the proof of Theorem 1 shows that, for large
enough x’s, the probability that Step 9 gets to run is no more than (1−δA)

n
δA < e−n.

Consequently, since Step 9 gets to run with negligible probability, the expected running time of Pro-
gram 8 is at most n

δA
O(1), as required by Theorem 8. �

5.1 The Simulation-Extraction Paradigm

Before proposing the Simulation-Extraction Paradigm, let us study the properties of Protocol 2, which we
exploited to prove its ZK property:

(a) The honest verifier of Protocol 2 “knows” the right answer when sending its challenge. In addition, the
protocol is HV ZK.

(b) Protocol 2 is not a repetition/composition of some primitive protocol.
(c) The verifier of Protocol 2 uses private coins.
(d) Protocol 2 uses the RO Model.

We “believe” that Property (a) is crucial for our paradigm, while we do not know whether other properties
are required or not.

Below, we formalize what we mean by the term Simulation-Extraction Paradigm (abbreviated as SE
Paradigm):

Definition 12 (Black-Box ZK in the SE Paradigm). Let Vx,r,ξ (m) and Vr(ξ ) be defined as in Definition 6.
We call an interactive protocol 〈V ↔ P〉 black-box SE-CZK for P on L = LR, if there exists an (expected)
PPT-OTM M, a probabilistic OTM K, and some constant c1 > 0, such that for every PPT-ITM V ∗, every PPT-
OTM A (the distinguisher), all constants c2 > 0, every x ∈ L and all r,ξ ∈ {0,1}∗, the following property
holds:

Let δA denote the advantage25 of A in distinguishing the real and simulated views. If δA > 0, then
KV ∗,A(x,r,ξ ) can output a view in expected running time upper-bounded by |x|

c1

δA
, such that A’s

absolute advantage of distinguishing K’s output from the real view is less than |x|−c2 .

The definition in the RO Model follows easily. ut

Several observations are in order:

– All existing black-box CZK protocols are black-box SE-CZK. This is due to the fact that for all existing
black-box CZK protocols, and for all PPT-OTM A, δA is a negligible quantity in |x|. Therefore, K’s
expected running time is upper-bounded by some super-polynomial. However, M already simulates the
view in polynomial-time; and therefore we can take K to be identical to M.

– K is not too powerful. In other words, consider a protocol which is not black-box CZK; in the sense
that for every PPT-OTM simulator M, there exists a PPT-OTMA which distinguishes the simulated and
real views with noticeable advantage. Then, the expected running time of K will be bounded by some
polynomial, much the same as M. Therefore, the only advantage that K has over M is that K has oracle
access to A.

25 That is, |δA|=
∣∣∣Pr
[
AV∗(x,r,ξ )

(
MV∗(x,r,ξ )(x,r,ξ )

)
= 1
]
−Pr

[
AV∗(x,r,ξ ) (view〈V ∗r (ξ ),P〉(x)) = 1

]∣∣∣
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– The above discussion demonstrates that the SE Paradigm simplifies proving positive results (i.e. a pro-
tocol is ZK), while it complicates proving negative results (i.e. a protocol is not ZK). In particular, it
invalidates some proofs which were totally valid in the classical sense (for example, see the proof of
Theorem 3 in [Wee09]26).

– We already proved, in the context of Protocol 2, how K can simulate a view indistinguishable from the
real view. Therefore, by definition, Protocol 2 is black-box SE-CZK.

6 Conclusion and Open Problems

The concept of “zero-knowledge” was proposed before “knowledge” was formalized, and it was not revised
thereafter. The current formalism is too strict to include all the protocols which are conceptually zero-
knowledge. As an example, we came up with one such protocol, and formally proved that it was zero-
knowledge. The formal proof provided us with a relaxed paradigm for proving the zero-knowledge property.

The new formalization of zero-knowledge led us to many open problems, a few of which are listed
below:

1. Does Conjecture 1 hold? That is, is it true that 1-round proofs of knowledge (or proofs of computational
ability) exist only for trivial relations?

2. At the beginning of Section 5.1, we discussed several properties, labeled (a)–(d). Is it true that all of
these properties are required? Specially, is it possible to use the paradigm in models other than the RO
Model, such as the Common Reference String (CRS) Model or the Standard Model?
In addition, are there any other required/sufficient properties which, if satisfied by a protocol, make it a
candidate for the SE Paradigm?

3. We proved that Protocol 2 does not have a classical black-box CZK simulator. Can we conceive of other
useful protocols, which are not zero-knowledge in the classical sense but are zero-knowledge in our
paradigm?

4. Does revising the concept of zero-knowledge result in the revision of any concept/theorem in the foun-
dations of cryptography? We are specially interested in revising the concept of zero-knowledge proofs in
the non-black–box sense [Bar01], and in the CS Proofs model [Mic94, Mic00]. Moreover, we are inter-
ested in theorems about the composition of ZK protocols: Is SE-ZK closed under various compositions?

5. In Definition 12, the knowledge extractor K tries to extractA’s knowledge as ifA is a prover of knowl-
edge. This might be inappropriate in some cases, since A is a “judge,” not a prover. Therefore, its
one-bit output may be inadequate for K to extract A’s knowledge within a limited number of steps. A
workaround is to give K non-black–box access to A, similar to the approach [BGGL01]. Yet a better
solution is to formalize the concept of knowledge in such a way that it is not limited to parties who
engage in proving, but includes verifiers and distinguishers as well.
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